Applicable Analysis and Discrete Mathematics

available online at http://pefmath.etf.rs

Appl. Anal. Discrete Math. 14 (2020), 183–197. https://doi.org/10.2298/AADM181108008B

BLOCKING SETS FOR CYCLES AND PATHS DESIGNS

Paola Bonacini* and Lucia Marino

In this paper, we study blocking sets for C_4 , P_3 and P_5 -designs. In the case of C_4 -designs and P_3 -designs we determine the cases in which the blocking sets have the largest possible range of cardinalities. These designs are called *largely blocked*. Moreover, a blocking set T for a G-design is called perfect if in any block the number of edges between elements of T and elements in the complement is equal to a constant. In this paper, we consider *perfect blocking sets* for C_4 -designs and P_5 -designs.

1. INTRODUCTION

Let K_v be the complete undirected graph defined on a vertex set X. Given a graph with n vertices, a G-design of order v (briefly a G(v)-design), for $v \ge n$, is a pair $\Sigma = (X, \mathcal{B})$, where \mathcal{B} is a partition of the edge set of K_v into classes generating graphs all isomorphic to G. The classes of \mathcal{B} are said to be the blocks of Σ .

Let $\Sigma = (X, \mathcal{B})$ be a *G*-design of order *v*. A *transversal T* of Σ is a subset of *X* intersecting every block of Σ . A *blocking set T* of Σ is a transversal such that also its complement $C_X(T)$ is a transversal of Σ . So *T* is a blocking sets if and only if every block of Σ contains elements of *T* and elements of $C_X(T)$. In what follows, we will indicate by $B(\Sigma)$ the set of all possible $p \in \mathbb{N}$ for which there exist in Σ blocking sets of cardinality *p*.

The existence of possible blocking sets has been studied in numerous papers (see [2,3,5-16]) for t-designs, projective planes, symmetric designs, block designs, balanced and almost balanced path designs and G-designs when G has fewer than 5 edges.

 $^{^{*}\}mathrm{Corresponding}$ author. Paola Bonacini

²⁰¹⁰ Mathematics Subject Classification. 05B05, 05C15.

Keywords and Phrases. design, path, cycle.

In [10] the notion of *largely blocked* C_k -designs was introduced, for $k \ge 4$. The idea is that the set $B(\Sigma)$ has the maximum possible cardinality. Indeed, Gionfriddo and Milazzo in [10] proved that:

Theorem 1. If $\Sigma = (X, \mathcal{B})$ is a $C_k(v)$ -design and B is a blocking set of cardinality p, then $k \ge 4$ and:

$$\beta_1 = \left\lceil \frac{v}{2} - \frac{\sqrt{kv[(k-4)v+4]}}{2k} \right\rceil \le p \le \left\lfloor \frac{v}{2} + \frac{\sqrt{kv[(k-4)v+4]}}{2k} \right\rfloor = \beta_2.$$

So, a C_k -design Σ is called *largely blocked* if $B(\Sigma) = [\beta_1, \beta_2]$ (the closed interval of integers). In this paper we prove that for any $v \equiv 1 \mod 8$ there exists a largely blocked C_4 -design of order v and we determine the spectrum of largely blocked P_3 -designs. We study also *perfect blocking sets*, analizing the idea of a blocking set distributed in an optimal and homogeneous way. The notion was introduced in [4] and it requires that any block contains a constant number of edges between vertices of the blocking set T and vertices of $C_X(T)$. In [4], the spectrum of P_3 -designs with a perfect blocking set is determined. In this paper, we easily determine the spectrum of C_4 -designs having a perfect blocking set, as it is follows from the result on the spectrum of largely blocked C_4 -designs. Moreover, we study the problem for P_5 -designs, determining the spectrum in the case that the constant is 2, by using a peculiar construction for P_3 -designs with a perfect blocking set.

2. LARGELY BLOCKED C₄-DESIGNS

A 4-cycle on the vertices $\{x, y, z, t\}$ with edges $\{x, y\}, \{y, z\}, \{z, t\}$ and $\{x, t\}$ is denoted by (x, y, z, t). The spectrum of C_4 -designs is known:

Theorem 2. There exists a C_4 -designs of order v if and only if $v \equiv 1 \mod 8$, $v \geq 9$.

By Theorem 1 we determine the bound on the cardinality of a possible blocking set for a C_4 -design.

Proposition 3. Let $\Sigma = (X, \mathcal{B})$ be a C_4 -design of order v and let $T \subset X$ be a blocking set of cardinality t. Then:

$$\big\lceil \tfrac{v}{2} - \tfrac{\sqrt{v}}{2} \big\rceil \leq t \leq \big\lfloor \tfrac{v}{2} + \tfrac{\sqrt{v}}{2} \big\rfloor.$$

In this way (see [10]), we get two parameters $\beta_1 = \lceil \frac{v}{2} - \frac{\sqrt{v}}{2} \rceil$ and $\beta_2 = \lfloor \frac{v}{2} + \frac{\sqrt{v}}{2} \rfloor = v - \beta_1$ such that $B(\Sigma) \subseteq [\beta_1, \beta_2]$ (closed interval of integers). So, a natural definition is the following:

Definition 4 ([10]). A C_4 -design Σ is largely blocked if $B(\Sigma) = [\beta_1, \beta_2]$.

We want to prove that for any $v \equiv 1 \mod 8$ there exists a largely blocked C_4 -design. In order to do that we need the following constructions.

Proposition 5. If there exists a C_4 -design $\Sigma = (X, \mathcal{B})$ of order v with blocking sets T_1, \ldots, T_s of cardinalities, respectively, p_1, \ldots, p_s such that $T_1 \subset \cdots \subset T_s$, then there exists a C_4 -design $\Sigma' = (X', \mathcal{B}')$ of order v + 8 with blocking sets T'_1, \ldots, T'_s of cardinalities, respectively, $p_1 + 4, \ldots, p_s + 4$ such that $T'_1 \subset \cdots \subset T'_s$. Moreover, if in any block $(a, b, c, d) \in \mathcal{B}$ there exists a vertex $a \in T_1$ such that either $b, d \notin T_s$ or $c \notin T_s$, then also in any block $(a, b, c, d) \in \mathcal{B}'$ there exists a vertex $a \in T'_1$ such that either $b, d \notin T'_s$ or $c \notin T'_s$.

