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BLOCKING SETS FOR CYCLES AND PATHS DESIGNS

Paola Bonacini∗ and Lucia Marino

In this paper, we study blocking sets for C4, P3 and P5-designs. In the case
of C4-designs and P3-designs we determine the cases in which the blocking
sets have the largest possible range of cardinalities. These designs are called
largely blocked. Moreover, a blocking set T for a G-design is called perfect if
in any block the number of edges between elements of T and elements in the
complement is equal to a constant. In this paper, we consider perfect blocking
sets for C4-designs and P5-designs.

1. INTRODUCTION

Let Kv be the complete undirected graph defined on a vertex set X. Given a
graph with n vertices, a G-design of order v (briefly a G(v)-design), for v ≥ n, is a
pair Σ = (X,B), where B is a partition of the edge set of Kv into classes generating
graphs all isomorphic to G. The classes of B are said to be the blocks of Σ.

Let Σ = (X,B) be a G-design of order v. A transversal T of Σ is a subset of
X intersecting every block of Σ. A blocking set T of Σ is a transversal such that
also its complement CX(T ) is a transversal of Σ. So T is a blocking sets if and only
if every block of Σ contains elements of T and elements of CX(T ). In what follows,
we will indicate by B(Σ) the set of all possible p ∈ N for which there exist in Σ
blocking sets of cardinality p.

The existence of possible blocking sets has been studied in numerous papers
(see [2, 3, 5–16]) for t-designs, projective planes, symmetric designs, block designs,
balanced and almost balanced path designs and G-designs when G has fewer than
5 edges.
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In [10] the notion of largely blocked Ck-designs was introduced, for k ≥ 4. The
idea is that the set B(Σ) has the maximum possible cardinality. Indeed, Gionfriddo
and Milazzo in [10] proved that:

Theorem 1. If Σ = (X,B) is a Ck(v)-design and B is a blocking set of cardinality
p, then k ≥ 4 and:

β1 = dv
2
−
√
kv[(k − 4)v + 4]

2k
e ≤ p ≤ bv

2
+

√
kv[(k − 4)v + 4]

2k
c = β2.

So, a Ck-design Σ is called largely blocked if B(Σ) = [β1, β2] (the closed
interval of integers). In this paper we prove that for any v ≡ 1 mod 8 there
exists a largely blocked C4-design of order v and we determine the spectrum of
largely blocked P3-designs. We study also perfect blocking sets, analizing the idea
of a blocking set distributed in an optimal and homogeneous way. The notion was
introduced in [4] and it requires that any block contains a constant number of edges
between vertices of the blocking set T and vertices of CX(T ). In [4], the spectrum
of P3-designs with a perfect blocking set is determined. In this paper, we easily
determine the spectrum of C4-designs having a perfect blocking set, as it is follows
from the result on the spectrum of largely blocked C4-designs. Moreover, we study
the problem for P5-designs, determining the spectrum in the case that the constant
is 2, by using a peculiar construction for P3-designs with a perfect blocking set.

2. LARGELY BLOCKED C4-DESIGNS

A 4-cycle on the vertices {x, y, z, t} with edges {x, y}, {y, z}, {z, t} and {x, t}
is denoted by (x, y, z, t). The spectrum of C4-designs is known:

Theorem 2. There exists a C4-designs of order v if and only if v ≡ 1 mod 8,
v ≥ 9.

By Theorem 1 we determine the bound on the cardinality of a possible block-
ing set for a C4-design.

Proposition 3. Let Σ = (X,B) be a C4-design of order v and let T ⊂ X be a
blocking set of cardinality t. Then:

d v2 −
√
v

2 e ≤ t ≤ b
v
2 +

√
v

2 c.

In this way (see [10]), we get two parameters β1 = d v2 −
√
v

2 e and β2 =

b v2 +
√
v

2 c = v − β1 such that B(Σ) ⊆ [β1, β2] (closed interval of integers). So, a
natural definition is the following:

Definition 4 ([10]). A C4-design Σ is largely blocked if B(Σ) = [β1, β2].

We want to prove that for any v ≡ 1 mod 8 there exists a largely blocked
C4-design. In order to do that we need the following constructions.
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Proposition 5. If there exists a C4-design Σ = (X,B) of order v with blocking
sets T1, . . . , Ts of cardinalities, respectively, p1, . . . , ps such that T1 ⊂ · · · ⊂ Ts, then
there exists a C4-design Σ′ = (X ′,B′) of order v + 8 with blocking sets T ′1, . . . , T

′
s

of cardinalities, respectively, p1 + 4,. . . ,ps + 4 such that T ′1 ⊂ · · · ⊂ T ′s. Moreover,
if in any block (a, b, c, d) ∈ B there exists a vertex a ∈ T1 such that either b, d /∈ Ts
or c /∈ Ts, then also in any block (a, b, c, d) ∈ B′ there exists a vertex a ∈ T ′1 such
that either b, d /∈ T ′s or c /∈ T ′s.

