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Abstract. In this paper, we present a conservative semi-Lagrangian finite-difference
scheme for the BGK model. Classical semi-Lagrangian finite difference schemes, cou-
pled with an L-stable treatment of the collision term, allow large time steps, for all the
range of Knudsen number [17, 27, 30]. Unfortunately, however, such schemes are not
conservative. Lack of conservation is analyzed in detail, and two main sources are
identified as its cause. First, when using classical continuous Maxwellian, conserva-
tion error is negligible only if velocity space is resolved with sufficiently large number
of grid points. However, for a small number of grid points in velocity space such error
is not negligible, because the parameters of the Maxwellian do not coincide with the
discrete moments. Secondly, the non-linear reconstruction used to prevent oscillations
destroys the translation invariance which is at the basis of the conservation properties
of the scheme. As a consequence the schemes show a wrong shock speed in the limit
of small Knudsen number. To treat the first problem and ensure machine precision
conservation of mass, momentum and energy with a relatively small number of veloc-
ity grid points, we replace the continuous Maxwellian with the discrete Maxwellian
introduced in [22]. The second problem is treated by implementing a conservative cor-
rection procedure based on the flux difference form as in [26]. In this way we can con-
struct conservative semi-Lagrangian schemes which are Asymptotic Preserving (AP)
for the underlying Euler limit, as the Knudsen number vanishes. The effectiveness of
the proposed scheme is demonstrated by extensive numerical tests.
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1 Introduction

The dynamics of a non-ionized dilute gas at mesoscopic level is described by the cele-
brated Boltzmann equation [9]. The development of efficient numerical methods for its
solution, however, constitutes a formidable challenge, due, among others, to the high di-
mensionality of the problem, the complicated structure of the collision operator, the need
to preserve the collision invariants at a discrete level, and the stiffness issue arising when
the Knudsen number is very small.

In view of this situation, Bhatnagar, Gross and Krook, in 1954, suggested a relaxation
model of the Boltzmann equation, which now goes by the name of the BGK model [5].
This approximation preserves several important qualitative features of the original Boltz-
mann equation, such as conservation of mass, momentum and energy, H-theorem and
relaxation to equilibrium, and is now widely used as a simplified alternative to the Boltz-
mann equation because it is much less expensive to treat at a numerical level.

Initial value problem for the BGK model on a periodic domain reads

∂ f

∂t
+v·∇x f =

1

κτ0
(M( f )− f ) ,

f (x,v,0)= f0(x,v).

(1.1)

The velocity distribution function f (x,v,t) represents the mass density of particles at
point (x,v) ∈ Rd×Rd in phase space, at time t > 0. The quantity τ = κτ0 represent the
relaxation time. Here κ is the Knudsen number, defined as a ratio between the mean
free path and a macroscopic characteristic length of the physical system. We assume it
may change by several orders of magnitude, and in particular it may become extremely
small. The time τ0 expresses the dependence of the relaxation time on the deviation of
temperature and density from the reference one. We assume such dependence is not very
strong, and for simplicity we consider τ0 to be constant in our treatment and analysis. By
suitable non-dimensionalization of the problem we shall omit to write the term τ0. The
local Maxwellian M( f ) is given by

M( f )(x,v,t) :=
ρ(x,t)√

(2πT(x,t))d
exp

(
−|v−U(x,t)|2

2T

)
,

where the macroscopic fields of local density ρ(x,t)∈R+, bulk velocity U(x,t)∈Rd and
local temperature T(x,t)∈R+ are defined through the following relation:

(ρ(x,t),ρ(x,t)U(x,t),E(x,t))T = 〈 f φ(v)〉, (1.2)

where

φ(v)=

(
1,v,

1

2
|v|2
)T

, and 〈g〉≡
∫

Rd
g(v)dv.
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The physical quantity E(x,t) is the total energy density per unit volume, and it is related
to the temperature T(x,t) by the following relation:

E(x,t)=
d

2
ρ(x,t)T(x,t)+

1

2
ρ(x,t)|U(x,t)|2.

The BGK model (1.1) satisfies the main properties of the Boltzmann equation such as
conservation of mass, momentum and energy:

〈M( f )φ(v)〉= 〈 f φ(v)〉,

as well as entropy dissipation:

∫

Rd
(M( f )− f )ln f dv≤0.

