
sustainability

Article

Geomechanical Characterization of a Rock Cliff Hosting a
Cultural Heritage through Ground and UAV Rock Mass
Surveys for Its Sustainable Fruition

Simone Mineo 1 , Giovanna Pappalardo 1,* and Salvatore Onorato 2

����������
�������

Citation: Mineo, S.; Pappalardo, G.;

Onorato, S. Geomechanical

Characterization of a Rock Cliff

Hosting a Cultural Heritage through

Ground and UAV Rock Mass Surveys

for Its Sustainable Fruition.

Sustainability 2021, 13, 924. https://

doi.org/10.3390/su13020924

Received: 3 November 2020

Accepted: 14 January 2021

Published: 18 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Biological, Geological and Environmental Sciences, University of Catania, Corso Italia 57,
95129 Catania, Italy; smineo@unict.it

2 SOAGEO S.r.l. Via Feudo Stella, 18 Paternò, 95047 Catania, Italy; onorato@soageo.it
* Correspondence: pappalar@unict.it

Abstract: In mountainous areas around the world, dealing with rockfalls means facing some technical
survey difficulties due to the low accessibility of areas and the height of slopes. If a cultural heritage
is also threatened by such mass movement, the need of specific survey solutions, even in a combined
asset, is required. This paper deals with the integration of ground and UAV rock mass surveys aimed
at defining the rockfall attitude of an unstable rock cliff sector hosting an example of cultural heritage
in tourist area of southern Italy, whose fruition has already been threatened by the occurrence of
rockfalls. As an example of the defensive architecture of XII and XIII centuries, the Saracen Castle in
Taormina is reached by hundreds of visitors each year, but its access path and the surrounding area
are threatened by the unstable condition of the cliff, hosting unstable rock volumes on kinematically
critical planes. In order to achieve a reliable geostructural setting of the cliff, aiming at its possible
securing through proper mitigation works, ground rock mass surveys could not provide enough
information due to the bad accessibility of the rock faces. Therefore, a survey by an Unmanned
Aerial Vehicle, with a reliable verified accuracy, was carried out to map the discontinuity planes
especially occurring at the highest portions of the cliff, achieving geostructural data of different
fronts of the cliff. Ground and aerial data were combined and statistically analyzed to define the
main kinematic failure patterns. In this perspective, a critical comparison between the two employed
surveying methodologies is proposed herein, highlighting that both approaches are affected by
potential and limitations and that the integration of the mutual dataset represents a suitable solution
for a complete rock mass characterization in this type of areas. Furthermore, rockfall simulations
allowed ascertaining that potential falling blocks would cross the access path to the castle, thus
representing a natural threat to the fruition of cultural heritage, thus proving the need of mitigation
measures to ensure the safe fruition of the cultural heritage.

