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Abstract: Road departure is one of the main causes of single vehicle and frontal crashes. By imple-
menting lateral support systems, a significant amount of these accidents can be avoided. Typical
accidents are normally occurring due to unintentional lane departure where the driver drifts towards
and across the line identifying the edge of the lane. The Lane Support Systems (LSS) uses cameras to
“read” the lines on the road and alert the driver if the car is approaching the lines. Anyway, despite
the assumed technology readiness, there is still much uncertainty regarding the needs of vision
systems for “reading” the road and limited results are still available from in field testing. In such
framework the paper presents an experimental test of LSS performance carried out in two lane rural
roads with different geometric alignments and road marking conditions. LSS faults, in day light
and dry pavement conditions, were detected on average in 2% of the road sections. A decision tree
method was used to analyze the cause of the faults and the importance of the variable involved in
the process. The fault probability increased in road sections with radius less than 200 m and in poor
conditions of road marking.

Keywords: road safety; lane support system; decision tree

1. Introduction

Advanced driver assistance systems (ADAS) support drivers to maintain a safe speed
and distance [1], to drive within the lane, to avoid obstacles in an increasingly complex
driving environment. Studies on the safety effects of such systems show a high potential.
According to eImpact Project [2], Speed Alert (with active gas pedal) is expected to reduce
by 5% road crash fatalities and injuries and Lane Keeping Support by 3%.

It is evident that the full potential of the new technologies will only become reality
with large-scale deployment in vehicles. Based on the definition given by SAE Standard
J3016 [3] the:

• Level 1 is the lowest level of automation: hardly being described as driverless, the
vehicle has a single aspect of automation that assists the driver with ADAS (Examples
of this include steering, speed, or braking control, but never more than one of these);

• Level 2 is where the vehicle can control both the steering and acceleration/deceleration
ADAS capabilities. Although this allows the vehicle to automate certain parts of the
driving experience, the driver always remains in complete control of the vehicle.
Examples of level 2 include helping vehicles to stay in lanes and self-parking features,
with more than one ADAS aspect.

The Regulation (EU) No 2018/858 of the European Parliament and of the Council of
30 May 2018 Regulation (EC) [4] on general safety of motor vehicle foresees mandatory
fitting of the following safety features at a minimum Level 1 and 2:

• Electronic Stability Control Systems on all vehicles;
• Advanced Emergency Braking Systems and Lane Departure Warning Systems on

heavy-duty vehicles (categories M2 and M3) and buses (categories N2 and N3).
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These measures will reduce fatal casualties in traffic by an estimated 5000 per year [5].
Among the mandatory ADASs, the Lane Support Systems (LSS) can detect that lane

drifting is about to occur and warn the driver by various methods that are haptic, visually
and audibly (Level 1), or even actively steer the vehicle back in lane (Level 2 and over).

From the safety point of view, if the system is assumed 100% reliable, lane support
systems at level 1 can be compared to rumble strips for which the availability of data from
many years of installations make it possible to assess a safety effectiveness in reducing
Run of Road (shoulder rumble strips) or head-on and sideswipe (Centerline rumble strips)
severe crashes by about 20% [6]. The clear difference is that rumble strips on the road
address all cars at the site where the treatment have taken place, while in-vehicle systems
address only the car. However, lane support systems have the advantage of addressing
lane drifting at all sites. On the other side, LSS performance can be affected by system
malfunction due to internal factors or faults due to the road characteristics (e.g., marking
quality and horizontal alignment) [7] and environmental factors (e.g., light and weather).
Anyway, road factors effecting LSS effectiveness are not clearly identified and quantitatively
defined due to a lack of a reference literature [8].

At levels 3 (Conditional Automation) and 4 (High Automation), the LSS role will be
more critical because, when used for navigation, a system fault can produce the disengage-
ment of the automation with the critical phase of the fall back to the driver. Only at the
future level 5 (full Automation), no limitation in the Operational Design Domain will be
available [3].

