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Despite substantial advances in many different fields of neurorobotics in general, and
biomimetic robots in particular, a key challenge is the integration of concepts: to
collate and combine research on disparate and conceptually disjunct research areas
in the neurosciences and engineering sciences. We claim that the development of
suitable robotic integration platforms is of particular relevance to make such integration
of concepts work in practice. Here, we provide an example for a hexapod robotic
integration platform for autonomous locomotion. In a sequence of six focus sections
dealing with aspects of intelligent, embodied motor control in insects and multipedal
robots—ranging from compliant actuation, distributed proprioception and control of
multiple legs, the formation of internal representations to the use of an internal body
model—we introduce the walking robot HECTOR as a research platform for integrative
biomimetics of hexapedal locomotion. Owing to its 18 highly sensorized, compliant
actuators, light-weight exoskeleton, distributed and expandable hardware architecture,
and an appropriate dynamic simulation framework, HECTOR offers many opportunities
to integrate research effort across biomimetics research on actuation, sensory-motor
feedback, inter-leg coordination, and cognitive abilities such as motion planning and
learning of its own body size.

Keywords: motor control, walking, compliance, leg coordination, proprioception, load sensing, internal model,
motor learning

INTRODUCTION

In neurorobotics, animals are more than just a source of inspiration. They also serve as
reference systems for many, apparently disparate computational competences such as: (i) reliable,
resource-efficient, parallel and/or de-centralized computing in real time; (ii) autonomous, fast
and robust decision-making in complex environments; and (iii) flexible coordination and control
of many degrees of freedom (e.g., Ijspeert, 2014). To date, research has tended to all of these
computational competences of animals, and neurorobotics has seen many successful abstractions
and implementations of selected neural mechanisms.
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Natural locomotion behavior of multi-legged animals is an
example of intelligent interactive behavior where all of the
mentioned competences are equally relevant. With regard to
bio-inspired walking robots with six or more legs, early research
concentrated on mechanical design (e.g., Pfeiffer et al., 1995) and
force control (e.g., Devjanin et al., 1983; Schneider et al., 1995).
This line of research has been developed further continuously,
including bio-inspired approaches to system design such as
evolutionary optimization (e.g., Bartsch et al., 2012). Concerning
control, the implemented biomimetic approaches may be
assigned to one of two major streams.

The first of these streams emphasized the principle of
modular sensorimotor control with a focus on sensory feedback
(e.g., Pfeiffer et al., 1995; Espenschied et al., 1996; Schneider
et al., 2006). In many cases, the sensorimotor control modules
were implemented by use of artificial neural networks (e.g., Berns
et al., 1994; Schmitz et al., 2008; von Twickel et al., 2012), thus
requiring learning prior to operation (e.g., Ilg and Berns, 1995)
and/or during operation (e.g., Manoonpong et al., 2008). For
example, the performance on difficult terrain can be improved
through machine learning techniques (e.g., Bartsch et al., 2012;
Goldschmidt et al., 2014).

The second stream of biomimetic approaches emphasized
experimental findings on biomechanics and neural oscillators
and implemented different forms of rhythmic pattern generators
for hopping (e.g., Altendorfer et al., 2001) or walking
(e.g., Arena et al., 2012), including highly modular approaches
based on mechanical coupling alone (Owaki et al., 2017). A
more theoretical approach within this stream of research also
succeeded in exploiting chaotic properties of neural oscillatory
networks (Steingrube et al., 2010). Both streams of research
have at least partially included results derived from behavioral
experiments, either by implementing particular motion patterns
(e.g., Klaassen et al., 2002) or a continuum of free gaits based
on the rules governing inter-leg coordination (e.g., Espenschied
et al., 1996; Schmitz et al., 2008), but also theoretically derived
criteria (e.g., Fielding and Dunlop, 2004). This plethora of
approaches has been reviewed with respect to the mutual benefits
of biology and engineering in general (e.g., Ritzmann et al., 2000;
Ayers et al., 2002), and adaptive control strategies for multi-
legged robots in particular (e.g., Arena and Patanè, 2009; Aoi
et al., 2017).

In spite of the remarkable achievements of individual research
efforts, the integration of multiple, equally well-developed
competences in a single robotic platform is still a challenge.
Here, we argue that a key challenge of neurorobotics is
the necessity to integrate concepts from different fields of
engineering and neuroscience—and the ensuing necessity to
have appropriate robotic integration platforms. To illustrate
how we envisage such collaborative, multi-competence effort
on a single robotic integration platform, we use the hexapedal
walking robot HECTOR (Figure 1; Schneider et al., 2014;
Paskarbeit et al., 2015). As a research platform, HECTOR is
special because it offers many opportunities for integrating
concepts of neuroscience and engineering alike. It has 18 highly
sensorised, compliant actuators, a light-weight exoskeleton
(Figures 1D,E), and a hardware architecture that is suitable for

de-centralized control. Together with a summary of our current
understanding of motor flexibility in HECTOR’s biological
paragon, the stick insect (Figure 1A), we provide examples
of various aspects of natural motor control. In doing so, we
close the loop between multiple embodied sensory systems
and compliant actuators by different sensorimotor mechanisms
of inter-leg coordination, including cognitive abilities such as
motion planning.

The results presented in this article are grouped into six
sections, with each section focusing on a different aspect of
intelligent adaptive walking systems in biology and technology.
Together, these sections provide an integrative view of a
biomimetic walking system, ranging from: (I) compliant
actuation; (II) distributed proprioception of posture and load;
to (III) the particular role of body-substrate interaction; (IV)
spatial coordination of multiple legs. Based on these aspects of
de-centralized control, we (V) discuss different modular control
concepts for adaptive coordination of multiple legs, including
the role of internal models in context-dependent coordination
of a complex body. Finally, we expand the cognitive repertoire
of HECTOR by (VI) a neural network model that can form
an internal body-representation for decision-making on the
grounds of learned own motor abilities. Each one of the six
facets will be introduced by a current view on biological systems
and emphasize the behavioral relevance for an animal. This will
be complemented by a specific suggestion on how to abstract
biological insights and implement at least some of them in a
technological framework. Last but not least, each section will
point out why the contribution is relevant for an integrative
hardware model of multi-legged locomotion and, thus, a holistic
view on flexibility and robustness of multi-legged walking in
animals and machines.

MUSCLES AND COMPLIANT ACTUATION

All biological locomotion systems are compliant, simply for
the fact that biological actuators (i.e., muscles and tendons)
are made of deformable macromolecular structures that may
drive deformation of tissues or move adjacent limb segments
connected by articulated joints. A common view is that muscle-
tendon systems in animals are tuned to serve a particular
purpose, either in accelerating or decelerating a body part or by
transmitting forces efficiently (Dickinson et al., 2000; Alexander,
2003). As such, compliance in biological motion may store and
release energy in a passive manner but may also contribute
actively to improve movement efficiency. While both passive and
active compliance is relevant for resource efficiency, a further
benefit of passive compliance is safety in the sense that it allows
dissipation of energy, for example during the impact of a foot at
touch-down.

Compliance of Muscle
A muscle can be thought of as a force generator that is
controlled by the central nervous system (CNS). The forces
actively generated by the respective muscles, as well as
the resulting torques at the actuated joints, are non-linear
functions of the activation and contraction dynamics of muscles
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FIGURE 1 | HECTOR—from bio-inspiration to a physical robot. (A) The Indian stick insect Carausius morosus served as a template for the robot design. Especially,
the relative distances of the leg onsets, the alignment of leg joint axes and the subdivision into three body segments were transferred during the design process.
(B) Early abstraction of the three body segments prothorax, mesothorax and metathorax as compartments for the accommodation of “head-related” sensors,
embedded computer system and battery, respectively. (C) First design sketch (Folkwang University of the Arts, Essen, Germany) of the hexapod robot considering
the general shape demands from panels (A,B). (D) 3D-CAD-rendering of the light-weight, self-supporting body segments with an exoskeleton made of carbon fiber
composites (manufactured at the Leibniz-Institute of Polymer Research in Dresden, Germany). Only few metal parts are included for directing the leg forces into the
housings. (E) Photo of HECTOR. The body length of the assembled robot is 95 cm. The total mass is 13 kg. Approximately 7 kg of the mass comes from the
18 compliant joint drives in the legs.

(Zajac, 1989; Zakotnik et al., 2006), as well as of the mechanical
integration of the musculotendinous complex into the joint.
The activation dynamics represents the time course of the
chemical activation processes within muscle fibers (e.g., calcium
dynamics). In case of vertebrate muscle, where muscle activation
is largely dependent on the number of motoneurons recruited,
muscle activation dynamics is typically described by a first-
order non-linear differential equation (Zajac, 1989; Buchanan
et al., 2004). In insects, where muscles are often innervated
by very few motoneurons and single twitches can last very
long, higher-order nonlinearities are used (Zakotnik et al.,
2006; Wilson et al., 2013; Harischandra et al., 2019). The
contraction dynamics represents the influence of muscle length
and shortening velocity on the active force generation of a
muscle (Hill, 1938; Aubert, 1956; Zajac, 1989; Romero and
Alonso, 2016). Activation dynamics and contraction dynamics
are assumed to be independent of each other although this
has been discussed controversially (Rack and Westbury, 1969).
Muscles are connected to segments via soft tissue e.g., tendons
which also show a non-linear compliant behavior for which
different formulations have been proposed (e.g., Hatze, 1974;
van Soest and Bobbert, 1993; Thelen, 2003). The mechanical

effect of muscle forces onto a joint is further influenced by
the dependence of the lever arm length on joint angle, and
non-linear damping due to the soft tissue in which the actuator
is embedded.

Since muscles can generate active forces in one direction
only, joint actuation has to be accomplished at least by an
antagonistic pair of muscles in which one of the players can
also be replaced by a passive elastic structure. Due to the
presence of at least two muscles per joint and due to additional
degrees of freedom arising from nervous activation of muscles,
the mechanical function of any muscle-tendon system may
vary greatly depending on the timing and magnitude of its
recruitment (e.g., Sawicki et al., 2015). The level of co-activation
of antagonistic muscles allows the regulation of joint stiffness
(Hogan, 1984; Gribble et al., 2003; Zakotnik et al., 2006). The
mixture of co- and reciprocal activation, for instance, allows an
almost separate adjustment of compliance and joint angle, at least
in certain intervals of the angular working range (Annunziata
et al., 2011; Annunziata and Schneider, 2012).

Therefore, with regard to a particular motor task, the CNS
is responsible for controlling not only the movement itself, but
also the compliance of the system, particularly for maintaining
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stability during interaction tasks that involve impacts or other
interaction forces between the body and an external object
(e.g., as in manipulation tasks).

Compliance in Biomimetic Actuators
In the technical domain, a variety of damped and undamped
compliant actuation systems have been developed that can
be subsumed under the term ‘‘variable impedance actuators.’’
Recently, Vanderborght et al. (2013) have categorized this
family of actuators into ‘‘active impedance by control,’’ ‘‘inherent
compliance’’ (passive compliance), ‘‘inherent damping’’ and
‘‘inertial’’ actuators. Of these, inherent compliance and inherent
damping actuators have the advantage of not requiring any
active control of compliance (e.g., by a second actuator for
adjusting joint stiffness), at the cost of having a mechanically
fixed impedance behavior.

Inherent damping means that a passive visco-elastic element
reduces oscillations of the compliant system when mechanically
excited, for example in response to a collision with an
obstacle. In contrast to active impedance by control actuators,
passive actuator systems have no bandwidth-limitation of
the elastic effect. In order to exploit the advantages of
adjustable impedance, passive actuators may be operated
in a ‘‘hybrid fashion,’’ where compliance can be adjusted
by control, as opposed to modification of the mechanical
properties. In this way, mechanically passive actuator systems
may be used to implement muscle-like actuation (Annunziata
and Schneider, 2012), even though muscles are not passive
systems. The combination of inherent compliance and inherent
damping leads to a well manageable behavior of HECTOR’s
joint drives. However, it must be stressed that the control
of compliant structures with high dynamic bandwidth, in
general, is challenging. Solution approaches contain passivity
based impedance control (Albu-Schäffer et al., 2007), classical
impedance control (Hogan, 1985) or hybrid impedance control
(Anderson and Spong, 1988).

The Compliant Joint Drives of HECTOR
The ability of physical interaction with the environment is a key
feature of animal locomotion, involving repeated impacts of the
feet on the ground, mechanical coupling of a variable number
of legs through body and substrate and, as a consequence,
discontinuous changes of force- and torque interactions among
the individual joint actuators. The manifold of mechanosensory
information arising through these bodily interactions is a
foundation for sensory, (event)-driven walking controllers such
as Walknet (as originally described by Cruse et al., 1995, see
below). For the control of mechanical interaction of body and
substrate, a reliable estimate of joint torques during resisted
actuation is desirable. Much like the force estimate of isometric
muscle contractions requires the combination of Golgi tendon
organs and the compliant tendon, here, the combination of
a sensor and the serial elasticity of the compliant actuator
is needed.

