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A Traffic Equilibrium Nonlinear
Programming Model for Optimizing
Road Maintenance Investments

Mauro Passacantando and Fabio Raciti

Abstract We consider a traffic network in which some of the roads need main-
tenance jobs. Due to budget constraints not all of the roads can be maintained
and a central authority has to choose which of them are to be improved. We
propose a nonlinear programming model where this choice is made according to
its effects on the relative variation of the total cost, assuming that users behave
according to Wardrop equilibrium principle. To assess the network improvement
after maintenance we use the Bureau of Public Road link cost functions.

Keywords Traffic network · Wardrop equilibrium · Investment optimization ·
Braess paradox

1 Introduction

Let us consider a traffic network where some of the roads need maintenance, or
improvement jobs. However, the available money to be invested in the improvement
of the road network is not sufficient for all the roads and a central authority has to
decide which of them is better to maintain. In this regard, it is important to assess
the impact that the improvement of a single road, or of a group of roads, has on the
overall network efficiency. The efficiency index that we use is the relative variation
of total travel time on the network under the assumption that flows are distributed
according to Wardrop equilibrium principle. This means that travelers choose the
roads so as to minimize their journey time, and all of the paths actually used to reach
a certain destination from a given origin give rise to the same travel time. The total
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travel time is often considered as a “social cost” because it represents the sum of the
time spent by all the travelers in the network, and moreover is obviously connected
with the pollution released by all the vehicles. In our analysis we make use of the
link cost functions in the form given by the Bureau of Public Roads (BPR) [2] which
explicitly contain the flow capacity ui of each link ai . We assume that after mainte-
nance the capacity of each link varies from ui to γiui , where γi > 1 is referred to as
the enhancement ratio of link ai . The case of a uniform γ , for all links, was consid-
ered in [6], where the authors mainly focused on the case 0 < γ < 1 to describe the
degradation of the network links. Let Ii be the investment required to enhance the
capacity of link ai by the ratio γi , and let I be the amount of money available for the
network maintenance. For each set of links that can be upgraded we update the total
travel time mentioned above. It has to be noted that the improvement of a link can
result in a worsening of the network efficiency. This counterintuitive fact is related
to the well known Braess paradox [1] and will be discussed in detail by means of
a small test network for which we can compute all the relevant quantities in closed
form. Once that the efficiency of the network has been assessed for all the improve-
ments that satisfy the budget constraint, the central authority can make a decision.

The paper is structured as follows. In the following Sect. 2 we provide the
main definitions regarding traffic networks and recall the concept of a Wardrop
equilibrium and the network efficiency measure that will be used. In Sect. 3 we
present the investment optimization model, which is then illustrated in Sect. 4 by
means of a small test problem (Braess network) and a realistic traffic network.
Further research perspectives are touched upon in Sect. 5. The paper ends with an
appendix where we provide some analytical computations related to the small test
problem treated in Sect. 4.

2 Traffic Network Equilibrium and Efficiency Measure

For a comprehensive treatment of all the mathematical aspects of the traffic equilib-
rium problem, we refer the interested reader to the classical book of Patriksson [9].
Here, we focus on the basic definitions and on the variational inequality formulation
of a network equilibrium flow (see, e.g. [3, 11]). In what follows, we denote with
a&b the scalar product between vectors a and b, and with M& the transpose of
a given matrix M . A traffic network consists of a triple G = (N,A,W), where
N = {N1, . . . , Np}, p ∈ N, is the set of nodes, A = {a1, . . . , an}, n ∈ N