Note that the equilibrium state clearly is the local Maxwellian determined by f . Indeed
the collision operator vanished for f =M( f ). Therefore, the BGK model gives the correct
Euler limit as κ→0, i.e., the moments of solution to (1.1), in the limit of vanishing Knudsen
number, satisfy the macroscopic compressible Euler equations for a monatomic gas [4,6]:

∂tρ+∇·(ρU)=0,

∂t(ρU)+∇·(ρU⊗U+pI)=0,

∂tE+∇·((E+p)U)=0,

(1.3)

with pressure p given by the constitutive relation to close the system (1.3) p=ρT.
Navier-Stokes equations can be derived by the Chapman-Enskog equation (see for

example [10]), by inserting a formal expansion of the distribution function f in terms of
the Knudsen number. To zero-th order one obtains compressible Euler’s equations, while
to first order in κ one derives the Navier-Stokes equations associated to the BGK model.

We mention that such Navier-Stokes limit is slightly inconsistent with the one ob-
tained from the Boltzmann equation, in that the Prandtl number Pr = cpµ/k (cp is the
specific heat at constant pressure, µ is the viscosity and k the thermal conductivity) de-
rived from the BGK model is numerically different from the value computed using the
Boltzmann equation. Several techniques have been proposed to overcome this drawback,
the most widely adopted being the so-called Ellipsoidal BGK (ES-BGK), see [1, 2, 20]. A
semi-Lagrangian method for the ES-BGK model has recently been proposed and ana-
lyzed in [29].

There have been several efficient numerical methods for the BGK model of the Boltz-
mann equation. In [32], the authors propose a high order conservative A-stable scheme
which performs well for both fluid and rarefied regime. The procedure requires to up-
date the microscopic distribution function coupled with the update of the macroscopic
conservative variables. One can also find efficient numerical methods for BGK model
in [15, 16]. Among various numerical approaches, in this paper, we aim to analyze the
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lack of conservation of classical semi-Lagrangian schemes for the BGK model. Then, we
propose an alternative technique which gives high order conservative semi-Lagrangian
(SL) finite-difference schemes for the BGK model.

The loss of conservation has been an important issue in the field of the method of char-
acteristics, and it can be more relevant if one solves equations with variable coefficients
[13]. In kinetic theory, conservative semi-Lagrangian methods have recently attracted a
lot of attention, especially in the context of the Vlasov-Poisson model (see [12, 14]).

General procedures have been developed for the construction of conservative SL
schemes, as in [25], however such procedures are often restricted to treat one dimensional
problems.

SL schemes for BGK models have recently received increasing interest [17,27–30] since
the SL treatment avoids the classical CFL stability restriction. Furthermore, the implicit
treatment of the collision term, which can be easily computed, allows the methods to
capture the underlying fluid dynamic limit.

Unfortunately, however, classical SL schemes do not necessarily conserve the total
mass, momentum and energy, and the error may become more relevant as the Knudsen
number gets smaller [17].

We identify the cause of lack of conservation in the use of continuous Maxwellian in
the collision term, and in the non-linear weights adopted in the high order non-oscillatory
reconstruction, and propose a remedy based on the use of a discrete Maxwellian (as in
[22]) and on a conservative correction to fully restore the conservation properties of the
schemes, such as the one adopted in [26] in the case of the Vlasov-Poisson equation.

The paper is organized as follows. Section 2 is devoted to first order schemes. It is
shown that the conservation error depends sensitively on the number of velocity grid
points, and the cause is identified in the use of a continuous Maxwellian in a discrete
scheme. We prove that the SL schemes can be made conservative within round-off errors
by adopting a discrete Maxwellian in place of the classical continuous one.

Section 3 considers high order SL schemes, which exhibit lack of conservation even
with the use of the discrete Maxwellian in the collision term. A conservative correction is
then adopted, which restores exact conservation of the methods (within round-off). Sec-
tion 4 is devoted to linear stability analysis, to explain the stability limitations introduced
by the conservative correction. The extension of the methods to the two dimensional case
is described in Section 5. In Section 6 we present several numerical tests, which confirm
the expected accuracy and conservation properties of the proposed schemes, and pro-
vide numerical evidence of the AP property of the scheme towards the underlying fluid
dynamic limit as the Knudsen number vanishes. At the end of this paper, we draw some
conclusions.

2 First order Semi-Lagrangian schemes

We start from the basic first order semi-Lagrangian scheme [28], and gradually build up
to derive our conservative high order semi-Lagrangian scheme (see Section 3).
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2.1 First order SL scheme

We start from the characteristic formulation of (1.1) :

d f

dt
=

1

κ
(M( f )− f ),

dx

dt
=v, (2.1)

subject to the initial data: f (x,v,0)= f0(x,v).
We consider one dimensional problem in space and velocity, and we divide the spatial

and velocity domain into uniform grids with mesh spacing ∆x and ∆v, respectively. We
also use uniform time step ∆t. Given a computational domain, [xmin,xmax]×[vmin,vmax]×
[0,t f ], we denote the grid points by

xi = xmin+
(

i− 1

2

)
∆x, i=1,··· ,Nx,

vj =vmin+ j∆v, j=0,··· ,Nv,

tn =n∆t, n=0,··· ,Nt,

where Nx, Nv+1 and Nt are the number of grid nodes in space, velocity and time, respec-
tively, so that xmax= xmin+Nx∆x, vmax=vmin+Nv∆v and t f =Nt∆t.

