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Abstract. We introduce a fairly large class of bounded linear operators be-
tween Banach spaces which admit an integral representation. It turns out that
an operator belongs to this class if and only if it factors through a C(K) space.
As an application, we characterize Banach spaces containing no copy of c0, Ba-
nach spaces containing no complemented copy of �1, Grothendieck spaces, and
L∞-spaces. We also study C(K)-factorization and extension properties of ab-
solutely continuous operators, giving a partial answer to a question raised in
1985 by H. Jarchow and U. Matter.

1. Introduction

We recall some simple notions from measure theory. Let Ω be a set and F be a
field (also called a Boolean algebra) of subsets of Ω [11, III, Definition 1.3]. Given
a Banach space X, let G : F → X be a vector measure [10, Definition I.1.1]. The
variation of G is the extended nonnegative function |G| whose value on a set M ∈ F
is given by

|G|(M) := sup
π

∑
A∈π

‖G(A)‖,

where the supremum is taken over all partitions π of M into a finite number of
pairwise disjoint members of F .

The semivariation of G is the extended nonnegative function ‖G‖ whose value
on a set M ∈ F is given by

‖G‖(M) := sup {|x∗ ◦ G|(M) : x∗ ∈ X∗, ‖x∗‖ ≤ 1} ,
where |x∗◦G| is the variation of the scalar-valued measure x∗◦G [10, Definition I.1.4].

Our starting point is the following well-known result [10, Theorem VI.2.1]:

Theorem 1.1. Given a compact Hausdorff space K, a Banach space X, and a
(bounded linear) operator T : C(K) → X, there exists a weak-star countably addi-
tive measure G defined on the Borel sets of K with values in X∗∗ such that

(a) 〈x∗,G( · )〉 is a regular countably additive Borel measure for each x∗ ∈ X∗;
(b) the operator X∗ → C(K)∗ given by x∗ 	→ 〈x∗,G( · )〉 is continuous when both

spaces are endowed with the weak-star topology;
(c) x∗(T (f)) =

∫
K
f d(x∗G) for each f ∈ C(K) and each x∗ ∈ X∗;

(d) ‖T‖ = ‖G‖(K) where ‖G‖ denotes the semivariation of G.
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Conversely, if G is an X∗∗-valued vector measure defined on the Borel sets of K
for which (a) and (b) hold, then (c) defines an operator from C(K) into X which
satisfies (d).

By L(E,F ) we denote the space of all (bounded linear) operators from a Banach
space E into a Banach space F , endowed with the supremum norm. Note that
Theorem 1.1 identifies the operators T ∈ L(C(K), X) with theX∗∗-valued measures
on the Borel sets of K satisfying conditions (a) and (b).

Theorem 1.1 gave us the idea of considering operators T ∈ L(E,F ) between
arbitrary Banach spaces which may be given an integral representation as shall
be defined in Section 2 with respect to a measure that has the properties of G in
Theorem 1.1. The class of all such operators will be denoted by Lir(E,F ). We
endow this class with a complete norm, and prove that an operator belongs to Lir

if and only if it factors through a C(K) space. The operators that factor through a
C(K) space were mentioned in [19, 19.3.11] under the name of strongly∞-factorable
operators but, as far as we know, have not received further attention.

Recall that an operator T ∈ L(E,F ) is weakly compact if it takes the unit ball
of E into a relatively weakly compact subset of F , and T is said to be completely
continuous if it takes weakly null sequences of E into norm null sequences in F .

There exists a vast literature on integral operators. To avoid confusion, our
operators in Lir shouldn’t be called integral but rather “operators that admit an
integral representation”.

To underline the difference between the existing classes of integral operators and
Lir, let us recall that, for 1 ≤ p ≤ ∞, an operator T ∈ L(E,F ) is said to be strictly
p-integral (sometimes called Pietsch p-integral) if there are a probability measure
μ and operators U ∈ L(E,L∞(μ)) and V ∈ L(Lp(μ), F ) such that the following
diagram commutes:

E F

L∞(μ) Lp(μ)

T

U V

jp

where jp : L∞(μ) → Lp(μ) is the formal identity. We denote by SIp(E,F ) the
class of strictly p-integral operators from E into F , which is studied for instance in
[9, page 97] (more generally in [9, Chapter 5]), in many places of [7], in [19, 19.2.15]
under a slightly different name, in [20, page 65], etc. The Pietsch integral operators
of [10, Definition VI.3.8] are just the strictly 1-integral operators.

Since every strictly p-integral operator factors through a C(K) space, it belongs
to Lir. Moreover, for p finite, every strictly p-integral operator is weakly compact
and completely continuous [19, Propositions 19.2.11 and 19.2.12], while the oper-
ators in Lir need not be so. Hence, in general, Lir is much larger than SIp, even
in the case p = ∞ which will be considered in Proposition 3.7. Recall that, for
1 ≤ p ≤ q ≤ ∞, we have SIp ⊆ SIq.