The compliant actuators of HECTOR belong to the inherent
compliance category: they use an elastomer coupling as the
compliant element. Because the elastomer has visco-elastic

properties, it introduces an inherent damping component into
the actuator, too, other than a set of steel springs would do.
Figure 2A shows a sectional view of the fully integrated, compact
and compliant drive system which is used in each one of the
18 leg joints of HECTOR. Figure 2B shows a photo of the
drive. The weight of each drive is below 0.4 kg. As a result,
about 55% (7.2 kg) of the robot’s total weight (13.0 kg) is
constituted by its joint actuators. The drive includes small-scale
electronics, integrated as a PCB stack (Figure 2F). The PCB stack
contains power-, communication- and control-electronics. It is
software-controlled by an integrated 8-bit microcontroller. The
core of the actuator is a brush-less DC motor, driving a light-
weight harmonic drive gearbox. The short installation length
of motor and gearbox allows for the small dimensions of the
entire system (length ∼90 mm, diameter ∼50 mm). Motor and
gearbox are followed by an elastomer coupling (Figures 2C–E),
making it a serial elastic actuator (Pratt and Williamson, 1995).
The main reason for favoring an elastomer coupling over a
steel spring coupling was the fact that it can be scaled down
to a diameter of 20 mm, allowing for compact integration
(Figure 2D). The input flange with its hub is attached to the
output of the gearbox. The output flange of the coupling with
its hub is mechanically connected to the output of the joint. The
torsion between input and output hub is mediated by two sets
of three teeth (photo in Figure 2E), gearing into the six lobes
of the elastomer star. The elastomer star was used as an inlay,
i.e., not bonded to the metal teeth of the hubs. In principle, it
can be bonded to the teeth as well. For torsion measurements
at the elastomer coupling, it is equipped with a magnet
and Hall sensor ensemble. A second one of these ensembles
measures the output angle of the drive. A characterization
of the non-linear behavior of the compliant element as well
as a suitable fit function for a system model can be found
in Paskarbeit et al. (2013).

DISTRIBUTED PROPRIOCEPTION OF
POSTURE AND LOAD

All animals physically interact with their environment, as any
overt behavior requires the generation of force: force to accelerate
the own body’s center of mass (locomotion), force to deform
or displace external structures (manipulation), and force to
accelerate a limb in order to generate or acquire information
through limb movement (signaling and active sensing). As a
consequence, the control of force is a fundamental requirement
of purposeful, interactive behavior. The sensory modality
involved is proprioception, the mechanoreception of force and
posture (for review, see Tuthill and Azim, 2018). Two hallmarks
of proprioception are: (i) the intimate relationship between
the process of sensory transduction and the biomechanics
of the surrounding body tissue; and (ii) its distributed nature,
i.e., the fact that each and every body part is equipped with
different mechanoreceptors. The combination of these two
aspects implies that the entire body of an animal essentially
serves as one complex proprioceptive organ. In the following
section, we will review some general aspects of distributed
proprioception in insects, with a focus on load sensing in
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FIGURE 2 | Compliant joint drive with elastomer coupling. (A) The section view of an elastic joint drive of HECTOR. It contains a power- and control-electronics
stack, a brushless DC motor, a light-weight harmonic drive gearbox, and a sensorised elastomer coupling with two position encoders. (B) Photographic depiction of
the elastic joint drive with mounting points for adjacent segments. Stable force transmission is achieved by the positive locking of segment and seating (input flange
and output flange). (C) Explosion view of the coupling shown in panel (D). The input flange is linked to the output of the gearbox. It connects to the input hub that
carries three teeth, each of which extends into a corresponding notch of the elastomer. The remaining three notches in the elastomer are held by the three teeth of
the output hub which, in turn, is fixed to the output flange. The elastic torsion of the elastomer and the resulting twist between input and output hubs is measured by
a Hall-effect position sensor (after Paskarbeit et al., 2013, with permission). (D) View of the elastomer coupling, as integrated into the drive. (E) Photo of input and
output flange, together with elastomer star. (F) Image of the power- and control-electronics stack which is mounted in the back of the drive (after Paskarbeit et al.,
2013, with permission).

locomotion. In conjunction with these considerations, we will
explain the concept of distributed proprioception in HECTOR.

Distributed Proprioception in Insects
Taking an evolutionary view, most insect mechanoreceptors
are derived from ciliated epithelium tissue. As such, they are
either embedded within or immediately attached to the cuticle
of the exoskeleton. As the cuticle covers the entire insect body,
cuticular mechanoreceptors may be found on all body segments,
with particularly high density on legs, wings and feelers. The
basic type of these epithelial mechanoreceptors is a tactile hair
that is innervated by a single mechanosensory cell (Sensillum
chaeticum). Groups of such tactile hairs are often located near the
joints, forming patches or rows of hairs that may get deflected
during movement of the adjacent joint. These hair plates serve
as joint angle sensors (Figure 3C). A more derived version of
epithelial mechanoreceptor is the Sensillum campaniformium,
in which only a small cap- or dome-shaped structure can be
seen externally. Like hairs, they typically come in groups, as

indicated by the yellow, magenta and purple circles in Figure 3C.
Campaniform sensilla (CS) are located at strategic locations for
monitoring strains in the exoskeleton, usually near the joint at
the base of a segment, where skeletal strain may be immediately
related to a load imposed to the end of the segment. For
example, at the base of the leg, cuticular strains can arise due to:
(i) self-generated forces and torques (contraction of proximal
leg muscles); (ii) constant body load; (iii) shifts in body load
due to altered body orientation and/or slipping of legs; and
(vi) externally applied loads. Indeed, the structure that is of
particular relevance to load sensing in insects is the trochanter,
a short leg segment that, in many insects, is firmly attached to the
base of the femur, i.e., the first long leg segment (Figures 3A,C).
The trochanter carries a number of proprioceptive organs that
signal load and positional information. For example, Figure 3C
shows a posture-encoding hair plate (white circle) and three
groups of load-encoding CS groups (colored circles).

Because coxa-trochanter (CTr) and femur-tibia joints are
hinge joints with nearly parallel joint axes, they cause the leg
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FIGURE 3 | Distributed proprioception in the insect walking system. (A) Schematic of the reference frame for force detection by campaniform sensilla (CS) of an
insect leg. For a given axis orientation (Φ, Ψ) and joint angle (α) of the thorax-coxa joint, all other leg joints move the leg within the leg plane (orange). The black
arrows indicate the directional selectivity of four trochanteral CS groups (G1 to G4) and two tibial CS groups (G6a and G6b) in the stick insect. Owing to their location
on the leg and to their physiology, four of these groups signal loading and unloading either within (G3, G4, G6a, G6b) or orthogonal (G1, G2) to the plane of leg
movement. For example, G1 responds strongest to posteriorly directed forces. (B) Analogous sites for biomimetic strain measurements on the leg of HECTOR.
(C) Scanning electron micrograph of the trochanter of a stick insect hind leg, with three enlarged sections showing the dorsal trochanteral hair plate (trHP, white
circle), and trochanteral CS groups G2 (yellow), G3 (magenta) and G4 (purple). White double-arrows indicate the different preferred strain direction of each sensilla
group. (D) Putative wiring diagram of known reflex loops involving trochanteral and tibial CS in a standing stick insect, indicating target and sign of the sensory-motor
couplings mediated by individual CS groups. Thick lines represent verified sensory-motor couplings, thin lines are presumed on the basis of cursory observations.
The schematic motor neuron pools are arranged according to their actions on joints either within the leg plane of movement (orange: levator/depressor system of the
Coxa-Trochanter (CTr) joint and flexor/extensor system of the femur-tibia joint) or perpendicular to this plane (yellow: protractor/retractor system). Note that the
excitatory connection from tibial CS group G6b to the depressor of the trochantero-femur establishes a muscle synergy through inter-joint coupling within the leg
plane. The asterisk at the inhibitory connection of CS group G3 to the depressor indicates that a sign reversal is known to occur during walking.

to move in a plane (see Figure 3A). The high density of CS
groups on the trochanter ensures that loads are monitored at
the proximal end of this leg plane, where force magnitudes are
largest and, hence, resolution is maximal. The CS groups not
only reliably encode magnitude and rate of change of force
increments and decrements (e.g., Zill et al., 2011), their exact
location and orientation in the exoskeleton also make them
directionally selective. For example, CS groups G3/G4 are most
sensitive to loads applied within the joint plane, whereas CS
groups G1/G2 aremost sensitive to loads applied perpendicularly
to the leg plane. Other CS groups, e.g., G6a/G6b on the base of the
tibia, supply further information about loads applied within the
leg plane (Figures 3A,C). The tuning curves of these CS groups
thus constitute a reference frame of load encoding that is aligned
with the movement plane of the leg (Zill et al., 2012).

Owing to this alignment, the reference frame of load encoding
is also congruent with the actions of the legmuscles. For example,
protractor/retractor muscles of the thorax-coxa joint will cause
actions that impose loads in the direction perpendicular to
the leg plane. This is monitored by CS groups G1 and G2.

Indeed, our current knowledge of the local reflex circuitry in
walking legs suggests that each CS group affects the activity
of those muscles that may alter their own sensory reading
(Figure 3D). For example, activation of individual G4 receptors
in a quiescent stick insect induces depressor activity, whereas
activation of G3 receptors reduces the activity of that same
muscle. In both cases, the resulting change in muscle activity
resulted in force changes driving leg movement within the leg
plane (for more details on CS activity and muscle synergies, see
Zill et al., 2015, 2017).

Whereas this framework of distributed reflexes stabilizes
the posture of a standing animal against perturbation, the
situation becomes more complicated during locomotion. This
is because the reflex effects of a given CS group may
reverse during active motion. This is reminiscent of a force
enhancement mechanism known from vertebrates (Prochazka
et al., 1997a,b; Donelan and Pearson, 2004), where afferences
from Golgi tendon organs are involved in a positive force
feedback loop. The state-dependent reversal of the motor
effects of CS groups G1/G2 on the protractor/retractor muscle
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system in stick insects suggests a similar mechanism in insect
locomotion (Akay et al., 2007; for a similar effect on G3/G4,
see Zill et al., 2012).

Figure 3D summarizes the motor effects of load sensors
distributed on a stick insect leg. Note that connections indicate
the target and sign of a reflex, not necessarily an identified
monosynaptic neural connection. In a standing animal, this
circuitry constitutes a set of negative feedback loops that may
serve to limit excessive forces (Schmitz, 1993; Haberkorn et al.,
2019). For example, combined excitement of CS groups G3 and
G6a (magenta combination in Figure 3D) might be caused
by large depressor forces, acting to push the leg downwards
and outwards. The joint inhibition of extensor and depressor
muscle activity will reduce the strain sensed by these CS groups
on both the femur and the tibia. In active animals, the sign
of at least some reflex actions may reverse (e.g., marked by
asterisks in Figure 3D). In this case, a depressor force will lead to
further enhancement of depressor force, thus forming a positive
force feedback loop. This may aid sustaining the body weight
during walking.

Distributed Proprioception in HECTOR
Given our current knowledge on distributed proprioception in
insects and its relevance for adaptive coordination of multiple
joints and legs, it is compelling to transfer some of its principles
to technical walking machines. Structurally, the carbon-fiber-
enhanced, light-weight exoskeleton of HECTOR is well-suited
to be equipped with mechanoreceptors at various locations. For
example, the principles of distributed load sensing in an insect
leg may be mimicked by corresponding pairs of strain gauges
placed at the locations indicated in Figure 3B. The matched
pairs of loading/unloading-sensitive CS groups, e.g., G6a/G6b
(Zill et al., 2011), could be abstracted by a pair of corresponding
strain gauges on opposite sides of the same leg segment. This
has been done for a single leg of HECTOR as indicated in
Figure 4A. All strain gauge pairs are connected to a strain gauge
board (Figure 4B) which communicates the strain information
via the bus system of HECTOR (see below). Figure 4C shows
a close-up of the α- and β-pair glued to the carbon fiber rod of
the femur.

Figures 4D,E compare the α-torsion of the elastomer coupling
in the α-joint drive with the output of the respective α-pair of
strain gauges (D) and the β-torsion of the elastomer coupling in
the β-joint drive with the output of the β-pair of strain gauges
(E). Results show representative measurements for a single step
of the leg which was mounted to a frame that allowed passive
sliding of the leg base in the upward and forward direction
during stance (gray areas in Figures 4D,E). The results show
that both information sources, joint torsion and segmental
strain, are analogous to each other but show different temporal
response components due to different material properties of
the measurement substrate (nitrile rubber in the elastomer
coupling; carbon fiber rod at the femur). Strain gauges, however,
potentially allow the measurement of strain also in directions
which are not picked up by the elastomer couplings.

Irrespective of whether load distribution among legs is
measured inside the joint drives or via bending forces, several

sensor elements need to be read out simultaneously, or at least
with similar data acquisition rates. In insects, this requirement
is met by the distributed organization of the CNS, where most
afferents from sensory organs of a given segment project into
the specific ganglion of that body segment. For example, all
afferents from trichoid hairs or CS on a middle leg project to
the ganglion of the mesothorax. Since each segmental ganglion
can be considered a stage of local information processing,
including the circuitry for generatingmotor commands, sensory-
motor control is highly distributed and de-centralized (see also
‘‘Modularity of Insect Motor Control’’ section).

In a robot with multiple limbs, a de-centralized control
concept could be implemented in different ways: one extreme
would be to assemble a network of multiple de-centralized
hardware modules; another extreme would be the use of a
single central processing unit running several separate but
interacting software modules. In the case of HECTOR, a mix
of these concepts has been implemented: a large number of
sensors is read out by a set of only three bus master boards,
each representing the information node in one body segment
(a fourth bus master was integrated for later communication
with the body segment drives). At the same time, a single
central controller, located in the mesothorax, receives all
sensory information from the bus masters and emulates the
distributed control network in software. As shown in Figure 5,
HECTOR’s main body consists of three segments, each of
which carries two legs. The three compliant actuators per leg
contain their own controller electronics (Figure 2F), including
local sensors of various kinds (see leg details in Figure 5).
Using a custom communication protocol that is based on
an RS-485 interface in the hardware layer, the wiring in the
legs can be reduced considerably (for details, see Schneider
et al., 2012). The BioFlex bus master connects both legs of
that body segment, including all its sensors and actuators, with
the central controller. At present, the sensory equipment of
each joint of HECTOR comprises eight different sensor types,
supplying a total of 12 measurements per joint. These include
the joint angle, the torsion of the integrated elastomer coupling,
3D-acceleration and orientation vectors, etc. (see leg details in
Figure 5). Potentially, the central controller can thus exploit
216 measurements from the 18 leg joint drives alone, not
including strain gauges (Figure 4), foot tip sensors (see ‘‘Multi-
Taxel Touch Sensor for HECTOR Foot’’ section), vision or touch
(see Hoinville et al., 2014).

