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Abstract: Currently, there is a crucial need for novel diagnostic and prognostic biomarkers with high
specificity and sensitivity in patients with colorectal cancer. A “liquid biopsy” is characterized by
the isolation of cancer-derived components, such as circulating tumor cells, circulating tumor DNA,
microRNAs, long non-coding RNAs, and proteins, from peripheral blood or other body fluids and
their genomic or proteomic assessment. The liquid biopsy is a minimally invasive and repeatable
technique that could play a significant role in screening and diagnosis, and predict relapse and
metastasis, as well as monitoring minimal residual disease and chemotherapy resistance in colorectal
cancer patients. However, there are still some practical issues that need to be addressed before liquid
biopsy can be widely used in clinical practice. Potential challenges may include low amounts of
circulating tumor cells and circulating tumor DNA in samples, lack of pre-analytical and analytical
consensus, clinical validation, and regulatory endorsement. The aim of this review was to summarize
the current knowledge of the role of liquid biopsy in the management of colorectal cancer.
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1. Introduction

Colorectal cancer (CRC) is one of the most common solid cancers in developed countries,
with approximately 1.8 million incident cases and 900,000 deaths every year worldwide [1,2].
The burden of CRC is growing in the majority of low- and middle-income countries, probably
due to environmental risk factors, such as changes in diet and life-style (i.e., obesity, smoking, alcohol
consumption, and suboptimal dietary habits) [3], aging, and urbanization [4,5]. According to the
American Cancer Society (ACS), the 5-year survival rate ranges from 90% if CRC is diagnosed at
a localized stage to 14% in patients presenting with metastatic disease [6]. Treatment decisions for
CRC should take into account the stage of the disease, the general condition, and performance status
of the patient, and the molecular characteristics of the tumor [7,8]. The diagnosis of CRC is frequently
made using colonoscopy, and confirmed by histological examination of the tumor tissue biopsy.
The TNM staging of CRC is based on the depth of invasion of the primary tumor, regional lymph
node involvement, and distant metastases, which may contribute to the choice of the most appropriate
therapeutic approach, including adjuvant chemotherapy [9]. Surgical resection with lymph node
dissection represents the base of curative treatment for localized colon cancer. Patients with stage
III colon cancer are treated with adjuvant therapy using the FOLFOX (leucovorin, 5-fluorouracil and
oxaliplatin) regimen; however more data are needed to confirm the efficacy of such treatment for
rectal cancer patients. Combination of doublet or triplet chemotherapy (i.e., 5-fluorouracil/leucovorin,
capecitabine, oxaliplatin, irinotecan) and a targeted agent (i.e., cetuximab, bevacizumab, panitumumab)
are routinely used for the treatment of metastatic CRC [10,11]. Histopathological tumor tissue analysis
cannot be considered to be a reliable source of clinically helpful prognostic or predictive information for
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CRC at the individual patient’s level; thus, research is constantly moving towards the identification of
more accurate and personalized biomarkers [12]. Indeed, there is a critical need for new diagnostic and
prognostic biomarkers with high specificity and sensitivity in patients with CRC [13,14]. In this context,
liquid biopsy could represent the new era for biomarkers detection: the term “liquid biopsy” refers to
the isolation of cancer-derived components, such as circulating tumor cells (CTC), circulating tumor
DNA (ctDNA), microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and proteins, from peripheral
blood or other body fluids (i.e., ascites, urine, pleural effusion, and cerebrospinal fluid), and their
genomic or proteomic assessment [15,16]. Furthermore, exosomes (EXOs) which are membrane-bound
extracellular vesicles containing proteins and nucleic acids released in the bloodstream by cancer cells,
could represent potential biomarkers [17,18]. The aim of this review was to summarize the current
knowledge of the role of liquid biopsy in the management of CRC.

2. Clinical Utility of Liquid Biopsies in Patients with Colorectal Cancer

Assessment of peripheral blood components, such as CTCs, ctDNA, miRNAs, and lncRNAs could
improve CRC screening and diagnosis, and predict relapse and metastasis [19–22]. Blood-based liquid
biopsies could also be effective in monitoring minimal residual disease (MRD) and drug resistance
in CRC patients receiving chemotherapy [23,24] (Table 1).
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Table 1. Potential clinical applications of liquid biopsy biomarkers in CRC.

Study (Year) Biomarkers Sample Size Methods

Statistical
Significance

(p Value),
Sensitivity/Specificity
(%) and/or Hazard

Ratio

Potential
Clinical

Applications

Tsai et al.
(2018) [25] CTC

n = 620 (n = 438
adenoma, polyps,

or stage I–IV
CRC, n = 182

healthy controls).

CellMax
biomimetic

platform (CMx)

All subjects: Sn
84.0/Sp 97.3

Precancerous lesions:
Sn 76.6/Sp 97.3

CRC: Sn 86.9/Sp 97.3

Screening

Bork et al.
(2015) [26] CTC

Total n = 287
(n = 239 stage

I–III CRC)
CellSearch

OS: HR 5.5 (95% CI
2.3–13.6, p < 0.001)

PFS: HR 12.7 (95% CI
5.2–31.1, p < 0.001)

Prognostic in
non-mCRC

Gazzaniga
et al. (2013)

[27]
CTC

n = 37 high-risk
stage II or III

CRC
CellSearch

The presence of CTC
was detected in 8 of

37 patients (22%)
87.5% of

CTC-positive
patients had N1–2

disease and stage III
CRC

Selection of
high-risk

stage II CRC
patient

candidates
for adjuvant

chemotherapy

Tsai et al.
(2016) [28] CTC

n = 158 (n = 27
healthy, n = 21
benign, n = 95

non-mCRC,
n = 15 m-CRC)

CellMax
biomimetic

platform (CMx)

CRC: Sn 63.0/Sp 82.0
All colorectal

neoplasms, including
adenomatous polyps,

dysplastic polyps,
and CRC: Sn 61.0/Sp

94.0

Prognostic in
non-mCRC at

high risk of
early

recurrence

Musella et al.
(2015) [29] CTC

n = 38 advanced
RAS-BRAF-wild-type

CRC receiving
third-line therapy

with
cetuximab-irinotecan
or panitumumab.

