Applicable Analysis and Discrete Mathematics
 available online at http://pefmath.etf.rs

Appl. Anal. Discrete Math. 14 (2020), 183-197.
https://doi.org/10.2298/AADM181108008B

BLOCKING SETS FOR CYCLES AND PATHS DESIGNS

Paola Bonacini* and Lucia Marino

In this paper, we study blocking sets for C_{4}, P_{3} and P_{5}-designs. In the case of C_{4}-designs and P_{3}-designs we determine the cases in which the blocking sets have the largest possible range of cardinalities. These designs are called largely blocked. Moreover, a blocking set T for a G-design is called perfect if in any block the number of edges between elements of T and elements in the complement is equal to a constant. In this paper, we consider perfect blocking sets for C_{4}-designs and P_{5}-designs.

1. INTRODUCTION

Let K_{v} be the complete undirected graph defined on a vertex set X. Given a graph with n vertices, a G-design of order v (briefly a $G(v)$-design), for $v \geq n$, is a pair $\Sigma=(X, \mathcal{B})$, where \mathcal{B} is a partition of the edge set of K_{v} into classes generating graphs all isomorphic to G. The classes of \mathcal{B} are said to be the blocks of Σ.

Let $\Sigma=(X, \mathcal{B})$ be a G-design of order v. A transversal T of Σ is a subset of X intersecting every block of Σ. A blocking set T of Σ is a transversal such that also its complement $C_{X}(T)$ is a transversal of Σ. So T is a blocking sets if and only if every block of Σ contains elements of T and elements of $C_{X}(T)$. In what follows, we will indicate by $B(\Sigma)$ the set of all possible $p \in \mathbb{N}$ for which there exist in Σ blocking sets of cardinality p.

The existence of possible blocking sets has been studied in numerous papers (see $[2,3,5-16]$) for t-designs, projective planes, symmetric designs, block designs, balanced and almost balanced path designs and G-designs when G has fewer than 5 edges.

[^0]In [10] the notion of largely blocked C_{k}-designs was introduced, for $k \geq 4$. The idea is that the set $B(\Sigma)$ has the maximum possible cardinality. Indeed, Gionfriddo and Milazzo in [10] proved that:

Theorem 1. If $\Sigma=(X, \mathcal{B})$ is a $C_{k}(v)$-design and B is a blocking set of cardinality p, then $k \geq 4$ and:

$$
\beta_{1}=\left\lceil\frac{v}{2}-\frac{\sqrt{k v[(k-4) v+4]}}{2 k}\right\rceil \leq p \leq\left\lfloor\frac{v}{2}+\frac{\sqrt{k v[(k-4) v+4]}}{2 k}\right\rfloor=\beta_{2} .
$$

So, a C_{k}-design Σ is called largely blocked if $B(\Sigma)=\left[\beta_{1}, \beta_{2}\right]$ (the closed interval of integers). In this paper we prove that for any $v \equiv 1 \bmod 8$ there exists a largely blocked C_{4}-design of order v and we determine the spectrum of largely blocked P_{3}-designs. We study also perfect blocking sets, analizing the idea of a blocking set distributed in an optimal and homogeneous way. The notion was introduced in [4] and it requires that any block contains a constant number of edges between vertices of the blocking set T and vertices of $C_{X}(T)$. In [4], the spectrum of P_{3}-designs with a perfect blocking set is determined. In this paper, we easily determine the spectrum of C_{4}-designs having a perfect blocking set, as it is follows from the result on the spectrum of largely blocked C_{4}-designs. Moreover, we study the problem for P_{5}-designs, determining the spectrum in the case that the constant is 2 , by using a peculiar construction for P_{3}-designs with a perfect blocking set.

2. LARGELY BLOCKED C_{4}-DESIGNS

A 4-cycle on the vertices $\{x, y, z, t\}$ with edges $\{x, y\},\{y, z\},\{z, t\}$ and $\{x, t\}$ is denoted by (x, y, z, t). The spectrum of C_{4}-designs is known:
Theorem 2. There exists a C_{4}-designs of order v if and only if $v \equiv 1 \bmod 8$, $v \geq 9$.

By Theorem 1 we determine the bound on the cardinality of a possible blocking set for a C_{4}-design.
Proposition 3. Let $\Sigma=(X, \mathcal{B})$ be a C_{4}-design of order v and let $T \subset X$ be a blocking set of cardinality t. Then:

$$
\left\lceil\frac{v}{2}-\frac{\sqrt{v}}{2}\right\rceil \leq t \leq\left\lfloor\frac{v}{2}+\frac{\sqrt{v}}{2}\right\rfloor .
$$

In this way (see [10]), we get two parameters $\beta_{1}=\left\lceil\frac{v}{2}-\frac{\sqrt{v}}{2}\right\rceil$ and $\beta_{2}=$ $\left\lfloor\frac{v}{2}+\frac{\sqrt{v}}{2}\right\rfloor=v-\beta_{1}$ such that $B(\Sigma) \subseteq\left[\beta_{1}, \beta_{2}\right]$ (closed interval of integers). So, a natural definition is the following:
Definition $4([10])$. A C_{4}-design Σ is largely blocked if $B(\Sigma)=\left[\beta_{1}, \beta_{2}\right]$.
We want to prove that for any $v \equiv 1 \bmod 8$ there exists a largely blocked C_{4}-design. In order to do that we need the following constructions.

Proposition 5. If there exists a C_{4}-design $\Sigma=(X, \mathcal{B})$ of order v with blocking sets T_{1}, \ldots, T_{s} of cardinalities, respectively, p_{1}, \ldots, p_{s} such that $T_{1} \subset \cdots \subset T_{s}$, then there exists a C_{4}-design $\Sigma^{\prime}=\left(X^{\prime}, \mathcal{B}^{\prime}\right)$ of order $v+8$ with blocking sets $T_{1}^{\prime}, \ldots, T_{s}^{\prime}$ of cardinalities, respectively, $p_{1}+4, \ldots, p_{s}+4$ such that $T_{1}^{\prime} \subset \cdots \subset T_{s}^{\prime}$. Moreover, if in any block $(a, b, c, d) \in \mathcal{B}$ there exists a vertex $a \in T_{1}$ such that either $b, d \notin T_{s}$ or $c \notin T_{s}$, then also in any block $(a, b, c, d) \in \mathcal{B}^{\prime}$ there exists a vertex $a \in T_{1}^{\prime}$ such that either $b, d \notin T_{s}^{\prime}$ or $c \notin T_{s}^{\prime}$.