Proof. The proof follows by the construction given in [9, Theorem 4.1]. Indeed, let $\Sigma_1 = (X_1, \mathcal{B}_1)$ be a C_4 -design of order v = 1 + 8k, $k \in \mathbb{N}$, $k \ge 1$, with T_1, \ldots, T_s blocking sets of cardinality p_1, \ldots, p_s and $X_1 = \{0, x_1, \ldots, x_{8k}\}$. Let $X_2 = \{0, 1, \ldots, 8\}$ so that $X_1 \cap X_2 = \{0\}$ and $0 \notin T_s$. Consider the 4-cycle system $\Sigma_2 = (X_2, \mathcal{B}_2)$ having as blocks (0, 1, 5, 2) and all its translates. Then $\{1, 2, 3, 4\}$ is a blocking set for Σ_2 . Consider also the family \mathcal{B}_3 of blocks:

$$(i, x_j, i+4, x_{j+4k})$$

for i = 1, 2, 3, 4 and $j = 1, \ldots, 4k$. Then $\Sigma = (X_1 \cup X_2, \mathcal{B}_1 \cup \mathcal{B}_2 \cup \mathcal{B}_3)$ is a 4-cycle system of order v + 8 having $T'_1 = T_1 \cup \{1, 2, 3, 4\}, \ldots, T'_s = T_s \cup \{1, 2, 3, 4\}$ as blocking sets. This proves the statement. \Box

Lemma 6. Let X and Y be disjoint sets, with |X| = |Y| = 8. Let $T_X \subset X$ and $T_Y \subset Y$ such that $|T_X| = 4$ and $|T_Y| = 3$ and let $y \in Y \setminus T_Y$. Then there exists a decomposition of $K_{X,Y}$ in a family \mathcal{B} of 4-cycles having $T = T_X \cup T_Y$ and $T \cup \{y\}$ as blocking sets. Moreover, in any block $(a, b, c, d) \in \mathcal{B}$ there exists a vertex $a \in T$ such that $c \notin T \cup \{y\}$.

Proof. Let $X = \{x_i \mid i = 1, ..., 8\}$ and $Y = \{y_i \mid i = 1, ..., 8\}$. Let:

$$\mathcal{B} = \{ (x_i, y_j, x_{i+4}, y_{j+4}) \mid i, j = 1, 2, 3, 4 \}.$$

Then the blocks of \mathcal{B} decompose $K_{X,Y}$ in 4-cycles and it is easy to get statement by taking $T_X = \{x_1, x_2, x_3, x_4\}, T_Y = \{y_1, y_2, y_3\}$ and $y = y_4$.

Lemma 7. Let X, Y and Z be pairwise disjoint sets, with |X| = |Y| = |Z| = 8. Let $\infty \notin X \cup Y \cup Z$, $T_X \subset X$, $T_Y \subset Y$ and $T_Z \subset Z$, with $|T_X| = 4$, $|T_Y| = 3$ and $|T_Z| = 3$. Then there exists a decomposition of $K_{X,Y,Z} \cup K_{X\cup\{\infty\}}$ in a family \mathcal{B} of 4-cycles having $T = T_X \cup T_Y \cup T_Z$, $T \cup \{y\}$ and $T \cup \{y, z\}$ as blocking sets, for some $y \in Y \setminus T_Y$ and $z \in Z \setminus T_Z$. Moreover, in any block $(a, b, c, d) \in \mathcal{B}$ there exists a vertex $a \in T$ such that either $b, d \notin T \cup \{y, z\}$ or $c \notin T \cup \{y, z\}$.

Proof. Let $X = \{x_i \mid i = 1, ..., 8\}$, $Y = \{y_i \mid i = 1, ..., 8\}$, $Z = \{z_i \mid i = 1, ..., 8\}$ and $T_X = \{x_1, x_2, x_3, x_4\}$, $T_Y = \{y_1, y_2, y_3\}$, $T_Z = \{z_1, z_2, z_3\}$. Let us consider the C_4 -design $\Sigma = (X \cup \{\infty\}, \mathcal{B})$ such that \mathcal{B} is given by the blocks:

 $\begin{aligned} &(x_1, x_5, x_2, x_6), \ (\infty, x_1, x_2, x_8), \ (\infty, x_2, x_3, x_7), \ (\infty, x_3, x_8, x_6), \\ &(\infty, x_4, x_7, x_5), \ (x_2, x_4, x_8, x_7), \ (x_8, x_5, x_3, x_1), \ (x_1, x_4, x_6, x_7), \ (x_3, x_4, x_5, x_6). \end{aligned}$

Then $\{x_1, x_2, x_3, x_4\}$ is a blocking set for this C_4 -design.

Consider now the decomposition of $K_{X,Y,Z}$ in 4-cycles given by the following family \mathcal{B}' of blocks:

 $(x_i, y_j, x_{i+4}, y_{j+4}), (x_i, z_j, x_{i+4}, z_{j+4}), (y_i, z_j, y_{i+4}, z_{j+4})$ for i, j = 1, 2, 3, 4.

So $C = \mathcal{B} \cup \mathcal{B}'$ provides us a decomposition of $K_{X,Y,Z} \cup K_{X \cup \{\infty\}}$ in 4-cycles such that $T = T_X \cup T_Y \cup T_Z$ is a blocking set for any block in C, with the exception of (y_4, z_4, y_8, z_8) . So, take the blocks:

$$(y_4, z_4, y_8, z_8), (x_1, x_5, x_2, x_6), (x_1, y_4, x_5, y_8), (x_2, y_4, x_6, y_8)$$

and replace them with:

$$(x_1, y_4, z_4, y_8), (y_4, x_5, x_1, x_6), (z_8, y_4, x_2, y_8), (y_8, x_5, x_2, x_6).$$

Denoted by \mathcal{C}' the family of blocks that we obtain, it is easy to see that T is a blocking set for any block in \mathcal{C}' and that these blocks provide a decomposition of $K_{X,Y,Z} \cup K_{X\cup\{\infty\}}$ in 4-cycles. It is also easy to see that $T \cup \{y_4\}$ and $T \cup \{y_4, z_5\}$ are blocking sets. Moreover, we can easily see that each 4-cycle of \mathcal{C}' can be decomposed in two 3-paths in such a way that $T, T \cup \{y_4\}$ and $T \cup \{y_4, z_5\}$ are blocking sets also for these 3-paths.