Proof. The proof follows by the construction given in [9, Theorem 4.1]. Indeed,
let Σ1 = (X1,B1) be a C4-design of order v = 1 + 8k, k ∈ N, k ≥ 1, with
T1, . . . , Ts blocking sets of cardinality p1, . . . , ps and X1 = {0, x1, . . . , x8k}. Let
X2 = {0, 1, . . . , 8} so that X1 ∩X2 = {0} and 0 /∈ Ts. Consider the 4-cycle system
Σ2 = (X2,B2) having as blocks (0, 1, 5, 2) and all its translates. Then {1, 2, 3, 4} is
a blocking set for Σ2. Consider also the family B3 of blocks:

(i, xj , i+ 4, xj+4k)

for i = 1, 2, 3, 4 and j = 1, . . . , 4k. Then Σ = (X1 ∪X2,B1 ∪ B2 ∪ B3) is a 4-cycle
system of order v + 8 having T ′1 = T1 ∪ {1, 2, 3, 4}, . . . , T ′s = Ts ∪ {1, 2, 3, 4} as
blocking sets. This proves the statement.

Lemma 6. Let X and Y be disjoint sets, with |X| = |Y | = 8. Let TX ⊂ X and
TY ⊂ Y such that |TX | = 4 and |TY | = 3 and let y ∈ Y \ TY . Then there exists a
decomposition of KX,Y in a family B of 4-cycles having T = TX ∪ TY and T ∪ {y}
as blocking sets. Moreover, in any block (a, b, c, d) ∈ B there exists a vertex a ∈ T
such that c /∈ T ∪ {y}.

Proof. Let X = {xi | i = 1, . . . , 8} and Y = {yi | i = 1, . . . , 8}. Let:

B = {(xi, yj , xi+4, yj+4) | i, j = 1, 2, 3, 4}.

Then the blocks of B decompose KX,Y in 4-cycles and it is easy to get statement
by taking TX = {x1, x2, x3, x4}, TY = {y1, y2, y3} and y = y4.

Lemma 7. Let X, Y and Z be pairwise disjoint sets, with |X| = |Y | = |Z| = 8.
Let ∞ /∈ X ∪ Y ∪ Z, TX ⊂ X, TY ⊂ Y and TZ ⊂ Z, with |TX | = 4, |TY | = 3 and
|TZ | = 3. Then there exists a decomposition of KX,Y,Z ∪ KX∪{∞} in a family B
of 4-cycles having T = TX ∪ TY ∪ TZ , T ∪ {y} and T ∪ {y, z} as blocking sets, for
some y ∈ Y \TY and z ∈ Z \TZ . Moreover, in any block (a, b, c, d) ∈ B there exists
a vertex a ∈ T such that either b, d /∈ T ∪ {y, z} or c /∈ T ∪ {y, z}.

Proof. Let X = {xi | i = 1, . . . , 8}, Y = {yi | i = 1, . . . , 8}, Z = {zi | i = 1, . . . , 8}
and TX = {x1, x2, x3, x4}, TY = {y1, y2, y3}, TZ = {z1, z2, z3}. Let us consider the
C4-design Σ = (X ∪ {∞},B) such that B is given by the blocks:

(x1, x5, x2, x6), (∞, x1, x2, x8), (∞, x2, x3, x7), (∞, x3, x8, x6),

(∞, x4, x7, x5), (x2, x4, x8, x7), (x8, x5, x3, x1), (x1, x4, x6, x7), (x3, x4, x5, x6).
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Then {x1, x2, x3, x4} is a blocking set for this C4-design.

Consider now the decomposition of KX,Y,Z in 4-cycles given by the following
family B′ of blocks:

(xi, yj , xi+4, yj+4), (xi, zj , xi+4, zj+4), (yi, zj , yi+4, zj+4) for i, j = 1, 2, 3, 4.

So C = B ∪ B′ provides us a decomposition of KX,Y,Z ∪KX∪{∞} in 4-cycles such
that T = TX ∪ TY ∪ TZ is a blocking set for any block in C, with the exception of
(y4, z4, y8, z8). So, take the blocks:

(y4, z4, y8, z8), (x1, x5, x2, x6), (x1, y4, x5, y8), (x2, y4, x6, y8)

and replace them with:

(x1, y4, z4, y8), (y4, x5, x1, x6), (z8, y4, x2, y8), (y8, x5, x2, x6).

