APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS
available online at http://pefmath.etf.rs

AppL. ANAL. DISCRETE MATH. 14 (2020), 183-197.
https://doi.org/10.2298/AADM181108008B

BLOCKING SETS FOR CYCLES AND PATHS DESIGNS

Paola Bonacini* and Lucia Marino

In this paper, we study blocking sets for C4, P3 and Ps-designs. In the case
of Cy4-designs and Ps-designs we determine the cases in which the blocking
sets have the largest possible range of cardinalities. These designs are called
largely blocked. Moreover, a blocking set T' for a G-design is called perfect if
in any block the number of edges between elements of 1" and elements in the
complement is equal to a constant. In this paper, we consider perfect blocking
sets for Cy-designs and Ps-designs.

1. INTRODUCTION

Let K, be the complete undirected graph defined on a vertex set X. Given a
graph with n vertices, a G-design of order v (briefly a G(v)-design), for v > n, is a
pair ¥ = (X, B), where B is a partition of the edge set of K, into classes generating
graphs all isomorphic to G. The classes of B are said to be the blocks of X.

Let ¥ = (X, B) be a G-design of order v. A transversal T of ¥ is a subset of
X intersecting every block of ¥. A blocking set T of ¥ is a transversal such that
also its complement C'x (T) is a transversal of . So T is a blocking sets if and only
if every block of ¥ contains elements of T" and elements of Cx (T"). In what follows,
we will indicate by B(X) the set of all possible p € N for which there exist in X
blocking sets of cardinality p.

The existence of possible blocking sets has been studied in numerous papers
(see [2,3,5-16]) for t-designs, projective planes, symmetric designs, block designs,
balanced and almost balanced path designs and G-designs when G has fewer than
5 edges.
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In [10] the notion of largely blocked Cj-designs was introduced, for k > 4. The
idea is that the set B(X) has the maximum possible cardinality. Indeed, Gionfriddo
and Milazzo in [10] proved that:

Theorem 1. If ¥ = (X, B) is a Cx(v)-design and B is a blocking set of cardinality
p, then k > 4 and:

v kv[(k —4)v + 4] v VEvl(k—4)v+4]
=1 ] = Be.

Z <p<|Z
2 2% Ispslg+ 2%k
So, a Ci-design ¥ is called largely blocked if B(X) = [B1,82] (the closed
interval of integers). In this paper we prove that for any v = 1 mod 8 there

exists a largely blocked Cy-design of order v and we determine the spectrum of
largely blocked Ps-designs. We study also perfect blocking sets, analizing the idea
of a blocking set distributed in an optimal and homogeneous way. The notion was
introduced in [4] and it requires that any block contains a constant number of edges
between vertices of the blocking set T and vertices of Cx (7). In [4], the spectrum
of Ps-designs with a perfect blocking set is determined. In this paper, we easily
determine the spectrum of Cy4-designs having a perfect blocking set, as it is follows
from the result on the spectrum of largely blocked C)-designs. Moreover, we study
the problem for Ps-designs, determining the spectrum in the case that the constant
is 2, by using a peculiar construction for Ps-designs with a perfect blocking set.

2. LARGELY BLOCKED C4,-DESIGNS

A 4-cycle on the vertices {z,y, z,t} with edges {z,y}, {y, 2}, {2, t} and {z,t}
is denoted by (z,y, z,t). The spectrum of Cy-designs is known:

Theorem 2. There exists a Cy-designs of order v if and only if v = 1 mod 8,
v > 9.

By Theorem 1 we determine the bound on the cardinality of a possible block-
ing set for a C4-design.

Proposition 3. Let ¥ = (X,B) be a Cy-design of order v and let T C X be a
blocking set of cardinality t. Then:

[

In this way (see [10]), we get two parameters 31 = [§ — %] and By =

5 + %J = v — (31 such that B(X) C [B1, 2] (closed interval of integers). So, a
natural definition is the following:

Definition 4 ([10]). A Cy-design ¥ is largely blocked if B(X) = [f1, 82].

Y << |5+ 4.