Keywords: cultural heritage; rockfall; UAV; rock mass survey

1. Introduction

As a part of human history, cultural heritage represents a treasure deserving protection
and careful management to ensure its transfer to future generations. Historical sites are of-
ten cultural tourism destinations, and their safe fruition is a priority for local administrators.
In mountainous settings, where often historical buildings have been erected for strategic
purposes, one of the most recurring threat is represented by landslides and, more specifi-
cally, rockfalls [1–8]. Such mass movements are often the expression of a risk [9–13], which
often compromises the fruition of the good, leading to a cultural defeat for our generations.
This is the case of the cultural heritage perched on the top of a carbonate cliff facing the
Ionian coastline of Sicily (southern Italy), and dominating the town of Taormina. It is the
Saracen Castle, an example of the defensive architecture of the XII and XIII centuries, which
is part of the monumental park of Taormina. This little town is considered as a natural
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fortress of great strategic and political importance, and it has been included in the tentative
UNESCO world heritage list to be placed under consideration as a possible nominee. This
adds relevance to the already worldwide known touristic importance of this place, visited
by millions of tourists every year. The rockfall problem has been affecting the castle cliff
for decades, with falling blocks, even of considerable volume, reaching the downstream
public infrastructures and private structures, and threatening its safe fruition [14,15]. Some
rock mass stabilization works were carried out in recent years to stabilize the southern and
eastern cliff sectors and to protect some private houses. Nevertheless, the access road path
to the castle, along with a panoramic viewpoint and a small rock-hewn church representing
tourist destination for their suggestive view and naturalistic impact, are still under the
impending unstable rock threat. The main difficulty in the study of such unstable rock cliff
is represented by the bad accessibility of the highest rock mass portions, where most of the
loose rock blocks stand in unstable condition. In fact, the only survey spots are a few rock
outcrops located at the foot of the cliff, which can be surveyed by operators on the ground.
In this paper, the geomechanical asset of the cliff bordering the access path to the castle is
defined according to the combination of in situ and remote surveys. In the latter case, an
Unmanned Aerial Vehicle (UAV) has been employed to reach the highest sector of the cliff
and to achieve a close view of the top rock mass conditions. UAV systems were initially
employed for military purposes [16] and then, due to their practical utility, were extended
to archaeology and cultural heritage mapping, environmental surveys, urban monitoring
and tridimensional reconstructions [17–24]. The literature shows that optical imagery and,
more generally, remote sensing procedures, have been employed in rockslide surveys [25].
Brückl et al. [26] took advantage of photogrammetry to reconstruct the kinematics of a
deep-seated landslide, while Collins and Stock [27] employed terrestrial laser scanning
for the hazard assessment along cliffs. Similarly, 3D geometrical data were achieved by
some authors [28,29] through automated, or semi-automated, approaches. With specific
reference to rock cliffs, Sturzenegger and Stead [30] and Riquelme et al. [31] analyzed rock
mass discontinuities through terrestrial photogrammetry coupled with laser scanning and
3-D point clouds, respectively. Mancini et al. [32] investigated the integration between
UAV photogrammetry and geomechanical modeling of coastal rock cliffs proving its utility
for finite element stability analysis. In the literature, some cases of integration between
UAV and ground surveys, with specific references to the successful fracture mapping [33]
and rockfall instability study [34–37], prove the utility of aerial photogrammetric surveys
in hardly accessible areas, highlighting also the need for accurate model calibration and
validation to achieve reliable results. For example, Salvini et al. [33] proved that UAVs can
significantly improve the collection of geometric and structural data when integrated with
information from traditional engineering geological surveys, which is one of the main sci-
entific goals of this paper. Robiati et al. [36] provided a back analysis rockfall study through
3D photogrammetric remotely sensed data highlighting the possibility of achieving reliable
models after a careful calibration of input parameters. Nevertheless, Rodriguez et al. [37]
strengthen the fact that UAV surveys should not replace or undermine the importance of
site inspections; rather, it enhances the information to make better decisions. To this end, in
this research, from the point cloud achieved by UAV survey, the orientation in the space
of the most visible planes has been extracted and compared to those surveyed on ground
for a critical evaluation of the scientific and technical utility of potential stand-alone UAV
surveys. Based on the achieved geostructural data, the main kinematic unstable patterns
were highlighted to find out the entity of the rockfall threat. This activity was sided by
rockfall simulations aimed at evaluating the impact of potential rockfalls on the access road
path and structures, which led to the suggestion of the most suitable stabilization works
for the cliff securing and the sustainable fruition of the cultural heritage.

2. Setting of the Study Area: Cultural Heritage, Geology and Rockfalls

Built by the Arabs on the top of the 400 m-high Monte Tauro cliff (Figure 1a,b), the
Saracen Castle allowed a strategic control of both Taormina bay and the valley of the
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Alcantara river. With its sub-vertical rock scarps and an average steepness of about 40◦–45◦,
this site was probably the location of the antique acropolis of the Greek town Taormina.
The Romans, and later the Byzantines, used the same site, which, however, fell to the
Muslims in 902 AD after a two-year-long siege. They rebuilt the castle, shaping its current
trapezoid plan, which is admirably adapted to the shape of the rock cliff. In 1078, the
Norman count Roger I of Sicily, conquered the town of Taormina from the Muslims. In
1134, the castle was used by the San Salvatore la Placa monastery, while in 1240 A.D. it was
counted among the belongings of King Frederik II. In 1297, during the Aragon dynasty,
this fort was entrusted to the Taormina governor [38]. Nowadays, it is recognized as a
cultural heritage site—evidence of the defensive architecture of the XII and XIII centuries
located in a unique spot dominating the Ionian coast.

