
January 26, 2015 11:12 World Scientific Review Volume - 9in x 6in TSWLatexianTemp˙000095 page 1

Chapter 1

The idea of a stochastic space-time:

theory and experiments

M.Consoli and A.Pluchino

Istituto Nazionale di Fisica Nucleare, Sezione di Catania and

Dipartimento di Fisica e Astronomia dell’Università di Catania
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1. Introduction

There are two radically different ways to look at the origin of symmetries.

On the one hand, for esthetic reasons, a symmetry could simply be postu-

lated from scratch as, for instance, in the grand-unified scenarios of elemen-

tary particle physics. On the other hand, one could consider a symmetry as

an emergent phenomenon [1]. From this latter point of view, the symmetry

emerges from a microscopic description that, at the deepest level, does not

know about its existence. In this sense, the emergence of symmetries could

also be viewed as the tendency of physical systems toward self-organization

and complexity [2].

As a definite example, one can consider the case of electromagnetism

and Lorentz symmetry. At the end of XIX century, electromagnetic waves

were described as hydrodynamic disturbances of an underlying ether repre-

sented, by Thomson, Fitzgerald and others, as an incompressible turbulent

1
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fluid ( a vortex ‘sponge’) [3]. The main point was that, due to the en-

ergy which is locally stored in the turbulent motion, on a coarse-grained

scale, a fluid can start to behave as an elastic medium and thus support the

propagation of transverse waves whose speed cγ coincides with the average

speed c ≡ cturbulence of the chaotic internal motion of the elementary fluid

constituents.

With the advent of Einstein’s axiomatic approach, the ether started to

be considered a superfluous concept. Still, as we shall review in Sect.2, the

concept of the vacuum as an underlying turbulent ether is re-proposed by

formal analogies with some foundational aspects of both quantum theory

and relativity. This leads to the idea that space-time may have a funda-

mental stochastic nature.

Therefore one may ask: beyond the simple level of a formal analogy,

there could be some definite experimental signature for this type of pic-

ture? This possibility will be considered in Sects. 3−7 where we shall

compare with the phenomenological aspects of the ether-drift experiments.

In the framework of a Lorentzian form of relativity and by representing the

physical vacuum as a stochastic medium, our numerical simulations indicate

that all classical ether-drift experiments could become consistent with the

average Earth’s motion which today is used to characterize the anisotropy

of the Cosmic Microwave Background (CMB). Finally, in Sect.8, the overall

consistency of this view with the present ether-drift experiments and the

need for a new generation of dedicated experiments will also be emphasized.

2. The physical vacuum as a form of turbulent ether

In this section, we shall list a few different motivations that might induce

to represent the vacuum as a form of random medium which resembles a

turbulent fluid.

a) At the dawn of XX century Lorentz symmetry was believed to emerge

from an underlying ether represented, by Thomson, Fitzgerald and others,

as an incompressible turbulent fluid ( a vortex ‘sponge’) [3]. More recently,

the turbulent-ether model has been re-formulated by Troshkin [4] (see also
[5] and [6]) in the framework of the Navier-Stokes equation. The main point

of these hydrodynamic derivations is that, due to the energy which is locally

stored in the turbulent motion, on a coarse-grained scale, a fluid can start to

behave as an elastic medium and thus support the propagation of transverse

waves whose speed cγ coincides with the average speed c ≡ cturbulence of

the chaotic internal motion of the elementary fluid constituents.
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To understand intuitively why, on coarse-grained scale, a fluid can

start to behave as a solid one can just think of jets of water of sufficient

speed. However, this idea is also supported by the formal equivalence [7;

8] (velocity potential vs. displacement, velocity vs. distortion, vortic-

ity vs. density of dislocations,...) that can be established between var-

ious systems of dislocations in an elastic solid and corresponding vor-

tex fields in a liquid. In this sense, the phenomenon of turbulence pro-

vides a conceptual transition from fluid dynamics to a different realm

of physics, that of elasticity. With this transition, the parameter c ac-

quires also the meaning of a limiting speed for the motion of soliton-

like dislocations taken as models of ordinary matter (see e.g. refs.[9;

10] and references quoted therein). This is due to the behaviour of their

elastic energy which increases proportionally to (1− v2/c2)−1/2.

This perspective is similar to starting from the basic equation that de-

termines the mutual variations of the energy E and the linear momentum

p = Mv of a body

dE

dt
= v · d(Mv)

dt
(1)

and allowing for a v2−dependence in M (see e.g. [11]). This gives

dE =
1

2
Mdv2 + v2dM (2)

The main point is that, if ordinary matter were interpreted in terms of

soliton-like excitations of an underlying turbulent ether, one now disposes

of the velocity parameter c ≡ cturbulence. Then, by setting E ≡ c2M(v2/c2),

one has dE
dv2 = c2 dMdv2 and Eq.(2) becomes dM

dv2

(
c2 − v2

)
= 1

2M Therefore,

for dM/dv2 > 0, c plays also the role of a limiting speed and one finally

obtains

E = Mc2 =
M0c

2√
1− v2/c2

(3)

On this basis, it becomes natural to introduce linear transformations of the

four quantities E/c and p = Mv that preserve the quadratic combination

(E/c)2 − p2 = (M0c)
2 and thus, by starting from a microscopic turbulent-

ether scenario, Lorentz symmetry could also be understood as an emergent

phenomenon. In this interpretation, its ultimate origin has to be searched

in the very existence of c and thus in the deepest random fluctuations of

the fluid velocity, with time at each point and between different points at

the same instant, that characterize a state of fully developed turbulence

and provide a kinetic basis for the observed space-time symmetry [12].
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Notice that, once Lorentz symmetry is an emergent property, c is only a

limiting speed for those soliton-like, collective modes that, in an emergent

interpretation, are taken as models of ordinary matter, e.g. vortices, elastic

dislocations...Thus there is nothing wrong if the internal motion of the

basic constituents takes place at an average speed c. At the same time, on

the coarse grained scale which is accessible to physical rods and clocks, the

basic constituents appear, so to speak, ‘frozen’ in the vacuum structure and

only their collective excitations are directly observable. This means that,

for the elementary ether constituents, Eq.(1) is now solved by the standard

non-relativistic forms E = 1
2mv

2 and p = mv, where m is the constituent

constant mass.

b) As emphasized in ref.[13], this qualitative picture of the vacuum,

as an underlying random medium, also arises from alternative views of

the quantum phenomena as with stochastic electrodynamics [14]−[18] or

Nelson’s mechanics [19]. The former is essentially the classical Lorentz-

Dirac theory with new boundary conditions where the standard vanishing

field at infinity is replaced by a vacuum, random radiation field. This field,

considered in a stationary state, is assumed to permeate all space and its

action on the particles impresses upon them a stochastic motion with an

intensity characterized by Planck’s constant. In this way, one can get insight

into basic aspects of the quantum theory such as the wave-like properties of

matter, indeterminacy, quantization,... For instance, in this picture, atomic

stability would originate from reaching that ‘quantum regime’ [16; 18] which

corresponds to a dynamic equilibrium between the radiation emitted in the

orbital motions and the energy absorbed in the highly irregular motions

impressed by the vacuum stochastic field. In this sense, again, Lorentz’

ether should not be thought as a stagnant fluid (for an observer at rest) or

as a fluid in laminar motion (for an observer in uniform motion). Rather

the ether should resemble a fluid in a chaotic state, e.g. a fluid in a state

of turbulent motion. The same is true for Nelson’s mechanics. Here, the

idea of a highly turbulent fluid emerges if one uses Onsager’s original result
[20] that in the zero-viscosity limit, i.e. infinite Reynolds number, the fluid

velocity field does not remain a differentiable function a. This provides a

basis to expect that “the Brownian motion in the ether will not be smooth

”[19] and thus to consider the particular form of kinematics which is at the

basis of Nelson’s stochastic derivation of the Schrödinger equation.