Proof. The proof follows by the construction given in [9, Theorem 4.1]. Indeed, let $\Sigma_{1}=\left(X_{1}, \mathcal{B}_{1}\right)$ be a C_{4}-design of order $v=1+8 k, k \in \mathbb{N}, k \geq 1$, with T_{1}, \ldots, T_{s} blocking sets of cardinality p_{1}, \ldots, p_{s} and $X_{1}=\left\{0, x_{1}, \ldots, x_{8 k}\right\}$. Let $X_{2}=\{0,1, \ldots, 8\}$ so that $X_{1} \cap X_{2}=\{0\}$ and $0 \notin T_{s}$. Consider the 4 -cycle system $\Sigma_{2}=\left(X_{2}, \mathcal{B}_{2}\right)$ having as blocks $(0,1,5,2)$ and all its translates. Then $\{1,2,3,4\}$ is a blocking set for Σ_{2}. Consider also the family \mathcal{B}_{3} of blocks:

$$
\left(i, x_{j}, i+4, x_{j+4 k}\right)
$$

for $i=1,2,3,4$ and $j=1, \ldots, 4 k$. Then $\Sigma=\left(X_{1} \cup X_{2}, \mathcal{B}_{1} \cup \mathcal{B}_{2} \cup \mathcal{B}_{3}\right)$ is a 4-cycle system of order $v+8$ having $T_{1}^{\prime}=T_{1} \cup\{1,2,3,4\}, \ldots, T_{s}^{\prime}=T_{s} \cup\{1,2,3,4\}$ as blocking sets. This proves the statement.

Lemma 6. Let X and Y be disjoint sets, with $|X|=|Y|=8$. Let $T_{X} \subset X$ and $T_{Y} \subset Y$ such that $\left|T_{X}\right|=4$ and $\left|T_{Y}\right|=3$ and let $y \in Y \backslash T_{Y}$. Then there exists a decomposition of $K_{X, Y}$ in a family \mathcal{B} of 4-cycles having $T=T_{X} \cup T_{Y}$ and $T \cup\{y\}$ as blocking sets. Moreover, in any block $(a, b, c, d) \in \mathcal{B}$ there exists a vertex $a \in T$ such that $c \notin T \cup\{y\}$.

Proof. Let $X=\left\{x_{i} \mid i=1, \ldots, 8\right\}$ and $Y=\left\{y_{i} \mid i=1, \ldots, 8\right\}$. Let:

$$
\mathcal{B}=\left\{\left(x_{i}, y_{j}, x_{i+4}, y_{j+4}\right) \mid i, j=1,2,3,4\right\} .
$$

Then the blocks of \mathcal{B} decompose $K_{X, Y}$ in 4 -cycles and it is easy to get statement by taking $T_{X}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, T_{Y}=\left\{y_{1}, y_{2}, y_{3}\right\}$ and $y=y_{4}$.

Lemma 7. Let X, Y and Z be pairwise disjoint sets, with $|X|=|Y|=|Z|=8$. Let $\infty \notin X \cup Y \cup Z, T_{X} \subset X, T_{Y} \subset Y$ and $T_{Z} \subset Z$, with $\left|T_{X}\right|=4,\left|T_{Y}\right|=3$ and $\left|T_{Z}\right|=3$. Then there exists a decomposition of $K_{X, Y, Z} \cup K_{X \cup\{\infty\}}$ in a family \mathcal{B} of 4-cycles having $T=T_{X} \cup T_{Y} \cup T_{Z}, T \cup\{y\}$ and $T \cup\{y, z\}$ as blocking sets, for some $y \in Y \backslash T_{Y}$ and $z \in Z \backslash T_{Z}$. Moreover, in any block $(a, b, c, d) \in \mathcal{B}$ there exists a vertex $a \in T$ such that either $b, d \notin T \cup\{y, z\}$ or $c \notin T \cup\{y, z\}$.

Proof. Let $X=\left\{x_{i} \mid i=1, \ldots, 8\right\}, Y=\left\{y_{i} \mid i=1, \ldots, 8\right\}, Z=\left\{z_{i} \mid i=1, \ldots, 8\right\}$ and $T_{X}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, T_{Y}=\left\{y_{1}, y_{2}, y_{3}\right\}, T_{Z}=\left\{z_{1}, z_{2}, z_{3}\right\}$. Let us consider the C_{4}-design $\Sigma=(X \cup\{\infty\}, \mathcal{B})$ such that \mathcal{B} is given by the blocks:

$$
\begin{aligned}
& \left(x_{1}, x_{5}, x_{2}, x_{6}\right),\left(\infty, x_{1}, x_{2}, x_{8}\right),\left(\infty, x_{2}, x_{3}, x_{7}\right),\left(\infty, x_{3}, x_{8}, x_{6}\right) \\
& \left(\infty, x_{4}, x_{7}, x_{5}\right),\left(x_{2}, x_{4}, x_{8}, x_{7}\right),\left(x_{8}, x_{5}, x_{3}, x_{1}\right),\left(x_{1}, x_{4}, x_{6}, x_{7}\right),\left(x_{3}, x_{4}, x_{5}, x_{6}\right)
\end{aligned}
$$

Then $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ is a blocking set for this C_{4}-design.
Consider now the decomposition of $K_{X, Y, Z}$ in 4 -cycles given by the following family \mathcal{B}^{\prime} of blocks:

$$
\left(x_{i}, y_{j}, x_{i+4}, y_{j+4}\right),\left(x_{i}, z_{j}, x_{i+4}, z_{j+4}\right),\left(y_{i}, z_{j}, y_{i+4}, z_{j+4}\right) \quad \text { for } i, j=1,2,3,4
$$

So $\mathcal{C}=\mathcal{B} \cup \mathcal{B}^{\prime}$ provides us a decomposition of $K_{X, Y, Z} \cup K_{X \cup\{\infty\}}$ in 4-cycles such that $T=T_{X} \cup T_{Y} \cup T_{Z}$ is a blocking set for any block in \mathcal{C}, with the exception of $\left(y_{4}, z_{4}, y_{8}, z_{8}\right)$. So, take the blocks:

$$
\left(y_{4}, z_{4}, y_{8}, z_{8}\right),\left(x_{1}, x_{5}, x_{2}, x_{6}\right),\left(x_{1}, y_{4}, x_{5}, y_{8}\right),\left(x_{2}, y_{4}, x_{6}, y_{8}\right)
$$

and replace them with:

$$
\left(x_{1}, y_{4}, z_{4}, y_{8}\right),\left(y_{4}, x_{5}, x_{1}, x_{6}\right),\left(z_{8}, y_{4}, x_{2}, y_{8}\right),\left(y_{8}, x_{5}, x_{2}, x_{6}\right)
$$

Denoted by \mathcal{C}^{\prime} the family of blocks that we obtain, it is easy to see that T is a blocking set for any block in \mathcal{C}^{\prime} and that these blocks provide a decomposition of $K_{X, Y, Z} \cup K_{X \cup\{\infty\}}$ in 4-cycles. It is also easy to see that $T \cup\left\{y_{4}\right\}$ and $T \cup\left\{y_{4}, z_{5}\right\}$ are blocking sets. Moreover, we can easily see that each 4 -cycle of \mathcal{C}^{\prime} can be decomposed in two 3-paths in such a way that $T, T \cup\left\{y_{4}\right\}$ and $T \cup\left\{y_{4}, z_{5}\right\}$ are blocking sets also for these 3 -paths.

Now we can prove the following:
Theorem 8. For any $v \equiv 1 \bmod 8$ there exists a largely blocked C_{4}-design of order v.

Proof. Case v is a square. Let $v=(2 r+1)^{2}$ for some $r \in \mathbb{N}$, so that $v \equiv 1$ $\bmod 8$. We want, first, to prove the statement in this case.