From a geological point of view, the study area lies on the southernmost sector of the
Peloritani Mountains, a nappe-pile belt composed of distinct tectonic slices, in turn com-
posed of a metamorphic basement locally covered by sedimentary formations. In particular,
the geological unit widely cropping out in the castle area takes its name from the city of
Taormina and it is represented by a Variscan epimetamorphic basement, covered by upper
Triassic fluvial “Verrucano-type” deposits and lower Liassic greyish-white limestones and
dolostones in carbonate platform facies [39] (Figure 1c). This latter lithology represents
the frame of the Monte Tauro cliff, where moderate to highly fractured limestones, locally
partly dolomitized, crop out. Rock masses are crossed by several discontinuity sets, which
are the expression of the heavy tectonic stresses shaping the landscape. In particular, fault
segments and thrusts dislocate the geological formations (Figure 1c), and these can be
counted among the predisposing factors of landslide movements of the whole area [40–42].
Pappalardo et al. [43–45] and Pappalardo and Mineo [46] deeply studied the interaction
between geology and geomechanical setting of the Taormina area, with focuses on the
widespread stability issues representing a tangible risk for the fruition of the district. The
most recurring landslide type are rockfalls, often in wedge configurations, affected by
relevant volumes (up to 5 m3 for each block). The steepness of the area, along with its high
seismicity, enhances the kinetic energy of falling blocks, which are capable of covering
relevant distances. With specific reference to the castle cliff, Mineo et al. [14] found out
that rockfalls usually originate from the top of the carbonate cliff, where several blocks
stand in unstable conditions, and move downstream following the terrain morphology.
Among the most recent events, the 2013 and 2015 rockfalls are two of the most hazardous
ones. On such occasions, boulders with volumes of about 0.1–0.15 m3 detached from the
highest sectors of the rock masses and rebounded along a pedestrian path connecting
Taormina center to the Castel viewpoint with a kinetic energy ranging between 50 and
250 kJ [14]. The road, pavement and banister were damaged, but no hurt people were
reported. Numerous further events are not documented, due to the lower rock volume
involved, but their occurrence is testified by the presence of widespread source areas along
the rock face and several low-volume blocks laying at the side of the pedestrian path.

In such a hazardous setting, the tourist path towards the castle entrance represents
one of the main elements at risk, and it is recommended caution as no protection measure
has ever been settled. Mineo et al. [14] carried out a preliminary hazard assessment along
the south and east portions of the cliff, highlighting the poor mechanical features of the
rock masses and the high hazard arising from rockfalls. Nevertheless, the access sector was
not considered by that study. Mineo and Pappalardo [15] enclosed this spot in a cultural
heritage itinerary affected by rockfall risk, highlighting the unexpressed potential of this
site due to the rockfall threat. These authors assessed a medium risk affecting even the
access road path and the neighboring infrastructures, often crowded tourist destination.
Besides the access road path, the main elements at risk are represented by a panoramic
viewpoint located right below the unstable cliff, hosting a small rock-hewn church—a place
of worship built in approximately 1640 (Figure 1d).
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Figure 1. (a) Panoramic view of the Saracen Castle area (photo from Wikipedia); (b) satellite image
of the study area with location of the main elements: 1. Saracen castle, 2. access path, 3. unstable
rock masses, 4. viewpoint, 5. rock-hewn church, 6. pedestrian path to the city center; (c) geological
schematic map of the Taormina area (modified by [14]); (d) the main elements at risk seen from the
top of the top of the cliff.
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3. Methodological Approach