Let f n
i,j denote a discrete approximation of f (xi,vj,t

n) and φ(vj)=
(
1,vj,

v2
j

2

)T
. Applying

first order semi-Lagrangian implicit Euler (IE-SL) scheme to (2.1), we get

f n+1
i,j = f̃ n

ij +
∆t

κ

(
M( f n+1

i,j )− f n+1
i,j

)
, (2.2)

where M( f n
i,j)≡(M[ f n])i,j, and f̃ n

ij is an approximation of f (xi−vj∆t,vj,n∆t) obtained by

a suitable interpolation from { f n
i,j}. Note that linear reconstruction will be sufficient for

first order SL scheme, while a higher order non-oscillatory reconstruction is necessary for
high order accuracy. The Maxwellian M( f n+1

i,j ) is given by

M( f n+1
i,j )=

ρn+1
i√

2πTn+1
i

exp

(
−|vj−Un+1

i |2
2Tn+1

i

)
,

where discrete macroscopic moments are constructed from f n+1 as follows:




ρn+1
i

ρn+1
i Un+1

i

En+1
i


=

Nv

∑
j=0

f n+1
i,j φ(vj)∆v,

which is equivalent to using midpoint rule in the computation of the moments, Eq. (1.2).
We now employ a technique which enables us to explicitly solve the implicit scheme

(2.2). The idea behind it is that the Maxwellian and the distribution function at time tn+1
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have the same moments. Such a technique has been adopted several times by various
authors. For example, Pieraccini and Puppo adopted it in [24] in the context of Eule-
rian schemes, Santagati used it independently in his PhD thesis [30] in the context of
semi-Lagrangian schemes, and Coron and Perthame [11] adopted a similar idea using
a splitting strategy, in which a convection step is followed by a relaxation step, during
which the local Maxwellian does not change.

We multiply both sides in (2.2) by φ(vj), sum over j, and use the property that the

moments of M( f n+1
i,j )− f n+1

i,j up to second order vanish, to obtain

Nv

∑
j=0

f n+1
i,j φ(vj)∆v=

Nv

∑
j=0

f̃ n
ij φ(vj)∆v.

This gives




ρn+1
i

Un+1
i

En+1
i


=




ρ̃n
i

Ũn
i

Ẽn
i


,

with



ρ̃n
i

ρ̃n
i Ũn

i
Ẽn

i


=

Nv

∑
j=0

f̃ n
ij φ(vj)∆v, Ẽn

i =
1

2
ρ̃n

i |Ũn
i |2+

1

2
ρ̃n

i T̃n
i .

Therefore, we can legitimately replace M( f n+1
i,j ) with M( f̃ n

i,j), so that the scheme be-
comes

f n+1
i,j = f̃ n

ij +
∆t

κ

(
M( f̃ n

ij )− f n+1
i,j

)
,

which gives

f n+1
i,j =

κ f̃ n
ij +∆tM( f̃ n

ij )

κ+∆t
. (2.3)

This approach has been also fruitfully used, for example, in [17, 27, 28].
Summarizing, we have the following procedure (see Fig. 1):

1. Use linear interpolation to obtain f̃ n
ij from { f n

i,j}.

2. Compute M( f̃ n
ij ) from { f̃ n

ij} by using the macroscopic moments, i.e. (ρ̃n
i ,Ũn

i ,Ẽn
i )

T.

3. Compute numerical solution using (2.3).

We apply the scheme to the propagation of a single shock, where we can compare
the numerical solution to the exact one, and therefore accurately check the conservation
properties of the scheme.
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Figure 1: Representation of the implicit first order scheme.

2.2 Test 1. Check exact conservation

The aim of this test is to check conservation of the conservative semi-Lagrangian scheme
to machine precision. We apply IE-SL scheme (2.3) to Eq. (1.1) with f0 given by the
Maxwellian w.r.t macroscopic quantities

(ρ0,u0,p0)=





(
(γ+1)M2

(γ−1)M2+2
,

2
√

γ(M2−1)
(γ+1)M

,1+ 2γ(M2−1)
(γ+1)

)
, for x≤0.5,

(1,0,1), for x>0.5.