The connection between the central controller and the bus
masters is realized by USB, thus combining the universal
availability of USB with a computationally efficient bus protocol.
The efficiency of the bus protocol is especially important for the
embedded microcontrollers in the joint drives since they are also
responsible for the communication with the motors and must
keep up a hard-real-time schedule. Since USB uses differential
signaling too, the error rate is very low despite the fact that
the communication lines run close to brushless DC motors and
power lines. To further reduce the cabling, a common power
supply is used for all electronics on board. All segments are
supplied with 20–40 V from the battery pack in the rear segment
(metathorax in Figure 5).
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FIGURE 4 | Distributed proprioception in a leg of HECTOR. (A) A single leg of HECTOR with elastic α-, β-, and γ-joint drives (equivalent to the thorax-coxa, CTr, and
femur-tibia joints of insects). Yellow and purple/magenta ellipses on the femur segment indicate locations for application of strain gauge pairs on the carbon fiber rod
under the femur cover. Each strain gauge pair is named according to the joint axis which is predominantly responsible for the bending of the respective pair (colors as
in Figure 3). The γ-pair is situated on the tibia segment. (B) Small-scale strain gauge board for the processing of four strain gauge pairs. The board can be mounted
on the femur segment and connects to all strain gauges used on the leg structure. It can also be connected to the BioFlex bus of the robot communication
infrastructure (see Figure 5). (C) Femur segment of the leg without cover, revealing the strain gauge pairs glued to the carbon fiber rod. The diagonal pair is sensitive
to torsion of the femur and has no obvious biological equivalent. (D) Time courses of the α-joint torsion and the corresponding reading of the α-strain gauge pair
during a single step. During the experiment, the leg was mounted to a sliding tether that simulated body movement by allowing the leg to push its own base forward
and upward during stance (x and z directions in A). The dark gray area highlights the time interval during which the leg base was actively lifted and during which the
leg had to carry its own weight. The light gray area indicates loading and unloading. (E) Same as (D) but for β-joint torsion and β-strain gauge pairs.

GROUND CONTACT AND
LOAD-DEPENDENT COORDINATION

With regard to distributed mechanoreception, the foot is a
special case. Because the foot is the main contact zone of the
insect body, forces and motions of the foot are immediately
related to events occurring at the interface between body and
substrate. Even if a considerable part of substrate adhesion
may be passive, it is important for animals to detect the onset
and offset of ground contact, and to control the muscle forces
necessary to achieve, maintain and terminate a firm engagement
of the foot with its substrate. In particular when walking on
rough terrain with potential step-to-step variation in surface
structure and orientation of the substrate, detecting and encoding
the properties of ground contact and substrate engagement are
essential for postural stability, motion efficiency and, in case of a
walking machine, safety.

Ground Reaction Forces in Insect Walking
A look at the forces acting on a foot during a step cycle
immediately reveals that ‘‘having ground contact’’ is not a simple

binary state, not even when walking on a perfectly flat horizontal
surface. For example, Figure 6 shows mean foot trajectories for
the stance phases of all leg types in an unrestrained, straight
and planar walking stick insect. Additionally, it shows the mean
magnitude and direction of the horizontal ground reaction forces
(GRF), as measured in the study of Dallmann et al. (2016) at
a given time of the normalized stance movement. Clearly, GRF
vary strongly throughout the step cycle and differ a lot among leg
types. Whereas the ‘‘breaking phase’’ with forward-directed (thus
decelerating) force vectors is common to all legs, only middle
and hind legs show a clear ‘‘propulsion phase’’ with significant
rearward directed force vectors. Inward directed force vectors
are also common to all legs, though with different timing and
magnitude. In front and middle legs, breaking forces can last
up to more than 50% of the stance phase (red and blue vectors
in Figure 6). In contrast, a hind leg begins to contribute to
propulsion much earlier, i.e., after about 25% of its stance phase
(light blue vectors in Figure 6).

Given the fact that a stick insect foot has five tarsomeres, all of
which are moved by the same muscle-tendon complex (i.e., with
a single degree of freedom for control only), the complex GRF
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FIGURE 5 | Communication scheme and location of main electronic parts of HECTOR. The robot has three body segments (pro-, meso-, and metathorax), each
one of which carries a pair of legs. The front segment looks like a head as it carries eyes (cameras) and antennae (tactile probes) (Hoinville et al., 2014). Each leg
comprises three compliant joint drives that communicate with a bus master (BioFlex Bus) in the respective body segment. Each bus master has two channels
(2 Mbit/s each) to connect to a maximum of 250 clients which are polled by the bus master to allow real-time operation. The box for the left front leg lists the
12 sensor readings provided by the integrated electronics board of each joint drive and shows the multi-taxel foot tip sensor of a front leg. The bus masters are
connected to the host computer (PC/104) in the mesothorax via high-speed USB. A fourth bus master in the mesothorax is dedicated to the two spindle drive
setups for the inter-segmental joints.

pattern in Figure 6 suggests strong changes in passive forces
acting on the foot. Since the tarsomeres are equipped with a
variety of mechanoreceptors, including tactile hairs and CS, it
is conceivable that they can monitor magnitude and orientation
of force vectors as well as size and orientation of the contact
area. Indeed, tarsal sensilla have been shown to reliably encode
rate and amplitude of loads and resisted muscle forces at the
tarsus (Zill et al., 2014, 2017), and to contribute to activation of
both the tarsal retractor muscles and the more proximal flexor
muscles involved in pulling the leg inward (Zill et al., 2015). This
suggests that tarsal sensilla are involved in the establishment and
maintenance of substrate engagement.

In addition, signals from tarsal CS could be suitable for
detecting increments and decrements of vertical load in the
process of triggering transitions from stance to swing (see ‘‘Load-
Dependent Coordination’’ section). However, several studies
have demonstrated that complete loss of the distal part of a
leg does not impair proper step cycle transitions as long as the
trochanteral CS groups are intact (Wendler, 1964; Keller et al.,
2007). This finding indicates that the CS groups at the base
of the leg are sufficient to detect ground contact. Moreover,
the sensitivity, orientation, and locations of CS groups 1–4
(Figure 3C) are well-suited to monitor the GRF at the endpoint
of the leg. The extensive sensorization of the insect foot could, of
course, add more fidelity to the encoding of GRF by trochanteral
CS groups. Moreover, it is likely to be relevant for the control of

the foothold, in particular for encoding grip force or detecting
slip. This is reminiscent of the integration of cutaneous and
muscle receptors in vertebrates, where it has been argued that
sensory monitoring of the ground contact conditions is relevant
for understanding walking and for devising biologically inspired
walking models (Frigon and Rossignol, 2006).

Multi-Taxel Touch Sensor for HECTOR Foot
With regard to our knowledge on foot sensorization in walking
insects, the design of a sensorised foot for HECTOR was guided
by two main goals: (i) the pressure distribution on the foot tip
should be monitored at multiple measurement points, allowing
to estimate both the magnitude and the spatial direction of
the force vector; and (ii) the sensor array should yield a tactile
image of the contact surface, potentially allowing for further
analysis and/or classification of the substrate. Once achieved,
the combination of these two properties would be of immediate
relevance to the use of the foot tip as a sensorised gripper.

For a touch-sensitive foot tip of HECTOR, we chose to use
piezo-resistive rubbers because of their smooth dependence of
measured resistance on applied pressure (Drimus et al., 2014b).
Other important advantages of this material are flexibility,
overload robustness and low cost. The material can withstand
pressure up to approximately 6 MPa (or 860 psi) for millions of
actuations. By using a multiplexing algorithm, we could address
multiple sensing elements with a small number of wires. As a

Frontiers in Neurorobotics | www.frontiersin.org 9 October 2019 | Volume 13 | Article 88

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Dürr et al. Integrative Biomimetics of Hexapedal Locomotion

FIGURE 6 | Horizontal ground reaction forces (GRF) during unrestrained locomotion. Average horizontal force vectors of an unrestrained forward walking stick
insect on a planar surface (drawn as inverted ground reaction force vectors). The vectors are mapped onto the position trajectories of the respective tarsus in a
body-centered coordinate system (origin: the center of mass, being located at the rear end of the metathorax). Data from one representative animal, with separate
measurements per leg, normalized to the duration of the stance phase. Black lines show force vectors every 1% of stance duration. Colored arrows indicate
magnitude and direction of the horizontal force components at specific times of stance (red: 10%, cyan: 30%, blue: 50%, green: 70%, purple: 90%). Walking
direction is from left to right. For details on ground reaction force measurements, see Dallmann et al. (2016).

result, we could acquire a tactile image by iterating through all
possible combinations of matrix columns and rows, yielding a
spatial array of measured values at any given moment.

A semi-spherical tip covered with as many tactile cells (taxels)
as possible ensured that movements of the end-effector were
not constrained by the sensor, while contact information could
be acquired for most poses. For a foot tip diameter of 2 cm, a
radial array structure of 12 sectors and five rings was chosen
as the best compromise between manufacturing difficulties, cell
size and spatial resolution (see sensor layout in Figure 7B).
This determined the spatial resolution as 30◦ azimuth and 15◦

elevation for the force direction estimate in polar coordinates,
with 60 taxels per tactile image. Among various electrode types,
Drimus et al. (2014b) obtained the best results by using Flex PCB
designs with high-conductivity finish and conductive epoxies
(Figure 7). Also, permanent electrical contact between the
electrodes and the piezo-resistive rubber patch was avoided, as
this reduces the sensitivity for the low-force sensing range.

In order to build a sensor array over a curved surface, we
started with a plastic mold of the end effector tip, into which
five concentric electrode rings were integrated, that were made
of conductive silver epoxy (thickness apporoximately 0.5 mm;
8,331 Silver Conductive Epoxy Adhesive, MGChemicals)
yielding a resistivity of 0.017 Ωcm. On top of this bottom layer,
we cut a flower-like shape of conductive rubber, uniformly
covering the effector tip. The top layer consisted of a custom-
developed Flex PCB that covered the conductive rubber. With
its 12 electrodes, it provided a perpendicular overlap with the

epoxy electrodes. Both the epoxy and the Flex PCB electrodes
were connected to Flex FFC connectors over a total of 18 signal
wires (ground, 12 top and five bottom electrodes). A final
thin protective layer of polyurethane-impregnated textile was
applied, not unlike a sock, as shown in Figure 7B. For a detailed
description of the manufacturing process, see Drimus et al.
(2014a). The finalized prototypes, together with the electronics
modules, are shown in Figure 7C.

The basic mechanism for measuring the pressure exerted
on each rubber taxel is based on a voltage divider principle as
described in Drimus et al. (2014b). Therefore the electronics for
data acquisition consisted of a multichannel ADC, multiplexers,
power supply and an RS-485 transceiver for integration
into HECTOR’s Bioflex bus system, along with an Atmel
UC3L064 microcontroller. Temporal resolution may be up to
500 tactile images per second. The microcontroller can reply
requests via the Bioflex bus regarding force, pressure or angle
estimates, as well as full tactile images with 8-bit values per
taxel. According to model calculations, accurate estimates can
be obtained for forces as low as 0.1 N. Below that, accuracy
deteriorates due to contact resistance uncertainties within the
piezo-resistive rubber (Drimus et al., 2014a).

The sensorised foot tip was tested by applying forces up to
30 N at different tilt angles, as illustrated in Figure 8D, along
with the corresponding tactile images. The results show that the
identity of the taxels triggered, as well as the force distribution
gives an intuitive estimate of both force magnitude and direction.
For incipient contacts (e.g., columns 2 and 4 in Figure 8D), only
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FIGURE 7 | Multi-taxel foot tip sensor. (A) Tactile cell distribution across the foot tip surface. There are five concentric rings with 12 sensing cells per ring. (B) The
section cut through the sensorized foot tip, revealing the layered construction of sensor. (C) Finished prototypes with electronics. Lower panel: directional sensitivity
of the foot tip sensor. (D) Tactile images (top) and corresponding test situations (bottom) for six different end-effector poses. The more slanted the pose, the more
marginal is the location of mean activity in the tactile image (adapted from Drimus et al., 2014a, with permission). (E) Sensorized end-effector mounted on HECTOR.

single taxels are triggered, whereas high contact forces result in
the triggering of more cells (e.g., 3rd column in Figure 8D).
Previous experiments with similar constructed tactile sensor
arrays have shown very good classification rates for palpation
procedures with a parallel gripper (Drimus et al., 2014b), as
well as classifying different types of cylindrical terrains when
used in combination with a compliant robot foot (Borijindakul
et al., 2018). The sensorised end-effector mounted on HECTOR
is shown in Figure 7E (see also Figure 5). For the presented foot
tip sensor, preliminary experiments on substrate classification in
response to a vertical contact event were successful for substrates
as different as gravel, sand or a solid plane. Furthermore,
surface sensing with a flexible leg prototype that was covered
with similar piezo-resistive rubber showed promising results
in the classification of different types of pipe substrate such
as PVC, hard paper and sponge when used in a planar array
(Borijindakul et al., 2018).