The main difficulty in modeling the geomechanical condition of the Monte Tauro cliff
is that most of the loose rock volumes are located at the highest elevations, which cannot
be directly reached by an operator for a survey even due to the presence of vegetation
enhancing the poor ground accessibility of some outcrops. To overcome this limitation,
ground rock mass surveys were performed at representative outcrops located along the
access path and were integrated by aerial surveys performed by UAV aimed at provid-
ing a closer view of the rock condition and at extracting dip-direction data of the most
recurring discontinuity sets along different fronts (Figure 2). In particular, the ground
geostructural characterization was carried out by traditional rock mass surveys performed
according to the International Society for Rock Mechanics (ISRM) [47] specifications. The
orientation of discontinuities was statistically analyzed, and dip-immersion data were
grouped into different sets according to the concentration of poles. For each system, the
main geomechanical parameters (i.e., persistence, spacing, opening, in-filling, Joint Rough-
ness Coefficient JRC, uniaxial compressive strength UCS, hydraulic conditions) have been
measured and the geomechanical Rock Mass Rating (RMR) and Slope Mass Rating (SMR)
classifications [48,49] were applied to assess the rock mass quality and to have general
information on the need and type of mitigation measures (Figure 2).

Sustainability 2021, 13, x FOR PEER REVIEW 7 of 19 
 

the extrapolation of the 3D model, the processing parameters of the photogrammetric da-
tasets were verified, edited and normalized. Once it was ascertained that all the infor-
mation was consistent, and that the general post-processing phases had produced the 
complete geoDataBase for the definition and coverage of the area, input data were re-
checked to ensure the reliability of results. Discontinuity data orientation were extracted 
from the point cloud by analyzing the normal vector associated to the single points 
through the open-source software CloudCompare. According to this procedure, by as-
signing a color to each similar orientation, planes with a similar spatial orientation were 
highlighted (Figure 3d–e). 

Spatial discontinuity data arising from both the surveying methodologies were firstly 
compared and then integrated, achieving a representative cumulative stereonet showing 
the kinematic asset of recognized discontinuity sets. This was employed for a kinematic 
analysis, aimed at highlighting the main unstable patterns. Moreover, with the aim of 
finding out the impact that a falling block would have on the access path and neighboring 
areas, rockfall potential trajectory were simulated on a 3D cliff model, generated from a 
Digital Terrain Model (DTM) with a 2 m regular grid of the study area, which was pro-
vided for scientific purposes by Assessorato Territorio e Ambiente of Regione Siciliana 
(Figure 2). Blocks simulated for this study were released from established “launch sites” 
located at the surveyed unstable rock faces by the Georock 3D computer program [51]. 
Volumes range from 0.15 to 1 m3 in accordance with the most recurring unstable block 
configurations surveyed in the area. Such blocks were assumed as spheres rotating 
around their gravity center producing multiple impacts on the elevation-attributed plane 
represented by a grid of tridimensional nodes forming a triangular mesh. The energy ex-
changed between the falling rock and the slope has been modeled through coefficients of 
restitution (Table 1), in their normal and tangential components, which were claimed by 
the recent literature on neighboring areas [14,41,43,46]. 

 
Figure 2. Conceptual map on the purpose and methodology of this research. 

Table 1. Coefficients of restitutions employed for the rockfall simulations ([14] and references 
therein). 

Cropping Out Material Rt Rn 

Figure 2. Conceptual map on the purpose and methodology of this research.

The use of an UAV allowed overcoming also the limitation of the irregular slope
geometry, characterized by seven different slope faces and hosting most of the unstable
rock volumes at its top, i.e., impossible access for a ground operator (Figure 3a). The
employed vehicle was equipped with a 21 Mp HDR camera with a 3-Axis Gimbal Stabilizer
(Figure 3b). Six 50 cm × 50 cm targets were placed as Ground Control Points (GCP) at fixed
spots homogeneously distributed within the study area for a precise GPS localization and
two flight plans were set. The first one was aimed at achieving a global view of the study
area and was carried out in nadir condition, i.e., the image frames are shot by holding the
camera axis aligned with the vertical direction, with a Ground Sample Distance between
1 and 2 cm (each pixel encloses a 1 to 4 cm2 area) and an average flight altitude of 25 m,
guaranteeing a lateral overlap of at least 90% and a vertical overlap of 70% between the
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contiguous frames. The second flight plan was set according to the orientation of the seven
slope faces and was carried out through frontal and oblique shots (45◦) (Figure 3c), which
allows a good integration for the accurate 3D reconstruction [50]. Fixed targets were also
selected on the ground as Quality Control Points to assess the absolute accuracy of the
resulting model. Data georeferencing was carried out by entering the UTM-ETRF2000-RDN
coordinates acquired by topographic survey for each GCP. Such procedure allowed the
georeferencing and scaling of all the models, achieving high accuracy and minimizing the
georeferencing error (1–2 cm). Since the flight mission was planned with a 1 cm Ground
Sampling Distance, the verified accuracy was around 1.5–3.0 cm.
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Figure 3. (a) UAV surveyed area with indication of the different slope faces (differently colored lines trace the slope face);
(b) photo of the employed UAV; (c) traces of oblique shots; (d) example of cloud point of B-C front with highlighted the
sub-horizontal planes; (e) dip-immersion radiometric values in scalar field of the whole cliff.