AdnaTest
ColonCancerSelect

OS: HR 8.06 (95% CI,
2.54–25.59, p < 0.001)
PFS: HR 6.10 (95% CI,
2.49–14.96, p < 0.001)

Prognostic
and

predictive in
CRC patients
treated with
anti-EGFR

monoclonal
antibodies

Krebs et al.
(2014) [30] CTC

n = 48 (CTC
enumeration

performed only
in 42 patients)

CellSearch

ORR: 71%
Median OS for high
and low CTC count:

18.7 and 22.3 months
(log-rank test,

p < 0.038)

Prognostic in
CRC patients
treated with
irinotecan,
oxaliplatin,

and
tegafur-uracil

with
leucovorin

and
cetuximab

Tie et al.
(2016) [31] ctDNA

n = 230 resected
stage II colon

cancer
Safe-SeqS

Postoperative
recurrence at 36

months: Sn 48.0/Sp
100.0

Monitoring of
MRD and

identification
of CRC

patients at
very high risk
of recurrence
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Table 1. Cont.

Study (Year) Biomarkers Sample Size Methods

Statistical
Significance

(p Value),
Sensitivity/Specificity
(%) and/or Hazard

Ratio

Potential
Clinical

Applications

Sun et al.
(2018) [32] ctDNA n = 11 CRC

treated surgically NGS

n = 7: decreased
mutation rates in
postoperative vs.

preoperative period
n = 4: no mutations
n = 1 patient with
metastatic rectal

cancer: the rate of
TP53 mutation

increased from 8.95
(preoperative) to

71.4%
(postoperative)

Prognostic and
Predictive

Tie et al.
(2015) [33] ctDNA

n = 53 mCRC
patients receiving

standard
first-line

chemotherapy

Safe-SeqS
10-fold change

ctDNA threshold: Sn
75.0/Sp 64.0

Predictive
during first-line
chemotherapy

Tie et al.
(2018) [34] ctDNA

n = 95 stage III
colon cancer

receiving
adjuvant

chemotherapy

Safe-SeqS

Inferior RFS: in case
of positive ctDNA
post-surgery (HR

3.52, p = 0.004).
Superior RFS: when

ctDNA became
undetectable after

chemotherapy (HR
5.11, p = 0.02).

Inferior RFS: when
ctDNA status
changed from

negative to positive
after chemotherapy
(HR 5.30, p = 0.006).

Inferior RFS: positive
ctDNA after

adjuvant
chemotherapy

completion (HR 7.14,
p < 0.001)

Prognostic and
therapy

monitoring in
stage III colon

cancer

Grasselli et al.
(2017) [35] ctDNA n = 146 mCRC

patients

SoC PCR and
Digital PCR
(BEAMing)

ctDNA BEAMing
RAS testing showed

89.7% agreement
with SoC (Kappa
index 0.80, 95% CI

0.71–0.90)
BEAMing in tissue

showed 90.9%
agreement with SoC
(Kappa index 0.83,
95% CI 0.74–0.92)

Predictive and
anti-EGFR
treatment
selection
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Table 1. Cont.

Study (Year) Biomarkers Sample Size Methods

Statistical
Significance

(p Value),
Sensitivity/Specificity
(%) and/or Hazard

Ratio

Potential
Clinical

Applications

Khan et al.
(2018) [36] ctDNA n = 27 RAS

mutant mCRC
Digital-droplet

PCR
PFS: HR 0.21 (95% CI

0.06–0.71, p = 0.01)

Predictive of
duration of

anti-angiogenic
response to
regorafenib

Flamini et al.
(2006) [37] ctDNA

n = 75 healthy
subjects

n = 75 CRC
qPCR

ctDNA alone: Sn
81.3/Sp 73.3

ctDNA + CEA: Sn
84.0/Sp 88.0

Diagnosis of
early-stage

CRC

Hao et al.
(2014) [38] ctDNA

n = 104 primary
CRC, n = 85

operated CRC,
n = 16

recurrent/mCRC,
n = 63 intestinal
polyps, n = 110
normal controls

ALU-qPCR

ALU115: Sn 69.23/Sp
99.09

ALU247/115: Sn
73.08/Sp 97.27

Early
complementary

diagnosis,
monitoring of
progression

and prognosis
of CRC

Sun et al.
(2019) [39]

mSEPT9
DNA n = 650

Epigenomics
AG for Epi

proColon 2.0

CRC: Sn 73.0/Sp 94.5
Polyps and adenoma:

Sn 17.1/Sp 94.5

Screening and
recurrence
monitoring

Link et al.
(2010) [40]

Fecal
miRNAs

n = 8 healthy
controls, n = 29

normal
colonoscopies,

colon adenomas,
and CRCs

TaqMan
qRT-PCR

Increased expression
of miR-21 and

miR-106a in CRC
and adenomas vs.
normal controls

(p < 0.05)

Screening

Ya et al.
(2017) [41]

Serum
miR-129

n = 18 female
patients with

CRC
Real-time PCR

Contribution to
carcinogenesis by

targeting ERβ
(p < 0.01)

Development
of therapeutic

agents

He et al.
(2018) [42]

Serum
miR-24-2

n = 68 healthy
subjects, n = 228

CRC

Real-time
qRT-PCR

Higher levels in CRC
than healthy subjects

(p < 0.05)

Negative
biomarker in

the diagnosis of
the progression

of CRC

Wang et al.
(2017) [43]

Serum
miR-31,

miR-141,
miR-224-3p,
miR-576-5p,

and
miR-4669

n = 44 healthy
subjects, n = 50

CRC.
Double-blind

validation using
sera from 30

CRC, 30 colonic
polyps, 30

healthy controls

Real-time PCR

AUC = 0.995
(microarrays)
AUC = 0.964
(double-blind

validation test)

Panel for
diagnosis of

CRC
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Table 1. Cont.