represents the set of direct arcs (also called links) connecting pairs of nodes and
W = {W1, . . . ,Wm} ⊂ N × N, m ∈ N is the set of the origin-destination (O-D)
pairs. The flow on the link ai is denoted by fi , and we group all the link flows in a
vector f = (f1, . . . , fn). A path (or route) is defined as a set of consecutive links
and we assume that each O-D pair Wj is connected by rj , rj ∈ N, paths whose set
is denoted by Pj , j = 1, . . . , m. All the paths in the network are grouped into a
vector (R1, . . . , Rk), k ∈ N. The link structure of the paths can be described by
using the link-path incidence matrix � = (δir ), i = 1, . . . , n, r = 1, . . . , k with
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entries δir = 1 if ai ∈ Rr and 0 otherwise. To each pathRr it is associated a flow Fr .
The path flows are grouped into a vector (F1, . . . , Fk) which is called the network
path-flow (or simply, the network flow if it is clear that we refer to paths). The flow
fi on the link ai is equal to the sum of the path flows on the paths which contain ai ,
so that f = �F . We now introduce the unit cost of traveling through ai as a real
function ci(f ) ≥ 0 of the flows on the network, so that c(f ) = (c1(f ), . . . , cn(f ))

denotes the link cost vector on the network. The meaning of the cost is usually that
of travel time and, in the simplest case, the generic component ci only depends on
fi . In our model we use the BPR form of the link cost function which explicitly take
into account the link capacities. More precisely, the travel cost for link ai is given by:

ci(fi) = t0i
[

1+ k
(
fi

ui

)β]
, (1)

where ui describes the capacity of link ai , t0i is the free flow travel time or cost on
link ai , while k and β are model parameters which take on positive values. In many
applications k = 0.15 and β = 4. Analogously, one can define a cost on the paths
as C(F) = (C1(F ), . . . , Ck(F )). Usually, Cr(F ) is just the sum of the costs on the
links which build that path:

Cr(F ) =
n∑

i=1

δirci(f ),

or in compact form C(F) = �&c(�F). For each pair Wj , there is a given traffic
demand Dj ≥ 0, so that D = (D1, . . . , Dm) is the demand vector of the network.
Feasible path flows are nonnegative and satisfy the demands, i.e., belong to the set

K = {F ∈ R
k : Fr ≥ 0, for any r = 1, . . . , k and !F = D}, (2)

where ! is the pair-path incidence matrix whose entries, for j = 1, . . . , m, r =
1, . . . , k are

ϕjr =
{

1, if the path Rr connects the pair Wj,

0, elsewhere.

The notion of a user traffic equilibrium is given by the following definition.

Definition 1 A network flowH ∈ K is a user equilibrium, if for each O-D pairWj ,
and for each pair of paths Rr,Rs which connect Wj

Cr(H) > Cs(H) *⇒ Hr = 0;
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that is, if traveling along the path Rr takes more time than traveling along Rs , then
the flow along Rr vanishes.

Remark 1 Among the various paths which connect a given O-D pair Wj some will
carry a positive flow and others zero flow. It follows from the previous definition
that, for a given O-D pair, the travel cost is the same for all nonzero flow paths,
otherwise users would choose a path with a lower cost. Hence, as an equivalent
definition of Wardrop equilibrium we can write that for each Wj ,

Cr(H)

{
= λj if Hr > 0,

≥ λj if Hr = 0.
(3)

Hence, with the notation λj we denote the equilibrium cost shared by all the used
paths connectingWj . The variational inequality formulation of the user equilibrium
is given by the following result (see, e.g., [9]).

Theorem 1 A network flow H ∈ K is a user equilibrium iff it satisfies the
variational inequality

C(H)&(F −H) ≥ 0, ∀ F ∈ K. (4)

Sometimes it is useful to decompose the scalar product in (4) according to the
various origin-destination pairs Wj :

m∑

j=1

∑

r∈Pj
Cr(H) (Fr −Hr) ≥ 0, ∀ F ∈ K.

The network efficiency measure we consider in this paper is the total travel time
when a Wardrop equilibrium is reached:

T C =
m∑

j=1

∑

r∈Pj
Cr(H)Hr =

m∑

j=1

λjDj . (5)

3 Investment Optimization Model

We consider a central authority with an amount of money I available for the network
maintenance. Only a subset of links {ai : i ∈ L}, where L ⊂ {1, . . . , n}, are
involved in the improvement process. Let Ii be the investment required to enhance
the capacity of link ai by a given ratio γi .

The central authority aims to find in which subset of links to invest in order
to improve as much as possible the total cost (5), while satisfying the budget
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constraint. This problem can be formulated within the framework of integer
nonlinear optimization.