Acquired images were equalized for the white balancing, aligned and georeferenced,
in order to build a dense point cloud, with a final point spacing of 0.7 cm. The dense clouds,
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processed by the Pix4D photogrammetric software, were processed by further algorithms,
in order to reconstruct accurate triangulated 3d models (3d mesh). These algorithms
allow to operate a further noise reduction through the statistical removal of anomalous
points (outliers) resulting from errors of homologous points. Similarly, points related to
objects not pertinent to the purpose of the survey have been selected and removed (aerial
cables, pylons, vegetation around the area, etc.). Dense point clouds were then interpolated
by applying the Poisson algorithm for the reconstruction of the 3d mesh. Before the
extrapolation of the 3D model, the processing parameters of the photogrammetric datasets
were verified, edited and normalized. Once it was ascertained that all the information
was consistent, and that the general post-processing phases had produced the complete
geoDataBase for the definition and coverage of the area, input data were re-checked to
ensure the reliability of results. Discontinuity data orientation were extracted from the
point cloud by analyzing the normal vector associated to the single points through the
open-source software CloudCompare. According to this procedure, by assigning a color
to each similar orientation, planes with a similar spatial orientation were highlighted
(Figure 3d,e).

Spatial discontinuity data arising from both the surveying methodologies were firstly
compared and then integrated, achieving a representative cumulative stereonet showing
the kinematic asset of recognized discontinuity sets. This was employed for a kinematic
analysis, aimed at highlighting the main unstable patterns. Moreover, with the aim of
finding out the impact that a falling block would have on the access path and neighboring
areas, rockfall potential trajectory were simulated on a 3D cliff model, generated from a
Digital Terrain Model (DTM) with a 2 m regular grid of the study area, which was provided
for scientific purposes by Assessorato Territorio e Ambiente of Regione Siciliana (Figure 2).
Blocks simulated for this study were released from established “launch sites” located at the
surveyed unstable rock faces by the Georock 3D computer program [51]. Volumes range
from 0.15 to 1 m3 in accordance with the most recurring unstable block configurations
surveyed in the area. Such blocks were assumed as spheres rotating around their gravity
center producing multiple impacts on the elevation-attributed plane represented by a grid
of tridimensional nodes forming a triangular mesh. The energy exchanged between the
falling rock and the slope has been modeled through coefficients of restitution (Table 1), in
their normal and tangential components, which were claimed by the recent literature on
neighboring areas [14,41,43,46].

Table 1. Coefficients of restitutions employed for the rockfall simulations ([14] and references therein).