Suppose that $r=1$, so that $v=9$. Then the statement follows by [10, Theorem 3.2]. More precisely, in [10, Theorem 3.2] it is proved that there exists a C_{4}-design of order 9 largely blocked with T and T^{\prime} blocking sets of cardinality 3 and 4 such that $T \subset T^{\prime}$. Moreover, we see that in any block (a, b, c, d) there exists a vertex $a \in T$ such that either $b, d \notin T^{\prime}$ or $c \notin T^{\prime}$.

Suppose now that $r>1$. Then $v=4 r^{2}+4 r+1$ and by Proposition 3 for any C_{4}-design Σ we have $B(\Sigma) \subseteq\left\{\left\lceil\frac{v}{2}-\frac{\sqrt{v}}{2}\right\rceil, \ldots,\left\lfloor\frac{v}{2}+\frac{\sqrt{v}}{2}\right\rfloor\right\}=\left\{2 r^{2}+r, \ldots, 2 r^{2}+3 r+1\right\}$. Consider $X_{1}, \ldots, X_{\frac{r^{2}+r}{2}}$ disjoint sets, each of cardinality 8 , and take an element $\infty \notin \bigcup_{i} X_{i}$. For any $i=1, \ldots, \frac{r^{2}+r}{2}$ take a subset $T_{i} \subset X_{i}$ such that:

$$
\left|T_{i}\right|= \begin{cases}3 & \text { for } i=1, \ldots, r \\ 4 & \text { for } i=r+1, \ldots, \frac{r^{2}+r}{2}\end{cases}
$$

So $T=\bigcup_{i} T_{i}$ is a set of cardinality $2 r^{2}+r$. For any $i=1, \ldots, r$ take $x_{i} \in X_{i}$ such that $x_{i} \notin T_{i}$. Consider any bijection:

$$
\phi:\{\{i, j\} \mid i, j=1, \ldots, r, i \neq j\} \rightarrow\left\{r+1, \ldots, \frac{r^{2}+r}{2}\right\} .
$$

By Lemma 7 for any $i, j=1, \ldots, r, i \neq j$, there exists a decomposition of

$$
K_{X_{i}, X_{j}, X_{\phi(\{i, j\})}} \cup K_{X_{\phi(\{i, j\})} \cup\{\infty\}}
$$

in a family $\mathcal{B}_{i j}$ of 4 -cycles such that $T_{i} \cup T_{j} \cup T_{\phi(\{i, j\})}, T_{i} \cup T_{j} \cup T_{\phi(\{i, j\})} \cup\left\{x_{i}\right\}$ and $T_{i} \cup T_{j} \cup T_{\phi(\{i, j\})} \cup\left\{x_{i}, x_{j}\right\}$ are blocking sets for $\mathcal{B}_{i j}$.

Then, by the case $v=9$, for $i=1, \ldots, r$ there exists a C_{4}-design $\Sigma_{i}=$ $\left(X_{i} \cup\{\infty\}, \mathcal{C}_{i}\right)$ having T_{i} and $T_{i} \cup\left\{x_{i}\right\}$ as blocking sets.

At last, for any $i, j=1, \ldots, \frac{r^{2}+r}{2}, i \neq j$, such that both i, j are not simultaneously in some of the triples of $\{\{p, q, \phi(\{p, q\})\} \mid p, q=1, \ldots, r, p \neq q\}$ by Lemma 6 we can consider a decomposition of $K_{X_{i}, X_{j}}$ in a family $D_{i j}$ of 4-cycles having $T_{i} \cup T_{j}$ and $T_{i} \cup T_{j} \cup\left\{x_{i}\right\}$ if $i=1, \ldots, r$ as blocking sets.

If we call $\mathcal{E}=\bigcup \mathcal{B}_{i j} \cup \bigcup \mathcal{C}_{i} \cup \bigcup \mathcal{D}_{i j}$, then $\Sigma=\left(\bigcup X_{i} \cup\{\infty\}, \mathcal{E}\right)$ is a 4-cycle system of order $v=4 r^{2}+4 r+1$ having as blocking sets T and $T \cup\left\{x_{1}, \ldots, x_{s}\right\}$ for any $s=1, \ldots, r$. So there exist for Σ blocking sets of cardinality $2 r^{2}+r, \ldots, 2 r^{2}+$ $2 r$. This immediately implies that there exist for Σ blocking sets of cardinality $2 r^{2}+r, \ldots, 2 r^{2}+3 r+1$, because, if T is a blocking set, also its complement is a blocking set. This completely proves the statement in the case $v=(2 r+1)^{2}$.

General v. Take any $v \in \mathbb{N}$ such that $v \equiv 1 \bmod 8$. Then we write:

$$
v=(2 r+1)^{2}+8 k
$$

for some $r, k \in \mathbb{N}$, in such a way that $(2 r+1)^{2} \leq v<(2 r+3)^{2}$. This means that $0 \leq k \leq r$ and that, of course, $2 r+1 \leq \sqrt{v}<2 r+3$. This implies that:

$$
\left\{\left\lceil\frac{v}{2}-\frac{\sqrt{v}}{2}\right\rceil, \ldots,\left\lfloor\frac{v}{2}+\frac{\sqrt{v}}{2}\right\rfloor\right\}=\left\{2 r^{2}+r+4 k, \ldots, 2 r^{2}+3 r+1+4 k\right\} .
$$

So by what we have just proved for the orders of type $(2 r+1)^{2}$, for any $r \in \mathbb{N}$, and by iteratively using Proposition 5 we easily get the statement.

The following remark will be used in the next section.
Remark 9. By the previous construction, by the case $v=9$ and by Proposition 5, Lemma 6 and Lemma 7 it follows that for any $v \equiv 1 \bmod 8$ there exists a largely blocked 4 -cycle design $\Sigma=(X, \mathcal{B})$ with some blocking sets T_{1}, \ldots, T_{r} with $T_{1} \subset \cdots \subset T_{r}$ and $\left|T_{1}\right|=\beta_{1},\left|T_{2}\right|=\beta_{1}+1, \ldots,\left|T_{r}\right|=\frac{v-1}{2}$. Moreover, in any block $(a, b, c, d) \in \mathcal{B}$ there exists a vertex $a \in T_{1}$ such that either $b, d \notin T_{r}$ or $c \notin T_{r}$.

3. LARGELY BLOCKED P_{3}-DESIGNS

Now we want to study largely blocked P_{3}-designs. In general, the k-path on the vertices $\left\{x_{1}, \ldots, x_{k}\right\}$ with edges $\left\{x_{i}, x_{i+1}\right\}$ for $i=1, \ldots, k-1$ is denoted by $\left[x_{1}, x_{2}, \ldots, x_{k}\right]$. The spectrum of P_{3}-designs is known:

Theorem 10. A P_{3}-design of order v exists if and only if $v \equiv 0,1 \bmod 4, v \geq 4$.