Study (Year) Biomarkers Sample Size Methods

Statistical
Significance

(p Value),
Sensitivity/Specificity
(%) and/or Hazard

Ratio

Potential
Clinical

Applications

Toiyama et al.
(2014) [44]

Serum
miR-200c

Total n = 446
colorectal

specimens. First
phase: n = 12
stage I and IV
CRC. Second

phase: n = 182
CRC, n = 24

controls. Third
phase: n = 156
tumor tissues
from 182 CRC

and an
independent set
of 20 matched

primary CRC and
corresponding

liver mts

Real-time
qRT-PCR

Correlation with
lymph node mts

(p = 0.0026), distant
mts (p = 0.0023), and
prognosis (p = 0.0064)
Predictor for lymph
node mts (OR 4.81,
95% CI 1.98–11.7,
p = 0.0005) and

tumor recurrence
(HR 4.51, 95% CI

1.56–13.01, p = 0.005)
Prognostic (HR 2.67,

95% CI 1.28–5.67,
p = 0.01)

Prognostic and
predictive of

metastasis

Tang et al.
(2019) [45]

Exosomal
miR-320d

n = 34 mCRC,
n = 108

non-mCRC
qPCR

miR-320d:
AUC = 0.633,

p = 0.019
miR-320d + CEA:

AUC = 0.804

Predictive of
metastasis

Koga et al.
(2013) [46]

Fecal
miR-106a

n = 117 CRC,
n = 107 healthy

subjects

Real-time
RT-PCR

FmiRT: Sn 34.2/Sp
97.2. iFOBT + FmiRT:

Sn 70.9/Sp 96.3
Screening

Sazanov et al.
(2017) [47]

Plasma and
saliva

miR-21

Plasma: total
n = 65 CRC

(n = 34 controls,
n = 6 stage II,

n = 16 stage III,
n = 9 stage IV)

Saliva: total
n = 68 CRC

(n = 34 controls,
n = 6 stage II,

n = 18 stage III,
n = 10 stage IV)

Real-time
qRT-PCR

Plasma: Sn 65/Sp 85
Saliva: Sn 97/Sp 91 Screening

Fu et al.
(2018) [48]

Exosomal
miR-17-5p

and
miR-92a-3p

n = 10 normal
controls, n = 18

CRC, n = 11
mCRC

Real-time qPCR

miR-17-5p:
AUC = 0.897 (95% CI
0.800–0.994) for CRC,

and 0.841 (95% CI
0.720–0.962) for mts

miR-92a-3p:
AUC = 0.845 (95% CI
0.724–0.966) for CRC

and 0.854 (95% CI
0.735–0.973) for mts

miR-17-5p +
miR-92a-3p:

AUC = 0.910 (95% CI
0.820–1) for CRC and

0.841 (95% CI
0.718–0.964) for mts

Prognostic
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Table 1. Cont.

Study (Year) Biomarkers Sample Size Methods

Statistical
Significance

(p Value),
Sensitivity/Specificity
(%) and/or Hazard

Ratio

Potential
Clinical

Applications

Tsukamoto
et al. (2017)

[49]

Exosomal
miR-21

Total n = 326
CRC (n = 51

stage I, n = 110
stage II, n = 98
stage III, n = 67

stage IV)

TaqMan
miRNA assays

OS: HR 2.28 (95% CI
1.81–5.74, p < 0.01)
DFS: HR 2.34 (95%

CI 1.87–4.60, p < 0.01)

Prediction of
recurrence and
poor prognosis
in CRC patients

with TNM
stage II, III, or

IV

Liu et al.
(2016) [50]

Exosomal
miR-4772-3p

n = 84 stage II–III
colon cancer

Real-time
qRT-PCR

AUC = 0.72 (95% CI
0.59–0.85, p = 0.001)

Prognostic for
tumor

recurrence in
stage II and III
colon cancer

patients

Yan et al.
(2018) [51]

Exosomal
miR-6803-5p n = 168 CRC qRT-PCR

OS: HR 2.93 (95% CI
1.35–6.37, p < 0.007)

DFS: HR 3.26 (95% CI
1.56–6.81, p < 0.002)

AUC = 0.7399

Diagnostic and
prognostic

Liu et al.
(2018) [52]

Exosomal
miR-27a

and
miR-130a

Training phase:
n = 40 healthy
subjects n = 40

stage I CRC.
Validation phase:

n = 40 stage I,
n = 20 stage II,
n = 14 stage III,
n = 6 stage IV
CRC, n = 40

healthy subjects.
External

validation phase:
50 stage I CRC,

50 adenomas, 50
healthy subjects

qRT-PCR

miR-27a:
AUC = 0.773 Sn
75/Sp 77.5 in the
training phase,
AUC = 0.82 Sn

80.0/Sp 77.5 in the
validation phase, and

AUC = 0.746 Sn
80.0/Sp 77.5 in the
external validation

phase
miR-130a:

AUC = 0.742 Sn
82.5/Sp 62.5 in the

training phase,
AUC = 0.787 Sn

70.0/Sp 80.0 in the
validation phase,
AUC = 0.697 Sn

70.0/Sp 80.0 in the
external validation

phase
miR-27a + miR-130a:

training phase
AUC = 0.846 Sn

82.5/Sp 75, validation
phase AUC = 0.898,
Sn 80.0/Sp 90.0 and
external validation
phase AUC = 0.801

Sn 80.0/Sp 90.0

Diagnostic and
prognostic
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Table 1. Cont.