Denoted by C′ the family of blocks that we obtain, it is easy to see that T is a
blocking set for any block in C′ and that these blocks provide a decomposition of
KX,Y,Z∪KX∪{∞} in 4-cycles. It is also easy to see that T ∪{y4} and T ∪{y4, z5} are
blocking sets. Moreover, we can easily see that each 4-cycle of C′ can be decomposed
in two 3-paths in such a way that T , T ∪ {y4} and T ∪ {y4, z5} are blocking sets
also for these 3-paths.

Now we can prove the following:

Theorem 8. For any v ≡ 1 mod 8 there exists a largely blocked C4-design of order
v.

Proof. Case v is a square. Let v = (2r + 1)2 for some r ∈ N, so that v ≡ 1
mod 8. We want, first, to prove the statement in this case.

Suppose that r = 1, so that v = 9. Then the statement follows by [10,
Theorem 3.2]. More precisely, in [10, Theorem 3.2] it is proved that there exists a
C4-design of order 9 largely blocked with T and T ′ blocking sets of cardinality 3
and 4 such that T ⊂ T ′. Moreover, we see that in any block (a, b, c, d) there exists
a vertex a ∈ T such that either b, d /∈ T ′ or c /∈ T ′.

Suppose now that r > 1. Then v = 4r2 + 4r+ 1 and by Proposition 3 for any

C4-design Σ we have B(Σ) ⊆ {dv2−
√
v

2 e, . . . , b
v
2 +
√
v

2 c} = {2r2+r, . . . , 2r2+3r+1}.
Consider X1,. . . ,X r2+r

2

disjoint sets, each of cardinality 8, and take an element

∞ /∈
⋃
iXi. For any i = 1, . . . , r

2+r
2 take a subset Ti ⊂ Xi such that:

|Ti| =

3 for i = 1, . . . , r

4 for i = r + 1, . . . , r
2+r
2 .

So T =
⋃
i Ti is a set of cardinality 2r2 + r. For any i = 1, . . . , r take xi ∈ Xi such

that xi /∈ Ti. Consider any bijection:

φ : {{i, j} | i, j = 1, . . . , r, i 6= j} → {r + 1, . . . , r
2+r
2 }.
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By Lemma 7 for any i, j = 1, . . . , r, i 6= j, there exists a decomposition of

KXi,Xj ,Xφ({i,j}) ∪KXφ({i,j})∪{∞}

in a family Bij of 4-cycles such that Ti ∪Tj ∪Tφ({i,j}), Ti ∪Tj ∪Tφ({i,j}) ∪{xi} and
Ti ∪ Tj ∪ Tφ({i,j}) ∪ {xi, xj} are blocking sets for Bij .

Then, by the case v = 9, for i = 1, . . . , r there exists a C4-design Σi =
(Xi ∪ {∞}, Ci) having Ti and Ti ∪ {xi} as blocking sets.

At last, for any i, j = 1, . . . , r
2+r
2 , i 6= j, such that both i, j are not simultane-

ously in some of the triples of {{p, q, φ({p, q})} | p, q = 1, . . . , r, p 6= q} by Lemma
6 we can consider a decomposition of KXi,Xj in a family Dij of 4-cycles having
Ti ∪ Tj and Ti ∪ Tj ∪ {xi} if i = 1, . . . , r as blocking sets.

If we call E =
⋃
Bij ∪

⋃
Ci ∪

⋃
Dij , then Σ = (

⋃
Xi ∪ {∞}, E) is a 4-cycle

system of order v = 4r2 + 4r+ 1 having as blocking sets T and T ∪{x1, . . . , xs} for
any s = 1, . . . , r. So there exist for Σ blocking sets of cardinality 2r2 + r, . . . , 2r2 +
2r. This immediately implies that there exist for Σ blocking sets of cardinality
2r2 + r, . . . , 2r2 + 3r + 1, because, if T is a blocking set, also its complement is a
blocking set. This completely proves the statement in the case v = (2r + 1)2.

General v. Take any v ∈ N such that v ≡ 1 mod 8. Then we write:

v = (2r + 1)2 + 8k,

for some r, k ∈ N, in such a way that (2r + 1)2 ≤ v < (2r + 3)2. This means that
0 ≤ k ≤ r and that, of course, 2r + 1 ≤

√
v < 2r + 3. This implies that:

{d v2 −
√
v

2 e, . . . , b
v
2 +

√
v

2 c} = {2r2 + r + 4k, . . . , 2r2 + 3r + 1 + 4k}.