Load-Dependent Coordination
Due to their sensitivity and their arrangement at the leg segments,
CS lend themselves to monitor distant events, such as lift-off or
touch-down events of neighboring legs. The footfall patterns of
stick insects reveal a metachronal wave of swing moments from
back to front ensuring temporal coordination. Middle legs, for
example, start their swing shortly after the touch-down of the

ipsilateral hind leg. From behavioral studies (Cruse, 1985) it is
known that, besides position parameters, the loading state of the
leg is critical for the decision when to switch from stance to
swing. Since all legs in stance are mechanically coupled via body
and ground, the middle leg should be unloaded as the ipsilateral
hind leg touches down and starts to take on some body load. In
principle, this unloading of the middle leg could be detected by
the G3/G4 group of trochanteral CS (Figure 3C).

Given our knowledge of the sensory-motor loops involving
trochanteral CS (Figure 3D), one can anticipate that afferent
activity from G3 during stance should enhance the activity of
the trochanteral depressor muscle, whereas unloading caused by
touch-down of the neighboring hind leg terminates G3 activity
and leads to G4 activity instead. Afferent activity from G4, in
turn, activates the levator motoneurons (Figure 8B). Moreover,
recordings of afferent activity from middle legs of free walking
cockroaches already suggested that some CS are sensitive to
unloading of the middle leg were activated upon touchdown of
the neighboring hind leg (Zill et al., 2009, 2012). Using combined
motion capture, ground reaction force measurements and
parallel electromyographic (EMG recordings of the antagonist
levator/depressor muscles of the middle leg in a stick insect
(Figure 8A), Dallmann et al. (2017) showed that: (i) the
sensitivity of the G3/G4 CS is sufficiently high to sense the
torque change at the CTr joint upon unloading of the leg;
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FIGURE 8 | Load-based inter-leg coordination in an insect. (A) Experimental setup for the simultaneous measurement of kinematics, GRF and muscle activity. Side
view of an animal carrying a light-weight EMG backpack and motion capture markers (white circles) while standing on a force plate with its right middle (RM) leg just
as the right hind leg is about to touch down. (B) Graphical summary of the putative mechanism underlying the transition from swing to stance in the RM leg after
touch-down of the ipsilateral hind leg. CS groups G3 and G4 on the dorsal trochanter are highly sensitive to cuticular strains in the trochantero-femur of that leg.
G3 is activated when dorsad bending torques increase, as by loading of the leg during stance. G4 activity signals a decrease of dorsad bending, as during
unloading. Schematic of the G3/G4 reflex pathways onto coxal muscles in active animals. Broken lines indicate functional motor effects. G3 afferent activity excites
(+) the depressor, i.e., a stance muscle, and inhibits (−) the levator, i.e., a swing muscle (Zill et al., 2012). G4 afferent activity is assumed to have the opposite effect.
Unloading induced by a neighboring leg may reverse afferent activity from G3 to G4, thereby promoting the leg’s stance-to-swing transition. (C) Unloading of the
middle leg coincides with a cessation of depressor activity. CTr torque of the RM leg and simultaneously recorded activity of the levator muscle (blue) and depressor
muscle (red) of an example step. Dots above EMG traces indicate muscle spikes detected based on amplitude. TD: touch-down; LO: lift-off; tUL: time of unloading.
(D) Raster plot of detected muscle spikes aligned to tUL of the RM leg (n = 73 steps from N = 8 animals). Walking speed corresponds to the mean speed of the
center of mass during stance. The black box marks the step shown in (C). Note that the depressor activity stops at the time of unloading while levator activation
shows a considerable time delay and cannot account for the onset of unloading of the middle leg. This holds true for the entire range of walking speeds tested
(adapted from Dallmann et al., 2017, with permission).

(ii) the termination of depressor activity coincided with the time
of unloading (Figures 8C,D, pink traces); and that (iii) unloading
is not due to the onset of levator activity (Figures 8C,D, blue
traces). The latter was revealed by the finding that the levator
muscle becomes active only with considerable delay to unloading
(Figure 8D, white region between pink and blue dots). A model

of the animal in static equilibrium allowed the estimation of what
may be called the unloading efficacy of a particular leg. Strong
differences between unloading efficacy among legs revealed that
the ipsilateral hind leg is the most likely candidate for unloading
the middle leg with respect to both amplitude and timing
(Dallmann et al., 2017). These results indicate that, when a leg
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touches down on ground during walking, it effectively takes on
body load and thus unloads a specific neighboring leg. Given
that a leg can detect the unloading reliably, this can locally
trigger its transition from stance to swing, thus contributing
to temporal coordination of a specific pair of neighboring
legs. Since this mechanism of inter-segmental coordination is
mediated by the mechanical information flow, it may be a
robust, fast, and computationally cheap augmentation to neural
mechanisms involving inter-segmental interneurons. Moreover,
it is to date the only mechanism that was shown to implement
a behavioral coordination rule proposed by Cruse and Schwarze
(1988), Cruse (1990), rule 2 in Cruse et al. (1995). As it exploits
interaction forces occurring between the legs and the substrate
it is an inherently embodied, adaptive control mechanism and,
therefore, well-suited for implementation in multi-legged robots.

SPATIAL COORDINATION OF LIMBS AND
OMNIDIRECTIONAL AGILITY

Spatial Coordination of Limbs in Insects
Recent research on inter-leg coordination in animals has been
somewhat biased towards aspects of temporal coordination, to
the analysis and modeling of gaits in particular (flies: Wosnitza
et al., 2013; Isakov et al., 2016; ants: Wahl et al., 2015;
cockroach: Bender et al., 2011; Weihmann et al., 2017; stick
insect: Grabowska et al., 2012; Szczecinski et al., 2018). While
temporal coordination and its speed-dependent transitions
certainly are of general importance to our understanding of
steady-state locomotion—particularly regarding considerations
of optimality (Weihmann, 2018), it does not account for the
control of foot placement. This, however, may be of critical
importance for climbing animals. Goats and their relatives
provide for extreme examples of this, as they may even
climb trees (see Figure 1 in Delibes et al., 2017), and several
species inhabit rocky and/or alpine habitats (e.g., Lewinson
and Stefanyshyn, 2016) where slipping and falling may cause
deadly injuries. In insects, impact-induced injuries will be
less critical due to their small mass. Moreover, fast-running
insects are known to compensate for mechanical disturbances
(Jindrich and Full, 2002) through viscoelastic properties (Dudek
and Full, 2006), thus making foot-placement less important.
Nevertheless, accurate foot placement will be of behavioral
relevance whenever accurate control of limb posture and/or
efficient climbing performance will affect fitness, e.g., in foraging,
escape or camouflage behaviors.

Given the proprioceptor types of insects (Horridge, 1965;
McIver, 1985; Tuthill and Azim, 2018) and their distinct afferent
projection regions in the ventral nerve cord (Tsubouchi et al.,
2017), it is plausible to assume distinct neural circuits for
the control of force and load on the one hand (see sections
above) and the control of limb posture on the other. Moreover,
the impressive flexibility of motor behavior in insects suggests
flexible recruitment of sensory-motor feedback mechanisms as
required for a particular behavioral goal (Dürr et al., 2018).
Studies on several behavioral paradigms have shown that limb
posturemay be set by exteroceptive encoding, e.g., through vision
or touch, or by proprioceptive encoding. Examples for visual

control of limb posture range from attentive behavior such as
antennal tracking of visual objects (Honegger, 1981) to turning-
related changes in the movement direction of front legs (Dürr
and Ebeling, 2005; Rosano and Webb, 2007) and visually guided
foot placement or reaching (Niven et al., 2010, 2012) to decision-
making in climbing (Pick and Strauss, 2005). Tactually guided
foot-placement occurs in stick insects that use their front legs to
reach for a location that was touched by the ipsilateral antenna
(Schütz and Dürr, 2011). Accurate foot placement in three
dimensions through proprioceptive encoding has been shown
in freely climbing stick insects (Theunissen et al., 2014), where
foot contact locations of a trailing leg are systematically shifted
according to the last foot contact of the leading leg (for review,
see Dürr et al., 2018).

Compelling evidence that postural cues may strongly affect
or even override otherwise rhythmic mechanisms comes from
a simple experiment on the stance-to-swing transition in stick
insects. In tethered walking stick insects, a single legmay be taken
out of the stepping rhythm by placing the foot on a spatially
fixed platform, while the other five legs continue coordinated
walking. In this case, the position of the platform strongly
affects the likelihood of foot lift-off and the re-emergence of
rhythmic stepping of the sixth leg (Cruse and Epstein, 1982; see
Supplementary Video 1 of Dürr et al., 2004). Other evidence
for the relevance of postural cues in the control of stepping
comes from goal-directed turning, e.g., in jumping spiders (Land,
1972). Generally, sensory-induced state transitions in stepping
have been included in many models of inter-leg coordination in
insects (Cruse et al., 1995; Ekeberg et al., 2004) and mammals
(Ekeberg and Pearson, 2005) alike, and all of these examples
include postural effects (note that postural cues such as leg
retraction angle may co-vary strongly with cues related to
interaction force, such as the decrease of load during late stance;
see ‘‘Load-Dependent Coordination’’ section).

In insects, postural effects are particularly relevant in limb
movements that are not mechanically coupled to the movement
of other limbs, i.e., whenever the limb is not in contact with the
substrate. For example, removal of a proprioceptive hair field on
the trochanter strongly affects the height of the swing movement
during in unrestrained walking stick insects (Theunissen et al.,
2014), as well as the angular range of single-leg searching-
movements in stationary animals (Berg et al., 2013). Removal
of the same hair fields also raises the likelihood of intermittent
searching movements during free walking (Theunissen et al.,
2014). This is in line with an artificial neural network model
of ‘‘apparent sequencing’’ of swing and searching movements
(Dürr, 2001) that assumes that both movements are controlled
by the same recurrent network and that the cyclic foot trajectory
occurs whenever the swing movement is not interrupted by
ground contact (for a detailed discussion of this matter, see Dürr
et al., 2018).

Similarly, cyclic grooming of the hind wing in locusts
(Berkowitz and Laurent, 1996) can be modulated by shifting
a tactile stimulus such that the foot follows stimulus position
(Matheson, 1998). Indeed, the lack of a position-dependent
transition from one movement pattern to another (Dürr and
Matheson, 2003), the robustness of grooming position against
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changes in load (Matheson and Dürr, 2003) and the strong
effect of sensory manipulation on grooming position (Page and
Matheson, 2009) indicate that a continuum of cyclic movement
patterns, i.e., grooming at various spots on the body surface, is
under postural control.

Finally, tactually guided, targeted reaching movements of
front legs initiate climbing in stick insects (Schütz and Dürr,
2011). In conjunction with the spatial coordination of foot
placement between front and middle legs and between middle
and hind legs (Theunissen et al., 2014), there appears to be a
chain of coordinate transformations from anterior segments to
posterior limbs in stick insects. By reaching towards antennal
contact locations with the front leg and subsequently placing
middle and hind leg feet in very close locations, stick insects
appear to exploit prior knowledge of established foot contacts.
That way, spatial coordination of ipsilateral limbs can keep
locomotion efficient in a variable environment. Such transfer of
postural information from one leg to the other can be modeled
by a simple feed-forward Artificial Neural Network (ANN, Dean,
1990). This has been exploited in several versions of Walknet,
a model of decentralized control of hexapedal walking (Cruse
et al., 1995; Dürr et al., 2004; Schilling et al., 2013). Recently,
we expanded on the idea of transfer of spatial information
among limbs, including antennae and walking legs (Dürr and
Schilling, 2018). Based on a large sample of behavioral data, we
first determined the size and shape of the volume comprising
all positions that are within reach of any limb (Figure 9A). In
analogy to the psychophysics of human reaching, this volume
was termed the ‘‘peripersonal space’’ of a stick insect. A subspace
of peripersonal space was then defined as the set of all foot
positions that may be reached by at least two limbs. Within
this ‘‘affordance space’’ (Figure 9B) accurate transfer of spatial
contact information can bemodeled by sets of small feed-forward
ANNs (with neuron numbers within a physiologically realistic
range; Dürr and Schilling, 2018). With regard to the neural
representation of near-range space, these results show that a
behaviorally relevant form of representation may not require the
existence of a map-like, topological representation of external
space, but may be implemented as a simple, direct posture
mapping among pairs of limbs instead.

A second important aspect of spatial coordination in insects
concerns the thoracic joints. Whereas the three thorax segments
are firmly merged in the basic bauplan of several insect orders
(e.g., in Diptera and Hymenoptera), it is a characteristic of
some others that at least one thorax segment can be moved
relative to the others. This may be in favor of agile use
of the head in carnivorous staphylinid beetles or snakeflies
(Raphidioptera), and/or the agile use of the front legs in
mantids and mantispids. In the mentioned cases, only the
prothorax appears to be moved actively, while the winged
meso- and metathorax are firmly fixed to each other. In
contrast, several stick insect species can actively move the
meta-mesothorax joint as well (Theunissen et al., 2015). This is
likely to improve agility during climbing, e.g., by considerable
augmentation of the working range of front legs. Although
the mesothorax is very long in stick insects, movement of
the meso-methathorax joint hardly displaces the middle legs

because they are located at the rear end of the segment
and support the metathorax together with the hind legs.
Figure 9C shows how the stick insect Carausius morosus uses its
thorax joints during climbing, where the meta-mesothorax and
meso-prothorax joints (Figure 9C, green and blue, respectively)
cover mean ranges of 20–30 degrees as the animal climbs a stair
approximately three times the body height. Movement of the
mesothorax alone thus accounted for an increase of working
range of the front leg tarsus by more than 8 mm, equivalent to
about 30% of the leg length.