Study (Year) Biomarkers Sample Size Methods

Statistical
Significance

(p Value),
Sensitivity/Specificity
(%) and/or Hazard

Ratio

Potential
Clinical

Applications

Peng et al.
(2018) [53]

Exosomal
miR-548c-5p n = 108 CRC Real-time qPCR OS: HR 3.40 (95% CI

1.02–11.27, p = 0.046)
Diagnostic and

prognostic

Jin et al.
(2019) [54]

Exosomal
miR-21-5p,
miR-1246,

miR-1229-5p,
and

miR-96-5p

Drug-resistant
CRC cell lines qRT-PCR AUC = 0.804, p < 0.05

Predictive for
chemoresistance

in advanced
CRC

Yagi et al.
(2019) [55]

Exosomal
miR-125b

n = 55 patients
with

advanced/recurrent
CRC treated with

mFOLFOX6

qRT-PCR PFS: HR 0.71 (95% CI
0.36–0.94, p < 0.041)

Predictive and
detection of

chemotherapy
resistance

Wang et al.
(2018) [56]

lncRNA
H19

n = 110 paired
CRC tissues and

para-tumor
tissues

qRT-PCR

RFS: log-rank test
p < 0.001

High H19: HR 2.383
(95% CI 1.157–4.909,

p = 0.018)

Predictive of
5-FU resistance

Li et al. (2017)
[57]

lncRNA
MEG3 n = 316 CRC qRT-PCR

AUC = 0.784, Sn
72.86/Sp 61.43

OS: HR 1.390 (95% CI
0.324–2.089,
p = 0.007)

Prognostic and
promotion of

chemosensitivity

Sun et al.
(2019) [58]

lncRNAs
CRNDE,

H19, UCA1,
and

HOTAIR

CRC cell lines
(HCT116, HT29,

and LoVo)

Gene
Expression
Profiling

Interactive
Analysis

HOTAIR
OS: HR 1.9,
p = 0.0066

DFS: HR 1.8,
p = 0.012

Predictive of
treatment
sensitivity

Tang et al.
(2019) [59]

lncRNA
GLCC1

In vitro: Human
colorectal cancer
cell lines SW1116,

SW480, Caco2,
LoVo, HT29,

RKO, DLD-1, and
HCT116

In vivo: BALB/c
nude mice

Real-time qPCR

Stabilization of
c-Myc after

knockdown of
lncGLCC1 (p < 0.001)

Prognostic

Liu et al.
(2016) [60]

Exosomal
lncRNA

CRNDE-h
n = 468 qRT-PCR AUC = 0.892 Sn

70.3/Sp 94.4
Diagnostic and

prognostic

Liang et al.
(2019) [61]

Exosomal
lncRNA
RPPH1

n = 61 CRC qRT-PCR

OS: HR 2.145 (95% CI
1.450–3.174,
p < 0.001)

DFS: HR 1.820 (95%
CI 1.257–2.637,

p = 0.001)

Prognostic,
therapeutic,

and diagnostic
target

CTC: circulating tumor cells; UICC: Union for International Cancer Control; HR: hazard ratio; Sn: sensitivity;
Sp: Specificity; mCRC: metastatic colorectal cancer; ctDNA: circulating tumor DNA; OS: overall survival; PFS:
progression-free survival; ORR: objective response rate; EGFR: epidermal growth factor receptor; MRD: minimal
residual disease; RFS: recurrence-free survival; CI: confidence interval; CEA: carcinoembryonic antigen; NGS:
next-generation sequencing; SoC: Standard of care; qPCR: quantitative polymerase chain reaction; qRT-PCR:
quantitative reverse transcription polymerase chain reaction; mSeptin9: methylated septin9; ERβ: estrogen receptor
β; AUC: area under the ROC (Receiver Operating Characteristic) curve; OR: odds ratio; iFOBT: immunochemical
fecal occult blood test; FmiRT: fecal microRNA test; mts: metastasis; DFS: disease-free survival.
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2.1. Screening and Early Diagnosis

Global CRC screening guidelines recommend colonoscopy (every ten years), or flexible
sigmoidoscopy (every five years) or fecal occult blood test (FOBT; every one or two years) for
average-risk subjects aged 50–75 [62]. Blood-based detection tests represent an appealing alternative
to these methods, as they are non-invasive and low-risk tests that can be easily performed during
a routine medical check-up.

2.1.1. Circulating Tumor Cells (CTC) and Circulating Endothelial Cell Clusters (ECC)

CTC detection is uncommon and rather difficult in early-stage CRC; thus, the utility of CTCs for
CRC screening or early detection seems to be very poor [63]. However, a study by Tsai et al., carried
out on 620 subjects (438 with adenoma, polyps, or stage I–IV CRC and 182 healthy controls) reported
an overall accuracy of 88% for all tumor stages, including precancerous lesions, using a new CTC
assay [25]. Tumor-derived circulating endothelial cell clusters (ECC) may represent a promising type
of cell-based liquid biopsy for early detection of CRC. These circulating benign cell clusters are released
directly from the tumor vasculature and their isolation and enumeration discriminated healthy subjects
from treatment-naïve as well as pathological early-stage (≤IIA) CRC patients with high accuracy [64].