So by what we have just proved for the orders of type (2r+ 1)2, for any r ∈ N, and
by iteratively using Proposition 5 we easily get the statement.

The following remark will be used in the next section.

Remark 9. By the previous construction, by the case v = 9 and by Proposition
5, Lemma 6 and Lemma 7 it follows that for any v ≡ 1 mod 8 there exists a
largely blocked 4-cycle design Σ = (X,B) with some blocking sets T1,. . . , Tr with
T1 ⊂ · · · ⊂ Tr and |T1| = β1,|T2| = β1 + 1,. . . ,|Tr| = v−1

2 . Moreover, in any block
(a, b, c, d) ∈ B there exists a vertex a ∈ T1 such that either b, d /∈ Tr or c /∈ Tr.

3. LARGELY BLOCKED P3-DESIGNS

Now we want to study largely blocked P3-designs. In general, the k-path on
the vertices {x1, . . . , xk} with edges {xi, xi+1} for i = 1, . . . , k − 1 is denoted by
[x1, x2, . . . , xk]. The spectrum of P3-designs is known:

Theorem 10. A P3-design of order v exists if and only if v ≡ 0, 1 mod 4, v ≥ 4.
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Note that for a P3-design Σ = (X,B) of order v with a blocking set of cardi-
nality t we have the clear condition that:

|B| = v(v − 1)

4
≤ p · (v − p)⇒ β1 = d v2 −

√
v

2 e ≤ p ≤ b
v
2 +

√
v

2 c = β2.

So we can give the following definition for P3-designs:

Definition 11. A P3-design Σ of order v is called largely blocked if B(Σ) = [β1, β2].

In this section we want to determine the spectrum of largely blocked P3-
designs. First, we need some technical lemmas.

Lemma 12. Let X = {xi | i = 1, . . . , 4} and Y = {yi | i = 1, . . . , 4} be disjoint
sets, with |X| = |Y | = 4. Then there exists a P3-decomposition of KX,Y hav-
ing {x1, x2, y1}, {x1, x2, y1, y2}, {x2, x3, y1}, {x2, x3, y1, y2} and {x2, x3, y2, y3} as
blocking sets.

Proof. Let:
B = {[xi, yj , xi+2] | i = 1, 2, j = 1, 2, 3, 4}.

Then the blocks of B decompose KX,Y in 3-paths and satisfy the conditions of the
statement.

Lemma 13. Let X = {x1, x2, x3, x4}, Y = {y1, y2, y3, y4}, Z = {z1, z2, z3, z4} and
T = {t1, t2, t3, t4} be pairwise disjoint sets. Then there exists a P3-decomposition of
KX,Y,Z,T ∪KX ∪KY having W = {x1, x2, y1, y2, z1, t1}, W ∪{z2} and (W \{y1})∪
{y3, z2, t2} as blocking sets.

Proof. Let us consider the family B of blocks:

• [x1, zj , t3], [x2, zj , t4], [y1, zj , t2], [x3, zj , t1], [x1, tj , x3], [x2, tj , x4], [y1, tj , y3],
[y2, tj , y4] and [x4, zj , y2] for j = 1, 2, 3, 4

• [z2, y3, y1], [z3, y3, y2], [z4, y3, x1], [z2, y4, x1], [z3, y4, x2], [z4, y4, z1], [y4, y3, z1],
[y4, y1, y2], [y3, x2, y1], [y3, x3, y1], [y3, x4, y1], [x3, x1, y1], [x4, x1, y2], [y2, x2, x3],
[x1, x2, x4], [y2, x3, y4], [y2, x4, x3] and [x4, y4, y2].

Then it is easy to verify that the blocks of B give us the statement.

Now we can determine the spectrum of largely blocked P3-designs.

Theorem 14. For any v ≡ 0, 1 mod 4, v ≥ 4, there exists a largely blocked P3-
design of order v.

Proof. Case 1. Suppose, first, that v ≡ 0 mod 4. If v = 4, let X = {1, 2, 3, 4}
and let:

B = {[1, 2, 3], [1, 3, 4], [1, 4, 2]}.

Then Σ = (X,B) is a P3-design having as blocking sets {1}, {1, 2} and {2, 3, 4}.
This proves the statement for v = 4.
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Now let v = 4r2+4k, v ≥ 8, for some r, k ∈ N such that (2r)2 ≤ v < (2r+2)2.
In this way, we have 0 ≤ k ≤ 2r and [β1, β2] = [2r2 − r + 2k, 2r2 + r + 2k].