Note that for a P_{3}-design $\Sigma=(X, \mathcal{B})$ of order v with a blocking set of cardinality t we have the clear condition that:

$$
|\mathcal{B}|=\frac{v(v-1)}{4} \leq p \cdot(v-p) \Rightarrow \beta_{1}=\left\lceil\frac{v}{2}-\frac{\sqrt{v}}{2}\right\rceil \leq p \leq\left\lfloor\frac{v}{2}+\frac{\sqrt{v}}{2}\right\rfloor=\beta_{2} .
$$

So we can give the following definition for P_{3}-designs:
Definition 11. A P_{3}-design Σ of order v is called largely blocked if $B(\Sigma)=\left[\beta_{1}, \beta_{2}\right]$.
In this section we want to determine the spectrum of largely blocked $P_{3^{-}}$ designs. First, we need some technical lemmas.

Lemma 12. Let $X=\left\{x_{i} \mid i=1, \ldots, 4\right\}$ and $Y=\left\{y_{i} \mid i=1, \ldots, 4\right\}$ be disjoint sets, with $|X|=|Y|=4$. Then there exists a P_{3}-decomposition of $K_{X, Y}$ having $\left\{x_{1}, x_{2}, y_{1}\right\},\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\},\left\{x_{2}, x_{3}, y_{1}\right\},\left\{x_{2}, x_{3}, y_{1}, y_{2}\right\}$ and $\left\{x_{2}, x_{3}, y_{2}, y_{3}\right\}$ as blocking sets.

Proof. Let:

$$
\mathcal{B}=\left\{\left[x_{i}, y_{j}, x_{i+2}\right] \mid i=1,2, j=1,2,3,4\right\} .
$$

Then the blocks of \mathcal{B} decompose $K_{X, Y}$ in 3-paths and satisfy the conditions of the statement.

Lemma 13. Let $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, Y=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}, Z=\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}$ and $T=\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$ be pairwise disjoint sets. Then there exists a P_{3}-decomposition of $K_{X, Y, Z, T} \cup K_{X} \cup K_{Y}$ having $W=\left\{x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, t_{1}\right\}, W \cup\left\{z_{2}\right\}$ and $\left(W \backslash\left\{y_{1}\right\}\right) \cup$ $\left\{y_{3}, z_{2}, t_{2}\right\}$ as blocking sets.

Proof. Let us consider the family \mathcal{B} of blocks:

- $\left[x_{1}, z_{j}, t_{3}\right],\left[x_{2}, z_{j}, t_{4}\right],\left[y_{1}, z_{j}, t_{2}\right],\left[x_{3}, z_{j}, t_{1}\right],\left[x_{1}, t_{j}, x_{3}\right],\left[x_{2}, t_{j}, x_{4}\right],\left[y_{1}, t_{j}, y_{3}\right]$, $\left[y_{2}, t_{j}, y_{4}\right]$ and $\left[x_{4}, z_{j}, y_{2}\right]$ for $j=1,2,3,4$
- $\left[z_{2}, y_{3}, y_{1}\right],\left[z_{3}, y_{3}, y_{2}\right],\left[z_{4}, y_{3}, x_{1}\right],\left[z_{2}, y_{4}, x_{1}\right],\left[z_{3}, y_{4}, x_{2}\right],\left[z_{4}, y_{4}, z_{1}\right],\left[y_{4}, y_{3}, z_{1}\right]$, $\left[y_{4}, y_{1}, y_{2}\right],\left[y_{3}, x_{2}, y_{1}\right],\left[y_{3}, x_{3}, y_{1}\right],\left[y_{3}, x_{4}, y_{1}\right],\left[x_{3}, x_{1}, y_{1}\right],\left[x_{4}, x_{1}, y_{2}\right],\left[y_{2}, x_{2}, x_{3}\right]$, $\left[x_{1}, x_{2}, x_{4}\right],\left[y_{2}, x_{3}, y_{4}\right],\left[y_{2}, x_{4}, x_{3}\right]$ and $\left[x_{4}, y_{4}, y_{2}\right]$.

Then it is easy to verify that the blocks of \mathcal{B} give us the statement.
Now we can determine the spectrum of largely blocked P_{3}-designs.
Theorem 14. For any $v \equiv 0,1 \bmod 4, v \geq 4$, there exists a largely blocked P_{3} design of order v.

Proof. Case 1. Suppose, first, that $v \equiv 0 \bmod 4$. If $v=4$, let $X=\{1,2,3,4\}$ and let:

$$
\mathcal{B}=\{[1,2,3],[1,3,4],[1,4,2]\} .
$$

Then $\Sigma=(X, \mathcal{B})$ is a P_{3}-design having as blocking sets $\{1\},\{1,2\}$ and $\{2,3,4\}$. This proves the statement for $v=4$.

Now let $v=4 r^{2}+4 k, v \geq 8$, for some $r, k \in \mathbb{N}$ such that $(2 r)^{2} \leq v<(2 r+2)^{2}$. In this way, we have $0 \leq k \leq 2 r$ and $\left[\beta_{1}, \beta_{2}\right]=\left[2 r^{2}-r+2 k, 2 r^{2}+r+2 k\right]$.

Let $X_{1}, \ldots, X_{r^{2}+k}$ be pairwise disjoint sets with $\left|X_{i}\right|=4$ for any $i=1, \ldots, r^{2}+$ k and let $X=\bigcup_{i} X_{i}$. By what we just proved we can consider $\Sigma_{i}=\left(X_{i}, \mathcal{B}_{i}\right)$ largely blocked P_{3}-designs with blocking sets T_{i} such that:

$$
\left|T_{i}\right|= \begin{cases}1 & \text { for } i=1, \ldots, r \\ 2 & \text { for } i=r+1, \ldots, r^{2}+k\end{cases}
$$

Let $T=\bigcup_{i} T_{i}$, so that $|T|=2 r^{2}-r+2 k$. Consider also $x_{i} \in X_{i}, x_{i} \notin T_{i}$, for $i=1, \ldots, r$, and $T_{i}^{\prime} \subset X_{i}$ for $i=\frac{r^{2}+r}{2}+1, \ldots, r^{2}$ such that $\left|T_{i}^{\prime}\right|=2$ and $\left|T_{i} \cap T_{i}^{\prime}\right|=1$. By what we just proved we can suppose that $T_{i} \cup\left\{x_{i}\right\}$ for $i=1, \ldots, r$ is still a blocking set for Σ_{i}.