Now we can prove the following:

Theorem 8. For any $v \equiv 1 \mod 8$ there exists a largely blocked C_4 -design of order v.

Proof. Case v is a square. Let $v = (2r+1)^2$ for some $r \in \mathbb{N}$, so that $v \equiv 1 \mod 8$. We want, first, to prove the statement in this case.

Suppose that r = 1, so that v = 9. Then the statement follows by [10, Theorem 3.2]. More precisely, in [10, Theorem 3.2] it is proved that there exists a C_4 -design of order 9 largely blocked with T and T' blocking sets of cardinality 3 and 4 such that $T \subset T'$. Moreover, we see that in any block (a, b, c, d) there exists a vertex $a \in T$ such that either $b, d \notin T'$ or $c \notin T'$.

Suppose now that r > 1. Then $v = 4r^2 + 4r + 1$ and by Proposition 3 for any C_4 -design Σ we have $B(\Sigma) \subseteq \{\lceil \frac{v}{2} - \frac{\sqrt{v}}{2} \rceil, \ldots, \lfloor \frac{v}{2} + \frac{\sqrt{v}}{2} \rfloor\} = \{2r^2 + r, \ldots, 2r^2 + 3r + 1\}.$ Consider $X_1, \ldots, X_{\frac{r^2 + r}{2}}$ disjoint sets, each of cardinality 8, and take an element

 $\infty \notin \bigcup_i X_i$. For any $i = 1, \ldots, \frac{r^2 + r}{2}$ take a subset $T_i \subset X_i$ such that:

$$|T_i| = \begin{cases} 3 & \text{for } i = 1, \dots, r \\ 4 & \text{for } i = r+1, \dots, \frac{r^2 + r}{2} \end{cases}$$

So $T = \bigcup_i T_i$ is a set of cardinality $2r^2 + r$. For any $i = 1, \ldots, r$ take $x_i \in X_i$ such that $x_i \notin T_i$. Consider any bijection:

$$\phi: \{\{i,j\} \mid i,j=1,\ldots,r, i \neq j\} \to \{r+1,\ldots,\frac{r^2+r}{2}\}.$$

By Lemma 7 for any $i, j = 1, ..., r, i \neq j$, there exists a decomposition of

$$K_{X_i, X_j, X_{\phi(\{i,j\})}} \cup K_{X_{\phi(\{i,j\})} \cup \{\infty\}}$$

in a family \mathcal{B}_{ij} of 4-cycles such that $T_i \cup T_j \cup T_{\phi(\{i,j\})}, T_i \cup T_j \cup T_{\phi(\{i,j\})} \cup \{x_i\}$ and $T_i \cup T_j \cup T_{\phi(\{i,j\})} \cup \{x_i, x_j\}$ are blocking sets for \mathcal{B}_{ij} .

Then, by the case v = 9, for i = 1, ..., r there exists a C_4 -design $\Sigma_i = (X_i \cup \{\infty\}, C_i)$ having T_i and $T_i \cup \{x_i\}$ as blocking sets.

At last, for any $i, j = 1, \ldots, \frac{r^2 + r}{2}, i \neq j$, such that both i, j are not simultaneously in some of the triples of $\{\{p, q, \phi(\{p, q\})\} \mid p, q = 1, \ldots, r, p \neq q\}$ by Lemma 6 we can consider a decomposition of K_{X_i,X_j} in a family D_{ij} of 4-cycles having $T_i \cup T_j$ and $T_i \cup T_j \cup \{x_i\}$ if $i = 1, \ldots, r$ as blocking sets.

If we call $\mathcal{E} = \bigcup \mathcal{B}_{ij} \cup \bigcup \mathcal{C}_i \cup \bigcup \mathcal{D}_{ij}$, then $\Sigma = (\bigcup X_i \cup \{\infty\}, \mathcal{E})$ is a 4-cycle system of order $v = 4r^2 + 4r + 1$ having as blocking sets T and $T \cup \{x_1, \ldots, x_s\}$ for any $s = 1, \ldots, r$. So there exist for Σ blocking sets of cardinality $2r^2 + r, \ldots, 2r^2 + 2r$. This immediately implies that there exist for Σ blocking sets of cardinality $2r^2 + r, \ldots, 2r^2 + 3r + 1$, because, if T is a blocking set, also its complement is a blocking set. This completely proves the statement in the case $v = (2r + 1)^2$.

General v. Take any $v \in \mathbb{N}$ such that $v \equiv 1 \mod 8$. Then we write:

$$v = (2r+1)^2 + 8k,$$

for some $r, k \in \mathbb{N}$, in such a way that $(2r+1)^2 \leq v < (2r+3)^2$. This means that $0 \leq k \leq r$ and that, of course, $2r+1 \leq \sqrt{v} < 2r+3$. This implies that:

$$\{\lceil \frac{v}{2} - \frac{\sqrt{v}}{2} \rceil, \dots, \lfloor \frac{v}{2} + \frac{\sqrt{v}}{2} \rfloor\} = \{2r^2 + r + 4k, \dots, 2r^2 + 3r + 1 + 4k\}.$$

So by what we have just proved for the orders of type $(2r+1)^2$, for any $r \in \mathbb{N}$, and by iteratively using Proposition 5 we easily get the statement.

The following remark will be used in the next section.

Remark 9. By the previous construction, by the case v = 9 and by Proposition 5, Lemma 6 and Lemma 7 it follows that for any $v \equiv 1 \mod 8$ there exists a largely blocked 4-cycle design $\Sigma = (X, \mathcal{B})$ with some blocking sets T_1, \ldots, T_r with $T_1 \subset \cdots \subset T_r$ and $|T_1| = \beta_1, |T_2| = \beta_1 + 1, \ldots, |T_r| = \frac{v-1}{2}$. Moreover, in any block $(a, b, c, d) \in \mathcal{B}$ there exists a vertex $a \in T_1$ such that either $b, d \notin T_r$ or $c \notin T_r$.