(1L

We want to prove that for any v = 1 mod 8 there exists a largely blocked
Cy-design. In order to do that we need the following constructions.
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Proposition 5. If there exists a Cy-design ¥ = (X, B) of order v with blocking
sets Ty, ..., Ts of cardinalities, respectively, p1,...,ps such that Ty C --- C T, then
there exists a Cy-design X' = (X', B') of order v + 8 with blocking sets Ty, ..., T
of cardinalities, respectively, p1 +4,...,ps + 4 such that T{ C --- C T.. Moreover,
if in any block (a,b,c,d) € B there exists a vertex a € Ty such that either b,d ¢ Ty
or ¢ ¢ Ts, then also in any block (a,b,c,d) € B’ there exists a vertex a € T] such
that either b,d ¢ T, orc ¢ T..

Proof. The proof follows by the construction given in [9, Theorem 4.1]. Indeed,
let 31 = (X31,B1) be a Cy-design of order v = 1+ 8k, k € N, k > 1, with
Ty,...,Ts blocking sets of cardinality pi,...,ps and X7 = {0,21,...,28;}. Let
X2 ={0,1,...,8} so that X3 N Xy = {0} and 0 ¢ T,. Consider the 4-cycle system
Y9 = (X2, B2) having as blocks (0,1,5,2) and all its translates. Then {1,2,3,4} is
a blocking set for ¥5. Consider also the family Bs of blocks:

(i,.’L‘j, v + 4,xj+4k>

fori=1,2,3,4and j =1,...,4k. Then ¥ = (X3 U X5, B; U By U Bs) is a 4-cycle
system of order v + 8 having 77 = Ty U {1,2,3,4}, ..., T, = Ts U {1,2,3,4} as
blocking sets. This proves the statement. O

Lemma 6. Let X and Y be disjoint sets, with |X| = Y| =8. Let Tx C X and
Ty CY such that |Tx| =4 and |Ty| =3 and let y € Y \ Ty. Then there exists a
decomposition of Kxy in a family B of 4-cycles having T = Tx UTy and T U {y}
as blocking sets. Moreover, in any block (a,b,c,d) € B there exists a vertex a € T
such that ¢ ¢ T U {y}.

Proof. Let X ={z; |i=1,...,8}and Y ={y; |i=1,...,8}. Let:

B = {(xivyjaxi+4ayj+4) ‘ Z?] = 1727374}'

Then the blocks of B decompose Kx,y in 4-cycles and it is easy to get statement
by taking Tx = {x1, 22, 23,74}, Ty = {y1,¥2,y3} and y = y. O

Lemma 7. Let X, Y and Z be pairwise disjoint sets, with | X| = |Y| = |Z| = 8.
Letco ¢ XUYUZ, Tx CX, Ty CY and Tz C Z, with |Tx| =4, |Ty| = 3 and
|Tz| = 3. Then there exists a decomposition of Kx y,z U Kxu{oeo} in a family B
of 4-cycles having T = Tx UTy UTyz, TU{y} and T U{y, 2z} as blocking sets, for
somey € Y\Ty and z € Z\Ty. Moreover, in any block (a,b,c,d) € B there exists
a vertexr a € T such that either b,d ¢ T U{y, 2z} orc ¢ T U{y,z}.

Proof. Let X ={z; |i=1,...,8}, Y ={y; |i=1,...,8}, Z={z]i=1,...,8}
and Tx = {x1, 22, 23,24}, Ty = {y1,Y2, Y3}, Tz = {21, 22, 23}. Let us consider the
Cy-design ¥ = (X U {oo}, B) such that B is given by the blocks:

($1,$5,.’I,'2,£L'6)7 (oo7x1,x27x8), (OO,(EQ,.’L'?,,.’E7), (0071'37.T8,$6),

(OO,I'4,(£7,$5), ($2,x4,$8,1’7), (1’8,%5,.%3,1‘1), (ﬂfl,$4,$6,x7), (Z3,$4,x5,$6).
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Then {x,z2,23, 24} is a blocking set for this Cy-design.