aOnsager’s argument relies on the impossibility, in the zero-viscosity limit, to satisfy

the inequality |v(x + l) − v(x)| < (const.)ln, with n > 1/3. Kolmogorov’s theory [21]

corresponds to n = 1/3.
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c) At a more elaborate level, a qualitatively similar picture is also ob-

tained by representing relativistic particle propagation from the superpo-

sition, at very short time scales, of non-relativistic particle paths with dif-

ferent Newtonian mass [22]. In this formulation, particles randomly prop-

agate (in the sense of Brownian motion) in a granular medium which thus

replaces the trivial empty vacuum [23]. The essential mathematical ingredi-

ent for this representation is the use of ‘superstatistics’ [24], intended as the

superposition of several statistical systems that operate at different spatio-

temporal scale, which is also known to provide a very good description of

fluid particle trajectories in high Reynolds-number turbulence [25].

d) Finally, the idea of a fundamentally random vacuum is also mo-

tivated by quantum-gravity. According to this view, space-time, when

resolved at very short distances, should exhibit quantum fluctuations

and thus appear to be ‘foamy’ or ‘spongy’ in the sense of refs. [26;

27]. This original idea has lead to a very wide collection of ideas and

intuitions including, for instance, the holographic principle (see [28] for a

review), possible deformations of Lorentz symmetry (Doubly Special Rel-

ativity) [29] or models of dark energy and dark matter [30]. At the same

time, coupling light and matter to a fluctuating metric leads to intrinsic lim-

itations on the measurement of lengths [31; 32], to violations of the weak

equivalence principle [33] and to an effective decoherence of quantum sys-

tems [34]. These effects can be used to restrict the possible quantum gravity

models by comparing with the results of modern gravity-wave detectors [35]

or with atomic interferometry [36] or with the beat signal of two ultrastable

optical resonators [37]. What is relevant here for our purpose is that, as in

the previous cases, the space-time foam of quantum gravity seems also to

resemble a turbulent fluid. This idea, originally due to Wheeler [26], has

been more recently exploited by Ng and collaborators [38] who have em-

phasized the close analogies between holographic models of space-time foam

and the limit of turbulence for infinite Reynolds number. The main conclu-

sion of these rather formal derivations is that the metric fluctuations in the

holographic model, which give rise to length fluctuations ∆l ∼ l1/3l
2/3
planck,

when compared with those in moving fluids, can also be interpreted as a

manifestation of Kolmogorov’s scaling law for velocity ∆v ∼ l1/3 [21].

Thus, summarizing, from the old ether view to the present quantum-

gravity models, there are several independent motivations to represent the

physical vacuum as an underlying turbulent fluid. This non-trivial degree

of convergence might originate from the fundamental nature of quantum

gravity (e.g. from the correspondence between the metric fluctuations in
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the holographic model and Kolmogorov’s scaling law). However, one could

also adopt the complementary point of view where instead the ubiquitous

phenomenon of turbulence plays from the very beginning the most central

role. In any case, it becomes natural to wonder whether this type of vac-

uum medium could represent the preferred reference frame of a Lorentzian

approach and thus to look at the ether-drift experiments for possible ex-

perimental checks. At the same time, the non-trivial interplay between

large-scale and small-scale properties of turbulent flows may induce one to

re-consider some assumptions adopted so far in the interpretation of the

data. These issues will be analyzed in detail in the following sections.

3. Ether-drift experiments, the velocity of light and the

Lorentz invariance of the vacuum

Ether-drift experiments, where one attempts to measure an absolute ve-

locity, are the only known experiments which, in principle, can distinguish

Einstein’s special relativity from the Lorentzian point of view with a pre-

ferred reference frame Σ. At the same time, by assuming the validity of

Lorentz transformations, if the velocity of light cγ propagating in the var-

ious interferometers coincides with the basic parameter c entering Lorentz

transformations, relativistic effects conspire to make undetectable the ve-

locity parameter V associated with the motion of a given frame S′ with

respect to Σ. Therefore the only possibility is that cγ and c do not coin-

cide exactly. In this case, in fact, the existence of a small mismatch would

show up through a tiny anisotropy of the velocity of light, proportional to

(c−cγ)/c, which could be measured by rotating a Michelson interferometer.

To derive the relevant relation, we shall follow the same treatment given

in ref.[39] which applies to light propagation in a dielectric medium when

the refractive index N = 1+ε is extremely close to unity. This is the case of

the gaseous systems as air, helium,.., which were used in the classical ether-

drift experiments (e.g. Michelson-Morley, Miller, Illingworth, Joos,...). For

such systems, one can find a simple theoretical framework to analyze the

experiments.

The standard assumption is that any anisotropy has to vanish when both

the observer and the container of the medium are at rest in the hypothetical

preferred frame Σ. Therefore, in the physical case where instead both the

observer and the container of the medium are at rest in the laboratory S′

frame, the anisotropy should vanish identically in the two limits when either

V = 0 (i.e. S′ ≡ Σ) or N = 1 (i.e. when cγ ≡ c). This means that, in a
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power series expansion in the two small parameters β = V/c and ε = N −1,

any possible anisotropy has to start to O(εβ) for the one-way velocity cγ(θ)

and to O(εβ2) for the two-way velocity c̄γ(θ) (the only one that can be

measured unambiguously) which, by its very definition, is invariant under

the replacement β → −β. At the same time, for any fixed β, c̄γ(θ) is

also invariant under the replacement θ → π + θ. Therefore, to the lowest

non-trivial level O(εβ2), one can write down the general expression

c̄γ(θ) =
2cγ(θ)cγ(π + θ)

cγ(θ) + cγ(π + θ)
∼ c

N

[
1− ε β2

∞∑
n=0

ζ2nP2n(cos θ)

]
(4)

where, to take into account invariance under θ → π+θ, the angular depen-

dence is given as an infinite expansion of even-order Legendre polynomials

with arbitrary coefficients ζ2n = O(1). In Einstein’s relativity, where there

is no preferred reference frame, these ζ2n coefficients vanish exactly. In

a Lorentzian relativity, consistently with Lorentz’ point of view [44] “...it

seems natural not to assume at starting that it can never make any differ-

ence whether a body moves through the ether or not..”, there is no reason

why they should vanish a priori. Therefore, one can adopt Eq.(4) and start

to compare with experiments.

However, before analyzing its phenomenological implications, it is in-

teresting to look for a possible dynamical mechanism which can ex-

plain the formal structure in Eq.(4). To this end, by following refs.[39;

40], one can explore the possible implications of those modern views where

the vacuum state is usually represented (e.g. in the standard model) as

originating from the macroscopic condensation of some elementary quanta

in the same quantum state, say k = 0 in some reference frame Σ. This

characterizes the physically realized form of relativity and could play the

role of preferred reference frame in a modern Lorentzian approach.