A third major role of spatial coordination is to control the
magnitude and direction of the force vector for propulsion,
i.e., the net force accelerating the center of mass. Since all
joints of the legs in stance are mechanically coupled in parallel
closed kinematic chains (at least when assuming no slip of
the feet), a torque generated at any joint within this parallel
set of closed kinematic chains will affect most (if not all)
of the other joints. Whereas in animals this aspect of spatial
coordination mainly concerns the efficient coordination of joint
torques and, therefore, energy requirement, in engineering it is
also a matter of avoiding high tensions that could harm the
electronic actuators.

In curve-walking insects, spatial coordination affects the
direction of the stance trajectory (Jander, 1985; Jindrich and
Full, 1999; Dürr and Ebeling, 2005; Gruhn et al., 2009) and
a modification of the spatial coordination of touch-down and
lift-off positions between leading and trailing legs (Jindrich and
Full, 1999; Ebeling and Dürr, 2006). The associated, transient
changes in gait during turning are, at least in part, a consequence
of the altered stance directions and step lengths. This view draws
support from genetic manipulation experiments on Drosophila,
showing that the proprioception of interaction forces is crucial
for maintaining course (Isakov et al., 2016).

Owing to the distinct control problems for mechanically
un-coupled swing, search and/or reaching movements as
opposed to mechanically coupled stance movements, several
modeling approaches have suggested to treat the two problems
with separate control modules (e.g., Cruse et al., 1995;
Espenschied et al., 1996). It is important to note that this
separation of swing and stance control is mainly a conceptual
one, and does not imply these control modules correspond
to distinct physiological networks (Dürr et al., 2018). For
example, early versions of the distributed neural network
controller Walknet suggested a high-pass-filtered positive-
feedback mechanism for the coordination of retraction and
depression among multiple legs in stance (Cruse et al., 1998) that
was inspired by state-dependent reflex reversal from resistance to
assistance reflexes (for review, see Pearson, 1995; Büschges and El
Manira, 1998).

From an engineering perspective, the adaptive modulation
of local reflexes has been applied very early to six-legged
(e.g., Berns et al., 1994; Ilg and Berns, 1995) and four-legged
(e.g., Albiez et al., 2003) walking machines. In particular,
the concept of local positive velocity feedback has been applied
successfully for coordinating multiple legs in stance (Schneider
et al., 2006). Based on these proofs of principle, it can be
concluded that the distributed proprioception and the adaptive
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FIGURE 9 | Spatial coordination in insects. (A) Active movements of antennae and walking legs of a stick insect delimit a volume around the body within which the
limbs may touch an object. Since this volume comprises that part of the ambient space within which motor activity, proprioceptive and tactile sensory input may
coincide, it may be called the peripersonal space of an insect. (B) Transfer of spatial contact information can work only in those parts of peripersonal space where at
least two limbs may reach the same position in space. Since for all such positions, a contact experience of one limb indicates a potential contact position on another
limb, an affordance is generated: a limb may reach a contact location on another limb. This was proposed as affordance space by Dürr and Schilling (2018). (C) Top:
schematic postures of head and thorax as a stick insect climbs a sequence of two stairs. Middle: the inclination of the metathorax changes strongly (red; plotted as a
function of metathorax position) and the head and all thorax segments move relative to each other. The head is pitched relative to the prothorax (black), the prothorax
relative to the mesothorax (blue) and the mesothorax against the metathorax (green). Gray lines indicate the instants corresponding to the schematic postures above.
Bottom: head pitch angle as a function of head position [adapted from Dürr and Schilling, 2018 (A,B; CC BY 4.0) and Theunissen et al., 2015 (C), with permission].

modulation of multiple local reflex circuits are sufficient for the
control of a multi-legged robot locomotion (Schmitz et al., 2008).
As yet, it is a complex problem, requiring either careful tuning or
autonomous learning of multiple reflex pathways.

Omnidirectional Walking in HECTOR
Walking in HECTOR is organized in a computing framework
that consists of four main software modules. The actual walking
controller module was implemented in Python 3 with some
time-critical routines like kinematics calculations and stability
checks written in C++ and integrated via Swig. The dynamics
simulation module was implemented in C++ using ODE. The
walking controller module can either be connected to the
dynamics simulation module or to a middleware module (if real
robot operation is desired), both via TCP/IP. The middleware
module (implemented in C++) translates control messages from
the walking controller module and sends the required commands
to the bus master boards in the body segments of the robot (see
Figure 5). Details of the framework and a flow chart of the overall

control sequence for walking can be found in Paskarbeit, 2017 (p.
42 and p. 124).

The walking controller of HECTOR implements distributed
control with each leg being considered a separate agent that
locally controls the alternation of stance and swing movements.
The transitions from stance to swing and vice versa are governed
by local rules acting between adjacent legs (Cruse, 1990; Cruse
et al., 1995). For reasons of robustness, however, the spatial
coordination of foot trajectories during turning is not controlled
by modulation of distributed reflex loops. Instead, the central
directional control of the whole robot is combined with the
concept of local leg coordination as illustrated in Figure 10. The
movement of the central body axis is considered (blue line in
Figure 10A). This axis runs from a point p0 between the hind
legs to a point p1 between the front legs with a center point in the
middle (Figure 10B). These points can be used as ‘‘pull points’’
at which a pull vector h can be applied to initiate movement of
the central body. By varying h, the robot may navigate into a
desired direction. The example shown in Figures 10A–C uses
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only a single pull vector h1 at the front of the robot. Knowing h1,
one can compute both the rotation angle ω and the displacement
vector d to describe the intended movement by means of a
transformation matrix. Assuming that the legs remain at their
position before the displacement but the body is shifted towards
the new positions p0

′ and p1
′ the inverse of the transformation

matrix can be applied to the foot positions of all legs on the
ground to calculate the individual leg trajectories for the next
time step of a stance movement (Figure 10C). In the current
example, constant application of pull vector h1 would move the
body of the robot as indicated in Figure 10D. As an alternative
to the explicit calculation of the inverse transformation matrix,
an internal body model as described in ‘‘Modularity and the
Decentralized Coordination of Multiple Limbs’’ section may be
used for an implicit determination of the stance movements of
each leg in the next time step. Since the pull vector h1 may be
oriented in any direction the stance movements of individual legs
need no longer be aligned with the fore-aft-axis of the robot as in
straight walking or in slight curves.

As a consequence of this framework, the swing-to-stance
transition does not take place at a specified posterior extreme
position of the leg (see PEP in Cruse et al., 1995). Instead,
the stance movement needs to be restricted in any direction
with respect to the workspace of the individual leg during
omnidirectional walking. The limit of the workspace is
formulated in terms of an unrestrictedness measure (Paskarbeit,
2017) which has been derived from the complementary concept
of restrictedness as formulated by Fielding and Dunlop (2004).
An example for such a limited area is shown in Figure 10E.
At the start position of stance, the leg conducts a stance
trajectory according to the desired movement of the central
body as described above. The course and curvature of the stance
trajectory is extrapolated beyond the current position to yield a
test point in each control cycle. The test point is then checked
for its unrestrictedness value: if the value lies below zero, a
swing movement may be elicited, otherwise the leg remains
in stance. The target position of a swing movement is set to
the intersection point where the backward extension of the
last stance trajectory, laid out from a home position of the
leg, crosses the unrestrictedness boundary (Figure 10F). This
ensures that the leg can continue the last stance movement
after touch-down.

The boundary for each leg results from a projection of
a volumetric representation of unrestrictedness. The basic
unrestrictedness measure is a scalar value that ranges from
zero to one. Any volume in the workspace of a leg which
has unrestrictedness values within this numeric interval can be
reached by the leg. If a point in space has an unrestrictedness
value below zero, it is restricted by definition and should not be
entered by the leg. Hence, this can serve as a trigger for a stance-
to-swing transition. Note that the conditional definition of the
unrestrictedness volume is similar to the affordance volume
described in conjunction with Figure 9B, except that there the
boundary depends on a condition involving two legs, not just
one. Indeed, unrestrictedness values can be described for various
aspects of a leg that could potentially restrict leg movement.
Figure 11 shows three examples for the left middle leg of

HECTOR: the joint angle unrestrictedness uαβγ (Figure 11A),
the singularity unrestrictedness us (Figure 11B) and the torque
unrestrictedness uτ (Figure 11C). Since the values run between
zero and one, multiple unrestrictedness values can be combined
by computing the product (see Figure 11D). In different walking
situations, different kinds of unrestrictedness measures may be
considered. For instance, the torque unrestrictedness may be
neglected during a swing movement, whereas in stance the
torque limits of the drives must be maintained. A further
useful unrestrictedness measure is the smallest distance between
the geometric envelopes of two adjacent legs. As suggested
by Figures 11E,F, this may be used to tell collision from
non-collision constellations among legs.

Example trajectories of HECTOR’s body segments during
curve walking based on this control approach are shown in
Figure 13E with the respective podogram in Figure 13F.
Here, it becomes evident, that regular gait patterns are
exceptions in walking situations with constant heading, speed
and environmental conditions. A fixed gait pattern during curve
walking is neither necessary in insect walking (Figures 13A,B),
nor in robotic walking with moveable body segment joints
(Figures 13C,D) or in the control case discussed above
(Figures 13E,F).

MODULARITY AND THE DECENTRALIZED
COORDINATION OF MULTIPLE LIMBS

Modularity of Insect Motor Control
Despite the importance of central brain structures such as the
Central Complex for the selection, control and maintenance
of heading (e.g., Strauss, 2002; Neuser et al., 2008; Seelig
and Jayaraman, 2013; see also ‘‘Conclusions’’ section), and the
significance of small sets of descending interneurons for specific
behaviors such as sensory-induced turning (e.g., Zorovíc and
Hedwig, 2013), backward walking (Bidaye et al., 2014) or landing
(Ache et al., 2019; for review, see Bidaye et al., 2017), the control
of locomotion in insects is highly decentralized. For example,
there is no single region or network that governs the execution of
a particular gait. Rather, step cycle parameters such as duty factor
or stance duration vary continuously with velocity, resulting
in a continuum of gaits (for review, see Dürr et al., 2018).
Accordingly, there appear to be several network ‘‘modules’’ that
interact to give rise to the overall behavior. Anatomically, the
modularity of motor control networks in insects is reflected
already by the segmental architecture of the CNS, with the
ventral nerve cord comprising one ganglion per body segment,
connected by nerves that may cover distances of up to several
millimeters between the thoracic ganglia (note that thoracic
ganglia are fused in more derived taxa such as flies). Each one
of the thoracic ganglia contains the complete set of motoneurons
that drive the two legs of the corresponding thorax segment.

As a result of pharmacological activation studies, each
thoracic ganglion is thought to comprise distinct neural
oscillator circuits for different leg joints, thus forming the
basis of alternating activity of antagonistic muscles acting
on the same joint (Bässler and Büschges, 1998). In stick
insects, pharmacological activation appears to induce only
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FIGURE 10 | Spatial coordination in HECTOR. To direct the robot into a desired direction, two “pull points” may be used. (A) The two pull points, p0 and p1 are
defined on the virtual body midline (blue circles). Foot positions are shown as red dots. (B) Concept for the computation of the rotation angle ω and the displacement
vector d. Based on these two values, a transformation matrix can be constructed. The inverse of this matrix is applied to the leg tips in order to calculate the leg
trajectories for the next time step which is shown in (C). Panel (D) indicates the movement of the pull points and the robot midline for a sequence of transformations.
(E) During the resulting stance movement of a single foot on the ground, the leg must not leave its physically limited working area. In HECTOR this limit is formulated
in terms of an unrestrictedness measure. For an ongoing stance movement, the current trajectory is extrapolated beyond the current position, yielding a test point
that is checked for its unrestrictedness value. If this value lies below zero, a swing movement is elicited. (F) The target of the swing movement is set to a point on the
unrestrictedness boundary. It is the intersection point with the backward extension of the current robot movement (red dotted line, attached to the home position of
the leg). Instead of explicit transformation matrices, the internal body model may be used as well to estimate the respective movements of the feet.

little coordination of oscillatory activity among different
leg joints (e.g., Büschges et al., 1995), whereas persistent
coupling among leg joints has been reported for other insects
(e.g., Ryckebusch and Laurent, 1993). Similarly,
pharmacologically induced rhythmic antennal movements
in stick insects show the same pattern of inter-joint coupling
if proprioceptive feedback is still present (Krause et al., 2013).
Although the neural components of the local oscillator networks
in the walking system of insects remain elusive until today,
the idea of coupled oscillators can be applied successfully in
modeling of rhythmic intra-leg (e.g., Daun-Gruhn and Tóth,
2011) and inter-leg coordination (e.g., Tóth et al., 2015).
As yet, only modeling approaches that emphasize sensory
coupling between joints (Ekeberg et al., 2004) and between legs
(Szczecinski et al., 2014, 2017) in addition to central oscillator
activity can account for insect-like motor flexibility (Dürr
et al., 2018). Correspondingly, several robotic approaches that
were based on coupled oscillator networks have used sensory
input for switching between distinct states in motor behavior
(e.g., Ijspeert et al., 2007) or the entrainment of coordinated

limb-movements (Owaki et al., 2013) over a range of walking
speeds (Owaki and Ishiguro, 2017).