3. LARGELY BLOCKED P₃-DESIGNS

Now we want to study largely blocked P_3 -designs. In general, the k-path on the vertices $\{x_1, \ldots, x_k\}$ with edges $\{x_i, x_{i+1}\}$ for $i = 1, \ldots, k-1$ is denoted by $[x_1, x_2, \ldots, x_k]$. The spectrum of P_3 -designs is known:

Theorem 10. A P_3 -design of order v exists if and only if $v \equiv 0, 1 \mod 4$, $v \ge 4$.

Note that for a P_3 -design $\Sigma = (X, \mathcal{B})$ of order v with a blocking set of cardinality t we have the clear condition that:

$$|\mathcal{B}| = \frac{v(v-1)}{4} \le p \cdot (v-p) \Rightarrow \beta_1 = \left\lceil \frac{v}{2} - \frac{\sqrt{v}}{2} \right\rceil \le p \le \left\lfloor \frac{v}{2} + \frac{\sqrt{v}}{2} \right\rfloor = \beta_2.$$

So we can give the following definition for P_3 -designs:

Definition 11. A P_3 -design Σ of order v is called *largely blocked* if $B(\Sigma) = [\beta_1, \beta_2]$.

In this section we want to determine the spectrum of largely blocked P_3 -designs. First, we need some technical lemmas.

Lemma 12. Let $X = \{x_i \mid i = 1, ..., 4\}$ and $Y = \{y_i \mid i = 1, ..., 4\}$ be disjoint sets, with |X| = |Y| = 4. Then there exists a P_3 -decomposition of $K_{X,Y}$ having $\{x_1, x_2, y_1\}$, $\{x_1, x_2, y_1, y_2\}$, $\{x_2, x_3, y_1\}$, $\{x_2, x_3, y_1, y_2\}$ and $\{x_2, x_3, y_2, y_3\}$ as blocking sets.

Proof. Let:

$$\mathcal{B} = \{ [x_i, y_j, x_{i+2}] \mid i = 1, 2, j = 1, 2, 3, 4 \}.$$

Then the blocks of \mathcal{B} decompose $K_{X,Y}$ in 3-paths and satisfy the conditions of the statement.

Lemma 13. Let $X = \{x_1, x_2, x_3, x_4\}$, $Y = \{y_1, y_2, y_3, y_4\}$, $Z = \{z_1, z_2, z_3, z_4\}$ and $T = \{t_1, t_2, t_3, t_4\}$ be pairwise disjoint sets. Then there exists a P_3 -decomposition of $K_{X,Y,Z,T} \cup K_X \cup K_Y$ having $W = \{x_1, x_2, y_1, y_2, z_1, t_1\}$, $W \cup \{z_2\}$ and $(W \setminus \{y_1\}) \cup \{y_3, z_2, t_2\}$ as blocking sets.

Proof. Let us consider the family \mathcal{B} of blocks:

- $[x_1, z_j, t_3]$, $[x_2, z_j, t_4]$, $[y_1, z_j, t_2]$, $[x_3, z_j, t_1]$, $[x_1, t_j, x_3]$, $[x_2, t_j, x_4]$, $[y_1, t_j, y_3]$, $[y_2, t_j, y_4]$ and $[x_4, z_j, y_2]$ for j = 1, 2, 3, 4
- $[z_2, y_3, y_1], [z_3, y_3, y_2], [z_4, y_3, x_1], [z_2, y_4, x_1], [z_3, y_4, x_2], [z_4, y_4, z_1], [y_4, y_3, z_1], [y_4, y_1, y_2], [y_3, x_2, y_1], [y_3, x_3, y_1], [y_3, x_4, y_1], [x_3, x_1, y_1], [x_4, x_1, y_2], [y_2, x_2, x_3], [x_1, x_2, x_4], [y_2, x_3, y_4], [y_2, x_4, x_3] \text{ and } [x_4, y_4, y_2].$

Then it is easy to verify that the blocks of \mathcal{B} give us the statement.

Now we can determine the spectrum of largely blocked P_3 -designs.

Theorem 14. For any $v \equiv 0, 1 \mod 4$, $v \ge 4$, there exists a largely blocked P_3 -design of order v.

Proof. Case 1. Suppose, first, that $v \equiv 0 \mod 4$. If v = 4, let $X = \{1, 2, 3, 4\}$ and let:

$$\mathcal{B} = \{ [1, 2, 3], [1, 3, 4], [1, 4, 2] \}.$$

Then $\Sigma = (X, \mathcal{B})$ is a P_3 -design having as blocking sets $\{1\}, \{1, 2\}$ and $\{2, 3, 4\}$. This proves the statement for v = 4. Now let $v = 4r^2 + 4k$, $v \ge 8$, for some $r, k \in \mathbb{N}$ such that $(2r)^2 \le v < (2r+2)^2$. In this way, we have $0 \le k \le 2r$ and $[\beta_1, \beta_2] = [2r^2 - r + 2k, 2r^2 + r + 2k]$.

Let X_1, \ldots, X_{r^2+k} be pairwise disjoint sets with $|X_i| = 4$ for any $i = 1, \ldots, r^2 + k$ and let $X = \bigcup_i X_i$. By what we just proved we can consider $\Sigma_i = (X_i, \mathcal{B}_i)$ largely blocked P_3 -designs with blocking sets T_i such that:

$$|T_i| = \begin{cases} 1 & \text{for } i = 1, \dots, r \\ 2 & \text{for } i = r+1, \dots, r^2 + k. \end{cases}$$

Let $T = \bigcup_i T_i$, so that $|T| = 2r^2 - r + 2k$. Consider also $x_i \in X_i$, $x_i \notin T_i$, for $i = 1, \ldots, r$, and $T'_i \subset X_i$ for $i = \frac{r^2 + r}{2} + 1, \ldots, r^2$ such that $|T'_i| = 2$ and $|T_i \cap T'_i| = 1$. By what we just proved we can suppose that $T_i \cup \{x_i\}$ for $i = 1, \ldots, r$ is still a blocking set for Σ_i .