The goal of the paper is to provide more knowledge in the LSS performance and
probability of fault with special focus on effects of the physical infrastructure related to
road characteristics and conditions.

The paper is organized as follows:

1. Review of safety effectiveness of lane assistance systems.
2. Experimental test and data collection.
3. Decision tree methodology.
4. Results and discussion.
5. Conclusions.

2. How LSS Can Read Pavement Markings

Over many decades, pavement marking standards and guidelines have been designed,
developed and tested for the human vision. Now the computer vision and the Artificial
Intelligence (AI) are used by ADAS to detect a pavement marking and the main feature
in the digital image is the contrast between the intensity of marking pixels and the road’s
pixels. The contrast is achieved when pixels’ high numbers are close to low numbers. The
LSS testing and certification, as defined by the ISO [9] and EN standards [10] consider
dry pavement, daylight visibility, good quality of marking, and horizontal and straight
alignment with test carried out at constant speed. As maintenance of road marking is
concerned, the new Directive on Road Infrastructure Safety Management [11] highlights the
importance of the readability and the detectability of road markings and the signs by human
drivers and automated driver assistance systems, as well. Austroads technical report
AP-T347-19 [8] provides an extensive review of international literature, initiatives, and
lessons learned from field trials, complemented by engagement with local and international
industry stakeholders. One of the conclusions was that there is a need for extensive
experiments and in field test because not only marking quality (reflectivity, width, and
size) and consistency (continuity, variation, position, and format) effect LSS performance,
but also road geometry (cross section, horizontal, and vertical alignment), pavement
conditions (e.g., cracking, sealing, patching, and contrast) and surrounding environment
(e.g., day, light, and rain) must be considered. In the recent Austroads technical report AP-
R633-20 [12], it founds that the marking quality and the contrast ratio between pavement
marking’s retroreflectance and the surrounding pavement surface [13] was critical for the
operation of machine-vision lane detection. Pavement marking configurations including
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line width, lane width, and continuity had an impact on the performance of machine-vision
lane detection. More specifically, dashed lines were more likely than solid lines to be
difficult for machine-vision lane detection. Lane widths either too narrow or too wide
might degrade machine vision’s ability to detect longitudinal pavement markings.

As from the literature review [8,11,12,14] many external factors were identified as
having an impact on LSS performance, highlighting as future research developments would
see the introduction of non-ideal conditions in the certification procedure [10]. Among
others, non-ideal conditions should include geometric alignment and clear definition of
marking quality.

In this framework, the paper presents an original experimental approach for data
collection in real world conditions and original results on road factors having an impact on
LSS performance system that complement the state of the art.

3. Data Collection

In such framework, an experimental test was carried out to collect data in real world
conditions. Open-road testing on public roads offers a “real-world laboratory” to support
the testing and evaluation of ADAS which may complement and validate closed-track and
Modeling and Simulation testing. Moreover, it exposes the systems to an extremely wide
variety of real-world conditions.

As first stage of the study, to assess the system performance in standard testing like
the ISO/EU standards, the experiment was carried out in dry and daylight conditions.
Limitations relates to other factors that might affect the definition of the LSS such as weather
and time of day will be considered in future studies.

The Automatic Road Analyzer (ARAN), available at the Transport Infrastructure
laboratory of the University of Catania [15,16], was used to acquire measures of road
geometric characteristics (cross section, gradients, horizontal, and vertical alignment). For
the present study, the ARAN was additionally combined with a Mobileye 6.0 system [17],
which uses a digital camera located on the front windshield inside the vehicle (Figure 1).
The Mobileye equipment represents the state of the art in vision-based systems and many
car manufacturers, including Audi, Mercedes-Benz, and Volvo, use the Mobileye sensor
for their semi-autonomous applications.
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Figure 1. Mobileye 6—in-vehicle installation.

ARAN was used to collect data about road characteristics (alignment, cross section,
and pavement conditions) and synchronized with the Mobileye outputs during the test.
Several runs were performed at different speeds and free-flow conditions, collecting data for
a total of 76 km of roads that were aggregated homogenous sections [18]. The luminance
coefficient in diffuse lighting conditions (Qd) of lane marking was detected with of a
portable retroreflectometer and classified according to the EU standard [10]. Along test
sections, lane markings have constants width of 15 cm with dashed and solid centerline.