Let xi be a binary variable which takes on the value 1 if the investment is actually
carried out on link ai , and 0 otherwise. A vector x = (xi)i∈L is feasible if the budget
constraint

∑
i∈L Iixi ≤ I is satisfied. Given a feasible vector x, the capacity of each

link ai , with i ∈ L, is equal to ui(x) := γiuixi+ (1−xi)ui , i.e., ui(x) = γiui when
xi = 1 and ui(x) = ui when xi = 0. We aim to maximize the relative variation of
the total cost defined as

f (x) = 100 · T C − T C(x)
T C

,

where T C is the total cost (5) before the maintenance job and T C(x) is the total
cost corresponding to the improved network. Therefore, the optimization model we
propose is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max f (x)

s.t.
∑
i∈L

Iixi ≤ I
xi ∈ {0, 1} i ∈ L.

(6)

Let us notice that the computation of the nonlinear function f at a given x requires
to find a Wardrop equilibrium for both the original and the improved network. Thus,
model (6) can be considered as a generalized knapsack problem.

4 Numerical Experiments

This section is devoted to the numerical solution of the proposed model for two
networks: the first is a small size network, while the second is the well known
Sioux Falls network. The numerical computation of the Wardrop equilibrium was
performed by implementing in Matlab 2018a the algorithm designed in [7].

Example 1 We consider the Braess network shown in Fig. 1. There are four nodes,
five links labeled by {a, b, c, d, e}, and one origin-destination pair, from node 1 to
node 4 with demandD = 30, which can be connected by 3 paths:R1 = (a, c), R2 =
(b, d), R3 = (a, e, d). The link cost functions are given by:

ca = 1+ fa

1/2
, cb(fb) = 50

(
1+ fb

50

)
, cc(fc) = 50

(
1+ fc

50

)
,

cd = 1+ fd

1/2
, ce(fe) = 10

(
1+ fe

10

)
.



fraciti@dmi.unict.it

272 M. Passacantando and F. Raciti

Fig. 1 Braess network
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Table 1 Numerical results
for Braess network

x f (x) I (x)

(1,0,1,1,0) 6.85 13

(1,1,0,1,0) 6.08 13

(1,0,0,1,0) 5.61 5

(0,1,0,0,1) −0.19 13

(0,0,0,0,1) −0.73 5

We assume that the available budget I = 15 ke, the subset of links to be maintained
is L = {a, b, c, d, e},

γa = 1.2, γb = 1.1, γc = 1.3, γd = 1.2, γe = 1.5,
Ia = 2, Ib = 8, Ic = 8, Id = 3, Ie = 5.

Table 1 shows the three best feasible solutions and the two worst ones together with
the percentage of total cost improvement and the corresponding investment I (x) =∑
i∈L Iixi . It is interesting noting that the third best solution needs a much lower

investment than the one required by the optimal solution, but the corresponding
objective function values are close. Moreover, the two worst solutions reflect the
Braess paradox since the values of the objective function are negative. In the
Appendix we analyze in more details the Braess paradox for any value of the
demand D and of the enhancement factor γe.

Example 2 The Sioux Falls network consists of 24 nodes, 76 links and 528 O-
D pairs (see Fig. 2). The complete data can be found on [8]. We assume that
the available budget I = 30 ke and the subset of links to be maintained is
L = {4, 10, 21, 22, 29, 30, 31, 49, 75, 76}. We consider two different scenarios: in
the first one the average enhancement ratio is around 1.3 (low quality maintenance),
while in the second one is 1.55 (high quality maintenance). The values of γi and Ii
of the two scenarios are shown in Table 2.