2.1.2. Circulating Tumor DNA (ctDNA)

A recent meta-analysis concluded that the diagnostic accuracy of ctDNA has insufficient sensitivity
but satisfactory specificity for diagnosis of CRC [23]. Nonetheless, there is growing evidence that ctDNA
detection could be used along with the traditional screening methods to improve diagnosis of early-stage
CRC [63,65,66]. In particular, a study by Flamini et al. showed that ctDNA, particularly when combined
with carcinoembryonic antigen (CEA), may represent a useful tool for early detection of CRC (area
under the ROC curve 0.92, with 84% sensitivity and 88% specificity) [37]. Combined assessment of
ALU115, DNA integrity index (ALU247/115) and CEA could increase the diagnostic efficiency for CRC.
Of note, serum DNA integrity index was superior to the absolute DNA concentration in diagnostic
accuracy of CRC [38]. ctDNA methylation showed higher sensitivity compared to traditional serum
tumor markers in early-stage CRC and could represent a potential diagnostic biomarker. Sun et al.
showed that circulating, cell-free, methylated Septin 9 (mSEPT9) DNA had higher specificity than
FOBT for the screening of CRC in 650 subjects (73% of CRC patients were mSEPT9-positive at 94.5%
specificity, and 17.1% of patients with intestinal polyps and adenoma were mSEPT9-positive at 94.5%
specificity) [39]. Furthermore, a recent prospective cohort study carried out on a high-risk population of
1493 subjects, demonstrated that a single ctDNA methylation marker, cg10673833, had high sensitivity
(89.7%) and specificity (86.8%) for detection of precancerous lesions and CRC [67]. A meta-analysis
by Nian et al. pointed out the efficacy of Epipro Colon 2.0 with 2/3 algorithm (Epigenomics), a test
used to screen the methylation status of the SEPT9 promoter in ctDNA, for CRC detection. Positive
ratio of mSEPT9 was higher in advanced CRC stages (45% in I, 70% in II, 76% in III, 79% in IV)
and low differentiation tissue (31% in high, 73% in moderate, 90% in low). However, according
to previous research, mSEPT9 did not seem to identify effectively precancerous lesions [68]. Other
potential blood tests include a multi-analyte test (CancerSEEK) that could detect eight common solid
tumor types, including CRC, through assessment of the levels of circulating proteins and mutations in
ctDNA. The median test sensitivity was 73% for stage II, 78% for stage III and 43% for stage I tumors,
with a specificity greater than 99% [69].

2.1.3. Serum, Fecal, and Salivary MicroRNAs (miRNAs)

Alterations in miRNAs have been reported in blood or fecal samples from CRC patients, or even in
subjects with precancerous advanced adenomas [40]. miRNAs can be observed in the circulation alone
or combined with some proteins; also, they can be released directly into extracellular fluids and carried
by microvesicles, mostly exosomes [70,71]. miR-129 is highly expressed in CRC plasma, while miR-24-2
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levels are low in CRC serum, thus representing potential positive or negative biomarkers in the
diagnosis of CRC patients [41,42]. A study showed that serum expression levels of five miRNAs
(miR-31, miR-141, miR-224-3p, miR-576-5p and miR-4669) were significantly different between patients
with colon cancer and healthy controls, suggesting their potential use as a miRNA panel for diagnosis
of CRC [43]. miRNAs detection could be used to distinguish metastatic and non-mCRC patients.
Indeed, high serum levels of miR-200c in CRC patients could potentially represent a predictive
biomarker for local and distant metastasis [44]. A study demonstrated that exosomal miR-320d
could significantly discriminate metastatic from non-mCRC patients with an AUC of 0.633 (95% CI:
0.526–0.740), the sensitivity of 62.0% and the specificity of 64.7%. The combination of miR-320d and
CEA had an AUC of 0.804, with the sensitivity of 63.3% and the specificity of 91.3% [45]. Numerous
miRNAs (i.e., miR-29a, miR-223, miR-224, miR-106a, and miR-135b) found in feces could represent
useful biomarkers for screening and diagnosis of CRC [72]. Fecal miR-106a test combined with
routine immunochemical FOBT have been reported to be effective in discriminating CRC patients from
those with negative iFOBT results and could improve the sensitivity to identify CRC [46]. A study
demonstrated that salivary miR-21 is significantly up-regulated in CRC patients with a very high
sensitivity and specificity of 97 and 91% respectively, and could be an accurate biomarker for CRC
screening [47]. More studies are needed to confirm if salivary miRNAs could represent reliable
biomarker candidates for CRC detection [73].

2.2. Prognosis, Progression, and Response to Treatment

2.2.1. Circulating Tumor Cells (CTC)

Several studies demonstrated that CTC could potentially play an important role in monitoring
treatment outcomes and for detection of resistance against chemotherapy in CRC patients [26–28].
A prospective study by Bork et al. carried out on 287 patients with potentially curable CRC (including
239 patients with stage I–III) showed that preoperative CTC identification represented a strong and
independent prognostic marker in non-mCRC [26]. In a cohort of 37 high-risk stages II–III CRC patients,
Gazzaniga et al. pointed out that CTCs detection could facilitate the selection of high-risk stage II
CRC patient candidates for adjuvant chemotherapy [27]. A study by Tsai et al. showed that rising
counts of CTC in peripheral blood was associated with tumor progression and poor prognosis in CRC
patients: CTC counts in 2 mL of peripheral blood increased from 0, 1, 5, to 36 in healthy (n = 27), benign
(n = 21), non-metastatic (n = 95), and mCRC (n = 15) patients, respectively. After 2-year follow-up,
non-mCRC patients who had ≥5 CTCs showed an 8-fold increased risk to develop metastasis within
one year after curable surgery than those who had <5 CTC [28]. Furthermore, CTC could be used as
tool for assessment of chemotherapy resistance [29,74]. High-toxicity multidrug regimens used against
advanced CRC, often require the use of biomarkers to select the patients who will receive the most
benefit. Stratification by CTC count was effective in detecting patients with previously untreated KRAS
wild-type advanced CRC who could benefit the most from an intensive 4-drug protocol (oxaliplatin,
irinotecan, and tegafur-uracil with leucovorin and cetuximab), avoiding high-toxicity treatment in
low CTC groups [30]. A meta-analysis of 13 studies showed significant differences between CTC-low
and CTC-high levels in CRC patients treated with chemotherapy with regard to disease control
[Relative Risk (RR) = 1.354, 95% CI 1.002–1.830, p = 0.048], progression-free survival [PFS; Hazard Ratio
(HR) = 2.500, 95% CI 1.746–3.580, p < 0.001] and overall survival (OS; HR = 2.856, 95% CI 1.959–4.164,
p < 0.001). These results confirmed the prognostic and predictive role of CTCs for the response to
chemotherapy in CRC patients [75].