Data from the Mobileye system were continuously recorded, and locations were the
LSS was not able to detect the lane marking were identified and synchronized with the
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other data collected by ARAN. The experimental set-up and data collection and coding are
more extensively presented in [7].

4. Methodology

The decision tree methodology has the objective to carry out a hierarchical segmenta-
tion of a set of units by identifying “rules” that exploit the relationship between the class
they belong to and the variables detected for each unit. The application of decision trees
requires a priori knowledge of the class to which each unit belongs: the purpose of the
technique is to identify the optimal decision rule; that is, the rule which, given a certain
set of variables, allows better prediction of the class to which the individual units belong.
The advantage of this is that the segmentation “rules” thus identified can be easily applied
also to units other than those that make up the starting data set and for which the group to
which it belongs is instead unknown.

Decision trees is part of to the so-called supervised classification techniques, since
segmentation can benefit from information on the group to which it belongs, which is
known for a limited number of units. They do not place all the available variables on the
same logical level: one variable here assumes the role of dependent variable, while the other
are considered explanatory ones. Decision trees are therefore an asymmetric segmentation
technique and homogeneity refers only to the modes of the dependent variable.

In addition, decision trees build their own rules considering a single explanatory
variable at each step. In this way, the examination of the individual effect of each character
allows you to select only the most relevant variables for classifying the units and to reach
decision rules that are easy to interpret and use immediately.

From a formal point of view, a tree represents a finite set of elements called nodes.
The node from which the following branches off is called root (e.g., node 0). The set of
nodes, with the exception of the root node 0, can be divided into h distinct sets S1, S2, . . . ,
Sh which are indicated as sub-trees of root.

The hierarchical segmentation obtained by means of a decision tree can be defined as a
“stepwise” procedure, through which the set of n statistical units is progressively divided,
according to an optimization criterion, into a series of disjoint subgroups which present
within them a degree of homogeneity greater than the initial set. The advantage of decision
tree modeling as opposed to the other modeling techniques is that the interpretability of
the predictive modeling results is simply a process of assessing a series of if-then decision
rules that are used to construct the entire tree diagram; that is, from the root to each leaf of
the decision tree [19].

In the following we will focus on the framework of classification trees according to
the nonparametric classification and regression trees (CART) methodology introduced by
Breiman et al. [20]. In recent years, there has been increasing interest in employing CART
technique to analyze transportation-related problems, for instance for modeling travel
demand [21,22], driver behavior [23], and traffic accident analysis [24].

Compared to the other segmentation techniques (e.g., CHAID, AID, QUEST), for
the present application, the CART main advantage is related to the use of quantitative
variables and the split criterion defined according to the concept of “impurity” of a node.
The variable that produces the maximum reduction of impurities is selected.

With this methodology, the basic idea for the creation of classification trees is to
select each subdivision of a set in such a way that each of the subgroups produced by
the division is “purer” than the starting set. The goal is to produce subsets of the data
which are as homogeneous as possible with respect to the target variable. The concept
of impurity refers to the heterogeneity of the statistical units in relation to the modalities
of the dependent variable. Given a qualitative phenomenon that can take r mode, the
heterogeneity (impurity) is zero if the n statistical units all have the same mode. On the
contrary, the heterogeneity is maximum if the statistical units are uniformly distributed
among the r modes, so that each mode has the same relative frequency 1/r. In operational
terms, starting from the root node t we search for the variable that produces the best
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subdivision of the “n” statistical units contained in “t” into two child nodes “tl” and “tr”
with “nl” and “nr”. The two child nodes are more homogeneous than the parent node, since
a property of decomposition in groups and between groups also applies to heterogeneity.
Therefore, in the face of the positive elements listed above, the CART technique allows
only binary partitions.