Consider any bijection:

$$
\varphi:\{\{i, j\} \mid i, j=1, \ldots, r, i \neq j\} \rightarrow\left\{r+1, \ldots, \frac{r^{2}+r}{2}\right\}
$$

and let:

$$
\psi(i, j)=\varphi(i, j)+\binom{r}{2}
$$

By Lemma 13 for $i, j=1, \ldots, r, i<j$, we can consider a family $\mathcal{C}_{i, j}$ of blocks decomposing

$$
K_{X_{i}, X_{j}, X_{\varphi(i, j)}, X_{\psi(i, j)}} \cup K_{X_{\varphi(i, j)}} \cup K_{X_{\psi(i, j)}}
$$

in P_{3} paths such that:

- $T_{i} \cup T_{j} \cup T_{\varphi(i, j)} \cup T_{\psi(i, j)}$,
- $T_{i} \cup T_{j} \cup T_{\varphi(i, j)} \cup T_{\psi(i, j)} \cup\left\{x_{i}\right\}$,
- $T_{i} \cup T_{j} \cup T_{\varphi(i, j)} \cup T_{\psi(i, j)}^{\prime} \cup\left\{x_{i}, x_{j}\right\}$
are blocking sets for this decomposition.
Let $i, j=1, \ldots, r^{2}+k, i \neq j$, such that both i, j are not simultaneously in some of the quadruples:

$$
\{\{p, q, \varphi(p, q), \psi(p, q)\} \mid p, q=1, \ldots, r, p \neq q\}
$$

Then by Lemma 12 let $\mathcal{D}_{i, j}$ a family of blocks decomposing $K_{X_{i}, X_{j}}$ such that:

- $T_{i} \cup T_{j}$,
- $T_{i} \cup T_{j} \cup\left\{x_{i}\right\}$ if $i=1, \ldots, r$,
- $T_{i} \cup T_{j}^{\prime}$ if $j=\frac{r^{2}+r}{2}+1, \ldots, r^{2}$
- $T_{i} \cup T_{j}^{\prime} \cup\left\{x_{i}\right\}$ if $i=1, \ldots, r$ and $j=\frac{r^{2}+r}{2}+1, \ldots, r^{2}$,
- $T_{i}^{\prime} \cup T_{j}^{\prime}$ if $i, j=\frac{r^{2}+r}{2}+1, \ldots, r^{2}$
are all blocking sets for the blocks of $\mathcal{D}_{i, j}$.
Let:

$$
\mathcal{B}=\bigcup_{i=1}^{r} \mathcal{B}_{i} \cup \bigcup_{i=r^{2}+1}^{r^{2}+2 k} \mathcal{B}_{i} \cup \bigcup \mathcal{C}_{i, j} \cup \bigcup \mathcal{D}_{i, j}
$$

Then $\Sigma=(X, \mathcal{B})$ is a P_{3}-design having:

- T
- $T \cup\left\{x_{1}\right\}$
- $\bigcup_{i \notin I_{s}} T_{i} \cup \bigcup_{i \in I_{s}} T_{i}^{\prime} \cup\left\{x_{1}, \ldots, x_{s}\right\}$ for $s=2, \ldots, r$, where $I_{s}=\{\psi(i, j) \mid i, j=$ $1, \ldots, s, i \neq j\}$,
as blocking sets. So there exist for Σ blocking sets of cardinality $2 r^{2}-r+2 k, \ldots, 2 r^{2}+$ $2 k$. This immediately implies that there exist for Σ blocking sets of cardinality $2 r^{2}+2 k+1, \ldots, 2 r^{2}+2 k+r$, because the complement of a blocking set is a blocking set. This proves the statement for $v \equiv 0 \bmod 4$.

Case 2. Let $v \equiv 1 \bmod 8, v \geq 9$. In this case the statement follows by Theorem 8. Indeed, there exists a largely blocked C_{4}-design $\Sigma=(X, \mathcal{B})$ of order v with the same interval of integers

$$
\left[\left\lceil\frac{v-\sqrt{v}}{2}\right\rceil,\left\lfloor\frac{v+\sqrt{v}}{2}\right\rfloor\right]=\left[\beta_{1}, \beta_{2}\right] .
$$

Moreover, as noted in Remark 9 called $T_{1}, \ldots T_{r}$ the blocking sets of cardinality:

$$
\left\lceil\frac{v-\sqrt{v}}{2}\right\rceil, \ldots, \frac{v-1}{2}
$$

given in the construction, in any 4-cycle (x, y, z, t) of \mathcal{B} we have a vertex $x \in T_{i}$ for any i such that either $y, t \notin T_{i}$ for any i or $z \notin T_{i}$ for any i. This implies that from this 4 -cycle we get the paths $[x, y, z]$ and $[x, t, z]$ in order to obtain a P_{3}-design of order v having $T_{1}, \ldots T_{r}$ and their complements as blocking sets. This proves the statement in the case $v \equiv 1 \bmod 8, v \geq 9$.

Case 3. Let $v \equiv 5 \bmod 8$. If $v=5$, we have $\left[\beta_{1}, \beta_{2}\right]=[2,3]$. Consider on $\{0,1,2,3,4\}$ the P_{3}-design Σ having as base block $[1,0,2]$. Then $\{0,2\}$ (and consequently also its complement $\{1,3,4\}$) is a blocking set for Σ. This proves the statement for $v=5$.

Let $v \equiv 5 \bmod 8$, with $v \geq 13$. Then let $v=(2 r+1)^{2}+4(2 k+1)$ for some $r, k \in \mathbb{N}, r \geq 1$, such that $(2 r+1)^{2}+4 \leq v<(2 r+3)^{2}+4$. So $0 \leq k \leq r$ and $v<(2 r+3)^{2}$. Let $v^{\prime}=v-4$. Then by what we just proved we can take $\Sigma=(X, \mathcal{B})$ a largely blocked P_{3}-design of order v^{\prime}. Let T be a blocking set for Σ of cardinality p. It is easy to see that:
$\beta_{1}(v)=\left\lceil\frac{v-\sqrt{v}}{2}\right\rceil=2 r^{2}+r+4 k+2 \quad$ and $\quad \beta_{2}(v)=\left\lceil\frac{v+\sqrt{v}}{2}\right\rceil=2 r^{2}+3 r+4 k+3$
and
$\beta_{1}\left(v^{\prime}\right)=\left\lceil\frac{v^{\prime}-\sqrt{v^{\prime}}}{2}\right\rceil=2 r^{2}+r+4 k \quad$ and $\quad \beta_{2}\left(v^{\prime}\right)=\left\lceil\frac{v^{\prime}+\sqrt{v^{\prime}}}{2}\right\rceil=2 r^{2}+3 r+4 k+1$.
So $\left[\beta_{1}(v), \beta_{2}(v)\right]=\left[\beta_{1}\left(v^{\prime}\right)+2, \beta_{2}\left(v^{\prime}\right)+2\right]$. Let $X=\left\{x_{i} \mid i=1, \ldots, v^{\prime}\right\}$ and $Y=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$. Let \mathcal{B}^{\prime} be the following family of blocks:

$$
\left[y_{1}, y_{2}, y_{3}\right],\left[y_{1}, y_{3}, y_{4}\right],\left[y_{1}, y_{4}, y_{2}\right],\left[y_{2 i+1}, x_{j}, y_{2 i+2}\right]
$$

for $i=0,1$ and $j=1, \ldots, v^{\prime}$. Then $\Sigma^{\prime}=\left(X \cup Y, \mathcal{B} \cup \mathcal{B}^{\prime}\right)$ is a P_{3}-design of order v having as blocking set $T \cup\left\{y_{1}, y_{3}\right\}$. Since Σ is largely blocked and $\left[\beta_{1}(v), \beta_{2}(v)\right]=$ $\left[\beta_{1}\left(v^{\prime}\right)+2, \beta_{2}\left(v^{\prime}\right)+2\right]$, we immediately get the statement for $v \equiv 5 \bmod 8, v \geq$ 13.