Consider now the decomposition of Kx y,z in 4-cycles given by the following
family B’ of blocks:

(xiaijxi+47yj+4)7 (xiﬂzjvxi+4vzj+4)7 (yivzjvyi+4vzj+4) for Z?] = 1727374'

So C = BU B’ provides us a decomposition of Kx y,z U Kxy{s} in 4-cycles such
that T'=Tx UTy U Ty is a blocking set for any block in C, with the exception of
(Y4, 24, Ys, z8). So, take the blocks:

(y4az4ay8728)5 ($1,$5,$27I6)7 (x17y4ax57y8)) (332ay47336798)

and replace them with:

(93173/4,24,%)7 (94,175@1,956), (287y479527y8)a (1/8@5,5172,136)-

Denoted by C’ the family of blocks that we obtain, it is easy to see that T is a
blocking set for any block in C’ and that these blocks provide a decomposition of
Kxy,zUKxu{s} in 4-cycles. It is also easy to see that TU{y4} and TU{y4, 25} are
blocking sets. Moreover, we can easily see that each 4-cycle of C’ can be decomposed
in two 3-paths in such a way that T, T'U {y4} and T U {yy4, 25} are blocking sets
also for these 3-paths. O

Now we can prove the following:

Theorem 8. For anyv =1 mod 8 there exists a largely blocked Cy-design of order
.

Proof. Case v is a square. Let v = (2r + 1)? for some 7 € N, so that v = 1
mod 8. We want, first, to prove the statement in this case.

Suppose that » = 1, so that v = 9. Then the statement follows by [10,
Theorem 3.2]. More precisely, in [10, Theorem 3.2] it is proved that there exists a
Cy-design of order 9 largely blocked with T" and T” blocking sets of cardinality 3
and 4 such that T'C T’. Moreover, we see that in any block (a,b, ¢, d) there exists

a vertex a € T such that either b,d ¢ T" or c ¢ T".

Suppose now that r > 1. Then v = 4r% 4+ 4r 4+ 1 and by Proposition 3 for any
Cjy-design ¥ we have B(X) C {[§— %1, cee L%—F%j} ={2r+r,...,2r*+3r+1}.
Consider X7,...,X 2, disjoint sets, each of cardinality 8, and take an element

2

oo ¢ ), X;. Forany i =1,..., 7"2;'7" take a subset T; C X, such that:

3 fori=1,...,r
|Ti| = ,
4 fori:r—&—l,...,%.
So T = J,; T; is a set of cardinality 2r2 +r. For any i = 1,...,r take z; € X; such
that x; ¢ T;. Consider any bijection:

o . .
¢o: {{i,j}li,j=1,....ri#j} = {r+1,..., 5"}
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By Lemma 7 for any i,5 = 1,...,r, i # j, there exists a decomposition of

KX X5 X o m Y B X gy Ui}

in a family B;; of 4-cycles such that T; UT; U Ty 51y, Ti UT; U Ty(q4,51) U {2} and
T; UT; U Tyqi51) U{wi, z;} are blocking sets for B;;.

Then, by the case v = 9, for ¢ = 1,...,r there exists a Cy-design ¥; =
(X; U{oo},C;) having T; and T; U {z;} as blocking sets.

7‘2—0—7‘

At last, forany i,j =1,..., , @ # 7, such that both 7, j are not simultane-
ously in some of the triples of {{p,q,o({p,q})} | p,¢=1,...,7, p # q} by Lemma
6 we can consider a decomposition of Kx, x; in a family D;; of 4-cycles having
T; UT; and T; UT; U{xz,;} if i = 1,...,r as blocking sets.

If we call £ = (JB;; UJC; UUD;j, then ¥ = (|JX; U {o0},€) is a 4-cycle
system of order v = 472 + 47 + 1 having as blocking sets T and T U {z1,..., x4} for
any s = 1,...,7. So there exist for ¥ blocking sets of cardinality 272+, ...,2r% 4+
2r. This immediately implies that there exist for ¥ blocking sets of cardinality
2r2 +r,...,2r%2 + 3r + 1, because, if T is a blocking set, also its complement is a
blocking set. This completely proves the statement in the case v = (2r + 1)2.