This possibility is usually not considered with the motivation, perhaps,

that the average properties of the condensed phase are summarized into a

single quantity which transforms as a world scalar under the Lorentz group,

for instance, in the standard model, the vacuum expectation value 〈Φ〉 of

the Higgs field. However, this does not necessarily imply that the vacuum

state itself has to be Lorentz invariant. Namely, Lorentz transformation

operators U ′, U ′′,..could transform non trivially the reference vacuum state
b |Ψ(0)〉 (appropriate to an observer at rest in Σ) into |Ψ′〉, |Ψ′′〉,.. (appro-

bWe ignore here the problem of vacuum degeneracy by assuming that any overlapping

among equivalent vacua vanishes in the infinite-volume limit of quantum field theory (see
e.g. S. Weinberg, The Quantum Theory of Fields, Cambridge University press, Vol.II,
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priate to moving observers S′, S′′,..) and still, for any Lorentz-invariant

operator G, one would find

〈G〉Ψ(0) = 〈G〉Ψ′ = 〈G〉Ψ′′ = .. (5)

Now, according to general quantum field theoretical arguments, de-

ciding on its Lorentz invariance requires to consider the eigenvalues and

the algebra of the global Poincaré operators Pα, Mα,β ( α ,β=0, 1, 2,

3) where Pα are the 4 generators of the space-time translations and

Mαβ = −Mβα are the 6 generators of the Lorentzian rotations. In this

framework, exact Lorentz invariance of the vacuum requires to impose [39;

40] the problematic condition of a vanishing vacuum energy E0 = 0. How-

ever, for interacting theories, with the exception of unbroken supersym-

metric theories (which are not phenomenologically acceptable), there is no

known way to ensure consistently the condition E0 = 0. Thus the issue

of an exact Lorentz invariant vacuum remains as an open problem which,

at present, cannot be solved on purely theoretical grounds. Still, one can

explore the possible observable implications. In fact, the simplest conse-

quence of such non-invariance of the vacuum is an energy-momentum flow

along the direction of motion with respect to Σ. This tiny flow, acting as

an effective thermal gradient, could induce small convective currents of the

molecules in weakly bound systems as gases. In this case, refracted light

would exhibit a slight anisotropy which would produce exactly the same

Eq.(4) [39].

In this scheme, one can also understand the difference [41; 42] with

experiments performed in strongly bound systems, such as solid or liquid

transparent media, as in the Shamir-Fox experiment [43]. Being aware

that the classical experiments might also admit a non-null interpretation

proportional to (N − 1)β2, they selected a medium where the effect of

the refractive index could have been enhanced (i.e. perspex where N ∼
1.5). Since this enhancement was not observed, they concluded that the

experimental basis of Special Relativity was strengthened. However, with

the proposed mechanism, in solid and liquid dielectrics one expects the

small energy flow generated by the motion with respect to the vacuum

condensate to mainly dissipate by heat conduction without generating any

appreciable particle motion or light anisotropy in the rest frame of the

medium. Thus one has a physical argument to reconcile the two different

behaviours.

pp. 163-167).
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The above non-trivial level of consistency motivates a new genera-

tion of precise ether-drift experiments where light propagates in weakly

bound gaseous media which seem the best suited to detect the tiny energy-

momentum flow associated with a Lorentz non-invariant vacuum state. In

this respect, we observe that Eq.(4), in principle, is exact to the given ac-

curacy and could be used for fits to the data where the first few ζ’s are

left as free parameters. This general structure can, however, be compared

with the particular form (a pure second harmonic in θ) which is obtained

by using Lorentz transformations to connect S to the preferred frame c

c̄γ(θ) ∼ c

N
[1− εβ2 (a+ b sin2 θ)] (6)

with a = 2 and b = −1 which corresponds to setting ζ0 = 4/3, ζ2 = 2/3

and all ζ2n = 0 for n > 1 in Eq.(4). We can then define the anisotropy

parameter B

c̄γ(π/2 + θ)− c̄γ(θ)

〈c̄γ〉
∼ B v

2

c2
cos 2(θ − θ0) (7)

where the pair (v, θ0) describes the projection of V onto the relevant plane

and

|B| ∼ ε (8)

Eq.(6) represents a definite realization of the general structure in (4) and a

particular case of the Robertson-Mansouri-Sexl (RMS) scheme [45; 46] for

anisotropy parameter |B| = ε. In this sense, it provides a partial answer

to the problems posed by our limited knowledge of the electromagnetic

properties of gaseous systems and will be adopted in the following as a

tentative model for the two-way velocity of light.

To obtain an experimental check, let us adopt Eq.(6). Then, this

anisotropy of the two-way velocity of light could be measured by rotating a

Michelson interferometer. By assuming the validity of Lorentz transforma-

tions, in the rest frame S′ of the apparatus, the length L of its arms does

not depend on their orientation so that the interference pattern between

two orthogonal beams of light depends on the time difference

∆T (θ) =
2L

c̄γ(θ)
− 2L

c̄γ(π/2 + θ)
(9)

cWe address the reader to ref.[39] for various details concerning the derivation of Eq.(6)

(see in particular the Appendix A) or the exact relation between the value of the refractive
index in the S′ frame and its value when the container of the gas is at rest in the Σ

frame.
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In this way, by introducing the wavelength λ of the light source and the

projection v of the relative velocity in the plane of the interferometer, one

finds to order v2

c2 the fringe shift

∆λ(θ)

λ
∼ c∆T (θ)

Nλ
∼ L

λ

v2
obs

c2
cos 2(θ − θ0) (10)

In the above equation the angle θ0 = θ0(t) indicates the apparent direction

of the ether-drift in the plane of the interferometer (the ‘azimuth’) and the

square of the observable velocity

v2
obs ∼ 2(N − 1)v2 (11)

is re-scaled by the tiny factor 2(N −1) with respect to the true kinematical

velocity v2(t).

Therefore, in this scheme, the interpretation of the experiments is trans-

parent. According to Special Relativity, there can be no fringe shift upon

rotation of the interferometer. In fact, if light propagates in a medium,

the frame of isotropic propagation is always assumed to coincide with the

laboratory frame S, where the container of the medium is at rest, and thus

one has vobs = v = 0. On the other hand, if there were fringe shifts, one

could try to deduce the existence of a preferred frame Σ 6= S provided the

following minimal requirements are fulfilled : i) the fringe shifts exhibit an

angular dependence of the type in Eq.(10) ii) by using gaseous media with

different refractive index one gets consistency with Eq.(11) in such a way

that different vobs correspond to the same kinematical v.

4. A fresh look at the classical ether-drift experiments

Before considering the classical ether-drift experiments, some introductory

discussion is needed. These experiments were performed in a period when

both relativity and quantum theory were not fully developed. Therefore,

the theoretical model adopted to compare with the data was basically the

old classical physics. In this interpretative scheme, the expected effects, al-

though being formally O(v2/c2), were “large”, as compared to the extraor-

dinary sensitivity of the Michelson interferometer, and “smooth”, because

the only time dependence were due to slow effects such as the daily Earth’s

rotation and its annual orbital revolution.