4. PERFECT BLOCKING SETS

In general, when we have a blocking set T for a G-design $\Sigma=(X, \mathcal{B})$ we might want that the elements of T are distributed in an optimal and homogeneous way in the blocks of \mathcal{B}. So in [4] the following definition is given:

Definition 15. Let $\Sigma=(X, \mathcal{B})$ be a G-design. A blocking set T of Σ is called perfect if there exists $C \in \mathbb{N}$ such that any block $B \in \mathcal{B}$ contains exactly C edges joining vertices of T and of $C_{X}(T)$.

This definition in general forces a strict condition on the order of the G-design:
Proposition 16. If $\Sigma=(X, \mathcal{B})$ is a C_{4}-design of order v and T is a perfect blocking set for Σ of cardinality p, then:

$$
p=\frac{v \pm \sqrt{v}}{2}
$$

and v is a square.
Proof. Since $|\mathcal{B}|=\frac{v(v-1)}{8}$ and T is a perfect blocking set, then any block $B \in \mathcal{B}$ contains exactly 2 edges joining vertices of T and $C_{X}(T)$ and:

$$
p \cdot(v-p)=2 \cdot \frac{v(v-1)}{8}
$$

So $p=\frac{v \pm \sqrt{v}}{2}$ and v is a square, because p is a positive integer.
By Theorem 2, Theorem 8 and Proposition 16 we get immediately the following:

Theorem 17. There exist C_{4}-designs of order v with a perfect blocking set if and only if $v=(2 r+1)^{2}$ for some $r \in \mathbb{N}, r \geq 1$.

5. PERFECT BLOCKING SETS IN P_{5}-DESIGNS

In [4] the spectrum of P_{3}-designs having a perfect blocking set is determined. So it is proved that:

Theorem 18 ([4]). If T is a perfect blocking set of any P_{3}-design of order v, then $c=1, v$ is a square and

$$
|T|=\frac{v \pm \sqrt{v}}{2}
$$

If we consider a P_{3}-design of order v having a perfect blocking set, since $v \equiv 0$ or $1 \bmod 4$, then there exists a positive integer k such that $v=(2 k)^{2}$ or $v=(2 k+1)^{2}$. So in [4] it is proved that:

Theorem 19 ([4]). There exist P_{3}-designs of order v having perfect blocking sets if and only if v is a square.

In this section we provide a construction that will be useful in studying $P_{5^{-}}$ designs with perfect blocking sets. So, let $\Sigma=(X, \mathcal{B})$ be a P_{3}-design of order v with a perfect blocking set T. For any $x \in T$ we consider the set:

$$
E(x)=\left\{\left\{y, y^{\prime}\right\} \mid y, y^{\prime} \in X, y \neq y^{\prime},\left[x, y, y^{\prime}\right] \text { or }\left[x, y^{\prime}, y\right] \in \mathcal{B}\right\}
$$

and the graph $G(x)=(X \backslash\{x\}, E(x))$.
Remark 20. Note that in a P_{3}-design with a perfect blocking set T, any block B is a path $\left[x_{1}, x_{2}, x_{3}\right]$ where $x_{1} \in T$ and $x_{3} \in C_{X}(T)$.

Given a graph $G=(X, E)$, we denote by $\Delta(G)$ the maximum degree of the vertices of G. The chromatic index $\chi^{\prime}(G)$ of G is the minimum number of colors needed for a proper edge coloring of G. The following construction will be used in the proof of the main result of this section:

Theorem 21. For any $k \in \mathbb{N}$ there exists a P_{3}-design Σ of order v with a perfect blocking set T such that one of the following conditions holds:

1. $v=(2 k+1)^{2},|E(x)|$ is even for any $x \in T$ and

$$
\chi^{\prime}(G(x)) \leq \frac{|E(x)|}{2}
$$

2. $v=(2 k)^{2}, k \geq 2,|E(x)|$ is odd for any $x \in T$ and there exists $b \in C_{X}(T)$ such that for any $x \in T$ there exists $a_{x} \in C_{X}(T)$ satisfying the conditions:

- $\left[x, a_{x}, b\right] \in \mathcal{B}$,
- $a_{x} \neq a_{y}$ for any $x, y \in T, x \neq y$,
- $\chi^{\prime}\left(G(x)-\left\{a_{x}, b\right\}\right) \leq \frac{|E(x)|-1}{2}$,
where $G(x)-\left\{a_{x}, b\right\}=\left(X \backslash\{x\}, E(x) \backslash\left\{\left\{a_{x}, b\right\}\right\}\right)$.
Proof. Let $\Sigma=(X, \mathcal{B})$ be a P_{3}-design with a perfect blocking set T of cardinality p. Let $x \in T$ and:
- let a_{x} be the number of blocks of type $\left[x, x_{1}, x_{2}\right]$, with $x_{1} \in T$ and $x_{2} \in C_{X}(T)$
- let b_{x} be the number of blocks of type $\left[x, x_{1}, x_{2}\right]$, with $x_{1}, x_{2} \in C_{X}(T)$
- let c_{x} be the number of blocks of type $\left[x_{1}, x, x_{2}\right], x_{1} \in T$ and $x_{2} \in C_{X}(T)$.

Then:

$$
\left\{\begin{array}{l}
a_{x}+c_{x}=p-1 \\
b_{x}+c_{x}=v-p
\end{array} \Rightarrow b_{x}-a_{x}=v-2 p+1\right.
$$

Since $|E(x)|=a_{x}+b_{x}$, we easily see that if v is odd, then $|E(x)|$ is even, and, conversely, if v is even, $|E(x)|$ is odd.

Next, to simplify the proof let us make the following position. If $v=(2 k+1)^{2}$, let $p=k(2 k+1)$ and $q=2 k+1$. If $v=(2 k)^{2}$, let $p=2 k^{2}-k$ and $q=2 k$.

Let us consider X_{1}, X_{2} and X_{3}, pairwise disjoint, such that $\left|X_{1}\right|=p,\left|X_{2}\right|=p$ and $\left|X_{3}\right|=q$. We will construct a P_{3}-design Σ of order v with vertex set $X=$ $X_{1} \cup X_{2} \cup X_{3}$ and $T=X_{1}$. Let:

$$
\begin{aligned}
X_{1} & =\left\{a_{1}, a_{2}, \ldots \ldots \ldots ., a_{p}\right\} \\
X_{2} & =\left\{b_{1}, b_{2}, \ldots \ldots \ldots ., b_{p}\right\} \\
X_{3} & =\left\{c_{1}, c_{2}, \ldots, c_{q}\right\} .
\end{aligned}
$$

For any $i=1, \ldots, q-1$ and $j=1, \ldots, q-i$ we define:

$$
\varphi(i, j)= \begin{cases}j & \text { for } i=1 \\ \sum_{r=1}^{i-1}(q-r)+j & \text { for } i \geq 2\end{cases}
$$

Note that $\varphi(i, 1)-\varphi(i-1, q-i+1)=1, \varphi(1,1)=1$ and $\varphi(q-1,1)=p$. This implies that for any $s \in\{1, \ldots, p\}$ there exist unique $i \in\{1, \ldots, q-1\}$ and $j \in\{1, \ldots, q-i\}$ such that $\varphi(i, j)=s$.