An operator T ∈ L(E,F ) is said to be p-integral (also called Grothendieck p-
integral) if kF ◦ T ∈ SIp(E,F ∗∗), where kF : F ↪→ F ∗∗ is the isometric natural
embedding of F into its bidual. The references given above for SIp are also valid
for the class Ip of p-integral operators. Clearly, SIp ⊆ Ip.
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In [9, page 121] there are references to discoveries of p-integral operators which
are not strictly p-integral for p finite �= 2.

We do not get into the study of the relationship between Lir and Ip but we
can say that, for p finite, the class Ip is also small since every operator in Ip is
weakly compact and completely continuous [19, Propositions 19.2.11 and 19.2.12].
For 1 ≤ p ≤ q ≤ ∞, we also have Ip ⊆ Iq.

Therefore, the class Lir is large but at the same time it shares some of the nice
properties of SIp and Ip such as extension and factorization properties, at least in
a weakened form or under some extra conditions.

Our Section 3 is devoted to giving characterizations of Banach spaces containing
no copy of c0, Banach spaces containing no complemented copy of �1, Grothendieck
spaces, and L∞-spaces [3, Definition I.2.1] by comparison of Lir with the ideals

W of weakly compact operators, I∞, SI∞, and the ideal SIwk
∞ of strictly weakly

compactly ∞-integral operators. The latter was considered by C. Cardassi [5] (see
Definition 3.1 below). We prove that, for all Banach spaces E and F , we have

SIwk
∞ (E,F ) ⊆ SI∞(E,F ) ⊆ Lir(E,F ) ⊆ I∞(E,F )

and that the inclusions are, in general, strict. New C(K)-factorization and ex-
tension properties of absolutely continuous operators are also obtained (see the
definition in Section 3).

Throughout, E, F , X, Y denote Banach spaces, E∗ is the dual of E, and BE

stands for its closed unit ball. The dual ball BE∗ will always be endowed with the
weak-star topology. By K we represent the scalar field (real or complex). We use the
symbol K(E,F ) (respectively, W(E,F )) for the space of all compact (respectively,
weakly compact) operators. Given T ∈ L(E,F ), its adjoint is denoted by T ∗.

We say that T ∈ L(E,F ) is an embedding if T is an isomorphism onto its image
T (E). The isometric embedding hE : E ↪→ C(BE∗) is given by hE(x)(x

∗) := x∗(x)
for all x ∈ E and x∗ ∈ BE∗ . By IE we denote the identity map on E. The notation
X ≡ Y stands for X and Y being isometrically isomorphic.

We say that an operator T ∈ L(E,F ) is extendible if, for every Banach space
X ⊇ E, T admits an extension T ∈ L(X,F ).

For definitions and results in Banach space theory, we refer the reader to [8] and
[10].

2. Factorization of operators with an integral representation

In this section we introduce the operators which admit an integral representation
and study their factorization properties.

Definition 2.1. We say that an operator T ∈ L(E,F ) admits an integral repre-
sentation if

T (x) =

∫
BE∗

x∗(x) dG (x ∈ E),

for some F ∗∗-valued measure G defined on the Borel sets of BE∗ such that conditions
(a) and (b) of Theorem 1.1 are verified when we take K := BE∗ and X := F .

We denote by Lir(E,F ) the space of all operators T ∈ L(E,F ) that admit an
integral representation. For every T ∈ Lir(E,F ), we define

‖T‖ir := inf‖G‖(BE∗)



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

5278 R. CILIA AND J. M. GUTIÉRREZ

where the infimum is taken over all measures G satisfying Definition 2.1. The fact
that this function is a norm is contained in the proof of Proposition 2.9.

The integral used in Definition 2.1 is the elementary Bartle integral of [10, Def-
inition I.1.12].

The strictly p-integral operators admit an integral representation [5, Defini-
tion I.2] but the vector measure involved in it has stronger properties than ours. In
particular, it is countably additive and F -valued.

Proposition 2.2. An operator T ∈ L(E,F ) admits an integral representation if
and only if it has an extension S ∈ L (C (BE∗) , F ).

Proof. If T ∈ Lir(E,F ) and G is as in Definition 2.1, then, by Theorem 1.1, G
defines the operator S : C(BE∗) → F given by

S(f) :=

∫
BE∗

f dG (f ∈ C(BE∗)).

The diagram

(2.1)

E F

C (BE∗)

T

ShE

commutes. Indeed, for all x ∈ E, we have

S(hE(x)) =

∫
BE∗

hE(x)(x
∗) dG =

∫
BE∗

x∗(x) dG = T (x).

Hence, S extends T. Conversely, if diagram (2.1) commutes, letting G be the rep-
resenting measure of S, we obtain

T (x) = S(hE(x)) =

∫
BE∗

hE(x)(x
∗) dG =

∫
BE∗

x∗(x) dG (x ∈ E).

Hence, T ∈ Lir(E,F ). �

In the remainder of the section we shall give examples of operators which admit
an integral representation and of operators which do not admit such a representa-
tion.