The following function is defined as the measure of impurities associated with a given
node t:

imp(t) = ∅
[

f1|t + f2|t + · · ·+ f J|t

]
(1)

where Φ (.) is a nonnegative function such that

• ∅
[

f1|t + f2|t + · · ·+ f J|t

]
· = max when f j|t = 1/J for j = 1, 2, . . . , J (situation of maxi-

mum heterogeneity);
• ∅[1, 0, . . . 0] = 0, ∅[0, 1, . . . 0] = 0, . . . ,∅[0, 0, . . . 1] = 0 (situation of maximum homo-

geneity, regardless of which mode of Y present in the n statistical units);
• is invariant with respect to the order of the methods.

Therefore, the impurity of a node is maximum when all the classes of the dependent
variable are present in the same proportion, while it is minimum when the node contains
cases belonging to a single class. There are several impurity functions used in the literature.
In our study, we expressed the impurity by the Gini heterogeneity index, which is calculated
as follows:

imp(t) = 1−
J

∑
j=1

f 2
j|t (2)

which assumes a minimum value (equal to 0) in the case of maximum homogeneity (i.e.,
zero heterogeneity) and maximum value (r − 1)/r in the case of maximum heterogeneity.

The measure of the decrease in impurity of node t associated with a given split (s) is
defined as the following quantity:

∆imp(s, t) = imp(t)− fl × imp(tl)− fr × imp(tr) (3)

where f l and f r represent the proportion of cases of node t that fall, respectively, in the left
node (left) and in the right node (right). The quantity ∆imp (s, t) is always non-negative
and assumes zero value in the extreme situation in which the conditioned frequencies of Y
are equal in the child nodes tl and tr and, consequently, also in the parent node t.

After creating all the possible dichotomizations of the explanatory variables, consistent
with their nature, the classification trees are constructed by choosing, for a given node t,
the split s * which produces the maximum reduction of impurities of the tree, that is

∆imp(s∗, t) = max
s∈∅

∆imp(s, t) (4)

where Φ is the set of all the subdivisions that can be formed in relation to node t. The
choice of s * is made for each node and at each level of the tree. It can be shown that the
selection of the split that maximizes the decrease in impurities ∆imp (s, t) is equivalent to
the selection of the split that minimizes the total impurity of the shaft. This means that the
local optimization criterion of a classification tree is equivalent to its global optimization.

The tree growing was arrested basing on two criteria: (1) minimum decrease in the
impurity equal to 0.001; and (2) maximum size of the tree, choosing the maximum number
of levels of the tree equal to five. Since our objective was to identify specific features which
explain the change in the response of LSS, we introduced a posterior classification ratio
(PCR) to assign response class to each node of the tree, instead of the mode. The PCR was
calculated as follows:

PCR( j|t) = p( j|t)
p( j|troot)

(5)

where troot is the root node of the tree.
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A posterior classification ratio of exactly 1.0 would mean that the evidence from the
posterior distribution supports both classifications equally. That is, the combination of
information from the data and the prior distributions does not favor one category over
the other. A value greater than 1.0 indicates that the posterior distribution favors the
positive classification, while a value less than 1.0 represents evidence against the positive
classification. The assignment of the class to each node was performed selecting the class j*
with the greater value of PCR:

j∗
∣∣t : maxjPCR( j|t) (6)

5. Data Analysis and Discussion

The most important purpose in constructing predictive models is generating accurate
predictions. However, in CART it is also extremely important to understand the factors
that are involved in explaining the target variable [19,25,26]. Therefore, among the wide
range of variables collected in the experimental test, the attributes horizontal curvature
(1/R), Average speed and marking coefficient Qd were selected basing on results from a
previous study [7].

Table 1 lists the name of the attributes with its type and description.

Table 1. System fault data set attributes.