2.2.2. Circulating Tumor DNA (ctDNA)

The proportion of CRC patients in whom ctDNA can be identified depends on the tumor volume
and ranges from 50% to 90% in those with non-metastatic or metastatic disease, respectively [76].
There is evidence that after CRC curative resection, the detection rate of ctDNA could range from
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8–15% in stage II to 50% in stage IV [31,32,77]. Serum DNA concentrations and integrity index may
play an important role not only in early complementary diagnosis but also in monitoring of progression
and prognosis of CRC. A study showed that the median absolute serum ALU115 and ALU247/115
levels in patients with primary CRC were significantly higher than those in subjects with polyps or
normal controls (p < 0.0001), in recurrent or metastatic CRC were significantly higher compared to
primary CRC (p = 0.0021, p = 0.0018) or operated CRC (p < 0.0001, respectively) and during follow-up,
ALU115 and ALU247/115 levels increased before surgery and reduced significantly after surgery [38].
A prospective study conducted on 53 metastatic colorectal cancer (mCRC) patients receiving standard
first-line chemotherapy, showed that ctDNA is detectable in a high proportion of treatment-naïve
mCRC patients, and early alterations in ctDNA during first-line chemotherapy could predict the later
radiologic response. Significant decrease in ctDNA (median 5.7-fold; p < 0.001) levels were detected
before cycle 2, which correlated with computerized tomography (CT) responses at 8–10 weeks [Odds
Ratio (OR) = 5.25 with a 10-fold ctDNA reduction; p = 0.016]. Major decrease (≥10-fold) versus
minor decrease in ctDNA precycle 2 was correlated with a trend for raised PFS (median 14.7 vs.
8.1 months; HR = 1.87; p = 0.266) [33]. Another prospective cohort study of 230 patients showed
that detection of ctDNA after resection of stage II colon cancer may detect patients at very high risk
of recurrence, thus giving direct evidence of residual disease and helpful information on adjuvant
treatment choices. ctDNA was detected after surgery in 7.9% of patients who did not receive any
adjuvant chemotherapy, and among these, 79% had recurred at a median follow-up of 27 months;
recurrence was observed in 9.8% of 164 patients with negative ctDNA [HR = 18; 95% confidence
interval (CI), 7.9 to 40; p < 0.001]. In patients who completed chemotherapy, the presence of ctDNA
was correlated with a lower recurrence-free survival (HR = 11; 95% CI, 1.8 to 68; p = 0.001) [31]. ctDNA
could detect the presence of residual metastatic cancer cells not evident on CT also in stage III CRC
patients. Indeed, serial assessment of ctDNA could characterize subsets of patients benefiting or not
benefiting from chemotherapy and represent a marker of adjuvant treatment efficacy [34,78]. It is well
known that anti-epidermal growth factor receptor (EGFR) treatment is unsuccessful in the case of RAS
mutations [79]. ctDNA detection could represent an alternative tool for selection of anti-EGFR treatment
due to its agreement with mutational status of RAS in CRC tissue. A prospective-retrospective cohort
study carried out on 146 mCRC patients, showed that plasma RAS assessment had high overall
concordance and identified a mCRC population responsive to EGFR therapy with the same predictive
level as standard of care PCR techniques tissue testing [35]. A prospective phase II clinical trial of
cetuximab in RAS wild-type patients with CRC, combined sequential profiling of ctDNA and matched
tissue biopsies with imaging and mathematical modeling of tumor progression, and showed that
liquid biopsies were able to detect spatial and temporal heterogeneity of the resistance to anti-EGFR
monoclonal antibodies [80]. In a phase II trial, the levels of RAS mutated ctDNA were assessed in mCRC
patients treated with the oral multi-kinase inhibitor regorafenib. The reduction of RAS mutations
in plasma within 8 weeks of therapy was associated with improved PFS and OS. Combination of
dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and ctDNA predicted duration
of anti-angiogenic response and could improve management of patient treated with regorafenib [36].
A recent study by Siravegna et al. showed that plasma HER-2 (ERBB2) copy number analysis based on
ctDNA could predict beneficial effects from HER-2-targeted therapy with high accuracy (97%) in 28
out of 29 patients [81].