We take the Knudsen number κ=10−6, the polytropic constant γ=3 (corresponding to a
polytropic gas with one degree of freedom per gas molecule) and Mach number M=2.

To prevent the solution from reaching the boundary, final time is taken t f = 0.4. We
used free flow boundary conditions and performed the computation on (x,v) ∈ [0,5]×
[−20,20].

The results are summarized in Table 1, where the conservation errors are reported for
various values of Nx and Nv.

From the results we can make the following observations:

1. Table 1 shows that the first order IE-SL scheme with enough points in velocity space
maintains conservation within machine precision, independently of the number of
grid point in space;

2. the same scheme with smaller number of points in velocity produces non-negligible
conservation errors.

This numerical evidence suggests that the convection part is conservative, while errors
in conservation are a consequence of the numerical approximation of the relaxation term.
The lack of conservation is indeed due to the use of a continuous Maxwellian on a dis-
crete scheme in velocity: the parameters of the continuous Maxwellian do not coincide
with the discrete moments, they are just approximated by them with spectral accuracy
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Table 1: Test 1. CFL= 4, κ= 10−6. Conservation errors of discrete moments in the relative L1 norm for first
order scheme applied to single shock with velocity domain [−20,20].

IE-SL-Linear-CM, Nx=100 IE-SL-Linear-CM, Nx=200

Nv Mass Momentum Energy Mass Momentum Energy

30 3.63e-04 0.0012 0.0021 9.10e-04 0.0030 0.0051

40 5.54e-08 3.26e-07 6.03e-07 1.15e-07 6.43e-07 1.25e-06

50 8.55e-13 7.81e-12 1.43e-11 1.78e-12 1.54e-11 2.97e-11

60 3.55e-14 4.96e-14 3.89e-14 7.45e-14 8.24e-14 7.23e-14

90 3.24e-14 4.82e-14 3.77e-14 7.16e-14 7.32e-14 7.45e-14

when the integrals are replaced by a summation. The spectral accuracy of the quadrature
explains, for example, the dramatic drop of the conservation error when the number of
points in velocity is increased from 40 to 50.

2.3 Classical SL scheme with the discrete Maxwellian

In this section, we replace the continuous Maxwellian with the discrete Maxwellian to
resolve the problem of strong dependence of the conservation error on the number of
velocity grids.

2.3.1 Discrete Maxwellian

We start by describing the discrete Maxwellian introduced in [22]. In that work, the
author proved that a discrete entropy minimization problem has a unique solution called
the discrete Maxwellian (dM). More precisely a consequence of his Theorem 3.1 in [22]
is that for any discrete distribution function { f j}, with discrete moments m∈R2+d, m=

∑j f jφ(vj)(∆v)d, there is a unique discrete distribution dM(vj) that minimizes the discrete

entropy H[g]=∑j gj log(gj)(∆v)d, subject to the condition that its moments are m, and that
such a discrete Maxwellian can be expressed as

dM(x,vj,t) :=exp
(
a·φ(vj)

)
,

with a suitable vector a∈R2+d.
For d=1, the vector a(x,t) is determined by solving the following non-linear system:

Nv

∑
j=0

f (x,vj,t)φ(vj)∆v=
Nv

∑
j=0

exp
(
a(x,t)·φ(vj)

)
φ(vj)∆v.

In practice, employing a Newton algorithm, we find a(x,t) such that

max
1≤ℓ≤3

∣∣∣∣∣
Nv

∑
j=0

(
f (x,vj,t)−dM(x,vj,t)

)
φℓ(vj)∆v

∣∣∣∣∣< tol (2.4)
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for arbitrary small tolerance(tol). Throughout this paper, we take tol to be the order of
10−14. Here, we denote the ℓth component of φ(vj) by φℓ(vj), ℓ= 1,2,3. With the use of
discrete Maxwellian in (2.3),

f n+1
i,j =

κ f̃ n
ij +∆tdM( f̃ n

ij )

κ+∆t
, (2.5)

and it is possible to prove the following estimate on the conservation error (see Appendix
A):

max
1≤ℓ≤3

∣∣∣∣∣
Nx

∑
i=1

Nv

∑
j=0

(
f Nt
i,j − f 0

i,j

)
φℓ(vj)∆v∆x

∣∣∣∣∣≤
Nt∆t

κ+∆t
(xmax−xmin)tol.

On the other hand, we recall that, in discrete velocity models, we need to take the
velocity domain sufficiently large to secure correct profile of macroscopic moments, es-
pecially when there is a large space variation of mean velocity U and temperature T.