General v. Take any v € N such that v =1 mod 8. Then we write:
v=(2r+1)*+ 38k,

for some 7,k € N, in such a way that (2r + 1) < v < (2r + 3)2. This means that
0 < k < r and that, of course, 2r + 1 < /v < 2r + 3. This implies that:

(18 =07, [+ 2 = {202 4+ 4k, ..., 20 4 3r + 1 + 4k},

So by what we have just proved for the orders of type (2r + 1), for any » € N, and
by iteratively using Proposition 5 we easily get the statement. O

The following remark will be used in the next section.

Remark 9. By the previous construction, by the case v = 9 and by Proposition
5, Lemma 6 and Lemma 7 it follows that for any v = 1 mod 8 there exists a
largely blocked 4-cycle design ¥ = (X, B) with some blocking sets T1,. .., T, with
Ty C---CT,and |Th| = Bu,|T2| = 61+ 1,...,|T| = “gl. Moreover, in any block
(a,b,c,d) € B there exists a vertex a € Ty such that either b,d ¢ T, or ¢ ¢ T,.

3. LARGELY BLOCKED P;-DESIGNS

Now we want to study largely blocked Ps-designs. In general, the k-path on
the vertices {z1,...,x;} with edges {z;,z;41} for i = 1,...,k — 1 is denoted by
[€1,x2,...,xk]. The spectrum of Ps-designs is known:

Theorem 10. A P3-design of order v exists if and only if v =0,1 mod 4, v > 4.
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Note that for a Ps-design ¥ = (X, B) of order v with a blocking set of cardi-
nality ¢ we have the clear condition that:

B = v(v—1)

T Spw-p=h=[5-F1<p< 5+ 7] =F

(IS

So we can give the following definition for Ps-designs:
Definition 11. A Ps-design ¥ of order v is called largely blocked if B(X) = [f1, Ba].

In this section we want to determine the spectrum of largely blocked Ps-
designs. First, we need some technical lemmas.

Lemma 12. Let X = {a; |i=1,...,4} and Y ={y; | i = 1,...,4} be disjoint
sets, with |X| = |Y| = 4. Then there exists a Ps-decomposition of Kxy hav-

an {$1,$2ay1}; {331,33%1/1792}7 {$27$3791}7 {man37y1ay2} and {anm?nyQay?)} as
blocking sets.

Proof. Let:
B = {[zi,y;, wit2] | i =1,2, j = 1,2,3,4}.

Then the blocks of B decompose Kx y in 3-paths and satisfy the conditions of the
statement. O

Lemma 13. Let X = {1, 29,753,174}, Y = {y1,y2,y3,y4}, Z = {21, 20,23, 24} and
T = {t1,t2,t3,t4} be pairwise disjoint sets. Then there exists a Ps-decomposition of
KX7Y7Z7T UKX UKY havmg W= {mla Z2,Y1,Y2,%1, tl}; Wu {22} and (W\{yl}) U
{ys, z2,t2} as blocking sets.

Proof. Let us consider the family B of blocks:

o .’Bl,Zj,t?,] [l‘g,Z],t4] [ylazj7t2]7 [I37Zj7tl]a [wlatjax?)L [mZatjax4]7 [y17tj7y3]7
Y2, t;,ya] and [z4, 2, yo] for j =1,2,3,4

Ya, y17y2] [y3ax27y1]7 [y37x37y1]7 [y379€47y1}7 [353,%172/1], [$4,$1,y2], [y2,962,$3],

[

[

L4 [227y37y1] [23,1137212}7 [2473/3,1’1]7 [22,y4,z1], [23,94,172], [24,94,21], [y4,y3,21],

[
[.’L‘l,$27.’154] [y27x37y4]7 [1/2»3347553} and [‘r47y47y2]'

Then it is easy to verify that the blocks of B give us the statement. O

Now we can determine the spectrum of largely blocked Ps-designs.

Theorem 14. For any v = 0,1 mod 4, v > 4, there exists a largely blocked Ps-
design of order v.