To see this, let us first re-write the basic Eq.(10) as

∆λ(θ)

λ
∼ 2L(N − 1)

λ

v2(t)

c2
cos 2(θ − θ0(t)) ≡ 2C(t) cos 2θ + 2S(t) sin 2θ

(12)
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where (x-y denotes theplane of the interferometer)

C(t) =
L(N − 1)

λ

v2(t)

c2
cos 2θ0(t) =

L(N − 1)

λ

v2
x(t)− v2

y(t)

c2
(13)

S(t) =
L(N − 1)

λ

v2(t)

c2
sin 2θ0(t) =

L(N − 1)

λ

2vx(t)vy(t)

c2
(14)

Then, the standard classical assumption is to consider a cosmic Earth’s

velocity with well defined magnitude V , right ascension α and angular

declination γ that can be considered constant for short-time observations

of a few days where there are no appreciable changes due to the Earth’s

orbital velocity around the Sun. In this framework, where the only time

dependence is due to the Earth’s rotation, one identifies v(t) ≡ ṽ(t) and

θ0(t) ≡ θ̃0(t) where ṽ(t) and θ̃0(t) derive from the simple application of

spherical trigonometry

cos z(t) = sin γ sinφ+ cos γ cosφ cos(τ − α) (15)

ṽx(t)

V
≡ sin z(t) cos θ̃0(t) = sin γ cosφ− cos γ sinφ cos(τ − α) (16)

ṽy(t)

V
≡ sin z(t) sin θ̃0(t) = cos γ sin(τ − α) (17)

ṽ(t) ≡
√
ṽ2
x(t) + ṽ2

y(t) = V sin z(t), (18)

Here z = z(t) is the zenithal distance of V, φ is the latitude of the ob-

servatory, τ = ωsidt is the sidereal time of the observation in degrees

(ωsid ∼ 2π
23h56′ ) and the angle θ0 is counted conventionally from North

through East so that North is θ0 = 0 and East is θ0 = 90o. In this way,

one finds

S(t) ≡ S̃(t) = Ss1 sin τ + Sc1 cos τ + Ss2 sin(2τ) + Sc2 cos(2τ) (19)

C(t) ≡ C̃(t) = C0 + Cs1 sin τ + Cc1 cos τ + Cs2 sin(2τ) + Cc2 cos(2τ) (20)

In this picture, the Ck and Sk Fourier coefficients depend on the three

parameters (V, α, γ) (see [39]) and, to very good approximations, should be

time-independent for short-time observations.

However, this simple theoretical framework did not fit with the observa-

tions. In fact, the experimental data, even though slightly larger than the

experimental resolution, were always much smaller than the expected size

O(β2). Also the observed pattern was highly irregular because observations
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Fig. 1. The two possible ways to relate Earth’s classical motion and fringe shifts.

performed at the same time on consecutive days could differ sizeably. This

has always represented a strong argument to interpret the data as pure

instrumental effects, i.e. “null results”.

However, from time to time, greatest experts have seriously questioned

this traditional null interpretation. Thus, one may ask if there could be

some theoretical framework in which these “small” and “irregular” effects

can acquire a definite physical meaning. For instance we have seen in

Sect.2, see Eqs.(10) and (11), that, by assuming the existence of a preferred

reference frame Σ and using Lorentz transformations (rather than Galileo’s

transformations), the expected effects would be proportional to 2(N −1)β2

and not simply to β2. Therefore, for instance, for air, where the refractive

index N ∼1.00029, the fringe shifts for V ∼ 300 km/s would be about 17

times smaller than those classical expected for V ∼ 30 km/s. For gaseous

helium, where N ∼ 1.000035, the effect would be even 140 times smaller.

In addition, there is another important aspect. By comparing the

Earth’s cosmic motion with that of a body in a fluid, the standard pic-

ture Eqs.(15)−(20) amounts to the condition of a pure laminar flow where

global and local velocity fields coincide. Here, there is a logical gap. The

relation between the macroscopic Earth’s motions and the ether-drift ex-

periments depends on the physical nature of the vacuum. If we consider

the vacuum as a form of quantum ether, the fringe shifts will likely ex-

hibit the typical irregular (non-deterministic) pattern which characterizes

any quantum measurement. Therefore, from the theoretical arguments of

Sect.2, rather than adopting the simple classical model of a laminar flow,

one could try to compare the experimental data with models of a turbulent

flow, see Fig.1.
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In this case, due to the typical irregular behaviour, vectorial quantities

(such as the fringe shifts) might easily average to zero. But, now, this does

not mean that there is no ether-drift.

A complete analysis of all classical experiments was presented in ref.[39].

Here, we shall only restrict to the first, and most famous, experiment per-

formed in 1887 by Michelson and Morley in Cleveland, and to the last, and

most precise, version which was performed in 1930 by Joos in Jena. Due to

the accuracy of this latter experiment we shall explicitly compare the data

with numerical simulations of turbulent flows.

4.1. Michelson-Morley

Michelson and Morley performed their six observations in 1887, on July 8th,

9th, 11th and 12th, at noon and in the evening, in the basement of the Case

Western University of Cleveland [47]. As well summarized by Miller in 1933
[48], “The brief series of observations was sufficient to show clearly that the

effect did not have the anticipated magnitude. However, and this fact must

be emphasized, the indicated effect was not zero”. The same conclusion

had already been obtained by Hicks in 1902 [49]: ”..the data published by

Michelson and Morley, instead of giving a null result, show distinct evidence

for an effect of the kind to be expected”. Quantitatively, the situation can

be summarized in Figure 2, taken from Miller [48], where the values of the

effective velocity measured in various ether-drift experiments are reported

and compared with a smooth curve fitted by Miller to his own results as

function of the sidereal time.

Fig. 2. The magnitude of the observable velocity measured in various experiments as

reported by Miller [48].
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In the framework of Eq.(10), the fringe shift is a second-harmonic effect,

i.e. periodic in the range [0, π], whose amplitude A2 is predicted differently

by using the classical formulas or Lorentz transformations (10)

Aclass
2 =

L

λ

v2

c2
Arel

2 =
L

λ

vobs
2

c2
∼ 2(N − 1)Aclass

2 (21)

Now, for the Michelson-Morley interferometer the whole effective optical

path was about L = 11 meters, or about 2 · 107 in units of light wave-

lengths, so for a velocity v ∼ 30 km/s (the Earth’s orbital velocity about

the Sun, and consequently the minimum anticipated drift velocity) the ex-

pected classical 2nd-harmonic amplitude was Aclass
2 ∼ 0.2. This value can

thus be used as a reference point to obtain an observable velocity, in the

plane of the interferometer, from the actual measured value of A2 through

the relation

vobs ∼ 30

√
A2

0.2
km/s (22)

For the Michelson-Morley experiment, the average observable velocity re-

ported by Miller is about 8.4 km/s. Comparing with the classical prediction

for a velocity of 30 km/s, this means an experimental 2nd- harmonic am-

plitude

AEXP
2 ∼ 0.2 (

8.4

30
)2 ∼ 0.016 (23)

which is about twelve times smaller than the expected result.

Neither Hicks nor Miller reported an estimate of the error on the 2nd

harmonic extracted from the Michelson-Morley data. To understand the

precision of their readings, we can look at the original paper [47] where

one finds the following statement: ”The readings are divisions of the screw-

heads. The width of the fringes varied from 40 to 60 divisions, the mean

value being near 50, so that one division means 0.02 wavelength”. Now,

in their tables Michelson and Morley reported the readings with an accu-

racy of 1/10 of a division (example 44.7, 44.0, 43.5,..). This means that

the nominal accuracy of the readings was ±0.002 wavelengths. In fact, in

units of wavelengths, they reported values such as 0.862, 0.832, 0.824,..