Therefore, it is necessary to balance the size of the velocity domain needed for the
accurate computation of macroscopic fields, and the efficient choice of smallest possible
number of grids to guarantee the efficient performance of the scheme (see Test 1 in Section
6.)

Such issues of the optimal choice of the grid points in velocity space are not consid-
ered here and will be left to future investigation.

Here we provide a simple example which demonstrates the usefulness of discrete
Maxwellian. Let us consider a set of reference macroscopic moments (ρre f ,ure f ,Ere f ) =
(2.25,0.3,0.6). In Fig. 2, we compare continuous and discrete Maxwellians for different
velocity domains with various number of velocity grid points Nv. Figs. 2(a)-2(b) show
that continuous and discrete Maxwellians get closer as Nv increases. With just 12 grid
points there is a good agreement when looking at the pictures.

In Figs. 2(c)-2(d), we compare the computation of the density obtained respectively
from the continuous and discrete Maxwellian constructed from the reference macroscopic
moments. As expected, the error in the moments computed from the discrete Maxwellian
is of the order of the round off error, while the error computed using the continuous
Maxwellian decreases spectrally as the number of grid points in velocity increases. The
blue circles that do not appear in panels (c) and (d) mean that the error in density is less
that 10−16. If the support of the grid in velocity is not sufficiently large, a small error
remains even for large values of Nv.

3 High order schemes and conservative correction

Several techniques can be adopted to obtain high order accuracy and to ensure the shock
capturing properties near the fluid regime, avoiding spurious oscillations. Here we con-
sider two of the schemes adopted in [17], namely third order schemes obtained by com-
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(a) Velocity domain [−10,10] (b) Velocity domain [−10,10]

(c) The difference of ρre f and ρ for velocity do-
main [−5,5]

(d) The difference of ρre f and ρ for velocity do-
main [−10,10]

Figure 2: Comparison of the continuous and discrete Maxwellians.

bining high order methods in time (RK3 and BDF3) with a high order non-oscillatory
spatial interpolation technique that we call generalized WENO (G-WENO) [8].

We repeat the same moving shock test using third order schemes, and the results are
summarized in Table 2 for SL schemes using Runge-Kutta time advancement (RK3-W35),
and in Table 3 for the BDF-based SL schemes (BDF3-W35). Fully resolved high order
schemes both in space and velocity produce finite conservation error, which is much
larger than the conservation error of the first order scheme, shown in Table 1.

This indicates that there are cases where high order schemes may show even bigger
conservation errors compared to those obtained by the first order scheme.

The main qualitative difference between first order and high order methods is that
the former uses a fixed stencil for the linear interpolation at the feet of the characteris-
tics, while high order non-oscillatory reconstructions such as G-WENO use a weighted
sum of reconstructions on different stencils, the weight depending on the local regularity
properties of the function to be reconstructed. As a result, in the first order SL scheme the
interpolation weights are the same for all intervals, whereas in high order SL schemes,
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Table 2: Test 1. CFL=2, κ=10−6. Conservation errors of discrete moments in the relative L1 norm for high
order schemes applied to single shock problem with velocity domain [−20,20].

Classical RK3-W35-CM Classical RK3-W35-DM

(Nx,Nv) Mass Momentum Energy Mass Momentum Energy

(100,42) 1.28e-03 1.25e-02 1.40e-01 1.22e-03 1.29e-02 1.47e-02

(100,50) 1.06e-03 1.31e-02 1.47e-02 1.06e-03 1.36e-02 1.47e-02

(100,60) 1.43e-03 1.26e-02 1.49e-02 1.43e-03 1.26e-02 1.49e-02

(100,90) 1.35e-03 1.28e-02 1.48e-02 1.35e-03 1.28e-02 1.48e-02

(200,42) 1.54e-03 1.30e-02 1.45e-02 1.48e-03 1.33e-02 1.52e-02

(200,50) 1.30e-03 1.35e-02 1.51e-02 1.30e-03 1.35e-02 1.51e-02

(200,60) 1.68e-03 1.30e-02 1.53e-02 1.68e-03 1.30e-02 1.53e-02

(200,90) 1.60e-03 1.32e-02 1.53e-02 1.60e-03 1.32e-02 1.53e-02

(400,42) 1.68e-03 1.32e-02 1.47e-02 1.61e-03 1.35e-02 1.54e-02

(400,50) 1.42e-03 1.36e-02 1.53e-02 1.42e-03 1.36e-02 1.53e-02

(400,60) 1.80e-03 1.32e-02 1.55e-02 1.80e-03 1.32e-02 1.55e-02

(400,90) 1.73e-03 1.34e-02 1.54e-02 1.73e-03 1.34e-02 1.54e-02

(800,60) 1.86e-03 1.33e-02 1.55e-02 1.86e-03 1.33e-02 1.55e-02

(800,90) 1.80e-03 1.34e-02 1.55e-02 1.80e-03 1.34e-02 1.55e-02

Table 3: CFL= 2, κ = 10−6. Conservation errors of discrete moments in the relative L1 norm for high order
schemes applied to single shock problem with velocity domain [−20,20].