Name Type Description

1/R Continuous Curvature in m−1

Average speed Continuous Speed in km/h
Qd Continuous Luminance coefficient under diffuse illumination in mcd/m2/lx

All the data collected during the experiment were referenced to homogeneous sections
with a minimum and maximum length of 20 m and 74 m, respectively, characterized by
a constant value for each variable. The minimum and maximum section lengths were
defined to yield a traveling time between 1 and 6 s based on the range of running speeds.
The dataset contained 1961 (97%) road sections without system fault (Lane Departure
Warning LDW = 1) and 60 (3%) road sections with system fault (LDW = 0). The data do
not have any missing values for all attributes. The summary statistics of the continuous
variables in the database are reported in Table 2 and frequency distributions are shown
Figures 2–4. The data cover a wide range of values which are well distributed, as well.

We applied the CART algorithm to predict absence or presence of system fault based
on values of the selected independent variables.

The database was randomly divided into two partitions with 80% of data for model
calibration and 20% for validation. The tree diagram (Figure 5) shows the tree construction
based on the calibration sample of 1640 cases (80% of the data), 0.0001 adjustments of the
probabilities, a minimum parent node size of 200, a minimum child nodes size of 100 and
equal misclassification costs. The Gini index was selected as a splitting criterion.

Table 2. Summary statistics: continuous variables.

N Minimum Maximum Mean Std. Deviation

1/R 2021 0.00000 0.0221 0.002427 0.0033032
Average speed (km/h) 2021 35 84 55.59 10.822

Qd 2021 30 223 178.10 32.548
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There were totally seven nodes that consist of four terminal nodes; the first node
placed in the tree is the root node 0. The depth of the tree was equal to three. Parent node
had 97.4% absence and 2.6% presence of the system fault.

To assess the performance of the models we applied measures of accuracy both to
the calibration and validation data. A measure of the tree’s predictive accuracy is the risk
estimate, that for categorical dependent variables, it is the proportion of cases incorrectly
classified after adjustment for prior probabilities and misclassification costs [27]. In our
study, the risk estimates results accurate with 16.6% (standard error 0.027) for the calibration
sample and 19.0% (standard error 0.047) for the validation sample.

Another measure is the Percentage Correctly Classified which reached 81.0 per cent
for the calibration and 79.8 per cent for the validation sample.

Finally, over the total sample size used, the prediction accuracy was 85% and the area
under curve (AUC) was 0.828 (Figure 6) when a perfect diagnostic performance has an
AUC equal to 1 [28].
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The hierarchy of attributes in a decision tree reflects the importance of attributes. It
means that the features on top are the most informative. The statistics shown in Table 3,
measures importance of the variable by the increase of the effect of child node on the depen-
dent variable. The importance is determined by the largest difference in the proportions of
the dependent variable in the child nodes [29].

Table 3. Summary statistics: continuous variables.

Independent Variable Importance Normalized Importance

1/R 0.127 100.0%
Qd 0.125 98.8%

Average Speed 0.048 37.9%

By analyzing the importance values, 1/R and Qd confirmed the meaningful con-
tributes in the discrimination between the absence and the presence of system fault.

The first discriminator “Qd” has split the root node into two child nodes:
Qd < 153 mcd/m2/lx (node 1, n = 285), and Qd > 153 mcd/m2/lx (node 2, n = 1736).
The improvement for this classification was 0.123. If Qd is less than 153 mcd/m2/lx,
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the probability to have a fault rises to 11.4% for the calibration sample and 14.35 for the
validation sample. Since it represents a terminal node, there is evidence that Qd value
influenced the fault of the LSS system.

In the other branch of the tree, where Qd is more than 153 mcd/m2/lx, the system fault
is influenced by the presence of a curvature radius less than 141 m (i.e., 1/R > 0.007082).
The improvement for this classification was 0.102 and the probability to have a fault rises
again to 9.6% for the calibration sample and 18.8% per the validation sample. Therefore,
there is a clear evidence that curve with R < 141 m showed a higher percentage of faults
than the average 3% in the test conditions.

The last split for Average speed has not produced further significant improvements
because both the speed classes in the last node showed LSS fault percentages less than the
average. Therefore, speed in the test conditions has not showed effects on LSS performance.