The following result will be needed:

Proposition 2.3 ([21, Theorem 2.1]). For every compact Hausdorff space K, the
Banach space C(K) is complemented in C

(
BC(K)∗

)
by a norm one projection.

Proof. We sketch the proof for completeness. It is enough to consider the natural
embedding hC(K) and the projection

π : C
(
BC(K)∗

)
−→ C(K)

defined by

π(g)(t) := g(δt) for all g ∈ C
(
BC(K)∗

)
and t ∈ K

where δt is an evaluation at t ∈ K. �

Corollary 2.4. Every operator T ∈ L(C(K), F ) admits an integral representation.
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Proof. Factor T = T ◦ IC(K) in the form

C(K) C(K) F

C
(
BC(K)∗

)

IC(K) T

hC(K) π T ◦ π

where π is as in Proposition 2.3. By Proposition 2.2, T ∈ Lir(E,F ). �

The reader shouldn’t think that Corollary 2.4 is trivially contained in Theo-
rem 1.1, since the statement (c) of Theorem 1.1 does not allow, in general, writing

T (f) =

∫
K

f dG for all f ∈ C(K)

because the integral takes values in F ∗∗.
We shall now prove that every operator into a C(K) space admits an integral

representation and that an operator T belongs to Lir(E,F ) if and only if T factors
through a C(K) space. To this end, we first give a proposition of independent
interest, which might be known but we have not found it in the literature. In fact,
after submitting our paper we found a related idea in the proof of [4, Theorem 3.4].

Proposition 2.5. For every T ∈ L(E,F ), there is an operator T : C(BE∗) →
C(BF∗) with

∥∥T∥∥ = ‖T‖ such that the following diagram commutes:

E F

C(BE∗) C(BF∗)

T

T

hE hF

Proof. Assume first that ‖T‖ = 1. Define T : C(BE∗) → C(BF∗) by

T (f)(y∗) := f(T ∗(y∗)) for all f ∈ C(BE∗) and y∗ ∈ BF∗ .

Then, ∥∥T∥∥ = sup
‖f‖≤1

∥∥T (f)∥∥ = sup
‖f‖≤1

sup
y∗∈BF∗

∣∣T (f)(y∗)∣∣
= sup

‖f‖≤1

sup
y∗∈BF∗

|f(T ∗(y∗))| ≤ sup
‖f‖≤1

‖f‖ = 1.

On the other hand, ∥∥T∥∥ ≥
∥∥T (�)∥∥ = 1,

hence ∥∥T∥∥ = 1 = ‖T‖.
If ‖T‖ �= 1, let U ∈ L(E,E) and V ∈ L(F, F ) be given by

U(x) :=
x

‖T‖ , (x ∈ E) and V (y) := ‖T‖ y (y ∈ F ).
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Clearly, T = V ◦ T ◦ U . Moreover,

‖T ◦ U‖ = sup
x∈BE

‖T (U(x))‖ = sup
x∈BE

∥∥∥∥T (
x

‖T‖

)∥∥∥∥ =
1

‖T‖ sup
x∈BE

‖T (x)‖ = 1.

Therefore, by the first part of the proof, there is an extension

T ◦ U : C(BE∗) → C(BF∗)

of norm one and such that the left-hand side of diagram (2.2) commutes.

(2.2)

E E F F

C (BE∗) C (BF∗) C (BF∗)

U T V

T ◦ U H

hE hF hF

Let H : C(BF∗) → C(BF∗) be given by

H(g) := ‖T‖ g for all g ∈ C(BF∗).

Easily, the right-hand side of diagram (2.2) commutes, so the whole diagram com-
mutes.

We have∥∥H ◦ T ◦ U
∥∥ = sup

f∈BC(BE∗ )

∥∥H ◦ T ◦ U(f)
∥∥

= ‖T‖ sup
f∈BC(BE∗ )

∥∥T ◦ U(f)
∥∥ = ‖T‖

∥∥T ◦ U
∥∥ = ‖T‖,

and H ◦ T ◦ U is the required operator. �

Proposition 2.6. Every operator T ∈ L(E,C(K)) admits an integral representa-
tion.

Proof. It is enough to consider the following diagram:

E C(K) C(K)

C(BE∗) C(BC(K)∗)

T IC(K)

hE hC(K)

T

π

where π is the projection of Proposition 2.3 and T is the extension constructed in
Proposition 2.5. �
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Theorem 2.7. Given an operator T ∈ L(E,F ), the following assertions are equiv-
alent:

(a) T ∈ Lir(E,F );
(b) there is an operator S : C(BE∗) → F such that T factors as in diagram (2.1);
(c) there are a compact Hausdorff space K, an embedding h′ ∈ L(E,C(K)), and

an operator S′ ∈ L(C(K), F ) such that the following diagram is commutative:

E F

C(K)

T

h′ S′

If one (and then all) of these assertions holds, we have

‖T‖ir = inf‖S‖ = inf‖h′‖‖S′‖,
where the infima are taken over all factorizations as in (b) or (c) respectively.