Owing to the distributed and de-centralized organization of
proprioception (see ‘‘Distributed Proprioception of Posture’’ and
‘‘Load and Ground Contact and Load-Dependent Coordination’’
sections), inclusion of any proprioceptive feedback adds a
‘‘degree of de-centralization.’’ A purely proprioceptive-feedback
driven and, thus, strictly de-centralized approach in themodeling
of insect locomotion is Walknet (Cruse et al., 1998; Schilling
et al., 2013). This distributed Artificial Neural Network controller
implements behaviorally derived rules of inter-leg coordination
(Cruse, 1990). To do so, it strictly separates the control of
mechanically coupled as opposed to mechanically uncoupled
limb movements (Dürr et al., 2004). As a consequence,
mechanically uncoupled swing or search movements purely
rely on postural feedback (three joint angles per leg, see also
‘‘Spatial Coordination of Limbs in Insects’’ section), whereas
mechanically coupled movements are governed by ground
contact (postural information is used too, but ground contact
causes a switch between control modes). Since Walknet is a
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FIGURE 11 | The unrestrictedness measure in HECTOR. Volumetric representation of unrestricedness values for the left middle leg of HECTOR. The horizontal
slices are set at distances of 0.1 m in z-direction. Panel (A) shows the joint angle unrestrictedness. Black and red contour lines are given for α-angles of 0 and ±

1 rad. (B,C) The singularity unrestrictedness (B) and the torque unrestrictedness (C) for a vertically directed gravity vector. (D) Combination (product) of the three
unrestrictednes measures of (A–C). Any unrestrictedness value larger than 0 indicates a position which can be reached safely. Panels (E,F) show a non-collision and
a collision situation between two neighboring legs, respectively. The distance between the enveloping geometric primitives can also be used for a further
unrestrictedness measure.

kinematic controller, it does not consider interaction forces.
In analogy to the considerations of load-dependent inter-leg
coordination (see ‘‘Load-Dependent Coordination’’ section),
a ground contact signal may be considered a binarized

version of an interaction force signal (for further discussion,
see Dürr et al., 2018).

Given the considerations about spatial coordination of
multiple legs in stance (‘‘Spatial Coordination of Limbs in
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FIGURE 12 | Hierarchical internal body model. (A) The body model comprises a body level network (blue) and six subordinate leg level networks (green). Left: the
body level network controls the six leg vectors, l0 to l5, and the three main body segment vectors, s0 to s2. Right: each one of the six leg level networks controls a leg
with three joints and segments. The two levels are inter-connected via the shared representation of the leg vector (white arrow) (adapted from Schilling and Cruse,
2012, CC BY 4.0). (B) Higher level of the internal body model. Arrows show all constituting vectors that are used to construct the local equations and relationships
used to set up an Mean of Multiple Computations (MMC) network for the control of HECTOR. (C,D) One specific walking situation of a tripod gait, with the left front
and hind leg on the ground together with the RM leg (with and without the underlying robot schematic). During the control of stance only those leg vectors are
considered that are interacting with the ground, thus potentially contributing to propulsion, balance and steering. Legs that are currently in swing are suppressed
within the body model (adapted from Schilling et al., 2012, © 2012 IEEE).

Insects’’ section), we propose that sensory information about
ground contact or substrate engagement determines the control
mode of a given leg. However, as an alternative to the two
control schemes of the stance movement discussed earlier,
i.e., state-dependent modulation of proprioceptive reflexes and
the inverse-kinematics approach described in conjunction with
Figure 12A, we introduced an internal, hierarchical body model
that can coordinate themovement of all joints which are part of at
least one closed kinematic chain. The hierarchicalmodel has been
introduced for the control of six-legged walking on flat terrain
in dynamic simulation, including negotiating curves (Schilling
et al., 2012). This model captured movements of the robot body
in two dimensions, only. The model was extended and applied
to have the robot HECTOR to climb stairs and to walk across
rubble (Paskarbeit et al., 2015). The extension uses a singular-

value decomposition approach to control the height of the body
(and leg bases) over ground, thus relieving the constraint to
two dimensions.

The hierarchical body model approach follows the idea of
the passive motion paradigm (Mussa-Ivaldi et al., 1988). It is
realized as a recurrent neural network that implements the
Mean of Multiple Computations (MMC) principle that allows the
combined solution of forward and inverse kinematics problems
(Steinkühler and Cruse, 1998; Schilling, 2011). MMC networks
implement a redundant set of kinematic equations, where each
equation describes the triangular geometry of one part of the leg
or body. As such, an MMC network maintains the decentralized
and modular nature of motor control despite the fact that all
equations and, thus, all partial kinematic problems are solved
in conjunction by iterating a recurrent neural network. In the
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FIGURE 13 | Curve walking in stick insects and HECTOR with and without a body model. (A) Sequence of a free walking, blindfolded stick insect on a horizontal
plane. Black line segments and red dots show body axis and head every 200 ms (duration: 106 s; median speed was 35 mm/s at the beginning and 25 mm/s at the
end). Bold blue line labels the part shown in the podogram. (B) Podogram with black lines showing stance episodes of all six legs (L1 to L3: left front to hind legs;
R1 to R3: right front to hind legs) and corresponding yaw rotation of the body axis. Blue lines show median rotational velocity per 60 ms window (thin dark blue) and
per 1 s window (thick light blue). (C) Snapshots of the simulated HECTOR turning to the right using the internal body model of Figure 12. The internal body model
was constantly pulled to the front and the right. Snapshots show one body posture per second and four leg postures per second (Figure 8B from Schilling et al.,
2013, CC BY 4.0). (D) Podogram of the complete run shown corresponds to a turn of about 180◦. The lower bar corresponds to 5 s of real time, or 500 iterations of
the simulation time (adapted from Figure 7 from Schilling et al., 2013; CC BY 4.0). (E,F) Trajectories (E) and corresponding podogram (F) of the HECTOR simulation
using the restrictedness measure as described in Figure 10, but not the body model. Red, green and blue lines in (E) show trajectories of the hind, middle and front
segment, respectively. Gray arrow shows the pull vector.

following, the basic characteristics of the model will be explained
in order to address how this integrates into the embodied
control approach.

A Hierarchical but Decentralized Body
Model Based on the MMC Approach
A key principle of an MMC network is that the kinematics
constrain the attractor space of the recurrent neural network.
Because of these constraints, the activation of the network always
corresponds to a correct spatial configuration—or posture—of
the modeled body. In a multi-legged agent, considering all
possible interactions between the joints that are mechanically
coupled at any given instant in time poses a computational
problem: the computational effort increases exponentially with

the number of joints. In order to reduce the computational
complexity of the problem, we proposed a hierarchical body
model that allows the distribution of the computational task on
two levels (Figure 12A). In this scheme, the lower ‘‘leg level’’
comprises the detailed kinematics of a given leg (green panels
in Figure 12A). The higher level or ‘‘body level’’ (blue panel
in Figure 12A) comprises the description of the main body
segments. In case of HECTOR, the body level comprises the
three thorax segments and their relations to the subordinate
instantiations of multiple legs. At the body level, there is
no detailed information about leg joints. Instead, the leg is
represented as a three-dimensional vector that captures the leg’s
contribution to support the body. In Figure 12A, this is shown
by vectors connecting the main body segments (s0 to s2) to the
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feet of the six legs (l0 to l5), i.e., the ground contact locations. The
two levels are connected through shared representations that are
present on both levels. This is indicated by the white arrow in
Figure 12A. Essentially, this leg target vector ‘‘summarizes’’ the
kinematics of the entire leg while, at the body level, it may be
regarded as the desired relation between the body and substrate.

On the leg level of the MMC model, each leg is described by
a set of three joints and three segments, corresponding to the
coxa, trochantero-femur and tibia of an insect leg. As shown in
Figure 12A, each leg is described by a kinematic chain with a
single degree of freedom per joint, where the α joint sets the
orientation of the leg plane, while the β and γ joints move the
foot within this leg plane. In HECTOR, as in the stick insect
(Figure 3A), the joint axis of the α joint is slanted, causing a
change in pronation/supination of the leg plane as the leg is
retracted/protracted (see Theunissen et al., 2015; for time courses
of this pronation/supination angle, and Dallmann et al., 2016;
for consequences on individual joint torque contributions to
propulsion and body support).

Other than standard approaches to inverse and forward
kinematics of manipulators MMC networks do not suffer the
problem of singularities that may prevent finding a suitable
and unique solution for the inverse kinematics problem (for
details, see Schilling, 2011). This is because for each triangular
relation within the MMC network the optimal solution is
easily computable. Moreover, multiple equations (one for each
triangular relation) contribute to the convergence properties of
an MMC network, thus exploiting a redundant description of
the body kinematics for computing a mean solution (hence the
acronymMMC forMean of Multiple Computations).

In the hierarchical structure shown in Figure 12A, the body
and leg levels share the description of the foot positions. At the leg
level, this is achieved by describing the posture simultaneously
and equivalently by a set of joint angles and by Cartesian
coordinates of the foot position relative to the body (along with
some mediating diagonal variables). At the body level, each leg
with ground contact and all body segments are represented by
a vector encoding the foot position. The body model is used
differently in the control of swing and stance. As a consequence,
only the legs that potentially contribute to propulsion, balance
and steering through body-substrate interactions are considered
at the upper level of the body model. With regard to the
legs in swing, all corresponding equations within the MMC
network are disregarded, as if being inhibited. As a result, the
equations concerning legs in swing are not taking part in the
multiple computations that will determine the posture at the next
time step. For example, Figures 12C,D show a typical posture
of HECTOR occurring in a tripod gait: only three legs have
ground contact at this instant, and only the corresponding
three-leg vectors can be used to compute the motion of the
parallel closed kinematic chains formed by body, legs and
substrate. For determining the posture of the next instant in
time, the MMC network implements all possible combinations
of connected leg segment vectors, along with additional diagonal
vectors describing the interaction of the legs via the substrate
(Figure 12B). From these, only the vectors shown in Figure 12C
are ‘‘active’’ during a tripod stance episode. Much like described

for the computations at the leg level, each variable can be
computed inmultiple ways, using a set of kinematic relations (for
details on how to set up these equations, see Schilling et al., 2012).

Controlling Multiple, Mechanically Coupled
Limbs Through a Body Model
Much like what has been described in conjunction with
Figure 12A, the control of stance is induced by a passive
movement of the front end, as if pulling the body into a
given direction. Owing to the recurrent structure of the MMC
network, this disturbance of the body model network propagates
to all variables contained in the equations for the connected
segments. Most notably, this includes all foot positions of the
legs in stance. As a result, these variables are adjusted in a way,
which complements the enforced movement. Moreover, as foot
positions are shared by the body level and the leg level, the
induced changes ‘‘spread’’ down into the leg level networks so
as to adjust the variables of individual legs. As a consequence,
all joint angles of the closed kinematic chains are adjusted
in a cooperative way, supporting the overall body movement.
The procedure of making these adjustments lasts for multiple
iterations, as the network converges into a stable state. Then the
resulting leg and segment vectors can be applied to control the
actuators. The main difference between the concepts illustrated
in Figures 10, 12 concerns the consideration of postural safety in
Figure 10, and the simultaneous iteration of all posture control
variables in Figure 12.

The body level allows for continuous changes of body
orientation. In our simulations and on the robot HECTOR we
found that already a single iteration step of the body level is
sufficient to come upwith good approximations for all leg vectors
concerned. When the body level has converged to a particular leg
vector, this leg vector serves as an input to the leg level network
(Figure 12A, see dashed arrow from left to right connecting the
higher with the lower level) ensuing subsequent iterations of
these networks and converging to a suitable set of joint angles.
In the opposite direction, sensory information acquired by a leg
may be used to update the model continuously, thus integrating
additional sensory information (Schilling et al., 2012).

The internal body model has been successfully implemented
in simulation and on HECTOR. Using dynamic simulations,
we first tested the body model in curve walking (Figure 13B;
Schilling et al., 2012). It allowed HECTOR to navigate quite
narrow curves, with markedly prolonged stance movements of
the inner hind leg (R3 in Figure 13B) much like those reported
for visually induced tight turns of tethered walking stick insects
(Dürr and Ebeling, 2005). When walking slight curves, stick
insects show much less asymmetry between inner and outer
leg stance durations (Figure 13A) but this strongly increases
with increasing curvature of the walked path. As the model
simulation was pulled at the front and forced into tight curves,
the body level came up with the complementing leg target vectors
while exploiting the two inter-segmental drives of HECTOR (see
Figure 5). The results suggested that the body model can be used
for simultaneous active control of the inter-segmental drives and
all legs on ground, allowing for complementary contributions
in the negotiation of tight curves. During these simulations, the
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leg level networks provided robust and stable solutions to the
inverse kinematics problems posed by the foot position vector
input from the body level. Following the successful application in
simulation, the body model has been used on the physical robot
as well. There, it has been extended for situations on uneven and
rough terrain through a mechanism that adapts the control of
body height (Paskarbeit et al., 2015).

Internal Simulation of Movements and
Planning
During its use in the control of stance, the body model essentially
serves as a dynamic internal representation of body postures. Its
convergence properties allow the flexible use of the same body
model to generate appropriate reactive movements to a number
of different types of disturbances (e.g., inducing a turn or a
change in body clearance). When decoupling the body model
from the actual joint drives, the same dynamic internal body
model may also be used for movement prediction and planning.
Recently, we applied it as an internal simulator to forecast the
consequences of different alternative behaviors as a form of
planning ahead (Schilling and Cruse, 2017). In this series of
simulations, the model served a dual purpose, exploiting its full
flexibility in motor control and planning. Besides its application
for the control of multiple limbs in stance, as described above,
the predictive capabilities of the system were used whenever the
system ran into a novel, problematic situation. In a form of trial-
and-error search, it was used to test possible behaviors, providing
an estimate of their outcomes. These estimates allowed to decide
whether the chosen behavior would lead to instability or else
might help to overcome the problematic situation. Only if the
internal simulation proved successful, the internally simulated
behavior was applied to the actuators of the system (Schilling
and Cruse, 2017). This shows how an embodied internal model
may be grounded in lower-level motor control and can be used
flexibly for a cognitive task such as planning ahead (Cruse and
Schilling, 2016).