Cropping Out Material Rt Rn

Bare rock 0.80 0.50
Rock talus + vegetation 0.80 0.32

Rock debris 0.65 0.15
Asphalt 0.90 0.40

4. Results
4.1. Rock Mass Surveys

The ground rock mass survey highlighted that discontinuities are characterized by a
close-to-wide spacing and variable aperture values (from tight to moderate) (Figure 4a–c).
In particular, there are several spots where rock volumes are isolated, and loose blocks
with a very poor connection with the rock mass (Figure 4d). The most open discontinuities
are sometimes filled with hard or soft material, and the presence of widespread vegetation
(plants and small shrubs) suggests a certain degree of water circulation, especially after
heavy rains (Table 2). Such consideration supports the existence of instability features, also
testified by blocks laying along the path (Figure 4e). Ground-surveyed discontinuities can
be grouped into five main discontinuity systems according to the pole statistical contouring,
which however returned wide pole concentration areas (Figure 5). This suggests a certain
variability in the orientation of discontinuity planes, thus a large spectrum of potential
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kinematic configurations. Moreover, several scattered poles occur in the stereonet, which
will not be neglected in the kinematic analysis although these were not been grouped into a
specific set due to the lower density of pole occurrence. Based on the ISRM [47] survey, the
application of the Rock Mass Rating (RMR) system [43] returned a basic RMR score ranging
from 47 to 56 corresponding to a “fair” rock mass quality (Table 2). The Slope Mass Rating
(SMR) classification [49], involving also the spatial relationship between discontinuities
and slope, returned values ranging between 53 and 62, averagely corresponding to a
“fair” geomechanical quality, with instability mainly occurring along planes and requiring
systematic stabilization works.
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Table 2. Average input parameters used for RMR [48] and SMR [49] classifications.

Set
(Dip/Dip dir.)

Spacing
(mm)

Persistance
(m)

Aperture
(mm) JRC Infilling Weathering RMRb

Class
SMR
Class

S1
(22/261)

Close to
Moderate Very high Very tight 2–8 none Slight to

Moderate

47 to 56
III

53 to 62
III to II

S3
(68/135)

Close to
Moderate High Moderate 4–12 soft Slight to

Moderate

S4
(69/088) Close Medium Very tight to

Moderate 4–10 none/soft Slight to
Moderate

S5
(70/038) Moderate Medium Moderate 14–16 soft Moderate

S6
(76/357) Moderate Medium Moderate 2–4 soft ModerateSustainability 2021, 13, x FOR PEER REVIEW 11 of 19 
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version with poles and great circles of surveyed slope faces. 
Figure 5. Stereographic projections of surveyed data shown both with reference to the survey mode and in combined
version with poles and great circles of surveyed slope faces.

The UAV survey covered the whole height of the cliff siding the access road to the
castle (Figure 6a) and overcoming the limitation arising from the cliff height. It allowed
surveying of the presence of open cracks defining irregular blocks laying on a generally dip-
slope plane (Figure 6b,c). The latter can be regarded as a bedding surface, due to its constant
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occurrence at different heights and with different spacing values. Furthermore, vegetation
occurs within open fractures (Figure 6), testifying the presence of water circulation within
the rock mass even if mainly after heavy rainfalls, and representing a predisposing factor to
the instability [52–54]. The resulting stereonet reports four main pole concentration areas,
referred to four identified discontinuity systems (Figure 5).
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By comparing spatial data of discontinuity surveyed both on ground and from air,
some differences can be highlighted. The first and most evident one is the number of poles,
which is sensibly lower and with a narrower statistical contouring in the UAV stereogram
(Figure 5). This depends on the way the survey is carried out: in the traditional rock mass
survey, the operator can operate according to either an objective or a subjective criterion.
In the first case, all the discontinuities falling within a window or crossed by a scanline
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should be surveyed. This leads to a greater amount of field data. On the contrary, data
arising from UAV are related only to those planes that effectively can be “seen” by the
aerial vehicle, thus excluding the surfaces covered by vegetation for example. Moreover,
an operator can measure the dip-immersion of not well-exposed discontinuities (e.g., lines
of crack in the rock mass), contrary to an UAV.

Besides the number of poles, which is a matter of number of surveys, a further
difference refers to the reliability of data. By comparing the two stereograms it is evident
that S5 and S6 discontinuity systems are missing in the UAV output. Similarly, the S2 set is
not well marked in the rock mass survey stereogram, although some poles can be referred
to this family. By combining the two data sets, a unique stereogram was obtained, with the
evidence of six main discontinuity sets, along with a relevant number of scattered poles
(Figure 5). The latter could not be grouped into “main” systems due to a poor statistical
contouring, but they are index of a complex geostructural setting of the rock cliff. In this
case, the most significant two “secondary” clusters were labeled as ss1 and ss2.