Proof. (a) ⇔ (b) is contained in Proposition 2.2.
(b) ⇒ (c) is obvious.
(c) ⇒ (b). By Proposition 2.6, h′ admits an integral representation so, by

Proposition 2.2, there is an operator U : C(BE∗) → C(K) such that the following
diagram commutes:

(2.3)

E F

C (BE∗) C(K)

T

S′

U

h′

hE

Letting S := S′ ◦ U, (b) is proved.
Let us prove the equalities of the norms. Given ε > 0 and T ∈ Lir(E,F ), we can

find a measure G such that

T (x) =

∫
BE∗

x∗(x) dG (x ∈ E)

and

‖G‖(BE∗) < ‖T‖ir + ε.

Let S : C (BE∗) → F be the operator associated with G by Theorem 1.1. Then T
factors as in (b) through the operator S and

‖S‖ = ‖G‖(BE∗) < ‖T‖ir + ε .

On the other hand, for every factorization T = S ◦ hE, if G is the representing
measure of S, we obtain

T (x) = S(hE(x)) =

∫
BE∗

hE(x)(x
∗) dG =

∫
BE∗

x∗(x) dG (x ∈ E),

so T ∈ Lir(E,F ) and

(2.4) ‖T‖ir ≤ ‖G‖(BE∗) = ‖S‖,
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and the equality
‖T‖ir = inf‖S‖

is proved.
To obtain the second equality, let T ∈ Lir(E,F ). By (b), given ε > 0, we can

find a factorization T = S ◦ hE such that

‖S‖ < ‖T‖ir + ε.

Letting K := BE∗ , S′ := S, and h′ := hE , we have

‖h′‖‖S′‖ = ‖hE‖‖S‖ = ‖S‖ < ‖T‖ir + ε.

On the other hand, let T = S′ ◦ h′ be a factorization as in (c). By the proof of
Proposition 2.6, we obtain a factorization as in diagram (2.3) where U = π ◦ h′.

Using inequality (2.4) and Proposition 2.5, we have

‖T‖ir ≤ ‖S′ ◦ U‖ ≤ ‖S′‖
∥∥π ◦ h′

∥∥ ≤ ‖S′‖‖π‖
∥∥h′

∥∥ = ‖S′‖‖h′‖.
Therefore,

‖T‖ir = inf‖S′‖‖h′‖,
and this finishes the proof. �

The factorization of Theorem 2.7(c) shouldn’t be confused with “similar” factor-
izations that can be found for instance in [10, Theorem VI.3.11] or [20, page 113]
where T is Pietsch integral and S (or S′) is absolutely summing. In Theorem 2.7,
the operator S′ is arbitrary.

For 1 ≤ p ≤ 2, every absolutely p-summing operator belongs to Lir [9, Theo-
rem 2.8 and Corollary 2.16].

When E and F have cotype 2, the operators in Lir are easily characterized:

Corollary 2.8. Let E and F be Banach spaces of cotype 2. For an operator
T ∈ L(E,F ) the following assertions are equivalent:

(a) T ∈ Lir(E,F );
(b) T is absolutely p-summing for some (and then all) 1 ≤ p < ∞.

Proof. (a) ⇒ (b) since every operator from a C(K) space into a cotype 2 space is
absolutely 2-summing [9, Theorem 11.14].

(b) ⇒ (a). If T is absolutely 2-summing, then it factors through a C(K) space
[9, Corollary 2.16].

For the equivalence between 2-summing and p-summing operators, see [9, Corol-
lary 11.16]. �

The following result can be proved in a standard way using [7, Criterion 9.4] and
our Proposition 2.5 and Theorem 2.7.

Proposition 2.9. The pair (Lir, ‖ · ‖ir) is a Banach operator ideal.

Corollary 2.10. For every T ∈ L(E,C(K)), we have

‖T‖ir = ‖T‖.

Proof. From Proposition 2.6 and inequality (2.4), we have

‖T‖ir ≤
∥∥π ◦ T

∥∥ ≤ ‖π‖
∥∥T∥∥ =

∥∥T∥∥ = ‖T‖.
Since the reverse inequality is always true [7, Proposition 9.3], we obtain the result.

�
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Corollary 2.11. For every T ∈ L(C(K), F ), we have ‖T‖ir = ‖T‖.

Proof. From Corollary 2.4, we have ‖T‖ir ≤ ‖T‖‖π‖ = ‖T‖. The reverse inequality
is always true [7, Proposition 9.3]. �

Corollary 2.12. An operator T ∈ L(E,F ) belongs to Lir(E,F ) if and only if there
are a C(K) space and operators U ∈ L(E,C(K)) and V ∈ L(C(K), F ) such that
T = V ◦ U . Moreover,

‖T‖ir = inf‖U‖‖V ‖,
where the infimum is taken over all possible factorizations of that form.