LetX1, . . . , Xr2+k be pairwise disjoint sets with |Xi| = 4 for any i = 1, . . . , r2+
k and let X =

⋃
iXi. By what we just proved we can consider Σi = (Xi,Bi) largely

blocked P3-designs with blocking sets Ti such that:

|Ti| =

{
1 for i = 1, . . . , r

2 for i = r + 1, . . . , r2 + k.

Let T =
⋃
i Ti, so that |T | = 2r2 − r + 2k. Consider also xi ∈ Xi, xi /∈ Ti, for

i = 1, . . . , r, and T ′i ⊂ Xi for i = r2+r
2 +1, . . . , r2 such that |T ′i | = 2 and |Ti∩T ′i | = 1.

By what we just proved we can suppose that Ti ∪ {xi} for i = 1, . . . , r is still a
blocking set for Σi.

Consider any bijection:

ϕ : {{i, j} | i, j = 1, . . . , r, i 6= j} → {r + 1, . . . , r
2+r
2 }

and let:

ψ(i, j) = ϕ(i, j) +

(
r

2

)
.

By Lemma 13 for i, j = 1, . . . , r, i < j, we can consider a family Ci,j of blocks
decomposing

KXi,Xj ,Xϕ(i,j),Xψ(i,j)
∪KXϕ(i,j)

∪KXψ(i,j)

in P3 paths such that:

• Ti ∪ Tj ∪ Tϕ(i,j) ∪ Tψ(i,j),

• Ti ∪ Tj ∪ Tϕ(i,j) ∪ Tψ(i,j) ∪ {xi},

• Ti ∪ Tj ∪ Tϕ(i,j) ∪ T ′ψ(i,j) ∪ {xi, xj}

are blocking sets for this decomposition.

Let i, j = 1, . . . , r2 + k, i 6= j, such that both i, j are not simultaneously in
some of the quadruples:

{{p, q, ϕ(p, q), ψ(p, q)} | p, q = 1, . . . , r, p 6= q} .

Then by Lemma 12 let Di,j a family of blocks decomposing KXi,Xj such that:

• Ti ∪ Tj ,

• Ti ∪ Tj ∪ {xi} if i = 1, . . . , r,

• Ti ∪ T ′j if j = r2+r
2 + 1, . . . , r2

• Ti ∪ T ′j ∪ {xi} if i = 1, . . . , r and j = r2+r
2 + 1, . . . , r2,
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• T ′i ∪ T ′j if i, j = r2+r
2 + 1, . . . , r2

are all blocking sets for the blocks of Di,j .
Let:

B =

r⋃
i=1

Bi ∪
r2+2k⋃
i=r2+1

Bi ∪
⋃
Ci,j ∪

⋃
Di,j .

Then Σ = (X,B) is a P3-design having:

• T

• T ∪ {x1}

•
⋃
i/∈Is Ti ∪

⋃
i∈Is T

′
i ∪ {x1, . . . , xs} for s = 2, . . . , r, where Is = {ψ(i, j) | i, j =

1, . . . , s, i 6= j},

as blocking sets. So there exist for Σ blocking sets of cardinality 2r2−r+2k,. . . ,2r2+
2k. This immediately implies that there exist for Σ blocking sets of cardinality
2r2 +2k+1,. . . ,2r2 +2k+r, because the complement of a blocking set is a blocking
set. This proves the statement for v ≡ 0 mod 4.

Case 2. Let v ≡ 1 mod 8, v ≥ 9. In this case the statement follows by
Theorem 8. Indeed, there exists a largely blocked C4-design Σ = (X,B) of order v
with the same interval of integers[⌈

v −
√
v

2

⌉
,

⌊
v +
√
v

2

⌋]
= [β1, β2].

Moreover, as noted in Remark 9 called T1, . . .Tr the blocking sets of cardinality:⌈
v −
√
v

2

⌉
, . . . , v−1

2

given in the construction, in any 4-cycle (x, y, z, t) of B we have a vertex x ∈ Ti for
any i such that either y, t /∈ Ti for any i or z /∈ Ti for any i. This implies that from
this 4-cycle we get the paths [x, y, z] and [x, t, z] in order to obtain a P3-design of
order v having T1, . . .Tr and their complements as blocking sets. This proves the
statement in the case v ≡ 1 mod 8, v ≥ 9.

Case 3. Let v ≡ 5 mod 8. If v = 5, we have [β1, β2] = [2, 3]. Consider
on {0, 1, 2, 3, 4} the P3-design Σ having as base block [1, 0, 2]. Then {0, 2} (and
consequently also its complement {1, 3, 4}) is a blocking set for Σ. This proves the
statement for v = 5.