Proof. Case 1. Suppose, first, that v = 0 mod 4. If v = 4, let X = {1,2,3,4}
and let:

B ={[1,2,3],(1,3,4],[1,4,2]}.
Then ¥ = (X, B) is a Ps-design having as blocking sets {1}, {1,2} and {2,3,4}.
This proves the statement for v = 4.
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Now let v = 4r2+4k, v > 8, for some r, k € N such that (2r)? < v < (2r+2)2.
In this way, we have 0 < k < 2r and [31, B2] = [2r% — r + 2k, 2r% +r + 2k].

Let X1,..., X2 be pairwise disjoint sets with | X;| = 4 foranyi =1,...,r2+
k and let X = |J, X;. By what we just proved we can consider 3; = (Xj, B;) largely
blocked Ps-designs with blocking sets T; such that:

7 = 1 fori=1,...,r
2 fori=r+1,...., 72 +k.

Let T = {J, T}, so that |T| = 2r? — r + 2k. Consider also z; € X;, z; ¢ T}, for
i=1,...,r,and T C X, fori = #Jrl,...,r2 such that |T/| = 2 and |T;NT}| = 1.
By what we just proved we can suppose that T; U {z;} for ¢ = 1,...,r is still a
blocking set for X;.

Consider any bijection:

S L, 2y
o: {{i gy lij=1...,ri#j}—={r+1,..., 5"}

and let:
.o .o r
wG6.9) = plid) + ().
By Lemma 13 for 4,5 = 1,...,7, i < j, we can consider a family C; ; of blocks
decomposing
KX x5 X o, X Y EX o U B Xy

in P3 paths such that:
® TiUT;UTopi,5) YTy
o TiUT; UTy5 U Ty Ui},
[ E U Tj U Tsa(i,j) U T&)(%]) U {xia'rj}

are blocking sets for this decomposition.

Let 4,5 = 1,...,72 +k, i # j, such that both 4, j are not simultaneously in
some of the quadruples:

{{p. ¢, 0(p.0), ¥(p, @)} | pa=1,....r,p#q}.
Then by Lemma 12 let D; ; a family of blocks decomposing Ky, x, such that:
o T, UTy,
o ,UT;U{x;}ifi=1,...,r,
o TUT/if j =137 +1,...,17

. Tl-UT](U{xi}ifizl,...,randj:Tzé”—i—l,...,ﬂ,
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o T/UT!ifi,j="5T+1,...,r°

are all blocking sets for the blocks of D; ;.

Let:
r r242k
B = U B; U U B; UUCi,j UUDi,j-
i=1 i=r241
Then ¥ = (X, B) is a Ps;-design having:
o T
e TU {331}

® Uigr. TiUUer, T; Uz, .. 2} for s = 2, v, where I, = {¢(i,]) | i,j =
17"'7872.#-].}7

as blocking sets. So there exist for ¥ blocking sets of cardinality 2r2—r+2k,. .. ,2r2+
2k. This immediately implies that there exist for ¥ blocking sets of cardinality
2r2 42k +1,...,2r2 +2k+r, because the complement of a blocking set is a blocking
set. This proves the statement for v =0 mod 4.

Case 2. Let v =1 mod 8, v > 9. In this case the statement follows by
Theorem 8. Indeed, there exists a largely blocked Cy-design ¥ = (X, B) of order v
with the same interval of integers

UV — /v U+ /v
f ) f = [/817 52]
2 2
Moreover, as noted in Remark 9 called 77, ... T, the blocking sets of cardinality:
v — \/{} v—1
5 N

given in the construction, in any 4-cycle (x,y, z,t) of B we have a vertex x € T; for
any ¢ such that either y,t ¢ T; for any ¢ or z ¢ T; for any 4. This implies that from
this 4-cycle we get the paths [x,y, z] and [z,t, 2] in order to obtain a Ps-design of
order v having T3, ... T, and their complements as blocking sets. This proves the
statement in the case v =1 mod 8, v > 9.