INTERNAL MODELS FOR BODY-SIZE
LEARNING

The relation between the body and the brain is a crucial aspect
of embodied robotics (e.g., Nabeshima et al., 2005; Pfeifer
et al., 2007). Modern robotic systems are often requested to
be very versatile and may even be designed in a completely
reconfigurable way. To deal with such complexity, there is a
growing demand for simple techniques that allow a robot to
autonomously learn the capability of its body without human
intervention (Sturm et al., 2008). The MMC model outlined in
‘‘Modularity and the Decentralized Coordination of Multiple
Limbs’’ section is based on a predefined set of kinematic
equations that is not subject to adaptation or learning at run-
time. As a geometric sensory-motor representation of the body,
it serves as a body model under the assumption of no growth or
damage. In the following section we will consider the plastic use
of such an internal body representation in a life-long memory of
Drosophila melanogaster, implementing a simple form of body

model based on recent experimental findings (Krause, 2015;
Krause et al., 2019).

Biological Evidence on Body-Size Learning
in Flies
Walking fruit flies can visually estimate the width of a gap
in their walkway and engage in energy-consuming climbing
behavior only when they see a chance to surmount the chasm
(Pick and Strauss, 2005). Since the body size of adult fruit flies
depends in part on environmental factors like food quality and
temperature during larval stages, there can be considerable size
variation among flies of the same genetic background. Therefore,
an adaptation process is needed after hatching from the pupal
case so that each fly can learn about its own body size. Indeed,
visually deprived flies—both freshly hatched flies (Kienitz, 2010)
and flies reared in a featureless environment (Krause, 2015)—try
to surmount insurmountably wide gaps, whereas flies kept in
structured environments with light later take decisions adapted
to their body size (Krause et al., 2019).

Experienced small flies abandon attempts on gaps that their
larger siblings from the same vials still attempt to climb. The
default state of freshly hatched flies before calibrating their size
memory is ‘‘very large.’’ They calibrate their body-size estimate
to their actual body size by gathering visual feed-back from
the retinal images of contrast edges during normal locomotion
(parallax motion). The act of physically climbing across gaps
is not required for this calibration process. Neurogenetic
manipulation revealed that body-size learning requires the
cAMP cascade. Learning mutants of the cAMP cascade do not
adapt to their individual size. Instead, they try to overcome
chasms, which are clearly impossible to cross. Mutant analysis
and differential rescue experiments via the GAL4/UAS-system
revealed that the information is stored in projection systems
of the protocerebral bridge (PB) of the central complex (CX,
Figure 14A). Furthermore, we have identified the biochemical
learning cascade for this life-long body size memory, but the
neural circuitry remains to be determined.

A Computational Model for Body-Size
Learning
To simulate the neurobiological findings on gap-climbing
Drosophila melanogaster flies, we developed a spiking neural
network model for body-size learning using parallax-motion
information. The model has been implemented and evaluated in
a dynamic simulation of HECTOR navigating through a multi-
chamber environment. HECTOR has a number of properties that
make it a perfect platform for implementing cognitive functions
that require embodiment with distributed, multimodal sensory
information. One can make use of the embedded distributed
sensory system consisting of six pressure sensors located in the
tip of each leg, a complete inertial module on the main body
and an omnidirectional vision system used to extract the relevant
information from the objects located in the environment.

Following the neural structure of the fly brain, the relevant
neural assemblies that constitute the Central Complex model
are shown in Figure 14A. A neuronal lattice captures the
essence of the visual system and is used to acquire spatial
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FIGURE 14 | Navigation control structure inspired by the Drosophila Central Complex. (A) Block scheme of the control structure. The visual system transfers
information to the protocerebral bridge (PB) that is involved in body-size learning. The fan-shaped body (FB) participates in visual learning and orientation control
whereas the ellipsoid body (EB) is in charge of spatial memory formation. (B) Scheme of the network devoted to learning whether an object is reachable within a
certain number of steps and whether it is traversable depending on the acquired visual inputs. The green boxes represent simple mathematical transformations,
whereas the blue circles represent spiking neurons. The learning process is performed at the level of the output neurons (red boxes). (C) Scheme of the angular
positions acquired by the visual system as the robot moves forward from point (A) to point (B). The object of interest is a gate where different points of interest are
detected. Different angles are acquired from the visual system to be processed by the network in (B) (adapted by permission from Patané et al., 2018 © 2018).

information about angular directions of the objects of interest
and the heading of the robot. This visual information is
transferred to the PB and the Fan-shaped Body (FB), which
extract the where and what for heading control and visual
learning, respectively. Moreover, it is mediated to the Ellipsoid
Body (EB) for the formation of spatial memory (Neuser et al.,
2008; Kuntz et al., 2017). Previous studies have tested this
model design in the context of direction control, spatial memory
and other capabilities (Soto et al., 2009; Arena et al., 2013b).
Here, we report its extension to include the formation of
body-size knowledge.

Within the dynamic simulation environment, the robot
walks around and detects the position of visible objects of
interest. The angular position of an object is acquired through
a uniformly distributed ring of neurons that have a one-
to-one match with the ommatidia of the eye (about 4.8◦

opening angle each) distributed in a range of about 300◦.
The output of the stimulated neuron is modulated with a
post-synaptic weight that corresponds to the sinusoidal function
of the angular position of the neuron. After forward motion
from point A to B as shown in Figure 14C (equivalent
to four robot steps in the experiments described here), the

robot evaluates the new angular position of the object of
interest. This second acquisition is used to estimate the distance
between the robot and the object through parallax, i.e., the
angular difference in the position of the same object from two
different viewpoints.

The distance between the robot and the object is directly
proportional to the distance traveled during the parallax-motion
estimation, and the coefficient of proportionality depends on the
initial acquired angle and its variation when acquired afterward.
Starting from this mathematical formulation, a spiking neural
network has been designed and implemented to yield similar
results (Arena et al., 2013a). A block scheme of the proposed
model is shown in Figure 14B. The information about object
position acquired in two different time steps is discretized and
weighted. An array of Class I Izhikevich neurons (Izhikevich,
2004) is then used to evaluate the ratio between the two acquired
sinusoidally modulated inputs.

An array of synaptic gains is used to find the correct match:
in the end, excitatory inputs should compensate the inhibitory
ones in order to allow the neuron to fire. A bias current was
added, making each neuron able to fire with aminimal additional
input current. A series of time delays (τi) was included to
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evaluate the neuronal responses in sequence. Each neuron is
connected with the others through inhibitory synapses forming
a winner-takes-all network topology. The first active neuron
(i.e., winning neuron) strongly inhibits the others and produces
an output that is proportional to its corresponding gain factor.
Assuming that the system knows the distance traveled between
the two instants of acquisition (e.g., in terms of number of
steps), the outcome of the first part of the network is a signal
that is proportional to the estimated object distance. The last
processing stage consists of an output neuron that is subject
to a threshold adaptation learning process. Depending on an
internally generated reward signal, the threshold level is adapted
to either facilitate or reduce the spike rate of the neuron.
Threshold adaptation can be considered a consequence of the
nonlinearities present in the membrane dynamics of a neuron
(Izhikevich, 2004). The threshold adaptation process can be
modeled as a voltage-dependent current that is introduced as an
additional input to the decision neuron. It can be expressed as
IA = −gA∗VTh, defining gA as an activation conductance and
VTh as a dynamic threshold that is being learned. The current
can be modified to hyperpolarize or depolarize neurons. The
output neuron thus acts as a gate: its firing indicates that an object
is reachable, whereas a silent state corresponds to unreachable
ones. Therefore, the decision neuron will provide a prediction of
reachability or unreachability that has to be verified by the robot.

At the beginning of an experiment, every object is assumed to
be reachable, and in each trial, the robot walks towards a selected
target. A reward is generated if the object can be reached within
twelve steps. This distance may be considered the maximum
energy or time available to fulfil the task. The threshold is then
modified depending on the coherence between the reinforcement
signal and the internal prediction that is provided by the
network. If the prediction is correct, the threshold VTh remains
unchanged. Otherwise, if the robot’s assumption of reachability
(or unreachability) is not confirmed during the approach, the
threshold VTh is increased (or decreased) by a value ∆VTh so as
to hyperpolarize (or depolarize) the output neuron accordingly.
As the entity of the threshold variation represents a compromise
between the speed of the learning process and the precision
required, the learning phase will end as soon as the threshold
value reaches a steady state condition.

Further details on the mathematical description of the
network and learning process can also be retrieved in Arena
et al. (2013a, 2018), where the proposed network was applied
to learn the reachability space in roving and walking robots.
In applying this control structure to HECTOR, we adopted
the same paradigm for the network structure and the learning
algorithm. Through acquiring further sensory information from
the visual system, body size learning could be extended to include
additional capabilities, allowing the robot to estimate not only
the distance of an object but also its height and the width
through the selection of points of interest (e.g., center of mass,
vertex and others). This was exploited in the experimental test
of body-size learning, where the size of gates had to be judged
depending on the learned body size (Figure 14C). The scenario
of the simulated environment is shown in Figure 15A. It consists
of four rooms that are connected by gates of different sizes.

At the beginning of the learning phase, the robot was placed
in one of these rooms and started to evaluate the estimated
distance, height and width of the gates through parallax motion.
In a sequence of approaches, the robot first chooses a particular
gate at random and then tries to traverse it. Depending on the
success of the approach, a reward signal is triggered to adapt the
threshold VTh of the output neuron accordingly, thereby tuning
the internal body-size representation. Traversable passages were
placed between two adjacent rooms, while all the other gates were
too small to be used. Therefore, the robot was confined to the four
rooms (Figure 15A) while allowing for continuous, autonomous
learning. Figures 15B,C show a typical walking trajectory of the
robot while exploring the environment.

Since the distance of the robot to the gates varies, the
robot opts for different behavioral choices depending on the
capabilities of its own body. Figure 15D shows the percentages
of selected behaviors depending on the real distance between
the robot and the gate. It can be noticed that for low distance
values the chosen behavior is an attempt to reach the gate, and
the result matches the hypothesis. For distances longer than
the reachability threshold, the robot performs a correct give-up
(i.e., a change of ‘‘interest’’ in favor of other objects), whereas
in the intermediate region, next to the critical distance value,
a series of unsuccessful attempts and incorrect give-ups are
performed in accord withDrosophila experiments (Krause, 2015;
Krause et al., 2019).

When the learning process of the output-neuron threshold
converges to a stable solution, the robot can use the learned
body-size model in the decision-making process. The robot
is now capable of identifying gates that can be reached and
traversed without getting stuck in a passage that is too narrow
to pass. The trajectory performed by the robot at the end of the
learning phase is shown in Figure 15C. After learning, attempts
to pass through not traversable gates are absent.

To evaluate how the body-size knowledge is related to the
actual robot size, the simulated HECTOR robot was modified by
shortening the tibia of each leg, thus reducing the ‘‘reachability
threshold’’ for a given number of steps. This was done for
both a 10% and 30% length reduction of the tibia. The results
are shown in Figure 15E, indicating that each robot learns
different body-size models, according to the leg length and the
corresponding reachability threshold. The maximum number
of unsuccessful attempts differs according to the reachability
threshold, such that the distribution peaks of the robots with
shortened tibiae occurred at shorter distances. In summary, we
could show that a spiking neural network model inspired by the
Drosophila central complex can learn the body size of the robot
through interaction with the environment, and in particular by
comparing self-generated estimates of working range with the
actual behavioral performance.

CONCLUSIONS

The sections ‘‘Muscles and Compliant Actuation,’’ ‘‘Distributed
Proprioception of Posture and Load,’’ ‘‘Ground Contact
and Load-Dependent Coordination,’’ ‘‘Spatial Coordination of
Limbs and Omnidirectional Agility,’’ and ‘‘Modularity and the
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FIGURE 15 | Demonstration of body-size learning. (A) The simulation environment consists of four rooms, each one containing three potential passages of different
width and height. Each room is 10 × 10 m2, the gates facing outside are too small to be passed (width: 0.6–0.8 m, height: 0.3–0.4 m) whereas the other gates are
large enough (width: 1.5–2.4 m, height: 0.7–1.0 m). (B) Trajectory walked by the simulated robot while exploring the environment during the learning phase. During
the learning phase, the robot acquires the knowledge needed for the formation of the internal body-size model. (C) Trajectory walked by the robot during the test
phase. The body-size model is now used to select and pass the suitable gates while avoiding the others. (D) Distribution of the possible behavioral choices made on
the basis of the distance output neuron. When the traveled distance is next to the maximum reachable value (i.e. 12 steps) the robot, as in the biological counterpart,
can either try to attempt unsuccessfully or to give up incorrectly. (E) Comparison between the unsuccessful attempts in three simulations, where the HECTOR model
was changed by reducing the tibia segment by 10% (red) and 30% (blue).

Decentralized Coordination of Multiple Limbs’’ provided an
overview of the potential for integration of multiple lines of
research on a common robotic research platform for biomimetic
motor behavior, ranging from compliant actuation to cognitive
functions. It has been proposed in the past that the goal
of biomimetic robots is to ‘‘take inspiration from biological
principles to design robots that match the agility of animals,
and to use robots as scientific tools to investigate animal
adaptive behavior’’ (Ijspeert, 2014). Here, we argue that a further,
equally important goal is to collate and combine biomimetics
research on disparate and conceptually disjunct research areas in
the neurosciences and engineering sciences in order to integrate
insights and concepts on a common platform. An important step
in this direction was initiated with the iCub platform of the Italian
Institute of Technology, that was introduced as an open platform
for research on cognitive robotics, the role of embodiment
for cognitive functions in particular (Metta et al., 2008, 2010).
Regarding shared research on robot locomotion, a similarly
prominent initiative was centered around the quadruped walking
robot LittleDog of the company Boston Dynamics. Much like
iCub, LittleDog was used by a number of labs to conduct
research on the same platform (Murphy et al., 2010). In
both of these cases, the research was mainly focusing on
computer science topics in cognitive robotics (in case of iCub)
or robust controller software for adaptive locomotion (in case
of LittleDog). Arguably, the outcome of these very successful

research networks was mainly in engineering (e.g., cognitive
robotics, robot control).