Define in X the following families of paths P_{3} :

$$
\begin{aligned}
\mathcal{F}_{1}= & \left\{\left[a_{i}, a_{i+j}, b_{j}\right] \mid i=1, \ldots, p-1, j=1, \ldots, p-i\right\} \\
\mathcal{F}_{2}= & \left\{\left[b_{i}, b_{i+j}, a_{j}\right] \mid i=1, \ldots, p-1, j=1, \ldots, p-i\right\} \\
\mathcal{F}_{3}= & \left\{\left[c_{i+j}, c_{i}, a_{\varphi(i, j)}\right] \mid i=1, \ldots, q-1, j=1, \ldots, q-i\right\} \\
\mathcal{F}_{4}= & \left\{\left[a_{\varphi(i, j)}, b_{\varphi(i, j)}, c_{i}\right] \mid i=1, \ldots, q-1, j=1, \ldots, q-i\right\} \\
\mathcal{F}_{5}= & \left\{\left[a_{s}, c_{i}, b_{\varphi(i, 1)-s}\right] \mid i=2, \ldots, q-1, s=1, \ldots, \varphi(i, 1)-1\right\} \cup \\
& \cup\left\{\left[a_{s}, c_{i}, b_{p-s+1+\varphi(i, q-i)}\right] \mid i=1, \ldots, q-2, s=\varphi(i, q-i)+1, \ldots, p\right\} \cup \\
& \cup\left\{\left[a_{s}, c_{q}, b_{p+1-s}\right] \mid s=1, \ldots, p\right\} .
\end{aligned}
$$

It is possible to verify that $\Sigma=\left(X, \bigcup_{i=1}^{5} \mathcal{F}_{i}\right)$ is a P_{3}-design of order $(2 k+1)^{2}$ such that X_{1} is a perfect blocking set satisfying the condition of the statement.

Indeed, for any $i=1, \ldots, p$ let $\bar{i} \in\{1, \ldots, q-1\}$ and $\bar{j} \in\{1, \ldots, q-i\}$ be such that $\varphi(\bar{i}, \bar{j})=i$. Moreover, for any $a_{i}, i=1, \ldots, p-1$ in $E\left(a_{i}\right)$ we have:

- from $\mathcal{F}_{1} p-i$ edges, with vertices in $\left\{a_{i+1}, \ldots, a_{p}\right\} \cup\left\{b_{1}, \ldots, b_{p-i}\right\}$
- from $\mathcal{F}_{2} p-i$ edges, which are $\left\{b_{j}, b_{i+j}\right\}$ for $j=1, \ldots, p-i$
- from \mathcal{F}_{3} just one edge, $\left\{c_{\bar{i}}, c_{\bar{i}+\bar{j}}\right\}$
- from \mathcal{F}_{4} we have just one edge $\left\{c_{\bar{i}}, b_{\varphi(\bar{i}, \bar{j})}\right\}=\left\{c_{\bar{i}}, b_{i}\right\}$
- from \mathcal{F}_{5} we have the edges $\left\{c_{q}, b_{p+1-i}\right\},\left\{\left\{c_{i^{\prime}}, b_{\varphi\left(i^{\prime}, 1\right)-i}\right\} \mid i^{\prime}=\bar{i}+1, \ldots, q-1\right\}$ for $\bar{i} \leq q-2$, and $\left\{\left\{c_{i^{\prime}}, b_{p-i+1+\varphi\left(i^{\prime}, q-i^{\prime}\right)}\right\} \mid i^{\prime}=1, \ldots, \bar{i}-1\right\}$ for $\bar{i} \geq 2$.

Instead, in $E\left(a_{p}\right)$ we have:

- from \mathcal{F}_{3} just one edge, $\left\{c_{q-1}, c_{q}\right\}$
- from \mathcal{F}_{4} we have just one edge $\left\{c_{q-1}, b_{p}\right\}$
- from \mathcal{F}_{5} we have the edges $\left\{c_{q}, b_{1}\right\}$ and $\left\{\left\{c_{i}, b_{1+\varphi(i, q-i)}\right\} \mid i=1, \ldots, q-2\right\}$.

This implies that:

$$
\Delta\left(G\left(a_{i}\right)\right)= \begin{cases}4 & \text { for } i \leq \frac{p}{2} \\ 3 & \text { for } \frac{p}{2}<i \leq p-1 \\ 2 & \text { for } i=p\end{cases}
$$

Since $\left|E\left(G\left(a_{i}\right)\right)\right|=2 p-2 i+1+q$ and $\chi^{\prime}\left(G\left(a_{i}\right)\right) \leq \Delta\left(G\left(a_{i}\right)\right)+1$, the statement follows if $v=(2 k+1)^{2}$ and $k \geq 2$. If $k=1$, then $p=q=3$ and it is easy to verify that:

$$
\begin{aligned}
& \Delta\left(G\left(a_{1}\right)\right)=4=\chi^{\prime}\left(G\left(a_{1}\right)\right)=\frac{\left|E\left(a_{1}\right)\right|}{2} \\
& \Delta\left(G\left(a_{2}\right)\right)=3=\chi^{\prime}\left(G\left(a_{1}\right)\right)=\frac{\left|E\left(a_{2}\right)\right|}{2} \\
& \Delta\left(G\left(a_{3}\right)\right)=2=\chi^{\prime}\left(G\left(a_{1}\right)\right)=\frac{\left|E\left(a_{3}\right)\right|}{2} .
\end{aligned}
$$

So also for $v=(2 k+1)^{2}$ with $k=1$ the statement holds.
If $v=(2 k)^{2}$, in the statement take $b=b_{1}$ and the paths $\left[a_{i}, b_{i+1}, b_{1}\right]$ for $i=1, \ldots, p-1$ and $\left[a_{p}, c_{q}, b_{1}\right]$. Then, we have $\left|E\left(G\left(a_{i}\right)\right)\right|-1=2 p-2 i+q$ and
$\chi^{\prime}\left(G\left(a_{i}\right)\right) \leq \Delta\left(G\left(a_{i}\right)\right)+1$ for any $i=1, \ldots, p$. Then the statement follows for $v=(2 k)^{2}$ and $k \geq 3$. If $k=2$, then $p=6$ and $q=4$ and we see that:

$$
\chi^{\prime}\left(G\left(a_{i}\right)\right) \leq \Delta\left(G\left(a_{i}\right)\right)+1 \leq \frac{\left|E\left(G\left(a_{i}\right)\right)\right|-1}{2}
$$

for $i=1,2,3,4$. Moreover it is not difficult to see that we also have:

$$
\begin{aligned}
& \Delta\left(G\left(a_{5}\right)-\left\{b_{1}, b_{6}\right\}\right)=2=\chi^{\prime}\left(G\left(a_{5}\right)-\left\{b_{1}, b_{6}\right\}\right)<\frac{\left|E\left(a_{5}\right)\right|-1}{2} \\
& \Delta\left(G\left(a_{6}\right)-\left\{c_{4}, b_{1}\right\}\right)=2=\chi^{\prime}\left(G\left(a_{6}\right)-\left\{c_{4}, b_{1}\right\}\right)=\frac{\left|E\left(a_{6}\right)\right|-1}{2} .
\end{aligned}
$$

So also for $v=(2 k)^{2}$ with $k=2$ the statement holds.
The next result is the key to the proof of the main result of this section:
Lemma 22 ([1, Lemma 2]). For every graph $G=(X, E)$ and for every $t>1$, $t K_{2} \mid G$ if and only if $t\left||E|\right.$ and $\chi^{\prime}(G) \leq \frac{|E|}{t}$.