Let v ≡ 5 mod 8, with v ≥ 13. Then let v = (2r + 1)2 + 4(2k + 1) for some
r, k ∈ N, r ≥ 1, such that (2r + 1)2 + 4 ≤ v < (2r + 3)2 + 4. So 0 ≤ k ≤ r and
v < (2r+3)2. Let v′ = v−4. Then by what we just proved we can take Σ = (X,B)
a largely blocked P3-design of order v′. Let T be a blocking set for Σ of cardinality
p. It is easy to see that:

β1(v) =

⌈
v −
√
v

2

⌉
= 2r2 +r+4k+2 and β2(v) =

⌈
v +
√
v

2

⌉
= 2r2 +3r+4k+3
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and

β1(v′) =

⌈
v′ −

√
v′

2

⌉
= 2r2+r+4k and β2(v′) =

⌈
v′ +

√
v′

2

⌉
= 2r2+3r+4k+1.

So [β1(v), β2(v)] = [β1(v′) + 2, β2(v′) + 2]. Let X = {xi | i = 1, . . . , v′} and
Y = {y1, y2, y3, y4}. Let B′ be the following family of blocks:

[y1, y2, y3], [y1, y3, y4], [y1, y4, y2], [y2i+1, xj , y2i+2]

for i = 0, 1 and j = 1, . . . , v′. Then Σ′ = (X ∪ Y,B ∪ B′) is a P3-design of order v
having as blocking set T ∪ {y1, y3}. Since Σ is largely blocked and [β1(v), β2(v)] =
[β1(v′) + 2, β2(v′) + 2], we immediately get the statement for v ≡ 5 mod 8, v ≥
13.

4. PERFECT BLOCKING SETS

In general, when we have a blocking set T for a G-design Σ = (X,B) we
might want that the elements of T are distributed in an optimal and homogeneous
way in the blocks of B. So in [4] the following definition is given:

Definition 15. Let Σ = (X,B) be a G-design. A blocking set T of Σ is called
perfect if there exists C ∈ N such that any block B ∈ B contains exactly C edges
joining vertices of T and of CX(T ).

This definition in general forces a strict condition on the order of theG-design:

Proposition 16. If Σ = (X,B) is a C4-design of order v and T is a perfect blocking
set for Σ of cardinality p, then:

p =
v ±
√
v

2

and v is a square.

Proof. Since |B| = v(v−1)
8 and T is a perfect blocking set, then any block B ∈ B

contains exactly 2 edges joining vertices of T and CX(T ) and:

p · (v − p) = 2 · v(v − 1)

8
.

So p = v±
√
v

2 and v is a square, because p is a positive integer.

By Theorem 2, Theorem 8 and Proposition 16 we get immediately the fol-
lowing:
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Theorem 17. There exist C4-designs of order v with a perfect blocking set if and
only if v = (2r + 1)2 for some r ∈ N, r ≥ 1.

5. PERFECT BLOCKING SETS IN P5-DESIGNS

In [4] the spectrum of P3-designs having a perfect blocking set is determined.
So it is proved that:

Theorem 18 ([4]). If T is a perfect blocking set of any P3-design of order v, then
c = 1, v is a square and

|T | = v ±
√
v

2
.

If we consider a P3-design of order v having a perfect blocking set, since
v ≡ 0 or 1 mod 4, then there exists a positive integer k such that v = (2k)2 or
v = (2k + 1)2. So in [4] it is proved that:

Theorem 19 ([4]). There exist P3-designs of order v having perfect blocking sets
if and only if v is a square.

In this section we provide a construction that will be useful in studying P5-
designs with perfect blocking sets. So, let Σ = (X,B) be a P3-design of order v
with a perfect blocking set T . For any x ∈ T we consider the set:

E(x) = {{y, y′} | y, y′ ∈ X, y 6= y′, [x, y, y′] or [x, y′, y] ∈ B}

and the graph G(x) = (X \ {x}, E(x)).

Remark 20. Note that in a P3-design with a perfect blocking set T , any block B is
a path [x1, x2, x3] where x1 ∈ T and x3 ∈ CX(T ).