From the kinematic point of view, by taking into account all the poles failing both
within and outside the set clusters (Table 3), the most recurring pattern is toppling failure,
in both its direct and flexural configuration. In particular, toppling mainly occurs along S1
set, representing a base plane for blocks and acting as a release surface for their toppling.
S1 set is also a sliding plane for planar sliding failures; therefore, this can be referred to
as the most kinematically critical discontinuity system. Planar sliding also affects the S2
and S5 planes when the slope face is NW-SE oriented. Wedge failures mainly occur along
two intersecting discontinuities, in both symmetrical and asymmetrical configurations,
involving also the secondary ss1 and ss2 clusters. Random planes are involved in all the
unstable kinematic failure modes, due to their recurrence in the rock mass.

Table 3. Unstable kinematic pattern listed for each considered slope face and considering
all the poles failing within a cluster. Key: P—planar sliding, W—wedge sliding, DT—
direct toppling, FT—flexural toppling, r—random poles, I—intersection for direct toppling,
BP—base plane for direct toppling.

Slope Face Unstable Kinematic Pattern at Each Set
P W DT FT

AB S1, S2, ss2 r S1 to S4, S6, ss1, ss2, r S3 to S6, r (I)
S1, ss2, r (BP) S5, r

BC S1, r S3, S5, S6, ss1, ss2, r S2 to S6, ss1, ss2, r (I)
S1, r (BP) S3, S4, r

CD S5, r S1, S3 to S6, ss1, ss2, r S2 to S4, ss2, r (I)
S1, Se, r (BP) S2, ss2, r

DE S1, r S5, ss1, r S2 to S6, ss1, r (I)
S1, S5, r (BP) S3, S4, r

EF S1, r S3, S5, S6, ss1, ss2, r S2 to S6, ss1, r(I)
S1, r (BP) S4, S5, r

FG r S1, S2, S5, S6, ss1, r S2 to S5, ss1, ss2, r (I)
S1, S6, r (BP) S3, r

GH S1, r S5, ss1, r S2 to S6, ss1, r (I)
S1, r (BP) S3, S4, r

4.2. Rockfall Attitude

Rockfall trajectory simulations, carried out by considering established “launch sites”
at the surveyed unstable rock faces, show that almost all the detached blocks would reach
the access path, crossing it and moving downstream (Figure 7c–e). Block trajectories mainly
follow the morphology of the cliff and the access path acts both as end point for most of
the blocks and as a rebound plane for those proceeding downstream, with kinetic energies
ranging between <5 and 350 kJ. The highest values were reached by the greatest simulated
blocks detaching from the highest portions of rock slopes impending over the access path,
while the lowest kinetic energies affect the southernmost path portion, where a ~180 m2
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wide area hosting vegetation and shrubs lays between the unstable rock faces and the path
itself. In fact, this low-angle area (profile AA’ in Figure 7c) plays a slowing action on blocks,
stopping about 5% of total simulated ones. The remaining ones reaches and, sometimes,
crosses the access path. On the other hand, when the rock cliff impends over the path
(profile BB’ in Figure 7d), all the simulated boulders reach the access path, confirming the
natural threat to the safe fruition of the place. A simulation also crossing the pedestrian
path previously studied by [14] was reported herein (profile CC’ in Figure 7e) to prove the
critical condition affecting the whole area hosting the cultural heritage.Sustainability 2021, 13, x FOR PEER REVIEW 14 of 19 
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5. Discussion and Conclusions