Proof. Use Theorem 2.7, Corollary 2.4, and Proposition 2.6. For the equality of the
norms, use Corollaries 2.10 and 2.11, and the ideal property contained in Proposi-
tion 2.9. �

3. Characterizations of Banach spaces in terms of operators

with an integral representation

As stated in the Introduction, this section is devoted to giving applications of
the ideal Lir to characterize Banach spaces containing no copy of c0, Banach spaces
containing no complemented copy of �1, Grothendieck spaces, and L∞-spaces.

Definition 3.1. We say that an operator T ∈ L(E,F ) is strictly weakly compactly
∞-integral if it admits a factorization as in diagram (2.1) with S a weakly compact

operator. By SIwk
∞ (E,F ) we denote the space of all strictly weakly compactly

∞-integral operators from E into F . Given T ∈ SIwk
∞ (E,F ), its strictly weakly

compactly ∞-integral norm is defined by inf‖S‖, where the infimum is taken over
all factorizations as in diagram (2.1) with S weakly compact (see the last line of
[5, Theorem I.8]).

This class has been studied in [5, Theorem I.8] under a different name.

Obviously SIwk
∞ (E,F ) ⊆ SI∞(E,F ). The natural inclusion of C[0, 1] into the

space L∞[0, 1] is an operator in SI∞ which is not in SIwk
∞ .

We start by giving characterizations of Banach spaces F containing no copy of
c0.

Theorem 3.2. Given a Banach space F , the following assertions are equivalent:
(a) F contains no copy of c0;

(b) for every Banach space E, Lir(E,F ) ≡ SIwk
∞ (E,F );

(c) Lir(c0, F ) ≡ SIwk
∞ (c0, F );

(d) there is a non-Grothendieck space E such that Lir(E,F ) ≡ SIwk
∞ (E,F );

(e) there is a non-Grothendieck space E such that Lir(E,F ) ⊆ W(E,F );
(f) there is a Banach space E without the Dunford-Pettis property such that

Lir(E,F ) ≡ SIwk
∞ (E,F );

(g) there is a Banach space E containing no copy of �1 such that Lir(E,F ) ≡
SIwk

∞ (E,F );
(h) there is a Banach space E with a quotient isomorphic to c0 such that

Lir(E,F ) ≡ SIwk
∞ (E,F ).

Proof. (a) ⇒ (b). Suppose that F contains no copy of c0 and let T ∈ Lir(E,F ).
Then T factors as in diagram (2.1). Since F contains no copy of c0 and C(BE∗)
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has property (V) [17], S is weakly compact and T ∈ SIwk
∞ (E,F ). The inclusion

SIwk
∞ (E,F ) ⊆ Lir(E,F ) is obvious. The equality of the norms is clear.
(b) ⇒ (c) ⇒ (d) ⇒ (e), (b) ⇒ (f), (c) ⇒ (g), and (b) ⇒ (h) are obvious.
(h) ⇒ (d) since a Grothendieck space cannot have a quotient isomorphic to c0.
(e) ⇒ (a). Let E be the Banach space provided by (e) and assume that j :

c0 ↪→ F is an embedding. Since E is not Grothendieck, there is an operator
T ∈ L(E, c0)\W(E, c0). The operator j ◦T : E → F factors through c0 so it admits
an integral representation, but it is not weakly compact, a contradiction.

(f)⇒ (a). Let E be the Banach space provided by (f) and assume that j : c0 ↪→ F
is an embedding. Since E does not have the Dunford-Pettis property, there is an
operator T ∈ W(E, c0) which is not completely continuous [18, Proposition 4]. Then

j ◦ T is not completely continuous and therefore does not belong to SIwk
∞ (E,F ),

but it has an integral representation.
(g) ⇒ (a). Let E be the space provided by (g) and let T : E → c0 be a non-

compact operator [8, Exercise XII.1]. If there is an embedding j : c0 ↪→ F , then

j ◦ T ∈ Lir(E,F ) so, by (g), j ◦ T ∈ SIwk
∞ (E,F ). Since E contains no copy of

�1, Rosenthal’s �1-theorem implies that SIwk
∞ (E,F ) ⊆ K(E,F ). Therefore j ◦ T is

compact, a contradiction. �

Remark 3.3. From Theorem 3.2 it follows that F � c0 implies Lir(E,F ) ⊆ W(E,F )
for every Banach space E. It is clear that not every weakly compact operator into
F admits an integral representation. For instance, if E = F is a reflexive infinite-
dimensional Banach space, then IE does not admit an integral representation.

The following result gives a characterization of Grothendieck spaces and shows
that the equivalence (a) ⇔ (e) in Theorem 3.2 is best possible.

Proposition 3.4. Given a Banach space E, the following assertions are equivalent:
(a) E is a Grothendieck space;
(b) there is a Banach space F containing c0 such that Lir(E,F ) = W(E,F );
(c) there is a Banach space F containing c0 such that Lir(E,F ) ⊆ W(E,F ).