Recall now the following:
Theorem 23. A P_{5}-design of order v exists if and only if $v \equiv 0$ or $1 \bmod 8, v \geq 5$.
Now we determine the spectrum of P_{5}-designs having a perfect blocking set with constant $C=2$:

Theorem 24. There exists a P_{5}-design of order v having a perfect blocking set with constant $C=2$ if and only if either $v=(2 k+1)^{2}$ or $v=16 k^{2}$, for some $k \in \mathbb{N}$.

Proof. If $\Sigma=(X, \mathcal{B})$ is a P_{5}-design of order v with a perfect blocking set T of cardinality p and constant $C=2$, then:

$$
p \cdot(v-p)=2 \cdot|\mathcal{B}| \Rightarrow p=\frac{v \pm \sqrt{v}}{2}
$$

So v is a square and by Theorem 23 either $v=(2 k+1)^{2}$ or $v=16 k^{2}$, for some $k \in \mathbb{N}$.

Suppose, now, that $v=(2 k+1)^{2}$ for some $k \in \mathbb{N}$. Let $\Sigma=(X, \mathcal{B})$ be a $P_{3^{-}}$ design satisfying the conditions of Theorem 21. Then, by Lemma 22 we see that, for any $x \in T$ such that $|E(x)|>0,2 K_{2} \mid G(x)$. So if $\left\{y_{1}, y_{2}\right\},\left\{y_{3}, y_{4}\right\}$ is one of these copies of $2 K_{2}$, we can join the two paths $\left[x, y_{1}, y_{2}\right]$ and $\left[x, y_{3}, y_{4}\right]$ in the path $\left[y_{4}, y_{3}, x, y_{1}, y_{2}\right]$. By Remark 20 this gives us a P_{5}-design of order $v=(2 k+1)^{2}$ having T as a perfect blocking set with constant $C=2$.

Suppose that $v=16 k^{2}$ for some $k \in \mathbb{N}$. Let $\Sigma=(X, \mathcal{B})$ be a P_{3}-design satisfying the conditions of Theorem 21, where now the perfect blocking set T has even cardinality. Keeping the notation of the theorem, for any $x \in T$ such that $|E(x)|>1$ we can proceed as we have just done: by Lemma 22 we see that
$2 K_{2} \mid\left(G(x)-\left\{a_{x}, b\right\}\right)$. So, again, if $\left\{y_{1}, y_{2}\right\},\left\{y_{3}, y_{4}\right\}$ is one of these copies of $2 K_{2}$, we can join the two paths $\left[x, y_{1}, y_{2}\right]$ and $\left[x, y_{3}, y_{4}\right]$ in the path $\left[y_{4}, y_{3}, x, y_{1}, y_{2}\right]$. Then there an even number of blocks $\left[x, a_{x}, b\right]$, one for each $x \in T$, where $a_{x} \in C_{X}(T)$. If $T=\left\{x_{1}, \ldots, x_{p}\right\}$, then we can consider the following paths:

$$
\left[x_{2 i+1}, a_{x_{2 i+1}}, b, a_{x_{2 i+2}}, x_{2 i+2}\right]
$$

for $i=0, \ldots, \frac{p}{2}-1$. In this way, by Remark 20 we get a P_{5}-design of order $v=16 k^{2}$ having T as a perfect blocking set with constant $C=2$.

Acknowledgements. This research was supported by GNSAGA-INDAM.

REFERENCES

1. N. Alon: A note on the decomposition of graphs into isomorphic matchings, Acta Math. Hung., 42 (1983), 221-223.
2. L. M. Batten: Blocking sets in designs, Congr. Numer. 99 (1994), 139-154.
3. L. M. Batten, K. Coolsaet, A. P. Street: Blocking sets in $(v, 2,4,1)$-designs, Des. Codes Cryptogr. 10 (1997), 309-314.
4. P. Bonacini, M. Di Giovanni, M. Gionfriddo, L. Marino: Perfect blocking sets in P_{3}-designs, to appear in The Art of Discrete and Applied Mathematics.
5. Y. Chang, G. Lo Faro, A. Tripodi: Tight blocking sets in some maximum packings of λK_{n}, Discrete Math. 308 (2008), 427-438.
6. S. El-Zanati, I. Saad, C. A. Rodger: Blocking sets in G-designs, Ars Combinatoria 35 (1993), 237-251.
7. M. Gionfriddo, C.C. Lindner, C. Rodger: 2-colouring ($K_{4}-e$)-designs, The Australasian Journal of Combinatorics 3 (1991), 211-229.
8. M. Gionfriddo, G. Lo Faro: 2-colourings in $S(t, t+1, v)$, Discrete Math. 111 (1993), 263-268.
9. M. Gionfriddo, L. Milazzo: Equiblocking Sets in $K_{2,2}$-Designs and in $K_{3,3}$-Designs, Applied Math. Sci. 7 (2013), no. 91, 4549-4557.
10. M. Gionfriddo, L. Milazzo: Largely blocked C_{4}-designs, Applied Math. Sci. 7 (2013), no. 136, 6779-6785.
11. M. Gionfriddo, L. Milazzo, A. Rosa, V. Voloshin: Bicolouring Steiner systems $S(2,4, v)$, Discrete Math. 283 (2004), 249-253.
12. H. Gropp: Blocking sets in configurations n_{3}, Mitt. Math. Sem. Giessen 201 (1991), 59-72.
13. S. Milici, Zs. Tuza: Cycle systems without 2-coloring, J. Combin. Des. 4 (1996), 135-142.
14. S. Milici, Zs. Tuza: Disjoint blocking sets in cycle systems, Discrete Math. 208/209 (1999), 451-462.
15. G. Quattrocchi: Blocking sets in balanced path designs, Australas. J. Combin. 19 (1999), 283-286
16. A. Rosa: Blocking sets and colouring in Steiner systems $S(2,4, v)$, Le Matematiche 59 (2004), 341-348.

Paola Bonacini

(Received 08.11.2018)
Università degli Studi di Catania
(Revised 05.12.2019)
Viale A. Doria 6
95125 Catania, Italy
E-mail: bonacini@dmi.unict.it

Lucia Marino

Università degli Studi di Catania
Viale A. Doria 6
95125 Catania, Italy
E-mail: lmarino@dmi.unict.it

[^0]: *Corresponding author. Paola Bonacini
 2010 Mathematics Subject Classification. 05B05, 05C15.
 Keywords and Phrases. design, path, cycle.