Classical BDF3-W35-CM Classical BDF3-W35-DM

(Nx,Nv) Mass Momentum Energy Mass Momentum Energy

(100,42) 1.73e-03 1.03e-02 1.39e-02 1.72e-03 1.03e-02 1.39e-02

(100,50) 1.58e-03 1.04e-02 1.38e-02 1.58e-03 1.04e-02 1.38e-02

(100,60) 1.73e-03 1.00e-02 1.38e-02 1.73e-03 1.00e-02 1.38e-02

(100,90) 1.75e-03 1.03e-02 1.40e-02 1.75e-03 1.03e-02 1.40e-02

(200,42) 2.02e-03 1.10e-02 1.46e-02 2.01e-03 1.10e-02 1.46e-02

(200,50) 1.88e-03 1.11e-02 1.45e-02 1.88e-03 1.11e-02 1.45e-02

(200,60) 2.01e-03 1.07e-02 1.44e-02 2.01e-03 1.07e-02 1.44e-02

(200,90) 2.03e-03 1.10e-02 1.46e-02 2.03e-03 1.10e-02 1.46e-02

(400,42) 2.18e-03 1.14e-02 1.49e-02 2.18e-03 1.14e-02 1.49e-02

(400,50) 2.05e-03 1.15e-02 1.48e-02 2.05e-03 1.15e-02 1.48e-02

(400,60) 2.16e-03 1.11e-02 1.47e-02 2.16e-03 1.11e-02 1.47e-02

(400,90) 2.19e-03 1.14e-02 1.49e-02 2.19e-03 1.14e-02 1.49e-02

(800,60) 2.24e-03 1.13e-02 1.49e-02 2.24e-03 1.13e-02 1.49e-02

(800,90) 2.27e-03 1.16e-02 1.51e-02 2.27e-03 1.16e-02 1.51e-02
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due to the nonlinearity of the non-oscillatory reconstruction, the interpolation weights
are not the same for all intervals, thus destroying the translation invariance which is at
the basis of the conservation property of the schemes.

3.1 Conservative correction and discrete Maxwellian

In Subsection 2.3, we achieved a machine precision conservation error for first order
scheme by implementing the discrete Maxwellian in place of the continuous one. This
remedy, however, is not sufficient in high order implementations, as was indicated in
Tables 2 and 3.

To overcome this, we modify the scheme (2.5) using the conservative correction pro-
cedure based on a flux difference form [23, 26] to derive our main scheme.

For clarity of exposition, we start by describing the procedure in the case of first order
schemes, although its real benefit appears in its application to high order methods.

The conservative method can be viewed as a predictor-corrector method. It is based
on a SL non-conservative prediction, and a conservative correction.

Referring to Fig. 3, the first order scheme with conservative correction works as fol-
lows:

1. using (2.5), predict f
(1)
i,j from { f n

i,j} at time tn+1;

2. reconstruct F̂
(1)

i+ 1
2 ,j

and F̂
(1)

i− 1
2 ,j

from {vj f
(1)
i,j }, by using a suitable high order reconstruc-

tion (see Section 3.2);

3. compute the convective term f ∗n+1
i,j by the conservative scheme

f ∗n+1
i,j = f n

i,j−
∆t

∆x
(F̂

(1)

i+ 1
2 ,j
− F̂

(1)

i− 1
2 ,j
);

Figure 3: Representation of first order scheme with conservative correction.
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4. compute the discrete Maxwellian dM∗n+1
i,j from f ∗n+1

i,j ;

5. update the solution f n+1
i,j using

f n+1
i,j = f ∗n+1

i,j +
∆t

κ
(dM∗n+1

i,j − f n+1
i,j ). (3.1)

Here F̂ is an accurate reconstruction of the flux v f in the sense of conservative finite
difference [31]. We only present the formulation in 1D. Extension to more dimensions
can be obtained performing a dimension by dimension 1D reconstruction of the fluxes,
as explained in Section 4.

Remark 3.1. The conservative correction imposes severe stability restriction on the CFL
number for the C-SL schemes (for a theoretical investigation see also [26]). An accurate
analysis for high order Runge-Kutta or BDF C-SL schemes will be given in Section 4.