Case 3. Let v =5 mod 8. If v = 5, we have 01, 82] = [2,3]. Consider
on {0,1,2,3,4} the Ps-design ¥ having as base block [1,0,2]. Then {0,2} (and
consequently also its complement {1, 3,4}) is a blocking set for ¥. This proves the
statement for v = 5.

Let v =5 mod 8, with v > 13. Then let v = (2r + 1)? + 4(2k + 1) for some
rk € N, 7 > 1, such that (2r +1)2+4 <v < (2r+3)>+4. So0 <k <7 and
v < (2r+3)2. Let v/ = v—4. Then by what we just proved we can take ¥ = (X, B)
a largely blocked Ps-design of order v'. Let T be a blocking set for X of cardinality
p. It is easy to see that:

v

Bi(v) = [ 5 w =224 r+4k+2 and  Ba(v) = F’J’Q‘/ﬂ = 2r*+3r+4k+3
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v+

= 2r24r44k and  Bu(v)) = { 5

w = 2r°+3r+4k+1.

So [B1(v), B2(v)] = [B1(v) + 2,B2(v") +2]. Let X = {x; | i = 1,...,v'} and
Y ={y1,y2,v3,ya}. Let B’ be the following family of blocks:

[Z/l,ymys}, [y1»y37y4]7 [Z/h?/zbyz]a [y2i+1axj,y2i+2]

fori=0,1and j=1,...,v". Then ¥ = (X UY,BUDB) is a Ps-design of order v
having as blocking set T'U {y1,y3}. Since X is largely blocked and [51(v), B2(v)] =
[B1(v") + 2, B2(v") + 2], we immediately get the statement for v =5 mod 8, v >
13. O

4. PERFECT BLOCKING SETS

In general, when we have a blocking set T for a G-design ¥ = (X,B) we
might want that the elements of T" are distributed in an optimal and homogeneous
way in the blocks of B. So in [4] the following definition is given:

Definition 15. Let X = (X, B) be a G-design. A blocking set T of ¥ is called
perfect if there exists C' € N such that any block B € B contains exactly C' edges
joining vertices of T' and of Cx (T).

This definition in general forces a strict condition on the order of the G-design:

Proposition 16. If ¥ = (X, B) is a Cy-design of order v and T is a perfect blocking
set for X of cardinality p, then:

_vE
2

and v 1S a square.

Proof. Since |B| = % and T is a perfect blocking set, then any block B € B

contains exactly 2 edges joining vertices of T' and C'x (T") and:

U(’U—l).

p-(v—p)=2- g

Sop= # and v is a square, because p is a positive integer. O

By Theorem 2, Theorem 8 and Proposition 16 we get immediately the fol-
lowing:
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Theorem 17. There exist Cy-designs of order v with a perfect blocking set if and
only if v=(2r +1)? for somer € N, r > 1.

5. PERFECT BLOCKING SETS IN FP;-DESIGNS

In [4] the spectrum of Ps-designs having a perfect blocking set is determined.
So it is proved that:

Theorem 18 ([4]). If T is a perfect blocking set of any Ps-design of order v, then
c=1, v is a square and
v+

T| = .

If we consider a Ps-design of order v having a perfect blocking set, since
v =0 or 1 mod 4, then there exists a positive integer k such that v = (2k)? or
v = (2k +1)2. So in [4] it is proved that:

Theorem 19 ([4]). There exist P3-designs of order v having perfect blocking sets
if and only if v is a square.

In this section we provide a construction that will be useful in studying Ps-
designs with perfect blocking sets. So, let ¥ = (X, B) be a Ps-design of order v
with a perfect blocking set T'. For any = € T we consider the set:

E@) ={{y.v'} v,y e X, y#y, [x,y.y] or [2,y,y] € B}

and the graph G(z) = (X \ {z}, E(x)).
Remark 20. Note that in a Ps-design with a perfect blocking set T, any block B is
a path [x1,z9, 23] where 21 € T and x5 € Cx (7).