Furthermore, this estimate of the error agrees well with Born’s book [50].

In fact, Born, when discussing the classically expected fractional fringe

shift upon rotation of the apparatus by 90o, about 0.37, explicitly says:

“Michelson was certain that the one-hundredth part of this displacement

would still be observable” (i.e. 0.0037). Therefore, to be consistent with
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Fig. 3. The Michelson-Morley fringe shifts as reported by Hicks [49]. Solid and dashed

lines refer respectively to noon and evening observations.

SESSION AEXP
2

July 8 (noon) 0.010± 0.005

July 9 (noon) 0.015± 0.005

July 11 (noon) 0.025± 0.005

July 8 (evening) 0.014± 0.005

July 9 (evening) 0.011± 0.005

July 12 (evening) 0.024± 0.005

both the original Michelson-Morley article and Born’s quotation of Michel-

son’s thought, the estimate ±0.004 for the error was adopted in refs.[42;

39]. In these papers, many other details and all numerical values for the

fringe shifts are reported.

The fringe shifts are given as a periodic function, with vanishing mean,

in the range 0 ≤ θ ≤ 2π, so that they can be reproduced in a Fourier

expansion. One can thus extract the amplitude and the phase of the 2nd-
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Fig. 4. A fit to the even combination B(θ) Eq.(24). The second harmonic amplitude is

AEXP
2 = 0.025± 0.005 and the fourth harmonic is AEXP

4 = 0.004± 0.005. The figure is

taken from ref.[42]. Compare the data with the solid curve of July 11th shown in Fig.3.

harmonic component by fitting the even combination of fringe shifts

B(θ) =
∆λ(θ) + ∆λ(π + θ)

2λ
(24)

(see Fig.4). This is essential to cancel the 1st-harmonic contribution orig-

inally pointed out by Hicks [49]. Its theoretical interpretation is in terms

of the arrangements of the mirrors and, as such, this effect has to show up

in the outcome of real experiments. The 2nd-harmonic amplitudes from

the six individual sessions are reported in Table 2. One can then compute

the mean and variance of the six determinations reported in Table 2 by

obtaining AEXP
2 ∼ 0.016 ± 0.006. This value is consistent with an observ-

able velocity vobs ∼ 8.4+1.5
−1.7 km/s. Then, by using Eq.(11), which connects

the observable velocity to the projection of the kinematical velocity in the

plane of the interferometer through the refractive index of the medium

where light propagation takes place (in our case air where N ∼ 1.00029),

we can deduce the average value

v ∼ 349+62
−70 km/s (25)

While the individual values of A2 show a reasonable consistency, there

are substantial changes in the apparent direction θ0 of the ether-drift effect

in the plane of the interferometer. This is the reason for the strong cancela-

tions obtained when fitting together all noon sessions or all evening sessions
[52]. According to the usual interpretation, the large spread of the azimuths

is taken as indication that any non-zero fringe shift is due to pure instru-

mental effects. However, as anticipated, this type of discrepancy could also
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indicate an unconventional form of ether-drift where there are substantial

deviations from Eq.(6) and/or from the smooth trend in Eqs.(15)−(18).

For instance, in agreement with the general structure Eq.(4), and differ-

ently from July 11 noon, which represents a very clean indication, there

are sizeable 4th- harmonic contributions (here AEXP
4 = 0.019 ± 0.005 and

AEXP
4 = 0.008 ± 0.005 for the noon sessions of July 8 and July 9 respec-

tively). In any case, the observed strong variations of θ0 are in qualitative

agreement with the analogous values reported by Miller. To this end, com-

pare with Fig.22 of ref.[48] and in particular with the large scatter of the

data taken around August 1st, as this represents the epoch of the year which

is closer to the period of July when the Michelson-Morley observations were

actually performed. Thus one could also conclude that individual exper-

imental sessions indicate a definite non-zero ether-drift but the azimuth

does not exhibit the smooth trend expected from the conventional picture

Eqs.(15)−(18).

We emphasize that the large spread of the θ0−values might also reflect

a particular systematic effect pointed out by Hicks [49]. As described by

Miller [48], “ before beginning observations the end mirror on the telescope

arm is very carefully adjusted to secure vertical fringes of suitable width.

There are two adjustments of the angle of this mirror which will give fringes

of the same width but which produce opposite displacements of the fringes

for the same change in one of the light-paths”. Since the relevant shifts

are extremely small, “...the adjustments of the mirrors can easily change

from one type to the other on consecutive days. It follows that averaging

the results of different days in the usual manner is not allowable unless the

types are all the same. If this is not attended to, the average displacement

may be expected to come out zero − at least if a large number are averaged”
[49].

Therefore averaging the fringe shifts from various sessions represents a

delicate issue and can introduce uncontrolled errors. In fact, an overall

change of sign of the fringe shifts at all θ−values is equivalent to replacing

the azimuth θ0 → θ0 ± π/2. However, this relative sign does not affect

the values of A2 and this is why averaging the 2nd-harmonic amplitudes

in Table 1, as we have done, is a safer procedure. From these amplitudes

one obtains the average kinematical velocity Eq.(25) which is completely

consistent with the average value 369 km/s associated with the Earth’s

motion with respect to the CMB.
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5. Numerical simulations in a turbulent-ether model

As anticipated at the end of Sect.4, identifying the local velocity

field (vx(t), vy(t)) in Eqs.(12) −(14) with the smooth, global quantities

(ṽx(t), ṽy(t)) which describe the cosmic Earth’s motion, is equivalent to

adopt the model of a laminar flow. Instead, by adopting the different

model of a turbulent flow, the situation changes completely.

As mentioned in the introduction, in the limit of vanishing viscosity,

the local velocity field becomes non-differentiable. In these conditions, the

ordinary formulation in terms of differential equations becomes inadequate

and must be replaced by some other description such as a formulation

in terms of random Fourier series [20; 53]. In this other approach, the

parameters of the macroscopic motion are only used to fix the limiting

boundaries [54] for a microscopic velocity field which has instead an intrinsic

stochastic nature.

The simplest choice, which represents a zeroth-order approximation,

corresponds to a turbulence which, at small scales, appears statistically

isotropic and homogeneous d. In spite of its simplicity, it is a useful example

to illustrate basic phenomenological features associated with an underlying

stochastic vacuum. The perspective is that of an observer moving in the

turbulent fluid who wants to simulate the two components of the velocity

in his x-y plane at a given fixed location in his laboratory. In a statistically

isotropic and homogeneous turbulence, one finds the general expressions

vx(t) =

∞∑
n=1

[xn(1) cosωnt+ xn(2) sinωnt] (26)

vy(t) =

∞∑
n=1

[yn(1) cosωnt+ yn(2) sinωnt] (27)

where ωn = 2nπ/T , T being a time scale which represents a common period

of all stochastic components. For our simulations, we have adopted the

typical value T = Tday= 24 hours. However, we have also checked with a few

runs that the statistical distributions of the various quantities do not change

substantially by varying T in the rather wide range 0.1 Tday ≤ T ≤ 10 Tday.