Proof. (a) ⇒ (b). It is enough to take F = c0.
(b) ⇒ (c) is obvious.
(c) ⇒ (a). Suppose that E is not Grothendieck. Then there is a nonweakly

compact operator T ∈ L(E, c0). Let F be the space provided by (c) and let j :
c0 ↪→ F be an embedding. Then j ◦ T is not weakly compact but it has an integral
representation, a contradiction. �

Recall that the following assertions are equivalent for a Banach space F [8,
Theorem V.10]:

(a) F contains a complemented copy of �1;
(b) F ∗ contains a copy of c0;
(c) F ∗ contains a copy of �∞.

Theorem 3.5. Given a Banach space F , the following assertions are equivalent:
(a) F contains no complemented copy of �1;

(b) for every Banach space E, Lir(E,F ∗) ≡ SIwk
∞ (E,F ∗);

(c) there is a nonreflexive Banach space E such that Lir(E,F ∗) ≡ SIwk
∞ (E,F ∗);

(d) there is a nonreflexive Banach space E such that Lir(E,F ∗) ⊆ W(E,F ∗).
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Proof. (a) ⇒ (b). By the previous comment, it is enough to use part (a) ⇒ (b) of
Theorem 3.2.

(b) ⇒ (c) ⇒ (d) are obvious.
(d) ⇒ (a). Let E be the space provided by (d). There is an operator T ∈

L(E, �∞)\W(E, �∞). Indeed, if E is separable, we choose as T the canonical em-
bedding into �∞. If E is not separable, it contains a nonreflexive separable subspace
X. Let j : X ↪→ �∞ be the canonical embedding. By the injectivity of �∞ [9, Theo-
rem 4.14], we can extend j to an operator T ∈ L(E, �∞) which is clearly not weakly
compact.

Assume there is an embedding j : �∞ ↪→ F ∗. Clearly, j ◦ T ∈ Lir(E,F ∗). By
(d), j ◦ T ∈ W(E,F ∗), a contradiction. �

We say that an operator T ∈ L(E,F ) is absolutely continuous [16] (see also
[9, page 311]) if there are 1 ≤ p < +∞, a Banach space G, an absolutely p-summing
operator S ∈ L(E,G) and, for each ε > 0, an N(ε) > 0 such that

‖T (x)‖ ≤ N(ε)‖S(x)‖+ ε‖x‖ (x ∈ E).

Every absolutely continuous operator is weakly compact [9, Corollary 15.4]. It is
well known that, if E is an L∞-space, then an operator on E is absolutely continuous
if and only if it is weakly compact. This is also true for other spaces E, such as the
disk algebra, which are not L∞-spaces [13, §3]. Under the uniform norm, the ideal
AC of absolutely continuous operators is closed and injective [9, Corollary 15.4].
Recall also that every compact operator is absolutely continuous [16, Theorem 2.1].

The following result characterizes L∞-spaces.

Theorem 3.6. Let E be a Banach space. The following assertions are equivalent:
(a) E is an L∞-space;
(b) kE ∈ Lir(E,E∗∗);

(c) for every Banach space F , we have W(E,F ) = SIwk
∞ (E,F );

(d) for every Banach space F , we have W(E,F ) ⊆ Lir(E,F );

(e) for every Banach space F , we have AC(E,F ) = SIwk
∞ (E,F );

(f) for every Banach space F , we have AC(E,F ) ⊆ Lir(E,F );
(g) there is λ ≥ 1 such that, for all Banach spaces X and F with X ⊇ E and every

operator T ∈ AC(E,F ), T admits an extension T ∈ AC(X,F ) with
∥∥T∥∥ ≤ λ‖T‖.

Proof. (a) ⇒ (b). Since E is an L∞-space, E∗∗ is injective [3, Proposition 1.33].
In particular, kE admits an extension to C(BE∗). Hence, kE ∈ Lir(E,E∗∗).

(b)⇒ (c). By (b), there is an operator S : C (BE∗) → E∗∗ such that kE = S◦hE.
Let T ∈ W(E,F ). Then T ∗∗ ∈ W(E∗∗, F ), so T ∗∗ ◦ S ◦ hE = T ∗∗ ◦ kE = T with

T ∗∗ ◦ S ∈ W which implies that T ∈ SIwk
∞ (E,F ).

E F

C (BE∗) E∗∗

T

hE kE

S

T∗∗

(c) ⇒ (d) ⇒ (f) are obvious.
(c) ⇒ (e) is clear from the inclusions:

AC(E,F ) ⊆ W(E,F ) = SIwk
∞ (E,F ) ⊆ AC(E,F ).
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(e) ⇒ (g). Suppose that (e) holds. Since the identity map from SIwk
∞ (E,F ) onto

AC(E,F ) is continuous [7, Proposition 9.3], the open mapping theorem implies that
both spaces are isomorphic [15, Corollary 1.6.8], so there is α > 0 such that the
strictly weakly compactly ∞-integral norm of T is less than or equal to α‖T‖ for
every T ∈ AC(E,F ).