Given a graph G = (X, E), we denote by A(G) the maximum degree of the
vertices of G. The chromatic index x/(G) of G is the minimum number of colors
needed for a proper edge coloring of G. The following construction will be used in
the proof of the main result of this section:

Theorem 21. For any k € N there exists a Ps-design ¥ of order v with a perfect
blocking set T such that one of the following conditions holds:

1. v=(2k+1)2, |E(z)]| is even for any x € T and
|E(z)|

2 )

X' (G(x)) <

2. v=(2k)?, k> 2, |E(z)| is odd for any x € T and there exists b € Cx(T)
such that for any x € T there exists a, € Cx(T) satisfying the conditions:

e [z,a,,b] € B,
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o ay, Fay foranyz,yeT, x#y,
. X(0) ~ {an0) < POIZL
where G(x) — {az, b} = (X \ {z}, E(z) \ {{az,b}}).

Proof. Let ¥ = (X, B) be a Ps-design with a perfect blocking set T" of cardinality
p. Let x € T and:

e let a, be the number of blocks of type [z, z1, z2], with 1 € T and 25 € Cx (T)
e let b, be the number of blocks of type [z, x1,x2], with z1, 29 € Cx(T)
e let ¢, be the number of blocks of type [z1,xz,x2], x1 € T and z9 € Cx (T).

Then:

=b,—a,=v—2p+1.

ay +c,=p—1
by +co=v—p

Since |E(x)| = ay + by, we easily see that if v is odd, then |E(x)| is even, and,
conversely, if v is even, |E(z)| is odd.

Next, to simplify the proof let us make the following position. If v = (2k+1)2,
let p=k(2k + 1) and ¢ = 2k + 1. If v = (2k)?, let p = 2k? — k and q = 2k.

Let us consider X7, X5 and X3, pairwise disjoint, such that | X;| = p, |Xao| = p
and |X3| = ¢. We will construct a Ps-design ¥ of order v with vertex set X =
X1 UXoUX3and T = X;. Let:

Foranyi=1,...,q—1and j=1,...,qg — i we define:

(i, 4) J fori=1
7, = i ) .
o S - +j fori>2.

Note that (i, 1)—p(i—1,q—i+1) = 1, p(1,1) = 1 and ¢(¢—1, 1) = p. This implies
that for any s € {1,...,p} there exist unique ¢ € {1,...,g—1}and j € {1,...,q—i}
such that (i, ) = s.
Define in X the following families of paths Ps:
Fi={lai,a;j,b;] |i=1,...,p—1,j=1,...,p—i}
Fo={bibitj,a5] |i=1,...,p—1,j=1,...,p—1i}
‘FB:{[CH—jacuatsz)]|Z—1 .- —1,j=1,...,q—i}
f4*{[ Ap(i,5)s Lp(z,])?cl]|1:1"'7q717j:17"'aq7i}
{[a Cirbp(i1)—s) | 1 =2,. ..,q—l,s:l,...,cp(i,l)—l}u
U{a87ciabp—s+1+<p(i,q—i)]|7;:17'~~7q_27Szw(iuq_i)"_l?"'ap}u
U{[a570q7bp+1—3] | s = 1a~-~ap}'
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It is possible to verify that ¥ = (X, Ule F;) is a P3-design of order (2k + 1)? such
that X7 is a perfect blocking set satisfying the condition of the statement.

Indeed, for any i = 1,...,plet i € {1,...,¢q— 1} and j € {1,...,q — i} be
such that ¢(i,7) = i. Moreover, for any a;, i =1,...,p — 1 in E(a;) we have:

o from Fi p — i edges, with vertices in {a;41,...,ap} U{b1,...,0p—i}

e from Fy p — i edges, which are {b;,b;1;} for j=1,...,p—1i

from F3 just one edge, {c;, c;_g}

from Fy we have just one edge {c;, b ;7 } = {c;, b}

from F5 we have the edges {cq, bpy1—i}, {{cir,bp@,1)—i} | ¥ =i+1,...,q—1}
for g S q— 2, and {{Ci/)bpfi+1+tp(i’,q7i/)} ‘ i/ = 17 . ,g— 1} for E Z 2.