The coefficients xn(i = 1, 2) and yn(i = 1, 2) are random variables

with zero mean and have the physical dimension of a velocity. By assuming

statistical isotropy, we shall denote by [−ṽ, ṽ] the common interval for these

dThis picture reflects the basic Kolmogorov theory [21] of a fluid with vanishingly small

viscosity.
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four parameters. In terms of ṽ the statistical average of the quadratic values

can be expressed as

〈x2
n(i = 1, 2)〉stat = 〈y2

n(i = 1, 2)〉stat =
ṽ2

3 n2η
(28)

for the uniform probability model (within the interval [−ṽ, ṽ]) which we

have chosen for our simulations. Finally, the exponent η controls the power

spectrum of the fluctuating components. For the simulations, between the

two values η = 5/6 and η = 1 reported in ref.[54], we have chosen η = 1

which corresponds to the point of view of an observer moving in the fluid.

We observe that one could further improve the stochastic model by

introducing time modulations and/or slight deviations from isotropy. For

instance, ṽ could become a function of time ṽ = ṽ(t). By still retaining

statistical isotropy, this could be used to simulate the possible modulations

of the projection of the Earth’s velocity in the plane of the interferometer.

Or, one could fix a range, say [−ṽx, ṽx], for the two random parameters

xn(1) and xn(2), which is different from the range [−ṽy, ṽy] for the other

two parameters yn(1) and yn(2). Finally, ṽx and ṽy could also become given

functions of time, for instance ṽx(t) ≡ ṽ(t) cos θ̃0(t) ṽy(t) ≡ ṽ(t) sin θ̃0(t),

ṽ(t) and θ̃0(t) being defined in Eqs. (15)−(18). In this way, for each time

t, Eqs.(28) now become

〈x2
n(i = 1, 2)〉stat =

ṽ2
x(t)

3 n2η
〈y2
n(i = 1, 2)〉stat =

ṽ2
y(t)

3 n2η
(29)

For most classical experiments, these further refinements are unnecessary.

In fact in most cases only observations at few selected hours were performed

so that, in view of the strong fluctuations of the data, one can just extract

the average magnitude of the observed velocity and, within the errors, a

macroscopic kinematical velocity. A notable exception is Joos’ 1930 exper-

iment [55]. Its accuracy was incomparable among the classical experiments

since the observations were performed each hour to cover the whole sidereal

day and the data were recorded by photocamera. As we shall see in the

next section, Joos’ data are sensitive to the details of the Earth’s cosmic

motion and require to adopt the most refined framework Eqs.(29).

5.1. Joos

Joos’ optical system [55] was enclosed in a hermetic housing and, tradition-

ally, it was always assumed that the fringe shifts were recorded in a partial

vacuum. On the other hand, Swenson [56] explicitly reports that fringe
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shifts were finally recorded with optical paths placed in a helium bath. In

spite of the fact that this important aspect is never mentioned in Joos’ pa-

pers, we have followed Swenson by assuming that during the measurements

the interferometer was filled by gaseous helium at atmospheric pressure.

Fig. 5. The selected set of data reported by Joos [55]. The yardstick corresponds to

1/1000 of a wavelength so that the experimental dots have a size of about 0.4 · 10−3.
This corresponds to an uncertainty ±0.2 · 10−3 in the extraction of the fringe shifts.

The observations were performed in Jena in 1930 starting at 2 P.M. of

May 10th and ending at 1 P.M. of May 11th. Two measurements, the 1st

and the 5th, were finally deleted by Joos with the motivation that there were

spurious disturbances. The data were combined symmetrically, in order to

eliminate the presence of odd harmonics, and the magnitude of the fringe

shifts was typically of the order of a few thousandths of a wavelength. To

this end, one can look at Joos’ picture (reported here as our Fig.5) and

compare with the shown size of 1/1000 of a wavelength. From this picture,

Joos decided to adopt 1/1000 of a wavelength as an upper limit and deduced

an observable velocity vobs . 1.5 km/s. To derive this value, he used the

fact that, for his apparatus, an observable velocity of 30 km/s would have

produced a 2nd-harmonic amplitude of 0.375 wavelengths.

Still, since it is apparent from Fig.5 that some fringe displacements
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Fig. 6. Joos’ 2nd-harmonic amplitudes, in units 10−3. The vertical band between the
two lines corresponds to the range (1.4± 0.8) · 10−3. The figure is taken from Ref.[39].

were definitely larger than 1/1000 of a wavelength, the values of the 2nd-

harmonic amplitude A2 were extracted [39] from the 22 pictures. Differently

from the values of the azimuth, this can be done unambiguously. The point

is that, due to the camera effect, it is not clear how to fix the reference

angular values θk in Fig.4 for the fringe shifts. In addition, there is a small

misalignment angle, between the dots of Joos’ fringe shifts and the N, W,

and S marks, which cannot be deduced from the articles. Since clearly there

is only one correct choice for the reference angles θk, we have preferred not

to quote theoretical uncertainties on the azimuth and just concentrate on

the amplitudes whose values, instead, do not depend on the angles θk and

thus can be extracted unambiguously. Their values are reported in Fig.6.

The accuracy of each determination is about ±0.2 ·10−3 as given by the size

of Joos’ experimental dots in Fig.5. This uncertainty is about one order of

magnitude better than for Michelson-Morley and a factor of 3 better than

the 1/1500 reading error in the Illingworth experiment [57].

By computing mean and variance of the individual values, we obtain an

average 2nd-harmonic amplitude

〈Ajoos
2 〉 = (1.4± 0.8) · 10−3 (30)

and a corresponding observable velocity vobs ∼ 1.8+0.5
−0.6 km/s. By correcting

with the helium refractive index, Eq.(11) would then imply a true kinemat-

ical velocity v ∼ 217+66
−79 km/s.

However, this is only a first and very partial view of Joos’ experiment. In

fact, we have compared Joos’ amplitudes with theoretical models of cosmic

motion. To this end, after transforming the civil times of Joos’ measure-

ments into sidereal times, by using Eqs.(15) and (18), one can compare
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Joos’ amplitudes with theoretical predictions which, for the given latitude

φ = 50.94 degrees of Jena, depend on the right ascension α and the angular

declination γ. To this end, it is convenient to first re-write the theoretical

forms as

A2(t) cos 2θ0(t) = 2C(t) =
2L(N − 1)

λ

v2
x(t)− v2

y(t)

c2
∼ 2.6·10−3

v2
x(t)− v2

y(t)

(300 km/s)2

(31)

and

A2(t) sin 2θ0(t) = 2S(t) =
2L(N − 1)

λ

2vx(t) vy(t)

c2
∼ 2.6·10−3 2vx(t) vy(t)

(300 km/s)2

(32)

where we have used the numerical relation for Joos’s experiment
L
λ

(30km/s)2

c2 ∼ 0.375 and the value of the helium refractive index. Then, by

approximating vx(t) ∼ ṽx(t), vy(t) ∼ ṽy(t) and using Eq.(18) for the scalar

combination ṽ(t) ≡
√
ṽ2
x(t) + ṽ2

y(t), we have fitted the data of Fig.6 to the

smooth form

Asmooth
2 (t) = const · sin2 z(t) (33)

where cos z(t) is defined in Eq. (15). The results of the fit

α = 168o ± 30o γ = −13o ± 14o (34)

confirm that, as found in connection with the Michelson-Morley experiment,

the Earth’s motion with respect to the CMB (which has α ∼ 168o and

γ ∼ −6o) could serve as a useful model to describe the ether-drift data.