By the definition of the strictly weakly compactly ∞-integral norm of T (Defi-
nition 3.1), we can find an operator S ∈ W (C (BE∗) , F ) satisfying diagram (2.1)
with ‖S‖ < 2α‖T‖. Let i : E ↪→ X be an embedding. Since C (BE∗)∗∗ is injective,
there is β ≥ 1 such that kC ◦ hE has an extension kC ◦ hE ∈ L

(
X,C (BE∗)

∗∗)
of

norm ≤ β, where kC : C (BE∗) ↪→ C (BE∗)
∗∗

is the natural embedding.

E F

X C (BE∗) C (BE∗)
∗∗

T

hE

S
S∗∗

kC ◦ hE

i

kC

Therefore, T has an extension S∗∗ ◦ kC ◦ hE ∈ L(X,F ) with norm∥∥S∗∗ ◦ kC ◦ hE

∥∥ ≤ β‖S‖ < 2αβ‖T‖.

Since S ∈ AC if and only if S∗∗ ∈ AC [9, Corollary 15.5], the above given extension
belongs to AC(X,F ) and (g) is proved.

(f) ⇒ (g). Let T ∈ AC(E,F ). Since T is weakly compact, by [6, Corollary 1]
(see also [12, Corollary 3.2.3]), there are a reflexive Banach space G and operators
A ∈ L(E,G) and B ∈ L(G,F ) such that T = B◦A. Since the ideal AC is closed and
injective, A may be assumed to be absolutely continuous [12, Proposition 5.3.3].
By (f), A factors as in diagram (2.1).

X E F

C (BE∗)∗∗ C (BE∗) G

U hE

A

T

S

B

S∗∗

i

kC

Let i : E ↪→ X be an embedding. By the injectivity of C (BE∗)∗∗, kC ◦ hE

has an extension U : X → C (BE∗)
∗∗
. Therefore, T has an extension B ◦ S∗∗ ◦

U ∈ AC(X,F ), where we have used the fact that S∗∗ ∈ AC. The proof of [14,
Theorem 2.2] and the Remark following it concerning the control of the norm of
the extension may be adapted to the case of absolutely continuous operators thanks
to the injectivity of AC.

(g) ⇒ (a). Let F be a finite-dimensional Banach space. Then every operator
T ∈ L(E,F ) is compact and hence absolutely continuous [16, Theorem 2.1]. Let
X ⊇ E. By (g), T admits an extension T ∈ L(X,F ) = AC(X,F ) with

∥∥T∥∥ ≤ λ‖T‖.
By [22, Theorem 4.2], E is an L∞-space. �
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The implication (a) ⇒ (c) of Theorem 3.6 was essentially known (see [5, Ex-
ample I.5] for E = C(K); for a generic L∞-space E, use the fact that E∗∗ is
complemented in a C(K) space [3, Proposition 1.33]).

The assertions (e), (f), and (g) of Theorem 3.6 give a partial answer to a
longstanding open problem about factorization of absolutely continuous operators
[13, §7, Problem 1].

In Section 2 we have proved that T ∈ L(E,F ) belongs to Lir(E,F ) if and
only if T factors through a C(K) space. It is clear that factorization through an
L∞(Ω, μ)-space, where (Ω,Σ, μ) is a σ-finite measure space, is a stronger property
as the following well-known result shows.

Proposition 3.7. Given an operator T ∈ L(E,F ), consider the assertions:
(a) there is an embedding h : E ↪→ L∞(Ω, μ) and an operator S : L∞(Ω, μ) → F

such that T = S ◦ h, in other words, T ∈ SI∞(E,F );
(b) T is extendible;
(c) T ∈ Lir(E,F ).
Then, (a) ⇔ (b) ⇒ (c), but (c) �⇒ (a) in general.

The identity map on c0 is an operator satisfying (c) but not (a).
From the above results, we have the following chain of inclusions for all 1 ≤ p ≤

∞:

SIp(E,F ) ⊆ {operators factoring through some L∞(Ω, μ)}
= {extendible operators} ⊆ Lir(E,F )

and, if F contains no copy of c0 and p = ∞, all these spaces coincide.
If E is injective, then every operator on E or into E is extendible [22, Proposi-

tion 1.1].
The following question seems natural: if an operator T factors as in diagram (2.1)

through a weakly compact operator S, given another factorization T = S′◦hE with
S′ ∈ L (C (BE∗) , F ), is S′ necessarily weakly compact? The following example
shows that the answer is negative.

Example 3.8. Given T ∈ W(�∞, �∞) = SIwk
∞ (�∞, �∞), we shall find a factorization

of T through C
(
B�∗∞

)
in the form T = S ◦ h�∞ where S : C

(
B�∗∞

)
→ �∞ is not

weakly compact.
We first recall a couple of facts. Given a Banach space X, choose e ∈ X and

ϕ ∈ X∗ such that ϕ(e) = 1. Denoting by X⊗̂ε,sX the 2-fold completed symmetric
injective tensor product of X, the operator

i : X −→ X⊗̂ε,sX

given by

i(x) = e⊗ x+ x⊗ e− ϕ(x)e⊗ e

= (e+ x)⊗ (e+ x)− x⊗ x− [1 + ϕ(x)] e⊗ e for all x ∈ X

is an embedding onto a complemented copy of X in X⊗̂ε,sX (see [2, Theorem 3]
and [1, 3.5]).