Remark 3.2. Analysis of semi-Lagrangian schemes for the BGK equation is very chal-
lenging. Refs. [28] and [29] deal with this problem for just first order accurate schemes,
however the proof that the schemes are convergent uniformly in the Knudsen number is
still open to date, as far as we know. In Appendix E, we prove the consistency of both first
order schemes appearing in Eqs. (2.3) and (3.1) to the compressible Euler equations in the
limit of vanishing Knudsen number. The nonlinear stability analysis and the uniform
convergence of the schemes are beyond the scope of the present paper.

3.2 Spatial discretization

We restrict ourselves to 1D case and adopt a uniform grid ∆x := xi+1−xi.

Flux computation at the feet of the characteristics

We use the Generalized WENO reconstruction (G-WENO) introduced in [8] for non-
oscillatory high-order reconstruction of f̃ n

ij . The main advantage of such a reconstruc-

tion is its use of polynomial weights, which provide a general framework to implement
WENO interpolation on any points in a cell. See Appendix B for details.

In our C-SL scheme, we need an accurate approximation of the convection term: v∂x f .
For this, we set F( f ) :=v f , and look for a function F̂ such that

Fi =
1

∆x

∫ x
i+ 1

2

x
i− 1

2

F̂dx, (3.2)

where Fi = F( f (xi,v,t)). Then we can compute the convection term using the following
relation:

∂xFi =
1

∆x

(
F̂(xi+ 1

2
)− F̂(xi− 1

2
)
)

.
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To compute F̂(xi± 1
2
), we use the classical WENO reconstruction in [31] to guarantee non-

oscillatory high-order approximation of F̂i± 1
2
. In this reconstruction, we actually find a

piecewise polynomial function that interpolates {Fi}i=1,···,Nx
. Since those polynomials

contain discontinuity at cell boundaries xi± 1
2
, it is necessary to pick the correct direction

where information comes from. For this reason, upwinding is introduced by flux split-
ting:

F=F++F−,

where

F+( f )=

{
v f , v>0,

0, otherwise,
F−( f )=

{
0, v>0,

v f , otherwise,

so that (3.2) can be rewritten as Fi=F+
i +F−

i , where

F±(x)=
1

∆x

∫ x+∆x/2

x−∆x/2
F̂±(ξ)dξ.

The half fluxes F̂±(x) are obtained by piecewise polynomial reconstruction:

F̂±(x)=∑
i

χi(x)F̂±
i (x),

where χi(x) denotes the characteristic function of interval [xi−1/2,xi+1/2].
Then, by standard WENO process [31], we reconstruct F̂±

i (x) from {F±
i }. Finally, our

numerical flux is obtained as follows:

F̂i+ 1
2
= F̂+

i (xi+1/2)+ F̂−
i+1(xi+1/2).

3.3 Time discretization

High order discretization in time can be obtained by Runge-Kutta methods (RK) or back-
ward differentiation formulas (BDF) [19]. For the sake of simplicity, we again consider
the one-dimensional problem in space and velocity with uniform grid in time.

Runge-Kutta methods

Our system (2.1) becomes stiff as κ → 0. To overcome this difficulty, we need stable
schemes. In view of this, L-stable diagonally implicit Runge-Kutta (DIRK) methods provide
a balanced performance between stability and efficiency [18].

DIRK methods can be represented using the Butcher’s table

c A

bT
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Figure 4: Representation of DIRK2 scheme with conservative correction.

where A=(akl) is a s×s lower triangle matrix and c=(c1,··· ,cs)T and b=(b1,··· ,bs)T are
coefficients vectors [19].

In order to guarantee L-stability, here we make use of stiffly accurate schemes (SA),
i.e. schemes for which the last row of matrix A is equal to the vector of weights: as,j = bj,
j= 1,··· ,s. This will ensure that the absolute stability function vanishes at infinity. As a
consequence, an A -stable scheme which is SA is also L-stable [18].

Now, we illustrate our L-stable DIRK schemes to approximate the characteristic sys-
tem (2.1) coupled with the conservative correction and the discrete Maxwellian. Let
us consider the backward characteristic curve to (2.1), corresponding to stage k, which
passes through the location xi with velocity vj at time tn+ck∆t. We hereafter call it k-th
characteristic for each k = 1,··· ,s. For example, in Fig. 4 the blue and red lines respec-
tively stand for 1-st and 2-nd characteristics associated to DIRK2 method. In the follow-

ing, f
(k,ℓ)
ij , ℓ=0,··· ,s, denotes the ℓ-th stage value computed along the k-th characteristic

corresponding to each xi and vj (see Fig. 4). For example, in the case of ℓ=0, f
(k,0)
ij is the

approximation of f (xi−ck∆tvj ,vj,t
n) reconstructed from { f n

i,j}. The k-the stage RK flux

K
(k)
i,j is defined by

K
(k)
i,j =

1

κ

(
dM(k)

i,j − f
(k)
i,j

)
, k=1,··· ,s.