Consider any bijection:

$$\varphi: \{\{i, j\} \mid i, j = 1, \dots, r, i \neq j\} \to \{r + 1, \dots, \frac{r^2 + r}{2}\}$$

and let:

$$\psi(i,j) = \varphi(i,j) + \binom{r}{2}.$$

By Lemma 13 for i, j = 1, ..., r, i < j, we can consider a family $C_{i,j}$ of blocks decomposing

$$K_{X_i,X_j,X_{\varphi(i,j)},X_{\psi(i,j)}} \cup K_{X_{\varphi(i,j)}} \cup K_{X_{\psi(i,j)}}$$

in P_3 paths such that:

- $T_i \cup T_j \cup T_{\varphi(i,j)} \cup T_{\psi(i,j)}$,
- $T_i \cup T_j \cup T_{\varphi(i,j)} \cup T_{\psi(i,j)} \cup \{x_i\},\$
- $T_i \cup T_j \cup T_{\varphi(i,j)} \cup T'_{\psi(i,j)} \cup \{x_i, x_j\}$

are blocking sets for this decomposition.

Let $i, j = 1, ..., r^2 + k, i \neq j$, such that both i, j are not simultaneously in some of the quadruples:

$$\{\{p, q, \varphi(p, q), \psi(p, q)\} \mid p, q = 1, \dots, r, p \neq q\}.$$

Then by Lemma 12 let $\mathcal{D}_{i,j}$ a family of blocks decomposing K_{X_i,X_j} such that:

- $T_i \cup T_j$,
- $T_i \cup T_j \cup \{x_i\}$ if $i = 1, \ldots, r$,
- $T_i \cup T'_i$ if $j = \frac{r^2 + r}{2} + 1, \dots, r^2$
- $T_i \cup T'_j \cup \{x_i\}$ if i = 1, ..., r and $j = \frac{r^2 + r}{2} + 1, ..., r^2$,

• $T'_i \cup T'_j$ if $i, j = \frac{r^2 + r}{2} + 1, \dots, r^2$

are all blocking sets for the blocks of $\mathcal{D}_{i,j}$.

Let:

$$\mathcal{B} = \bigcup_{i=1}^{r} \mathcal{B}_{i} \cup \bigcup_{i=r^{2}+1}^{r^{2}+2k} \mathcal{B}_{i} \cup \bigcup \mathcal{C}_{i,j} \cup \bigcup \mathcal{D}_{i,j}.$$

Then $\Sigma = (X, \mathcal{B})$ is a P_3 -design having:

- T
- $T \cup \{x_1\}$
- $\bigcup_{i \notin I_s} T_i \cup \bigcup_{i \in I_s} T'_i \cup \{x_1, \dots, x_s\}$ for $s = 2, \dots, r$, where $I_s = \{\psi(i, j) \mid i, j = 1, \dots, s, i \neq j\}$,

as blocking sets. So there exist for Σ blocking sets of cardinality $2r^2 - r + 2k, \ldots, 2r^2 + 2k$. This immediately implies that there exist for Σ blocking sets of cardinality $2r^2 + 2k + 1, \ldots, 2r^2 + 2k + r$, because the complement of a blocking set is a blocking set. This proves the statement for $v \equiv 0 \mod 4$.

Case 2. Let $v \equiv 1 \mod 8$, $v \geq 9$. In this case the statement follows by Theorem 8. Indeed, there exists a largely blocked C_4 -design $\Sigma = (X, \mathcal{B})$ of order v with the same interval of integers

$$\left[\left\lceil \frac{v - \sqrt{v}}{2} \right\rceil, \left\lfloor \frac{v + \sqrt{v}}{2} \right\rfloor \right] = [\beta_1, \beta_2].$$

Moreover, as noted in Remark 9 called T_1, \ldots, T_r the blocking sets of cardinality:

$$\left\lceil \frac{v - \sqrt{v}}{2} \right\rceil, \dots, \frac{v - 1}{2}$$

given in the construction, in any 4-cycle (x, y, z, t) of \mathcal{B} we have a vertex $x \in T_i$ for any *i* such that either $y, t \notin T_i$ for any *i* or $z \notin T_i$ for any *i*. This implies that from this 4-cycle we get the paths [x, y, z] and [x, t, z] in order to obtain a P_3 -design of order *v* having T_1, \ldots, T_r and their complements as blocking sets. This proves the statement in the case $v \equiv 1 \mod 8, v \geq 9$.

Case 3. Let $v \equiv 5 \mod 8$. If v = 5, we have $[\beta_1, \beta_2] = [2,3]$. Consider on $\{0, 1, 2, 3, 4\}$ the P_3 -design Σ having as base block [1, 0, 2]. Then $\{0, 2\}$ (and consequently also its complement $\{1, 3, 4\}$) is a blocking set for Σ . This proves the statement for v = 5.

Let $v \equiv 5 \mod 8$, with $v \geq 13$. Then let $v = (2r+1)^2 + 4(2k+1)$ for some $r, k \in \mathbb{N}, r \geq 1$, such that $(2r+1)^2 + 4 \leq v < (2r+3)^2 + 4$. So $0 \leq k \leq r$ and $v < (2r+3)^2$. Let v' = v - 4. Then by what we just proved we can take $\Sigma = (X, \mathcal{B})$ a largely blocked P_3 -design of order v'. Let T be a blocking set for Σ of cardinality p. It is easy to see that:

$$\beta_1(v) = \left\lceil \frac{v - \sqrt{v}}{2} \right\rceil = 2r^2 + r + 4k + 2 \quad \text{and} \quad \beta_2(v) = \left\lceil \frac{v + \sqrt{v}}{2} \right\rceil = 2r^2 + 3r + 4k + 3$$

$$\beta_1(v') = \left\lceil \frac{v' - \sqrt{v'}}{2} \right\rceil = 2r^2 + r + 4k \quad \text{and} \quad \beta_2(v') = \left\lceil \frac{v' + \sqrt{v'}}{2} \right\rceil = 2r^2 + 3r + 4k + 1.$$

So $[\beta_1(v), \beta_2(v)] = [\beta_1(v') + 2, \beta_2(v') + 2]$. Let $X = \{x_i \mid i = 1, ..., v'\}$ and $Y = \{y_1, y_2, y_3, y_4\}$. Let \mathcal{B}' be the following family of blocks:

 $[y_1, y_2, y_3], [y_1, y_3, y_4], [y_1, y_4, y_2], [y_{2i+1}, x_j, y_{2i+2}]$

for i = 0, 1 and $j = 1, \ldots, v'$. Then $\Sigma' = (X \cup Y, \mathcal{B} \cup \mathcal{B}')$ is a P_3 -design of order v having as blocking set $T \cup \{y_1, y_3\}$. Since Σ is largely blocked and $[\beta_1(v), \beta_2(v)] = [\beta_1(v') + 2, \beta_2(v') + 2]$, we immediately get the statement for $v \equiv 5 \mod 8, v \geq 13$.