Still, in spite of the good agreement with the CMB α− and γ−values

obtained from the fit Eq.(34), the nature of the strong fluctuations in Fig.6

remains unclear. Apart from this, there is also a sizeable discrepancy in the

absolute normalization of the amplitude. In fact, by assuming the standard

picture of smooth time modulations, the mean amplitude over all sidereal

times can trivially be obtained from the mean squared velocity Eq.(18)

〈ṽ2(t)〉 = V 2

(
1− sin2 γ sin2 φ− 1

2
cos2 γ cos2 φ

)
(35)

For the CMB and Jena, this gives
√
〈ṽ2〉 ∼ 330 km/s so that one would

naively predict from Eqs.(31), (32)

〈Asmooth
2 (t)〉 ∼ 2.6 · 10−3 〈ṽ2(t)〉

(300 km/s)2
∼ 3.2 · 10−3 (36)

to be compared with Joos’ mean value 〈Ajoos
2 〉 = (1.4 ± 0.8) · 10−3. In the

standard picture, this experimental value leads to the previous estimate
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Fig. 7. Joos’ experimental amplitudes in Fig.6 are compared with a single simulation of

22 instantaneous measurements. By changing the random sequence, the typical variation

of each simulated entry is (1÷ 4) · 10−3 depending on the sidereal time. The stochastic
velocity components are controlled by the kinematical parameters (V, α, γ)CMB as ex-

plained in the text. We also show two 5th-order polynomial fits to the two different sets

of values. The figure is taken from Ref.[39].√
〈ṽ2〉 ∼ 217 km/s and not to

√
〈ṽ2〉 ∼ 330 km/s so that it is necessary to

change the theoretical model to try to make Joos’ experiment completely

consistent with the Earth’s motion with respect to the CMB.

To try to solve this problem, and understand the origin of the observed

strong fluctuations, we have used the model Eqs.(26), (27) of Sect.6, to sim-

ulate stochastic variations of the velocity field. As anticipated, due to the

high accuracy of the Joos experiment, the two random parameters xn(1)

and xn(2) were allowed to vary in the range [−ṽx(t), ṽx(t)] and the other two

parameters yn(1) and yn(2) to vary in the different range [−ṽy(t), ṽy(t)],

where ṽx(t) and ṽy(t) are defined in Eqs.(15)−(17). Also the quadratic

values were fixed as in Eqs.(29). It is understood that the latitude corre-

sponds to Joos’ experiment while V , α and γ describe the Earth’s motion

with respect to the CMB.

In this model, there will be a substantial reduction of the amplitude

with respect to its smooth prediction. To estimate the order of magnitude

of the reduction, one can perform a full statistical average (as for an infinite

number of measurements) and use Eqs.(29) in Eqs.(31), (32) for our case

η = 1. This gives

〈A2(t)〉stat ∼ 2.6 · 10−3 ṽ2(t)

(300 km/s)2

1

3

∞∑
n=1

1

n2
=
π2

18
Asmooth

2 (t) (37)

By also averaging over all sidereal times, for the CMB and Jena, one would

now predict a mean amplitude of about 1.7 · 10−3 and not of 3.2 · 10−3.
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Fig. 8. Joos’ experimental amplitudes in Fig.6 are compared with the result of simu-
lating the averaging process over 10 measurements performed, at each Joos’ time, on 10

consecutive days. The stochastic velocity components are controlled by the kinematical

parameters (V, α, γ)CMB as explained in the text. The effect of varying the random
sequence has been approximated into a central value and a symmetric error. The figure

is taken from Ref.[39].

To have an idea of the agreement between Joos’ 22 amplitude data and

a single numerical simulation of instantaneous measurements, we show a

graphical comparison in Fig. 7. We emphasize that one should not com-

pare each individual entry with the corresponding data since, by changing

the random sequence, the simulated instantaneous entries vary typically of

about (1 ÷ 4) · 10−3 depending on the sidereal time. Instead, one should

compare the overall trend of data and simulation. To this end, we show

two 5th-order polynomial fits to the two different sets of values.

A more conventional comparison with the data consists in quoting for

the various 22 entries simulated average values and uncertainties. To this

end, we have considered the mean amplitudes 〈Asimul
2 (ti)〉 defined by aver-

aging, for each Joos’ time ti, over 10 hypothetical measurements performed

on 10 consecutive days. For each ti, the observed effect of varying the ran-

dom sequence has been summarized into a central value and a symmetric

error. The simulated values and the comparison with Joos’ amplitudes is

shown in Fig.8.

The spread of the various entries is larger at the sidereal times where

the projection at Jena of the cosmic Earth’s velocity becomes larger. The

tendency of Joos’ data to lie in the lower part of the simulated range mostly

depends on our use of symmetric errors. In fact, by comparing in some case

with the histograms of the basic generated configurations Asimul
2 (ti), we

have seen that our sampling method of 〈Asimul
2 (ti)〉 typically underestimates
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the weight of the low-amplitude region in a prediction at the 70% C.L.. For

this reason, one could improve the evaluation of the probability content.

However, in view of the good agreement already found in Fig.8 (χ2 =

13/22), we did not attempt to carry out this more refined analysis.

In conclusion, after the first indication obtained from the fit Eq.(34),

the link between Joos’ data and the Earth’s motion with respect to the

CMB gets reinforced by our simulations. In fact, by inspection of Figs.7

and 8, the values of the amplitudes and the characteristic scatter of the

data are correctly reproduced. From this agreement, we then deduce that

the previous kinematical value v ∼ 217+66
−79 km/s has to be considerably

increased if one allows for stochastic variations of the velocity field. In fact,

the magnitude of the fluctuations in vx and vy is controlled by the same

scalar parameter ṽ(t) ≡
√
ṽ2
x(t) + ṽ2

y(t) of Eq.(18). We thus conclude that

Joos’ data are consistent with a range of kinematical velocity v = 330+40
−70

km/s which corresponds to Eq.(18) for φ = 50.94o, V = 370 km/s, α = 168o

and γ = −6o.

6. Summary and conclusions

Traditionally, the interpretation of the ether-drift experiments has been

based on a theoretical model where all type of signals that are not syn-

chronous with the Earth’s rotation tend to be considered as spurious in-

strumental noise. However, there is a logical gap. The link between the

two concepts depends on the adopted model for the vacuum. The point of

view adopted so far corresponds to consider the vacuum as some kind of

fluid in a state of regular, laminar motion. In these conditions global and

local properties of the flow coincide.

We believe that, without fully understanding the nature of that substra-

tum that we call physical vacuum, one should instead keep a more open

mind. As discussed in Sect.2, the physical vacuum might be similar to a

form of turbulent ether, an idea which is deep rooted in basic foundational

aspects of both quantum theory and relativity and finds additional motiva-

tions in those representations of the vacuum as a form of ‘space-time foam’

which indeed resembles a turbulent fluid. In this case, global and local ve-

locity fields might be very different and there could be forms of random

signals that have a genuine physical origin.