Table 3 reports the ten best feasible solutions for the two scenarios. Let us note
that the value of the ten best solutions in scenario 1 varies between around 10 and
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Fig. 2 Sioux Falls network

Table 2 Link capacities and
investments for Sioux Falls
network

Scenario 1 Scenario 2

Links γi Ii γi Ii

4 1.2 5 1.4 6

10 1.5 6 1.8 7

21 1.1 10 1.3 12

22 1.3 5 1.5 6

29 1.4 4 1.7 5

30 1.2 8 1.4 10

31 1.1 6 1.3 7

49 1.5 2 1.8 2.5

75 1.4 3 1.7 3.5

76 1.3 2 1.5 2.5
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Table 3 Numerical results for Sioux Falls network

Scenario 1 Scenario 2

x f (x) I (x) x f (x) I (x)

(0,1,0,1,1,1,0,1,1,1) 10.97 30 (0,1,1,0,1,0,0,1,1,0) 14.30 30

(0,1,0,1,1,1,0,1,1,0) 10.89 28 (0,0,1,1,1,0,0,1,1,0) 14.26 29

(1,0,0,1,1,1,0,1,1,1) 10.64 29 (0,1,0,0,1,1,0,1,1,0) 14.05 28

(1,1,0,0,1,1,0,1,1,1) 10.58 30 (1,1,0,1,1,0,0,1,1,0) 14.00 30

(1,0,0,1,1,1,0,1,1,0) 10.55 27 (0,0,0,1,1,1,0,1,1,1) 13.92 30

(1,1,0,0,1,1,0,1,1,0) 10.50 28 (0,0,0,1,1,1,0,1,1,0) 13.84 27

(0,0,0,1,1,1,1,1,1,1) 10.46 30 (1,0,1,0,1,0,0,1,1,0) 13.80 29

(0,1,1,1,1,0,0,1,1,0) 10.46 30 (0,0,1,0,1,0,1,1,1,0) 13.80 30

(0,0,0,1,1,1,1,1,1,0) 10.38 28 (1,0,0,0,1,1,0,1,1,1) 13.62 30

(0,1,0,0,1,1,1,1,1,0) 10.37 29 (1,0,0,1,1,0,1,1,1,0) 13.54 30

11%, while that in scenario 2 between around 13 and 14%. Therefore, as opposite to
Example 1, an improvement of the quality of maintenance implies an improvement
of the total cost.

5 Conclusions and Further Perspectives

In this paper we consider the problem of maintaining a road network in an optimal
manner. The decision makers are endowed with a given budget and have to decide
which roads is better to improve. They make their choice by computing, for each set
of possible investments, the corresponding relative improvement of total travel time.
The problem is modeled as an integer nonlinear optimization program and some
numerical experiments on small and medium scale networks are performed. Such
an approach can help the decision makers to select the best possible investments
and also displays the counterintuitive fact that some investments can produce a
worsening of the traffic.

In the case of large scale networks, further methods have to be developed (e.g.,
Branch and Bound techniques) to cope the combinatorial nature of the problem.
Moreover, since the optimal choice of the decision makers heavily depends on the
traffic demand, it would be interesting to consider the realistic case of a randomly
perturbed demand (see, e.g., [4, 5]).
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Appendix

We consider the Braess network shown in Fig. 1, where the traffic demand from
node 1 to node 4 is D and the link cost functions are defined as follows:

ca = 1+ fa

1/2
, cb(fb) = 50

(
1+ fb

50

)
, cc(fc) = 50

(
1+ fc

50

)
,

cd = 1+ fd

1/2
, ce(fe) = 10

(
1+ fe

10γ

)
,

where γ is the enhancement factor of arc e. We can find the exact Wardrop
equilibrium for any value of parameters D and γ (see e.g. [10]). The path cost
functions are then given by:

C1(F ) = 3F1 + 2F3 + 51,

C2(F ) = 3F2 + 2F3 + 51,

C3(F ) = 2F1 + 2F2 + (4+ γ−1)F3 + 12.

The Wardrop equilibrium is

H =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(D/2,D/2, 0) if D > 78,
(
(2+γ−1)D−39

3+2γ−1 ,
(2+γ−1)D−39

3+2γ−1 , 78−D
3+2γ−1

)
if

39

2+ γ−1
≤ D ≤ 78,

(0, 0,D) if 0 ≤ D ≤ 39

2+ γ−1
,

and the corresponding equilibrium cost is

λ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

3

2
D + 51 if D > 78,

(4+ 3γ−1)

3+ 2γ−1
D + 39

3+ 2γ−1
+ 51 if

39

2+ γ−1
≤ D ≤ 78,

(4+ γ−1)D + 12 if 0 ≤ D ≤ 39

2+ γ−1
.