2.2.3. MicroRNAs (miRNAs)

Studies reported an association between high expression levels of specific miRNAs (including
miR-21, miR-1290, miR-193a, miR-17-5p, miR-92a-3p, miR-203, miR-1229, and miR-17/92 cluster)
and poor prognosis of CRC patients due to metastatic disease, post-treatment relapse, and poor
OS [48,49,82–86]. On the other hand, low levels of serum exosomal miR-4772-3p and miR-6869-5p
were associated with high risk of tumor recurrence in stage II and III and poor 3-year survival in CRC
patients, respectively [50,51]. Furthermore, significantly higher expression of miR-6803-5p in CRC
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patients was associated with later TNM stage, lymph node or liver metastasis, and poor disease-free
survival (DFS), thus representing a potential diagnostic and prognostic biomarker [51]. There is
evidence that serum exosomal miR-21 could be a useful biomarker for the prediction of recurrence
and poor prognosis at TNM stages II, III or IV in CRC patients [49]. Also, higher expression levels
of serum exosomal miR-17-5p and miR-92a-3p predicted pathologic grades and stages of CRC [48].
A study reported that the exosomal miR-27a and miR-130a panel in plasma correlated with tumor
grade and stage of CRC and could be effective for predicting poor OS (HR = 2.74; 95% CI, 1.25–6.01;
p = 0.012; and HR = 2.36; 95% CI, 1.07–5.23; p = 0.034, respectively). Furthermore, both miRNAs
could be used for detection of CRC: miR-27a showed a sensitivity of 82% and a specificity of 91%,
while miR-130a showed a sensitivity of 70% and a specificity of 100% [52]. Serum exosomal miR-548c
and miR-6803 could be important predictive biomarkers of DFS and OS in CRC patients. Indeed,
studies showed that elevated levels of miR-6803 and decreased levels of miR-548c represented poor
prognostic markers, particularly in later stages of CRC and in the presence of liver metastasis [51,53].
Specific miRNAs may be used for monitoring resistance or tolerance to chemotherapy and for selection
of clinical therapeutic approach. A panel of serum exosomal miRNAs including miR-1246, miR-21-5p,
miR-1229-5p, and miR-96-5p could significantly discriminate chemotherapy-resistant subjects to 5-FU
and oxaliplatin from advanced CRC patients (AUC = 0.804; p < 0.05). Targeting these miRNAs could
enhance chemosensitivity to oxaliplatin and 5-FU, thus representing a promising approach for CRC
treatment [54]. A study by Yagi et al. suggested that increased plasma exosomal miR-125b levels could
detect resistance to modified FOLFOX6-based first-line chemotherapy in patients with advanced or
recurrent CRC. Furthermore, PFS was significantly inferior in patients with high miR-125b levels before
chemotherapy than in those with low levels, thus confirming the utility of miR-125b as a predictive
biomarker in advanced or recurrent CRC [55].

2.2.4. Long Non-Coding RNAs (lncRNAs)

lncRNAs interact with DNA, mRNA, proteins, and miRNAs, playing a role in multiple biological
processes, such as epigenetic or gene expression regulation, and chromatin remodeling [87,88].
Several studies showed that lncRNAs were abnormally expressed in many cancers, including CRC,
and therefore could have potential application in diagnosis, prognosis and potential treatment [89–92].
Indeed, lncRNAs could regulate drug function and chemoresistance through different mechanisms in
many tumors, including CRC [56,57]. More than 70 CRC-related lncRNAs have been identified so far,
including HOTAIR, MEG3, CRNDE, UCA1, CCAT1, CCAT2, MALAT-1 and H19 [93]. Alterations in
the expression of these lncRNAs could lead to chemotherapy and radiotherapy resistance. Sun et al.
identified four hub lncRNAs (CRNDE, H19, UCA1, and HOTAIR) involved in the process of resistance
to oxaliplatin or irinotecan in patients with advanced CRC. In particular, high expression of HOTAIR
was associated with advanced and metastatic disease and poor prognosis [58]. Decreased serum
MEG3 levels were correlated with poor response to chemotherapy and OS in CRC patients treated
with oxaliplatin. MEG3 increased oxaliplatin-induced cell apoptosis in CRC; therefore, overexpression
of MEG3 could represent a promising therapeutic strategy to defeat oxaliplatin resistance in CRC
patients [57]. Tang et al. demonstrated that up-regulation of a lncRNA, GLCC1, under glucose-limited
conditions in CRC cells, promoted cell survival and proliferation by stabilizing c-Myc and stimulating
glycolysis. From a clinical point of view, GLCC1 was associated with carcinogenesis, tumor volume
and poor prognosis in CRC patients [59,94]. Levels of serum exosomal CRNDE-h were higher in CRC
patients compared to those with benign colorectal disease or healthy controls. CRNDE-h expression
could be related to the presence of lymph node metastasis and was associated with a low OS in CRC.
Furthermore, the prognostic value of CRNDE was better than CEA, with a sensitivity of 70% vs.
37% and a specificity of 94% vs. 89% [60]. Liang et al. reported that high exosomal RPPH1 levels
were associated with advanced TNM stages, promotion of metastasis, and poor prognosis in CRC
patients, whereas lower RPPH1 levels were observed after tumor resection. Plasma exosomal RPPH1
levels showed a better diagnostic value (AUC = 0.86) compared to CEA and CA19.9 [61]. A study by
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Barbagallo et al. demonstrated that UCA1 was down-regulated in serum of CRC patients compared to
healthy subjects; UCA1 showed an AUC of 0.719 (95% CI, 0.533–0.863; p = 0.01) with 100% sensitivity
and 43% specificity in discriminating between the cancer and control groups. These results suggested
that the UCA1 regulatory axis could be a promising target to develop novel RNA-based therapies
against CRC [95].