Given a graph G = (X,E), we denote by ∆(G) the maximum degree of the
vertices of G. The chromatic index χ′(G) of G is the minimum number of colors
needed for a proper edge coloring of G. The following construction will be used in
the proof of the main result of this section:

Theorem 21. For any k ∈ N there exists a P3-design Σ of order v with a perfect
blocking set T such that one of the following conditions holds:

1. v = (2k + 1)2, |E(x)| is even for any x ∈ T and

χ′(G(x)) ≤ |E(x)|
2

;

2. v = (2k)2, k ≥ 2, |E(x)| is odd for any x ∈ T and there exists b ∈ CX(T )
such that for any x ∈ T there exists ax ∈ CX(T ) satisfying the conditions:

• [x, ax, b] ∈ B,
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• ax 6= ay for any x, y ∈ T , x 6= y,

• χ′(G(x)− {ax, b}) ≤
|E(x)| − 1

2
,

where G(x)− {ax, b} = (X \ {x}, E(x) \ {{ax, b}}).

Proof. Let Σ = (X,B) be a P3-design with a perfect blocking set T of cardinality
p. Let x ∈ T and:

• let ax be the number of blocks of type [x, x1, x2], with x1 ∈ T and x2 ∈ CX(T )

• let bx be the number of blocks of type [x, x1, x2], with x1, x2 ∈ CX(T )

• let cx be the number of blocks of type [x1, x, x2], x1 ∈ T and x2 ∈ CX(T ).

Then: {
ax + cx = p− 1
bx + cx = v − p ⇒ bx − ax = v − 2p+ 1.

Since |E(x)| = ax + bx, we easily see that if v is odd, then |E(x)| is even, and,
conversely, if v is even, |E(x)| is odd.

Next, to simplify the proof let us make the following position. If v = (2k+1)2,
let p = k(2k + 1) and q = 2k + 1. If v = (2k)2, let p = 2k2 − k and q = 2k.

Let us consider X1, X2 and X3, pairwise disjoint, such that |X1| = p, |X2| = p
and |X3| = q. We will construct a P3-design Σ of order v with vertex set X =
X1 ∪X2 ∪X3 and T = X1. Let:

X1 = {a1, a2, .........., ap}
X2 = {b1, b2, .........., bp}
X3 = {c1, c2, ..., cq}.

For any i = 1, . . . , q − 1 and j = 1, . . . , q − i we define:

ϕ(i, j) =

{
j for i = 1∑i−1
r=1(q − r) + j for i ≥ 2.

Note that ϕ(i, 1)−ϕ(i−1, q−i+1) = 1, ϕ(1, 1) = 1 and ϕ(q−1, 1) = p. This implies
that for any s ∈ {1, . . . , p} there exist unique i ∈ {1, . . . , q−1} and j ∈ {1, . . . , q−i}
such that ϕ(i, j) = s.

Define in X the following families of paths P3:

F1 = {[ai, ai+j , bj ] | i = 1, . . . , p− 1, j = 1, . . . , p− i}
F2 = {[bi, bi+j , aj ] | i = 1, . . . , p− 1, j = 1, . . . , p− i}
F3 = {[ci+j , ci, aϕ(i,j)] | i = 1, . . . , q − 1, j = 1, . . . , q − i}
F4 =

{
[aϕ(i,j), bϕ(i,j), ci] | i = 1, . . . , q − 1, j = 1, . . . , q − i

}
F5 =

{
[as, ci, bϕ(i,1)−s] | i = 2, . . . , q − 1, s = 1, . . . , ϕ(i, 1)− 1

}
∪

∪
{

[as, ci, bp−s+1+ϕ(i,q−i)] | i = 1, . . . , q − 2, s = ϕ(i, q − i) + 1, . . . , p
}
∪

∪ {[as, cq, bp+1−s] | s = 1, . . . , p} .
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It is possible to verify that Σ = (X,
⋃5
i=1 Fi) is a P3-design of order (2k+ 1)2 such

that X1 is a perfect blocking set satisfying the condition of the statement.

Indeed, for any i = 1, . . . , p let i ∈ {1, . . . , q − 1} and j ∈ {1, . . . , q − i} be
such that ϕ(i, j) = i. Moreover, for any ai, i = 1, . . . , p− 1 in E(ai) we have:

• from F1 p− i edges, with vertices in {ai+1, . . . , ap} ∪ {b1, . . . , bp−i}

• from F2 p− i edges, which are {bj , bi+j} for j = 1, . . . , p− i

• from F3 just one edge, {ci, ci+j}

• from F4 we have just one edge {ci, bϕ(i,j)} = {ci, bi}

• from F5 we have the edges {cq, bp+1−i}, {{ci′ , bϕ(i′,1)−i} | i′ = i+1, . . . , q−1}
for i ≤ q − 2, and {{ci′ , bp−i+1+ϕ(i′,q−i′)} | i′ = 1, . . . , i− 1} for i ≥ 2.