We remark that when the demand D varies between 13 and 78, the total cost

T C = (4+ 3γ−1)D2 + 39D

3+ 2γ−1 + 51D

is an increasing function with respect to γ ∈ [1, 2]. As a consequence, in this
demand range investing for improving the link e capacity results in a growth of
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Fig. 3 Total cost vs. enhancement ratio γ for link e

the social cost and pollution. Figure 3 shows the graph of T C as a function of γ for
D = 30.
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Opinion Dynamics in Multi-Agent
Systems Under Proportional Updating
and Any-to-Any Influence

Loretta Mastroeni, Maurizio Naldi, and Pierluigi Vellucci

Abstract We study an agent-based model to describe the formation of opinions
within a group, where agents belong to classes. In the model any agent influences all
the other agents at the same time, and the influence is proportional to the difference
of opinions through interaction coefficients. We find that the interaction coefficients
must lie within a tetrahedron for the internal consistency of the model. We show that
the system of agents reaches a steady state. The long-term opinion of each agents
depends anyway on its initial opinion.

Keywords Agent-based models · Opinion dynamics · Social networks

1 Introduction

Agent-based models (ABM) allow us to study all kinds of influence phenomena, in
particular to analyze the formation of opinions within a group of people, which is
a subject of interest in many areas, e.g. sociology and psychology. Through ABMs
we can understand if and how the individuals reach a final consensus or the people
polarize around a small number of different opinions [2, 12, 15, 20], by going from
the description of the behaviour of individuals at the micro level to the prediction of
the macro behaviour of the group.
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In many cases, the individuals in the group exhibit significant differences, e.g. in
their religion, ethnicity, political convictions. It is natural to assume that individuals
with similar characteristics behave similarly, so that we can consider a partition of
the original group into classes and devise multi-class agent-based models. Examples
of such multi-class models are shown in [7, 8, 13, 14, 22, 25] for two classes, in [1,
4, 26] for the classification based on the leader\follower role, and in [17], where a
classification into three classes based on political convictions (leftist, centrist and
rightists) is considered. A generic multi-class model has recently been studied by
Monica and Bergenti [19], but the model considers agents interacting in pairs: at
each time step, a single agents influences another single agent, who in turn changes
its opinion due to that influence.

What happens when an agent influences many agents at the same time? Or when
many agents act at the same time on all other agents? This is the most frequent
situation occurring in many contexts. For example, that routinely happens in an
online social network (like Facebook or Twitter), where an agent submitting its post
influences all the followers at the same time. It also happens on more traditional
media (like TV or the radio) where agents involved in a debate may broadcast their
opinions to a large audience.

Our paper answers that question, by extending Monica and Bergenti model to the
case of any-to-any interaction, where each agent influences all the other agents at
once, by providing the following contributions:

• since the opinion is represented by a variable in the [−1, 1] range, we identify the
conditions that allow the opinion of agents to stay within the prescribed range,
i.e. the closure property (Sect. 2);

• we show that the typical state updating equation may be set in the form of a
dynamical linear system (Sect. 2);

• we show that the opinion of each agent converges in the long term, and provide
the steady-state solution of the dynamical system, i.e. the steady-state opinion of
all agents, provided their initial values (Sect. 3).

2 The Any-to-Any Interaction Model

As stated in the Introduction, we introduce a major difference with the model
proposed in [19], by assuming that at any time step each agent influences all the
other agents at once, i.e. an any-to-any interaction. This happens, e.g., in online
forums, where each agent (each individual) is exposed in real time to the opinions
of all the other agents and may change its opinion accordingly (see, e.g. [21]). In
this section, we describe the resulting model and formulate the interaction described
by the state updating equation as a linear dynamical system.

We consider a population of n agents, who belong to one of c classes. The
differences among classes may be related to a number of factors, e.g. religion,
ethnicity, political convictions and we assume that each class is homogeneous—
i.e. in them people are similar to each other or are of the same type (same religion,