In the case of the hexapod walking robot HECTOR, three
properties proved to be particularly important for integrative
research. The first of these properties is the highly decentralized
hardware architecture (Figure 5) that allows to read out and
combine a large number of measurements from different clients
(‘‘Distributed Proprioception in HECTOR’’ section). In the
examples provided above, these include 18 sensorised actuators
with twelve sensor readings per motor (‘‘The Compliant Joint
Drives of HECTOR’’ section), up to three strain sensor clients
(‘‘Distributed Proprioception in HECTOR’’ section) and one
multi-taxel foot tip (‘‘Multi-Taxel Touch Sensor for HECTOR
Foot’’ section) per leg. Together with the second property, the
room for additional components inside the exoskeleton (see
Figure 1D), the decentralized hardware architecture allowed
inclusion of a hardware-accelerated vision system (Meyer et al.,
2016) or the use of the prothorax segment as a ‘‘head unit’’
hosting a visuo-tactile system. Finally, the availability of a
dynamic simulation environment for HECTOR has allowed
researchers from different labs to develop and test components
while simulating the use of HECTOR’s hardware properties.
To this end, we have concentrated on research regarding three
overarching topics in biomimetic locomotion: (i) the particular
significance of distributed load sensing; (ii) the emergence of
gaits from local coordination rules (or constraints); and (iii) the
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formation and exploitation of internal representations of body
posture and size.

Load vs. Posture
Three essential variables need to be controlled in legged
locomotion: propulsion, stability and heading. All three of
these control variables concern the appropriate acceleration
of the center of mass (CoM), which, in turn, implies the
generation of appropriate forces and torques causing the desired
acceleration. Given the physical limitations of the body and its
legs, propulsion, stability and heading can only be maintained
through coordinated interaction of the limbs with the substrate.
At first sight, monitoring the force/torque distribution across
the joints of the limbs, and particularly the interaction forces
acting on the feet appears to be the most direct way of
controlling CoM accelerations. As yet, the effect of a change
in torque at a particular joint drive on the CoM can be
predicted only, if: (i) the posture of the limb that contains this
particular drive is known; (ii) foot contact is sufficiently firm
to transmit forces to the substrate without slip; and (iii) all
other legs in ground contact give way appropriately in order
not to counteract the intended effect. As a consequence, any
controller that is to coordinate the movement of multiple legs
during stance has to take account of the current body posture.
In HECTOR, the measurement of individual joint torques is
possible (‘‘The Compliant Joint Drives of HECTOR’’ section).
The three conditions for estimating effects of single drive torques
on the CoM can be met by: (i) joint angle readings from the
joint drives (‘‘The Compliant Joint Drives of HECTOR’’ section)
and/or the use of a kinematic internal body model (‘‘Controlling
Multiple, Mechanically Coupled Limbs Through a Body Model’’
section); by (ii) monitoring interaction forces with a multi-taxel
foot tip sensor (‘‘Multi-Taxel Touch Sensor for HECTOR Foot’’
section); and by (iii) monitoring strain forces on leg segments
(‘‘Distributed Proprioception in HECTOR’’ section) and a range
of control concepts as discussed in ‘‘Omnidirectional Walking
in HECTOR’’ and ‘‘Controlling Multiple, Mechanically Coupled
Limbs Through a Body Model’’ sections.

Regarding the various sources of distributed sensory feedback
that are available during locomotion, recent findings on
freely walking stick insects suggest that load-sensing may be
beneficial to monitor load transfer among legs and, thus, to
determine the appropriate time for a stance-to-swing transition
(Dallmann et al., 2017). Similarly, distributed monitoring of load
signals have been used successfully for temporal coordination
of multiple legs in robots (e.g., Owaki et al., 2013; Owaki
and Ishiguro, 2017). Moreover, the normal and tangential
components of the ground reaction force vector as experienced
(or measured) by an animal provide an immediate link between
stability and propulsion. Accordingly, freely walking stick insects
adjust the relative activation of antagonist muscles according to
altered load distributions when walking on slopes (Dallmann
et al., 2019). Finally, the high spatial resolution of a sensorised
foot tip can help to extract detailed contact patterns per foot and
potentially serve to judge substrate properties (Borijindakul et al.,
2018), thus linking locomotion and near-range exploration (for
further discussion of this issue see Dürr et al., 2018).

Despite the multiple potential use of distributed force and
load measurements, it remains to be shown whether and how
insects integrate these distributed measurements for a global
control of CoM acceleration. To date, several experimental
results suggest that force/load measurements are mainly used for
local control, i.e., for assistance and resistance reflexes at single
joints (e.g., Akay et al., 2007; for review, see Zill et al., 2004)
and, probably, to support temporal coordination of neighboring
legs (Dallmann et al., 2017). Recently, it was shown that postural
variables stay remarkably unaffected in stick insects that walk
up or down steep slopes, despite the fact that this required
substantial adjustment of single-joint torques (Dallmann et al.,
2019). This suggests that stick insects tend to adjust muscle
force so as to maintain a preferred body posture, rather than
to adjust body posture so as to optimize force transfer to
the substrate.

Gaits
Unlike in many other walking robots, the gait of HECTOR is
not pre-programmed or governed by coupled central oscillators.
Instead, the gait emerges from a combination of sensory-motor
feedback that regulates limb posture, and/or pairwise coupling of
neighboring legs through coordination rules (Cruse, 1990; Cruse
et al., 1995). Owing to this approach, a persistent rhythm, i.e., one
that characterizes a particular gait, can emerge only once the
system enters a steady state. In contrast, transitions in speed,
attitude, posture or direction are marked by discontinuities.
The most basic types of discontinuity in legged locomotion are
the local destabilizing and stabilizing transitions from stance to
swing (lift-off) and swing to stance (touch-down), respectively
(Dürr et al., 2004). In steady-state locomotion, these step-to-
step ‘‘local discontinuities’’ define the overall rhythm or gait.
Moreover, they effectively gate the information flow from load
and force sensors. This is because strain-sensitive campaniform
sensilla afferents of insects fire only if muscle forces are resisted,
e.g., during stance (Zill et al., 2012).

In this context, it is important to decide on the function of a
swing movement. In the most simple case (and common case in
robotics), swing movements are but return strokes of the limb
that serve to execute the next stance movement in very much
the same way as the preceding one. Essentially, this reduces
the control of a swing movement to the inversion of action
at every single joint upon lift-off, and a delayed depression in
order to re-gain ground contact. In walking insects, however,
touch-down locations appear to be under postural control
(e.g., Cruse, 1979; Theunissen et al., 2014), and on-going swing
movements may be ‘‘re-targeted’’ towards locations detected by
the visual (e.g., Niven et al., 2010) or tactile systems (Schütz and
Dürr, 2011). Although the latter findings do not concern the
stance-to-swing transition, they raise the question as to whether
‘‘global discontinuities’’ such as changes in body inclination or
heading could be initiated by swing movements, or need to be
initiated during stance. This is not clear because a targeted swing
movement and the ensuing altered touch-down location could
initiate a new ‘‘pulling direction’’ of the respective leg and, thus,
affect the overall acceleration of the CoM during the subsequent
stance movement.
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In stick insects, the timing of various kinematic parameters
suggests that the initiation of visually-induced turning occurs by
a change in stance direction of the front legs, both in response
to large-field visual cues (Dürr and Ebeling, 2005) and in turning
responses towards visual landmarks (Rosano and Webb, 2007).
At the same time, the persistent timing of yaw rotation velocity
and stance movements of the hind legs during sustained curve
walking (Figure 13A) indicates that in turning stick insects
the function of the legs may differ between initiating (by front
legs) and maintaining rotation (by hind legs). Similar to stick
insects, HECTOR translates an intended change of heading into
appropriate changes in foot trajectories, either by ‘‘global’’ use
of an internal body model that moderates the transitions among
the participating legs in stance (Figure 13B), or by ‘‘local’’ use
of inverse kinematics (Figure 13C). In both cases, the foot
trajectories during stance are terminated depending on postural
cues (Figure 12; ‘‘Controlling Multiple, Mechanically Coupled
Limbs Through a Body Model’’ section) and/or the combination
of various posture and torque measures into a single estimator
of unrestrictedness (Figure 11; ‘‘Omnidirectional Walking in
HECTOR’’ section). As a consequence, the timing of lift-off very
much depends on posture, thus mixing issues of spatial and
temporal coordination in the resulting gait.

Therefore, we argue that gaits should be considered a matter
of optimality of steady-state locomotion, rather than a matter of
control. This view gains support from theoretical considerations
of optimal phase shifts in multi-legged locomotion, so as to
minimize energy by restraining vertical oscillations of the CoM
(Weihmann, 2018). For closed-loop control of locomotion, a
fixed gait imposes limitations that are undesirable for locomotion
engineering, and probably inefficient for animal locomotion
in a variable environment. Accordingly, we propose that gaits
should emerge from a control scheme that ensures not only
efficient propulsion and stability, but also sufficient adaptiveness
in the face of step-to-step changes in body-substrate interaction,
and flexibility in the function of particular limbs as behavioral
goals change (Dürr et al., 2018). In HECTOR, we achieve this
by a combination of de-centralized control and loose, pairwise
coupling among limbs through coordination rules and/or the
inclusion of internal spatial representations.

Multiple Spatial Representations
In this study, three kinds of internal spatial representations were
considered. Perhaps the most simple form concerned postural
mappings between neighboring limbs (‘‘Spatial Coordination of
Limbs in Insects’’ section). This pairwise mapping was originally
proposed to model spatial targeting of touch-down locations in
ipsilateral pairs of legs by (Dean, 1990), and introduced into the
de-centralized walking controller Walknet (Cruse et al., 1995).
Such mappings may serve as a distributed representation of the
‘‘space within reach’’ for at least two limbs. The corresponding
pairwise posture mappings do not encode spatial information as
such, but may serve to transfer spatial contact information to a
neighboring limb in a behaviorally relevant manner. As a result,
each posture mapping defines an affordance volume (Figure 9)
within which a receiver leg can exploit the prior experience of a
sender leg (Dürr and Schilling, 2018).

An extension of this approach implements a recurrent
neural network to combine postural information about all
limbs for the coordination of legs in stance. This was
originally proposed by Kindermann and Cruse (2002) and
later formulated in a more versatile form by Schilling (2011).
The architecture of so-called MMC networks incorporates the
geometric constraints of many joint positions in a redundant
manner, and converges on solutions that meet these constraints,
given a nearly arbitrary set of sensory inputs (see ‘‘Controlling
Multiple, Mechanically Coupled Limbs Through a Body Model’’
section). The MMC architecture is not grounded on particular
properties of physiological neural networks, except that it
uses distributed proprioceptive input and implements recurrent
neural connections. A possible neurobiological interpretation
of its ability to coordinate the kinematics of parallel closed
kinematic chains is that recurrent neural networks with
rich proprioceptive input and appropriate connectivity may
converge on stable states that should be considered an internal
representation of body posture.

Finally, a spiking neural network was proposed that can
exploit the consequences of own body actions to form an internal
representation of body size (‘‘Internal Models for Body-Size
Learning’’ section). The model takes inspiration from findings
on the central complex of the fruit fly Drosophila melanogaster
(Strauss, 2002; Krause et al., 2019). So far, it is the only part of the
described HECTOR project that is devoted to online learning.
In essence, it deals with the problem that any internal spatial
representation needs to be calibrated to the overall body size
or limb proportions (for example, a simulated HECTOR with
shorter or longer legs; Figure 15D). In more general terms,
whenever body morphology changes during life-time, or cannot
be known at a time suitable for pre-programming, there will
always be the need to scale internal mappings.

Integrative Biomimetics
As most other biomimetic robots, HECTOR is not a scaled
hardware model of any particular animal species, despite
the fact that its original design was inspired by thorax and
leg proportions of a stick insect (Figure 1). As outlined
in all sections above, the technical issues tackled have their
counterparts in experimental neuroscience, despite the fact that
none of the implementations on HECTOR come even close
to being a one-to-one model of the biological counterpart.
The proposed solutions are thus conceptual models that reflect
system properties of their biological counterpart rather than
their physiological implementation. With regard to integration
of different lines of research, we find that it can be advantageous
to combine conceptual models because individual subsystems
do not have to be adjusted to the particular implementations of
other subsystems, as long as they can be interfaced. In relation
to Marr’s three levels of analysis (Marr and Poggio, 1976), this
loosely corresponds to an integration at the algorithmic level.

Moreover, the different methodologies that were applied
in the neurobiological experiments conducted in conjunction
with this article (e.g., reflex circuits in Figure 3, ground
reaction forces in Figure 6, muscle activity in Figure 8,
behavioral physiology of unrestrained locomotion in Figure 9,
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and neurogenetics of higher-order motor behavior in Figure 14)
are paralleled by equally different methodologies in the
engineering developments (e.g., mechatronics in Figure 2; sensor
technology in Figure 7, modeling of recurrent neural networks
in Figure 12, and of spiking neural networks in Figure 14).
Since all of these methodologies—both in neuroscience and
in engineering—require very different and potentially disjunct
areas of expertise, we believe that it not only takes collaborative
effort of different research labs to bring these areas of expertise
together but that it is absolutely essential to have a common
research integration platform like HECTOR and a corresponding
dynamic simulation environment to do so.
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