The results about Qd > 153 mcd/m2/lx for a fault probability of only 1.2% are more
conservative than in other studies. In [30], Qd needs to be at least 85 while the NCHRP
20–102 project [31] figures out that for daytime dry conditions, Qd more than 100 seems
appropriate. Anyway, the value of 153 in the present study confirm a contrast ratio higher
than 1/3 as needed for reliable lane detection.

Regarding to curvature radius, despite many manufacturers’ specifications note that
curves in horizontal alignment affect performance of lane-keeping-assist/lane-departure
warning functions, there is limited quantitative analysis of the potential impact of curve
radius. Sternlund observed that a small curve radius will affect machine vision enabled
Lane Keeping Assist (LKA) functions [32].

It is worthily to mention that, based on data collected in the present study, we identi-
fied a 0% of LSS fault probability only for Qd > 153 mcd/m2/lx and R > 141 m at a speed
higher than 50 km/h in daylight conditions.

6. Conclusions

Road departure is one of the main causes of single vehicle and frontal crashes account-
ing for more than one third of total road crashes. Typical accidents are normally occurring
due to unintentional lane departure where the driver drifts towards and across the edge
line of the lane.

In automated vehicles, several sensing methods are used for lane understanding and
navigation including vision (video camera), LIDAR, RADAR, and Geographic Information
Systems (GIS)/Global Positioning Systems (GPS)/Inertial Measurement Unit (IMU). Vision
is the most prominent and ready to be applied because markings are already made for
human vision, while LIDAR and GPS are important complements. The Lane Support
Systems (LSS) uses cameras to “read” the line markings on the road and alert the driver if
the car is approaching the lines. Machine vision technology used in these systems must
rely on the same visual cues as human drivers such as road boundaries, road color and
texture, and lane marking color and type.

In such framework, the paper presents an experimental study with a real-world data
collection of LSS faults in different road characteristics and maintenance conditions.

The CART classification tree was selected to account for the sample size (2021 sections)
with low probability of fault (3%) and quantitative explanatory variables.

CART confirmed marking quality and curvature radius as the most important factors
to explain the LSS fault in the experimental conditions and road data sample. Threshold
values have been identified, as well. The split discriminator value in the decision tree of
Qd = 153 (mcd/m2/lx) is close to the minimum value usually requested for maintenance
treatments and human vision requirements even if it is not unusual to have lower values
in the road network in operation. Less documented is the actual limitation related to the
horizontal curve radius. The threshold of R > 141 m and Qd > 153 provided a quantitative
reference value with LSS fault probability equal to 0%.
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Although the probabilistic form of logistic regression applied in a previous study [7]
is more adapted to test variability in the system response, the classification CART resulted
more intuitive and easier to interpret and estimate the frontiers nonparametrically.

A potential issue of the decision tree is its non-parametric nature and the limited
capacity to account for unobserved heterogeneity [33]. Anyway, in our study, the issue
of unobserved heterogeneity can be considered limited as the collected data come from
a controlled experiment (e.g., free-flow, weather conditions, and driving behavior) and
the database was cleaned from false positive and false negative due to artefacts (e.g., dust,
parked vehicle, and marking discontinuities) [7]. Furthermore, the data analyzed is the
response of a digital system for which random variability can be considered limited.

The lessons learned from this study can be used to apply the experimental approach to
collect more extensive database to be analyzed with more advanced statistical models. The
first opportunity of extension concerns the environmental conditions with the inclusion
of different weather (e.g., rain) and lightning conditions (e.g., night). With databases of
extended size and complexity, to account for the theoretical limitations of the decision tree
(e.g., non-parametric nature, and unobserved heterogeneity) a “latent classes” approach
can be applied combining CART to identify groups of observations with homogeneous
variable effects within each group and logistic multilevel models to test the statistical
correlations in longitudinal studies. Moreover, the identification of threshold values to
define the Operational Design Domain of LSS may take into account higher cost on false
negatives in future studies since failing of LSS may lead to serious consequence especially
at automation levels higher than two.
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