Instead, in E(ap) we have:
o from Fj just one edge, {c4—1,¢q}
o from F; we have just one edge {c,—1,b,}
e from F5 we have the edges {c,, b1} and {{ci,b14p(,q—i)} 1 =1,...,4 —2}.
This implies that:
4 fori< g
A(G(a;)) =43 for g <i<p-—1
2 fori=np.
Since |E(G(a;))] = 2p — 2i + 14 ¢ and x'(G(a;)) < A(G(a;)) + 1, the statement

follows if v = (2k +1)? and k > 2. If k = 1, then p = ¢ = 3 and it is easy to verify
that:

A(G(ar) = 4= X (G(ar) = 120
A(G(az)) =3 = X (G(ar)) = 122
A(G(a) =2 = X (Glar)) = 20

So also for v = (2k + 1)? with k& = 1 the statement holds.
If v = (2k)?, in the statement take b = b; and the paths [a;, b;y1,b1] for
t=1,...,p—1 and [ap,cq,b1]. Then, we have |E(G(a;))] —1 = 2p —2i + ¢q and
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X' (G(a;)) < A(G(a;)) + 1 for any ¢ = 1,...,p. Then the statement follows for
v=(2k)? and k > 3. If k = 2, then p = 6 and q = 4 and we see that:

X (G(a) < AG(ai)) +1 < w

for ¢+ = 1,2, 3,4. Moreover it is not difficult to see that we also have:

A(G(as) — {br,bo}) = 2= X'(Glas) — (b1, be}) < EEDL
A(G(a0) — {es,bi}) =2 = N'(Glag) — fea, b)) = POIL
So also for v = (2k)? with k = 2 the statement holds. O

The next result is the key to the proof of the main result of this section:

Lemma 22 ([1, Lemma 2]). For every graph G = (X, E) and for every t > 1,
tK,|G if and only if t||E| and X'(G) < ZL.

Recall now the following:
Theorem 23. A Ps-design of order v exists if and only if v =0 or 1 mod 8, v > 5.

Now we determine the spectrum of Ps-designs having a perfect blocking set
with constant C' = 2:

Theorem 24. There exists a Ps-design of order v having a perfect blocking set with
constant C = 2 if and only if either v = (2k + 1)? or v = 16k?, for some k € N.

Proof. If ¥ = (X,B) is a Ps-design of order v with a perfect blocking set T' of
cardinality p and constant C' = 2, then:

v+
5

p(v—p) =2-B=p=

So v is a square and by Theorem 23 either v = (2k + 1)? or v = 16k2, for some
keN.

Suppose, now, that v = (2k + 1)? for some k € N. Let ¥ = (X, B) be a Ps-
design satisfying the conditions of Theorem 21. Then, by Lemma 22 we see that,
for any € T such that |E(z)| > 0, 2K5|G(z). So if {y1,y2}, {ys,ya} is one of
these copies of 2K, we can join the two paths [z, y1, yo] and [z, y3, y4] in the path
[Y4, Y3, T,y1,y2]. By Remark 20 this gives us a Ps-design of order v = (2k + 1)?
having T as a perfect blocking set with constant C' = 2.

Suppose that v = 16k? for some k € N. Let ¥ = (X,B) be a Ps-design
satisfying the conditions of Theorem 21, where now the perfect blocking set T
has even cardinality. Keeping the notation of the theorem, for any x € T such
that |E(z)| > 1 we can proceed as we have just done: by Lemma 22 we see that
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2K,5|(G(x)—{ag, b}). So, again, if {y1,y2}, {ys, ys4} is one of these copies of 2K5, we
can join the two paths [z,y1,y2] and [x,ys,y4] in the path [y, ys, 2, y1,y2]. Then
there an even number of blocks [z, a.,b], one for each x € T, where a, € Cx(T).
If T ={z1,...,2p}, then we can consider the following paths:

[$2i+17 aa:2i+1 9 b) a12i+2 ) $2i+2]

fori=0,...,2—1. In this way, by Remark 20 we get a Ps-design of order v = 16k
having T as a perfect blocking set with constant C' = 2. O
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