To explore this idea, we have re-considered from scratch the classical

experiments. These were performed in gaseous media where the refractive
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Experiment gas in the interf. vobs(km/s) v(km/s)

Mich.-Morley(1887) air 8.4+1.5
−1.7 349+62

−70

Mor.-Miller(1902-1905) air 8.5± 1.5 353± 62

Kennedy(1926) helium < 5 < 600

Illingworth(1927) helium 3.1± 1.0 370± 120

Miller(1925-1926) air 8.4+1.9
−2.5 349+79

−104

Mich.-Pease-Pearson(1929) air 4.5± ... 185± ...
Joos(1930) helium 1.8+0.5

−0.6 330+40
−70

index N is extremely close to unity. In this case, in the framework of a

Lorentzian view of relativity, by expanding around N = 1 and to leading

order in v/c, one formally finds the same classical formulas with the only

replacement

v2 → 2(N − 1)v2 ≡ v2
obs (38)

As discussed in detail in Sect.3, this replacement can be understood with

simple symmetry arguments but also admits a dynamical interpretation in

terms of the energy-momentum flow associated with a Lorentz non-invariant

vacuum. As emphasized in Sect.3, this dynamical mechanism is not unex-

pected on the basis of the present views of the vacuum as a particle conden-

sate and is also useful to reconcile the different phenomenological pattern

between ether-drift experiments in gaseous media and those performed in

strongly bound systems such as solid or liquid transparent media.

Now testing the scheme is very simple: one should just check the con-

sistency of the true kinematical v′s obtained in different experiments. In

this alternative interpretation, the indications of the various experiments

are summarized in our Table 2 which is taken from ref.[39] (to which we

address the reader for many details). Here, we just emphasize the following

points:

i) an analysis of the individual sessions of the original Michelson-

Morley experiment, in agreement with Hicks [49] and Miller [48] (see our

Figs. 1 and 2), gives no justification to its standard null interpretation. As

discussed in Sect.5, this type of analysis is more reliable. In fact, averaging

directly the fringe displacements of different sessions requires two additional

assumptions, on the nature of the ether-drift as a smooth periodic effect

and on the absence of systematic errors introduced by the re-adjustment of

the mirrors on consecutive days, that in the end may turn out to be wrong.

ii) from the Michelson-Morley, Morley-Miller, Miller and Illingworth-
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Kennedy experiments one gets average kinematical velocities which are well

consistent with the value 370 km/s which today is used to describe the

CMB anisotropy. In view of this consistency, the standard interpretation

of Miller’s observations in terms of a temperature gradient [51] is only

acceptable provided this gradient represents a non-local effect as in the

picture of [39; 40] where the ether-drift is the consequence of a fundamental

vacuum energy-momentum flow.

iii) some discrepancy is found with the experiment performed by

Michelson, Pease and Pearson (MPP). At the same time, as emphasized in
[39], the uncertainty cannot be easily estimated since only a single basic

MPP observation is explicitly reported in the literature. Therefore, since

Miller’s extensive observations (see Fig.22 of ref.[48]), within their errors,

gave fluctuations of the observable velocity in the wide range 4−14 km/s,

a single observation giving vobs ∼ 4.5 km/s cannot be interpreted as a

refutation. This becomes even more true by noticing that the single MPP

session explicitly reported, within a period of several months, was chosen

to represent an example of extremely small ether-drift effect.

iv) Joos’ experiment is particularly important since the data were

collected at steps of 1 hour to cover the full sidereal day and were recorded

by photocamera. For this reason, it is not comparable with other experi-

ments (e.g. Michelson-Morley, Illingworth) where only observations at few

selected hours were performed and for which, in view of the strong fluctua-

tions of the data, one can just quote the average magnitude of the observed

velocity. In fact, by fitting the experimental amplitudes in Fig.6 to various

forms of cosmic motion (see Eq.(34)) we have obtained angular parameters

which are very close to those that describe the CMB anisotropy (right as-

cension αCMB ∼ 168o and angular declination γCMB ∼ −6o). Still, to get a

complete agreement, one should explain the absolute normalization of the

amplitudes and the strong fluctuations of the data. Thus we have sharp-

ened our analysis by performing various numerical simulations where the

velocity components vx(t) and vy(t) are not smooth functions but are rep-

resented as turbulent fluctuations. Their Fourier components in Eqs.(26)

and (27) vary within time-dependent ranges Eqs.(16)−(17), [−ṽx(t), ṽx(t)]

and [−ṽy(t), ṽy(t)] respectively, controlled by the macroscopic parameters

(V, α, γ)CMB. Taking into account these stochastic fluctuations of the ve-

locity field tends to increase the fitted average Earth’s velocity, see Eq.(37),

and can reproduce correctly Joos’ 2nd-harmonic amplitudes and the char-

acteristic scatter of the data, see Figs. 7 and 8.

These results, give a strong motivation to repeat these crucial measure-
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ments with today’s much greater accuracy. To this end, let us now briefly

consider the modern ether-drift experiments. In this case, the test of the

isotropy of the velocity of light consists in measuring the relative frequency

shift ∆ν of two orthogonal optical resonators [58]. Here, the analog of

Eq.(10) is

∆νphys(θ)

ν0
=
c̄γ(π/2 + θ)− c̄γ(θ)

c
= Bmedium

v2

c2
cos 2(θ − θ0) (39)

where θ0 is the direction of the ether-drift. This can be interpreted within

Eq.(8) where

|Bmedium| ∼ Nmedium − 1 (40)

Nmedium being the refractive index of the gaseous medium filling the optical

resonators. Testing this prediction, requires replacing the high vacuum

usually adopted within the optical resonators with a gaseous medium and

studying the substantially larger frequency shift introduced with respect to

the vacuum experiments.

As a rough check, a comparison was made [41; 42] with the results

obtained by Jaseja et. al [59] in 1963 when looking at the frequency shift

of two orthogonal He-Ne masers placed on a rotating platform. To this

end, one has to preliminarily subtract a large systematic effect that was

present in the data and interpreted by the authors as probably due to

magnetostriction in the Invar spacers induced by the Earth’s magnetic field.

As suggested by the same authors, this spurious effect, which was only

affecting the normalization of the experimental ∆ν, can be subtracted by

looking at the variations of the data. As discussed in refs.[41; 42], the

measured variations of a few kHz are roughly consistent with the refractive

index NHe−Ne ∼ 1.00004 and the typical variations of an Earth’s velocity

as in Eq.(25).

More recent experiments [60]−[64] have always been performed in a very

high vacuum where, as emphasized in the Introduction, the differences be-

tween Special Relativity and the Lorentzian interpretation are at the limit

of visibility. In fact, in a perfect vacuum by definition Nvacuum = 1 so that

Bvacuum will vanish e. Thus one should switch to the new generation of ded-

icated ether-drift experiments in gaseous systems. Our conclusion is that
eStrictly speaking, modern experiments in vacuum are also consistent with an in-
stantaneous ether-drift effect of order 10−15. In the framework of Eq.(7), for values

v2/c2 ∼ 10−6, this could indicate that the velocity of light in the vacuum, as measured
on the Earth’s surface, differs from the parameter c entering Lorentz transformations at

the level O(10−9). A possible theoretical scenario for this difference, after incorporating

the idea of vacuum turbulence [65; 66], is completely consistent with the present data.
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these new experiments should just confirm Joos’ remarkable observations

of eighty years ago.
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34. E. Göklü et al.; Class. Quant. Grav. 26, 225010 (2009).
35. G. Amelino-Camelia; Phys. Rev. D62, 024015 (2000).
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