Instead, in E(ap) we have:

• from F3 just one edge, {cq−1, cq}

• from F4 we have just one edge {cq−1, bp}

• from F5 we have the edges {cq, b1} and {{ci, b1+ϕ(i,q−i)} | i = 1, . . . , q − 2}.

This implies that:

∆(G(ai)) =


4 for i ≤ p

2

3 for
p

2
< i ≤ p− 1

2 for i = p.

Since |E(G(ai))| = 2p − 2i + 1 + q and χ′(G(ai)) ≤ ∆(G(ai)) + 1, the statement
follows if v = (2k + 1)2 and k ≥ 2. If k = 1, then p = q = 3 and it is easy to verify
that:

∆(G(a1)) = 4 = χ′(G(a1)) =
|E(a1)|

2

∆(G(a2)) = 3 = χ′(G(a1)) =
|E(a2)|

2

∆(G(a3)) = 2 = χ′(G(a1)) =
|E(a3)|

2
.

So also for v = (2k + 1)2 with k = 1 the statement holds.

If v = (2k)2, in the statement take b = b1 and the paths [ai, bi+1, b1] for
i = 1, . . . , p − 1 and [ap, cq, b1]. Then, we have |E(G(ai))| − 1 = 2p − 2i + q and
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χ′(G(ai)) ≤ ∆(G(ai)) + 1 for any i = 1, . . . , p. Then the statement follows for
v = (2k)2 and k ≥ 3. If k = 2, then p = 6 and q = 4 and we see that:

χ′(G(ai)) ≤ ∆(G(ai)) + 1 ≤ |E(G(ai))| − 1

2

for i = 1, 2, 3, 4. Moreover it is not difficult to see that we also have:

∆(G(a5)− {b1, b6}) = 2 = χ′(G(a5)− {b1, b6}) <
|E(a5)| − 1

2

∆(G(a6)− {c4, b1}) = 2 = χ′(G(a6)− {c4, b1}) =
|E(a6)| − 1

2
.

So also for v = (2k)2 with k = 2 the statement holds.

The next result is the key to the proof of the main result of this section:

Lemma 22 ([1, Lemma 2]). For every graph G = (X,E) and for every t > 1,

tK2

∣∣G if and only if t
∣∣|E| and χ′(G) ≤ |E|t .

Recall now the following:

Theorem 23. A P5-design of order v exists if and only if v ≡ 0 or 1 mod 8, v ≥ 5.

Now we determine the spectrum of P5-designs having a perfect blocking set
with constant C = 2:

Theorem 24. There exists a P5-design of order v having a perfect blocking set with
constant C = 2 if and only if either v = (2k + 1)2 or v = 16k2, for some k ∈ N.

Proof. If Σ = (X,B) is a P5-design of order v with a perfect blocking set T of
cardinality p and constant C = 2, then:

p · (v − p) = 2 · |B| ⇒ p =
v ±
√
v

2
.

So v is a square and by Theorem 23 either v = (2k + 1)2 or v = 16k2, for some
k ∈ N.

Suppose, now, that v = (2k + 1)2 for some k ∈ N. Let Σ = (X,B) be a P3-
design satisfying the conditions of Theorem 21. Then, by Lemma 22 we see that,
for any x ∈ T such that |E(x)| > 0, 2K2|G(x). So if {y1, y2}, {y3, y4} is one of
these copies of 2K2, we can join the two paths [x, y1, y2] and [x, y3, y4] in the path
[y4, y3, x, y1, y2]. By Remark 20 this gives us a P5-design of order v = (2k + 1)2

having T as a perfect blocking set with constant C = 2.

Suppose that v = 16k2 for some k ∈ N. Let Σ = (X,B) be a P3-design
satisfying the conditions of Theorem 21, where now the perfect blocking set T
has even cardinality. Keeping the notation of the theorem, for any x ∈ T such
that |E(x)| > 1 we can proceed as we have just done: by Lemma 22 we see that
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2K2|(G(x)−{ax, b}). So, again, if {y1, y2}, {y3, y4} is one of these copies of 2K2, we
can join the two paths [x, y1, y2] and [x, y3, y4] in the path [y4, y3, x, y1, y2]. Then
there an even number of blocks [x, ax, b], one for each x ∈ T , where ax ∈ CX(T ).
If T = {x1, . . . , xp}, then we can consider the following paths:

[x2i+1, ax2i+1
, b, ax2i+2

, x2i+2]

for i = 0, . . . , p2−1. In this way, by Remark 20 we get a P5-design of order v = 16k2

having T as a perfect blocking set with constant C = 2.
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