On the other hand, the operator j : X⊗̂ε,sX → C (BX∗) given by

j

(
n∑

i=1

λixi ⊗ xi

)
:=

n∑
i=1

λihX(xi)
2 for λi ∈ K and xi ∈ X (1 ≤ i ≤ n)



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

5288 R. CILIA AND J. M. GUTIÉRREZ

is an isometric embedding. If X is a C(K) space, the range of j is complemented
in C (BX∗) [21, Theorem 2.1].

For x ∈ X, we have

j ◦ i(x) = hX(e+ x)2 − hX(x)2 − [1 + ϕ(x)]hX(e)2

so, for x∗ ∈ X∗,

(j ◦ i(x))(x∗) = x∗(e+ x)2 − x∗(x)2 − [1 + ϕ(x)]x∗(e)2

= 2x∗(e)x∗(x)− ϕ(x)x∗(e)2

and j ◦ i(x) is a 2-homogeneous (continuous) scalar-valued polynomial on X∗.

Given T ∈ W(�∞, �∞) = SIwk
∞ (�∞, �∞), let k be the natural embedding of

h�∞(�∞)⊕ j ◦ i(�∞) as a subspace of C
(
B�∗∞

)
. Define

U : h�∞(�∞)⊕ j ◦ i(�∞) −→ �∞

by
U (h�∞(x), j ◦ i(y)) := T (x) + y for x, y ∈ �∞.

Then, T = U ◦h�∞ . By the injectivity of �∞ [9, Theorem 4.14], U has an extension
S to C

(
B�∗∞

)
and the following diagram commutes:

�∞ �∞

h�∞(�∞)⊕ j ◦ i(�∞) C
(
B�∗∞

)
T

S
U

h�∞

k

Since U is not weakly compact, S is not either.

In the following theorem we show that the inclusion Lir(E,F ) ⊆ I∞(E,F ) is
strict, and obtain several characterizations of the operators in I∞(E,F ).

Theorem 3.9. Given an operator T ∈ L(E,F ), consider the following assertions:
(a) T ∈ Lir(E,F );
(b) kF ◦ T is extendible;
(c) kF ◦ T factors through an L∞(Ω, μ)-space;
(d) T ∈ I∞(E,F );
(e) kF ◦ T ∈ Lir(E,F ∗∗);
(f) T ∗∗ is extendible.
Then (a) ⇒ (b) ⇔ (c) ⇔ (d) ⇔ (e) ⇔ (f), but (b) does not imply (a).

Proof. (a)⇒ (b). Let i : E ↪→ X be an embedding. By (a), T admits a factorization
as in diagram (2.1). Since C (BE∗)

∗∗
is injective, the operator kC(BE∗ ) ◦ hE has an

extension kC(BE∗ ) ◦ hE to X, so the following diagram commutes:

F F ∗∗

E C (BE∗) C (BE∗)∗∗

X

T
S S∗∗

kC(BE∗ ) ◦ hE

hE
kC(BE∗ )

kF

i
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(b) ⇒ (c) by Proposition 3.7.
(c) ⇒ (d) by the definition of the ideal I∞ [9, page 95].
(d) ⇒ (e) is obvious.
(e) ⇒ (f). If kF ◦ T ∈ Lir(E,F ∗∗), there is an operator S : C (BE∗) → F ∗∗ such

that kF ◦T = S ◦hE . Taking second adjoints, we obtain the following commutative
diagram:

E F

E∗∗ F ∗∗ F ∗∗∗∗ F ∗∗

C (BE∗)
∗∗

T

T∗∗ (kF∗ )∗

S∗∗

kE kF

h∗∗
E

kF∗∗

which shows that

T ∗∗ = (kF∗)∗ ◦ kF∗∗ ◦ T ∗∗

factors through the injective space C (BE∗)∗∗. Therefore, T ∗∗ is extendible.
(f) ⇒ (b). If T ∗∗ is extendible, then it factors through an L∞(Ω, μ)-space. So

kF ◦ T = T ∗∗ ◦ kE also factors through L∞(Ω, μ) and is extendible.
To prove that (c) does not imply (a), let E be the Bourgain-Delbaen L∞-space

with the Schur property [3, III.3]. There are embeddings j : �1 ↪→ E and i : �1 ↪→
�∞. Since E∗∗ is injective [3, Proposition 1.33], kE ◦ j admits an extension to �∞.
Hence the following diagram commutes:

�1 E E∗∗

�∞

kE ◦ j

j kE

i

Then kE ◦ j satisfies (c). However, j does not admit an integral representation
since every operator from a C(K) space into E is (weakly) compact. �
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