The rockfall analysis of the Taormina cliff, hosting an example of cultural heritage
building, returned critical outcomes affecting the safe fruition of this tourist spot. The
Saracen castle lays on the top of a carbonate cliff surrounded by several tourist attraction,
e.g., a rock-hewn church, a panoramic viewpoint on the bay. The cliff is affected by
widespread instability due to the fair rock mass geomechanical quality. The geostructural
setting was herein evaluated by combining ground rock mass surveys and UAV surveys,
which allowed the definition of a complete stereogram for the reliable reconstruction of
the statistical spatial variability of discontinuities. A first discussion point is referred
to the comparison between remote and ground rock mass data, which gains a broad
scientific relevance. The combination of data resulting from UAV and ground surveys
allowed achieving a complete geostructural scenario affecting the cliff, where most of the
unstable features are located at the top portions, i.e., not directly reachable by a ground
operator. More specifically, the two survey methodologies proved complementary. In
fact, the ISRM [47] survey allowed measuring a greater number of discontinuities, leading
to the definition of multiple pole clusters in the discontinuity stereogram. Nevertheless,
poles belonging to the S2 set were underestimated by the ground survey, probably due
to the low extension of surveyable ground outcrops and to their bad accessibility. On
the other hand, the UAV survey returned a sensibly lower number of poles and some
set surveyed on ground were missing. Such difference arises from the fact that the two
techniques are based on different field procedures and are affected by both strength and
weakness points: on the one hand, direct rock mass surveys allow the recognition of all the
discontinuity systems along a scanline or within a survey window, especially if carried out
according to objective approaches, including low-persistent cracks and close crack traces
on the rock face; this approach is however limited by the accessibility of outcrops (i.e.,
high cliff sectors, intensely vegetated slope portions). On the other hand, UAV outcomes
are conditioned by the availability of exposed planes along the rock face, which are those
planes directly “seen” by the camera, and by their orientation; nevertheless, it allows the
survey and the close viewing of rock mass sectors laying out of the reach of a ground
operator, providing key data especially where the main instability features are located
at the top of rock masses. A separate consideration must be reported with reference to
the location of UAV surveys, as the employment of unmanned aerial vehicle is subject to
local regulations involving its weight and the complexity of operations, especially when
flying over urban centers or densely populated areas. Furthermore, the meteorological
conditions strongly affect the use of UAVs, thus representing a limitation, especially in
windy areas or under adverse weather circumstances. Such considerations are scientifically
significant with reference to the current state of the art on the rock mass surveys, because
the technological progress often leads to innovative procedures, which underestimate the
utility of traditional approaches. In this specific case, for example, a stand-alone UAV
survey would have provided incomplete geostructural data, which would have not ensured
a reliable kinematic analysis. Similarly, the ground rock mass survey gains more reliability
if supported by UAV, especially for the highest cliff sectors.

With reference to the sustainable fruition of the cultural heritage analyzed herein,
the integration of field data allowed performing a complete kinematic analysis based on
the seven different orientations of slope faces. Due to the abrupt variations of the rock
face direction, almost all the discontinuity systems are responsible to unstable kinematic
configurations, from toppling to planar and wedge sliding. In particular, the most recurring
failure patterns are toppling and planar sliding, both enhanced by the presence of a low-
angle discontinuity plane daylighting out of the rock face and releasing blocks towards
the main element at risk, i.e., the pedestrian access path to the castle. This outcome, along
with the visible setting of loose blocks laying on such planes, is index of the tangible threat
that rockfalls represent for the access path to the castle, where several already fallen blocks
lay. Furthermore, the rockfall trajectory simulations ascertained that most of the detaching
blocks would reach and, sometimes, cross the access path. The highest kinetic energies are
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likely reached in those sectors where the rock mass impends over the path, which would
act as the first target of blocks, while lower energies are likely reached where vegetated
sectors are interposed between the rock mass and the path.

According to achieved outcomes, it is self-evident that the securing of this area is
not a simple subject. A combination measures should be evaluated in order to protect the
wide rock slopes, affected by abrupt orientation variations. More specifically, the scaling
with consequently removal of isolated blocks can be a potential useful solution for the
isolated volumes, especially those impending over the path. This activity is however
conditioned by the accessibility to working means. For the greatest unstable volumes, local
anchors could be a suitable solution, whose potential efficiency should be evaluated by
specialized climbers rock mass surveyors. Nevertheless, due to the great number of loose
rocks, rockfall netting seems a proper remedial work. In particular, it would be preferrable
the installation of double-layer wire meshes fixed to the rock mass by anchors crossing the
most external, loose rock mass portion. Such double-layer wire meshes would be useful to
retain even the smaller rock volumes, thus preventing rocks and debris from falling onto
the access path, especially at the northern slope faces B-C, E-F and D-E, impending over the
path. At A-B, G-H, F-G fronts, the installation of an anchored single-layer wire mesh could
be evaluated as an alternative, thanks to the vegetated spot interposed between slope and
path, which could stop the smaller rock volumes, although the slowing action played by
vegetation on falling blocks can be reduced in case of fire.
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