3. Current Issues and Limitations of Liquid Biopsy

Despite all the potential advantages of liquid biopsy in the management of CRC, there are still
some practical issues that need to be addressed before it can be widely used in clinical practice [96].
Potential challenges may include low amounts of CTCs and ctDNA in samples, lack of pre-analytical
and analytical consensus, clinical validation, regulatory endorsement and cost effectiveness [97,98].
Currently, the use of CTCs in routine diagnostics is limited, mainly due to methodological constraints,
such as the lack of an established assessment practice, beyond enumeration [99,100]. The epithelial
cell adhesion molecule (EpCAM)-dependent technique was approved by the U.S. Food and Drug
Administration (FDA) in 2004, and represents the “gold standard” for CTC isolation in different
cancers, including CRC [101]. However, only CTCs that maintain epithelial features can be detected
by EpCAM, excluding CTCs with mesenchymal characteristics [102]. On the other hand, ctDNA
analysis has been better optimized for routine diagnostic use [103]. The concentration of ctDNA in
the peripheral blood depends on the site, volume, and vascularity of the tumor, which can also be
responsible for the large variations frequently observed in ctDNA levels [104]. Analysis of ctDNA can
be performed by either quantitative assessment of ctDNA in a blood sample or by the identification of
mutations. The introduction of next-generation sequencing (NGS)-based technologies reduced the
error rate and enhanced sensitivity in ctDNA detection [105]. NGS technology enables the analysis
of thousands of DNA sequences in parallel followed by either sequence alignment to a reference
genome or de novo sequence assembly [104,106]. Deep sequencing represents the first approach
to identify mutations at a low allele frequency (<0.2%) by sequencing the target regions with high
coverage (>10,000×) [107]. Therefore, the sensitivity of deep sequencing for detecting mutations in
ctDNA can achieve 100%, even if the specificity can be lower, around 80% [108,109]. Advantages
of NGS included detection of genomic rearrangements, new mutations or alterations in genes, and
the possible evaluation of response to treatment [110]. However, NGS-based approaches are rather
expensive and time-consuming. Furthermore, data should be analyzed and interpreted by experts in
bioinformatics [111]. Data storage and the difficulty in interpreting massive quantity of information
obtained with NGS may represent a computational challenge to researchers. Also, the selection of
proper validation methods to detect clinically significant mutations among a large number of samples
can represent a challenging task [112]. Clinical validation of NGS data is carried out by assessing
various parameters such as analytical sensitivity (the ability of the test to identify true sequence variants
e.g., false negative rate), and analytical specificity (the probability of the test to not identify mutations
where none are present (e.g., false positive rate) [113]. Limitations of NGS, principally with regard to
the overall clinical sensitivity, could be overtaken implementing NGS with mutant allele enrichment or
using digital PCR to improve reliability [96,114]. Mass-spectrometry and Real-Time PCR are other
promising techniques for ctDNA assessment, which are rapid and cheap, require small quantities
of input material, and have high sensitivity and specificity [77,115]. If possible, ctDNA should be
analyzed in combination with CTCs and exosomal miRNAs, to obtain as much data as possible from
a single blood sample [116]. However, different blood collection tubes, changes in storage temperatures
and centrifugation may affect DNA or cells stability [117–119]. ctDNA degradation due to DNase
activity could be avoided by isolating plasma within an hour after blood draw [120]. Reduction of cell
lysis and stabilization of the total ctDNA pool can be obtained by means of specific blood collection
tubes containing preservatives and additives [121]. Furthermore, accuracy and reproducibility of the
liquid biopsy represent a main issue for analytic validity [122]. A study by Vivancos et al. showed that
two liquid biopsy platforms, OncoBEAM™ RAS CRC and Idylla™ ctKRAS Mutation Test, had different
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sensitivity for identifying KRAS mutations in plasma samples from mCRC patients. The European
Molecular Genetics Quality Network (EMQN) evaluated ctDNA detection approaches, and underlined
that multiple pre-analytical and analytical variants may produce variable results; the EMQN pilot
external quality assessment (EQA) scheme showed that the existing variability in multiple phases
of ctDNA processing and analysis (e.g., due to specimen volume, ctDNA quantification technique,
and choice of genotyping platform), resulted in an overall error rate of 6.09% [123]. These results
highlighted the critical need for better standardization and validation of liquid biopsy assessment [124].

4. Future Perspectives and Conclusions

The use of CTCs, ctDNA, miRNAs and lncRNAs as potential biomarkers is an emerging area
with a great potential for the management of CRC. Currently, the clinical utility of liquid biopsies
in CRC limited, but it is expected to achieve a clear consensus in the near future. Indeed, the liquid
biopsy is a minimally invasive, cheap, and repeatable technique that can facilitate CRC screening and
early diagnosis, providing more information for the clinical staging of CRC patients. Furthermore,
blood-based liquid biopsies are useful for monitoring disease progression and treatment efficacy,
prognosis, and acquired resistance to chemotherapy in CRC. It is reasonable to think that in the future,
it will be possible to choose the most appropriate therapy based on real-time genetic information through
a liquid biopsy, in the way of personalized medicine. In this context, performing prospective clinical
trials is essential for clinical utility and development of practice changing protocols. Nevertheless,
the transfer of liquid biopsies from bench to bedside necessitates larger-scale and multicenter trials to
confirm its advantages. Also, optimization of pre-analytical and analytical processing is fundamental
for clinical validity, and standardization of laboratory methods is firmly required to guarantee elevated
reproducibility of the results. The lack of clinical applicability is currently due to large quantity of
liquid biopsy assays. For example, many ctDNA assays are presently commercially available, but each
assay shows specific detection limit, sensitivity, and specificity. Therefore, the results obtained from
different liquid biopsy platforms cannot be easily compared, and EQA studies are needed before
application in routine diagnostics. Further studies should be conducted on the effectiveness of liquid
biopsy biomarkers, such as ctDNA, in combination with other blood tests and radiological monitoring,
in order to better identify and stratify CRC patients and to choose the appropriate treatment. In the
future, advances in liquid biopsy methodologies and their increased sensitivity should facilitate
detection of MRD and early CRC diagnosis even in asymptomatic subjects. Only a few trials have
investigated a specific intervention based on the results of liquid biopsies (i.e., CTC or ctDNA status),
so far. Many of these studies did not include a control group, and therefore the results could not lead
to significant changes in clinical practice. Further prospective studies are needed to establish future
clinical applications of liquid biopsies and delineate their impact in the management of CRC.
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