4. PERFECT BLOCKING SETS

In general, when we have a blocking set T for a G-design $\Sigma = (X, \mathcal{B})$ we might want that the elements of T are distributed in an optimal and homogeneous way in the blocks of \mathcal{B} . So in [4] the following definition is given:

Definition 15. Let $\Sigma = (X, \mathcal{B})$ be a *G*-design. A blocking set *T* of Σ is called *perfect* if there exists $C \in \mathbb{N}$ such that any block $B \in \mathcal{B}$ contains exactly *C* edges joining vertices of *T* and of $C_X(T)$.

This definition in general forces a strict condition on the order of the G-design:

Proposition 16. If $\Sigma = (X, \mathcal{B})$ is a C_4 -design of order v and T is a perfect blocking set for Σ of cardinality p, then:

$$p = \frac{v \pm \sqrt{v}}{2}$$

and v is a square.

Proof. Since $|\mathcal{B}| = \frac{v(v-1)}{8}$ and T is a perfect blocking set, then any block $B \in \mathcal{B}$ contains exactly 2 edges joining vertices of T and $C_X(T)$ and:

$$p \cdot (v-p) = 2 \cdot \frac{v(v-1)}{8}.$$

So $p = \frac{v \pm \sqrt{v}}{2}$ and v is a square, because p is a positive integer.

By Theorem 2, Theorem 8 and Proposition 16 we get immediately the following:

and

Theorem 17. There exist C_4 -designs of order v with a perfect blocking set if and only if $v = (2r+1)^2$ for some $r \in \mathbb{N}$, $r \ge 1$.

5. PERFECT BLOCKING SETS IN P₅-DESIGNS

In [4] the spectrum of P_3 -designs having a perfect blocking set is determined. So it is proved that:

Theorem 18 ([4]). If T is a perfect blocking set of any P_3 -design of order v, then c = 1, v is a square and

$$|T| = \frac{v \pm \sqrt{v}}{2}.$$

If we consider a P_3 -design of order v having a perfect blocking set, since $v \equiv 0$ or 1 mod 4, then there exists a positive integer k such that $v = (2k)^2$ or $v = (2k+1)^2$. So in [4] it is proved that:

Theorem 19 ([4]). There exist P_3 -designs of order v having perfect blocking sets if and only if v is a square.

In this section we provide a construction that will be useful in studying P_5 designs with perfect blocking sets. So, let $\Sigma = (X, \mathcal{B})$ be a P_3 -design of order vwith a perfect blocking set T. For any $x \in T$ we consider the set:

$$E(x) = \{\{y, y'\} \mid y, y' \in X, \, y \neq y', \, [x, y, y'] \text{ or } [x, y', y] \in \mathcal{B}\}$$

and the graph $G(x) = (X \setminus \{x\}, E(x)).$

Remark 20. Note that in a P_3 -design with a perfect blocking set T, any block B is a path $[x_1, x_2, x_3]$ where $x_1 \in T$ and $x_3 \in C_X(T)$.

Given a graph G = (X, E), we denote by $\Delta(G)$ the maximum degree of the vertices of G. The chromatic index $\chi'(G)$ of G is the minimum number of colors needed for a proper edge coloring of G. The following construction will be used in the proof of the main result of this section:

Theorem 21. For any $k \in \mathbb{N}$ there exists a P_3 -design Σ of order v with a perfect blocking set T such that one of the following conditions holds:

1. $v = (2k+1)^2$, |E(x)| is even for any $x \in T$ and

$$\chi'(G(x)) \le \frac{|E(x)|}{2}$$

- 2. $v = (2k)^2$, $k \ge 2$, |E(x)| is odd for any $x \in T$ and there exists $b \in C_X(T)$ such that for any $x \in T$ there exists $a_x \in C_X(T)$ satisfying the conditions:
 - $[x, a_x, b] \in \mathcal{B},$

• $a_x \neq a_y$ for any $x, y \in T, x \neq y$,

•
$$\chi'(G(x) - \{a_x, b\}) \le \frac{|E(x)| - 1}{2},$$

where $G(x) - \{a_x, b\} = (X \setminus \{x\}, E(x) \setminus \{\{a_x, b\}\}).$

Proof. Let $\Sigma = (X, \mathcal{B})$ be a P_3 -design with a perfect blocking set T of cardinality p. Let $x \in T$ and:

- let a_x be the number of blocks of type $[x, x_1, x_2]$, with $x_1 \in T$ and $x_2 \in C_X(T)$
- let b_x be the number of blocks of type $[x, x_1, x_2]$, with $x_1, x_2 \in C_X(T)$
- let c_x be the number of blocks of type $[x_1, x, x_2], x_1 \in T$ and $x_2 \in C_X(T)$.

Then:

$$\begin{cases} a_x + c_x = p - 1\\ b_x + c_x = v - p \end{cases} \Rightarrow b_x - a_x = v - 2p + 1.$$

Since $|E(x)| = a_x + b_x$, we easily see that if v is odd, then |E(x)| is even, and, conversely, if v is even, |E(x)| is odd.

Next, to simplify the proof let us make the following position. If $v = (2k+1)^2$, let p = k(2k+1) and q = 2k + 1. If $v = (2k)^2$, let $p = 2k^2 - k$ and q = 2k.

Let us consider X_1 , X_2 and X_3 , pairwise disjoint, such that $|X_1| = p$, $|X_2| = p$ and $|X_3| = q$. We will construct a P_3 -design Σ of order v with vertex set $X = X_1 \cup X_2 \cup X_3$ and $T = X_1$. Let:

$$\begin{split} X_1 &= \{a_1, a_2, \dots, a_p\} \\ X_2 &= \{b_1, b_2, \dots, b_p\} \\ X_3 &= \{c_1, c_2, \dots, c_q\}. \end{split}$$

For any $i = 1, \ldots, q - 1$ and $j = 1, \ldots, q - i$ we define:

$$\varphi(i,j) = \begin{cases} j & \text{for } i = 1\\ \sum_{r=1}^{i-1} (q-r) + j & \text{for } i \ge 2. \end{cases}$$

Note that $\varphi(i, 1) - \varphi(i-1, q-i+1) = 1$, $\varphi(1, 1) = 1$ and $\varphi(q-1, 1) = p$. This implies that for any $s \in \{1, \ldots, p\}$ there exist unique $i \in \{1, \ldots, q-1\}$ and $j \in \{1, \ldots, q-i\}$ such that $\varphi(i, j) = s$.

Define in X the following families of paths P_3 :

$$\begin{split} \mathcal{F}_{1} &= \{ [a_{i}, a_{i+j}, b_{j}] \mid i = 1, \dots, p-1, \ j = 1, \dots, p-i \} \\ \mathcal{F}_{2} &= \{ [b_{i}, b_{i+j}, a_{j}] \mid i = 1, \dots, p-1, \ j = 1, \dots, p-i \} \\ \mathcal{F}_{3} &= \{ [c_{i+j}, c_{i}, a_{\varphi(i,j)}] \mid i = 1, \dots, q-1, \ j = 1, \dots, q-i \} \\ \mathcal{F}_{4} &= \{ [a_{\varphi(i,j)}, b_{\varphi(i,j)}, c_{i}] \mid i = 1, \dots, q-1, \ j = 1, \dots, q-i \} \\ \mathcal{F}_{5} &= \{ [a_{s}, c_{i}, b_{\varphi(i,1)-s}] \mid i = 2, \dots, q-1, \ s = 1, \dots, \varphi(i, 1) - 1 \} \cup \\ &\cup \{ [a_{s}, c_{i}, b_{p-s+1+\varphi(i,q-i)}] \mid i = 1, \dots, q-2, \ s = \varphi(i, q-i) + 1, \dots, p \} \cup \\ &\cup \{ [a_{s}, c_{q}, b_{p+1-s}] \mid s = 1, \dots, p \} . \end{split}$$

It is possible to verify that $\Sigma = (X, \bigcup_{i=1}^{5} \mathcal{F}_i)$ is a P_3 -design of order $(2k+1)^2$ such that X_1 is a perfect blocking set satisfying the condition of the statement.

Indeed, for any i = 1, ..., p let $\overline{i} \in \{1, ..., q - 1\}$ and $\overline{j} \in \{1, ..., q - i\}$ be such that $\varphi(\overline{i}, \overline{j}) = i$. Moreover, for any $a_i, i = 1, ..., p - 1$ in $E(a_i)$ we have:

- from $\mathcal{F}_1 p i$ edges, with vertices in $\{a_{i+1}, \ldots, a_p\} \cup \{b_1, \ldots, b_{p-i}\}$
- from \mathcal{F}_2 p-i edges, which are $\{b_j, b_{i+j}\}$ for $j = 1, \ldots, p-i$
- from \mathcal{F}_3 just one edge, $\{c_{\overline{i}}, c_{\overline{i}+\overline{i}}\}$
- from \mathcal{F}_4 we have just one edge $\{c_{\overline{i}}, b_{\varphi(\overline{i},\overline{j})}\} = \{c_{\overline{i}}, b_i\}$
- from \mathcal{F}_5 we have the edges $\{c_q, b_{p+1-i}\}, \{\{c_{i'}, b_{\varphi(i',1)-i}\} \mid i' = \overline{i}+1, \dots, q-1\}$ for $\overline{i} \leq q-2$, and $\{\{c_{i'}, b_{p-i+1+\varphi(i',q-i')}\} \mid i' = 1, \dots, \overline{i}-1\}$ for $\overline{i} \geq 2$.

Instead, in $E(a_p)$ we have:

- from \mathcal{F}_3 just one edge, $\{c_{q-1}, c_q\}$
- from \mathcal{F}_4 we have just one edge $\{c_{q-1}, b_p\}$
- from \mathcal{F}_5 we have the edges $\{c_q, b_1\}$ and $\{\{c_i, b_{1+\varphi(i,q-i)}\} \mid i = 1, \dots, q-2\}$.

This implies that:

$$\Delta(G(a_i)) = \begin{cases} 4 & \text{for } i \leq \frac{p}{2} \\ 3 & \text{for } \frac{p}{2} < i \leq p-1 \\ 2 & \text{for } i = p. \end{cases}$$

Since $|E(G(a_i))| = 2p - 2i + 1 + q$ and $\chi'(G(a_i)) \leq \Delta(G(a_i)) + 1$, the statement follows if $v = (2k+1)^2$ and $k \geq 2$. If k = 1, then p = q = 3 and it is easy to verify that:

$$\Delta(G(a_1)) = 4 = \chi'(G(a_1)) = \frac{|E(a_1)|}{2}$$
$$\Delta(G(a_2)) = 3 = \chi'(G(a_1)) = \frac{|E(a_2)|}{2}$$
$$\Delta(G(a_3)) = 2 = \chi'(G(a_1)) = \frac{|E(a_3)|}{2}.$$

So also for $v = (2k + 1)^2$ with k = 1 the statement holds.

If $v = (2k)^2$, in the statement take $b = b_1$ and the paths $[a_i, b_{i+1}, b_1]$ for $i = 1, \ldots, p-1$ and $[a_p, c_q, b_1]$. Then, we have $|E(G(a_i))| - 1 = 2p - 2i + q$ and

 $\chi'(G(a_i)) \leq \Delta(G(a_i)) + 1$ for any $i = 1, \ldots, p$. Then the statement follows for $v = (2k)^2$ and $k \geq 3$. If k = 2, then p = 6 and q = 4 and we see that:

$$\chi'(G(a_i)) \le \Delta(G(a_i)) + 1 \le \frac{|E(G(a_i))| - 1}{2}$$

for i = 1, 2, 3, 4. Moreover it is not difficult to see that we also have:

$$\Delta(G(a_5) - \{b_1, b_6\}) = 2 = \chi'(G(a_5) - \{b_1, b_6\}) < \frac{|E(a_5)| - 1}{2}$$
$$\Delta(G(a_6) - \{c_4, b_1\}) = 2 = \chi'(G(a_6) - \{c_4, b_1\}) = \frac{|E(a_6)| - 1}{2}.$$

So also for $v = (2k)^2$ with k = 2 the statement holds.

The next result is the key to the proof of the main result of this section:

Lemma 22 ([1, Lemma 2]). For every graph G = (X, E) and for every t > 1, $tK_2|G$ if and only if t||E| and $\chi'(G) \leq \frac{|E|}{t}$.

Recall now the following:

Theorem 23. A P_5 -design of order v exists if and only if $v \equiv 0$ or $1 \mod 8$, $v \ge 5$.

Now we determine the spectrum of P_5 -designs having a perfect blocking set with constant C = 2:

Theorem 24. There exists a P_5 -design of order v having a perfect blocking set with constant C = 2 if and only if either $v = (2k + 1)^2$ or $v = 16k^2$, for some $k \in \mathbb{N}$.

Proof. If $\Sigma = (X, \mathcal{B})$ is a P_5 -design of order v with a perfect blocking set T of cardinality p and constant C = 2, then:

$$p \cdot (v - p) = 2 \cdot |\mathcal{B}| \Rightarrow p = \frac{v \pm \sqrt{v}}{2}.$$

So v is a square and by Theorem 23 either $v = (2k+1)^2$ or $v = 16k^2$, for some $k \in \mathbb{N}$.

Suppose, now, that $v = (2k+1)^2$ for some $k \in \mathbb{N}$. Let $\Sigma = (X, \mathcal{B})$ be a P_3 design satisfying the conditions of Theorem 21. Then, by Lemma 22 we see that, for any $x \in T$ such that |E(x)| > 0, $2K_2|G(x)$. So if $\{y_1, y_2\}$, $\{y_3, y_4\}$ is one of these copies of $2K_2$, we can join the two paths $[x, y_1, y_2]$ and $[x, y_3, y_4]$ in the path $[y_4, y_3, x, y_1, y_2]$. By Remark 20 this gives us a P_5 -design of order $v = (2k+1)^2$ having T as a perfect blocking set with constant C = 2.

Suppose that $v = 16k^2$ for some $k \in \mathbb{N}$. Let $\Sigma = (X, \mathcal{B})$ be a P_3 -design satisfying the conditions of Theorem 21, where now the perfect blocking set T has even cardinality. Keeping the notation of the theorem, for any $x \in T$ such that |E(x)| > 1 we can proceed as we have just done: by Lemma 22 we see that

 $2K_2|(G(x)-\{a_x,b\})$. So, again, if $\{y_1, y_2\}$, $\{y_3, y_4\}$ is one of these copies of $2K_2$, we can join the two paths $[x, y_1, y_2]$ and $[x, y_3, y_4]$ in the path $[y_4, y_3, x, y_1, y_2]$. Then there an even number of blocks $[x, a_x, b]$, one for each $x \in T$, where $a_x \in C_X(T)$. If $T = \{x_1, \ldots, x_p\}$, then we can consider the following paths:

 $[x_{2i+1}, a_{x_{2i+1}}, b, a_{x_{2i+2}}, x_{2i+2}]$

for $i = 0, ..., \frac{p}{2} - 1$. In this way, by Remark 20 we get a P_5 -design of order $v = 16k^2$ having T as a perfect blocking set with constant C = 2.

Acknowledgements. This research was supported by GNSAGA-INDAM.

REFERENCES

- N. ALON: A note on the decomposition of graphs into isomorphic matchings, Acta Math. Hung., 42 (1983), 221–223.
- 2. L. M. BATTEN: Blocking sets in designs, Congr. Numer. 99 (1994), 139–154.
- L. M. BATTEN, K. COOLSAET, A. P. STREET: Blocking sets in (v, 2, 4, 1)-designs, Des. Codes Cryptogr. 10 (1997), 309–314.
- 4. P. BONACINI, M. DI GIOVANNI, M. GIONFRIDDO, L. MARINO: Perfect blocking sets in P₃-designs, to appear in The Art of Discrete and Applied Mathematics.
- 5. Y. CHANG, G. LO FARO, A. TRIPODI: Tight blocking sets in some maximum packings of λK_n , Discrete Math. **308** (2008), 427–438.
- S. EL-ZANATI, I. SAAD, C. A. RODGER: Blocking sets in G-designs, Ars Combinatoria 35 (1993), 237–251.
- 7. M. GIONFRIDDO, C.C. LINDNER, C. RODGER: 2-colouring $(K_4 e)$ -designs, The Australasian Journal of Combinatorics **3** (1991), 211–229.
- 8. M. GIONFRIDDO, G. LO FARO: 2-colourings in S(t, t+1, v), Discrete Math. 111 (1993), 263–268.
- M. GIONFRIDDO, L. MILAZZO: Equiblocking Sets in K_{2,2}-Designs and in K_{3,3}-Designs, Applied Math. Sci. 7 (2013), no. 91, 4549–4557.
- M. GIONFRIDDO, L. MILAZZO: Largely blocked C₄-designs, Applied Math. Sci. 7 (2013), no. 136, 6779–6785.
- M. GIONFRIDDO, L. MILAZZO, A. ROSA, V. VOLOSHIN: Bicolouring Steiner systems S(2,4,v), Discrete Math. 283 (2004), 249–253.
- H. GROPP: Blocking sets in configurations n₃, Mitt. Math. Sem. Giessen **201** (1991), 59–72.
- S. MILICI, ZS. TUZA: Cycle systems without 2-coloring, J. Combin. Des. 4 (1996), 135–142.
- S. MILICI, ZS. TUZA: Disjoint blocking sets in cycle systems, Discrete Math. 208/209 (1999), 451–462.

- G. QUATTROCCHI: Blocking sets in balanced path designs, Australas. J. Combin. 19 (1999), 283–286.
- A. ROSA: Blocking sets and colouring in Steiner systems S(2, 4, v), Le Matematiche 59 (2004), 341–348.

Paola Bonacini

Università degli Studi di Catania Viale A. Doria 6 95125 Catania, Italy E-mail: bonacini@dmi.unict.it (Received 08.11.2018) (Revised 05.12.2019)

Lucia Marino

Università degli Studi di Catania Viale A. Doria 6 95125 Catania, Italy E-mail: *lmarino@dmi.unict.it*