Denoting the k-th stage characteristic foot of the ℓ-th characteristic by

x
(ℓ,k)
ij := xi−(cℓ−ck)vj∆t, ℓ= k+1,··· ,s,

we define the k-th stage RK flux in x
(ℓ,k)
ij by K

(ℓ,k)
ij which is computable from {K

(k)
i,j }.
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3.3.1 Algorithm DIRK

• Non-conservative step
For k=1,··· ,s

1. Compute f
(k,0)
ij in x

(k,0)
ij := xi−ckvj∆t along the k-th characteristic by interpola-

tion from { f n
i,j} with a suitable generalized WENO reconstruction in [8].

2. Compute:

f
(k)
i,j = f

(k,0)
ij +∆t

k−1

∑
ℓ=1

akℓK
(k,ℓ)
ij +

∆t

κ
akk

(
dM(k)

i,j − f
(k)
i,j

)
,

where dM(k)
i,j is computed imposing, within some tolerance, that

∑
j

φj dM(k)
i,j ∆v=∑

j

φj ( f
(k,0)
ij +∆t

k−1

∑
ℓ=1

akℓK
(k,ℓ)
ij )∆v,

for φj =1,vj,v
2
j /2.

3. Compute:

K
(k)
i,j =

1

κ

(
dM(k)

i,j − f
(k)
i,j

)
.

4. Compute the RK flux K
(ℓ,k)
ij in x

(ℓ,k)
ij :=xi−(cℓ−ck)vj∆t with ℓ=k+1,··· ,s along

the ℓ-th characteristic by interpolation from {K
(k)
i,j } with a suitable generalized

WENO reconstruction in [8].

5. Reconstruct F̂
(k)
i+1/2,j from {vj f

(k)
i,j } using WENO reconstruction [31] within a

finite difference formulation (fd).

end

• Conservative correction step

1. Compute the conservative convection:

f ∗i,j = f n
i,j−

∆t

∆x

s

∑
ℓ=1

bℓ

(
F̂
(ℓ)
i+1/2,j− F̂

(ℓ)
i−1/2,j

)
.

2. Compute conservative solution:

f n+1
i,j = f ∗i,j+∆t

s−1

∑
ℓ=1

bℓK
(ℓ)
i,j +

∆t

κ
bs

(
dM(∗)

i,j − f n+1
i,j

)
, (3.3)
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where dM(∗)
i,j is computed imposing, within some tolerance, that

∑
j

φj dM(∗)
i,j ∆v=∑

j

φj f ∗i,j∆v, φj=1,vj,v
2
j /2.

In Eq. (3.3), the moments of K
(ℓ)
i,j , ℓ=1,··· ,s−1, vanish:

Nv+1

∑
j=0

K
(ℓ)
i,j φj∆v=

1

κ

Nv+1

∑
j=0

(
dM(ℓ)

i,j − f
(ℓ)
i,j

)
φj∆v=0,

because for each node xi the ℓ-th stage values of Maxwellians and distribution functions
have the same moments. A schematic representation of DIRK2 is illustrated in Fig. 4.

BDF methods

Another time discretization we use for the stable approximation of stiff problems (2.1) is
the backward differentiation formula (BDF) (see [18]) whose general form is given by

BDF : yn+1=
s

∑
k=1

ak yn+1−k+βs ∆tg(yn+1,tn+1)

with βs 6=0. For our work, we use BDF2 and BDF3:

BDF2: yn+1=
4

3
yn− 1

3
yn−1+

2

3
∆tg(yn+1,tn+1),

BDF3: yn+1=
18

11
yn− 9

11
yn−1+

2

11
yn−2+

6

11
∆tg(yn+1,tn+1).

BDF schemes have some advantages over DIRK since a smaller number of numerical
evaluation of the discrete Maxwellian and fluxes are needed and fewer interpolations are
required. For BDF2 and BDF3, there is only one stage in which we have to compute the
discrete Maxwellian and fluxes while two and three stages are required for DIRK2 and
DIRK3 schemes respectively. Moreover, BDF2 and BDF3 schemes require two and three
steps for interpolations whereas DIRK2 and DIRK3 schemes require three and six steps
respectively. The price to pay is that BDF has more severe stability restriction than DIRK
(see Section 5).

3.3.2 Algorithm BDF

Let ak, and βs be the coefficients of a BDF method of order s. Given a discrete approxi-
mation { f n

ij} of the distribution function at time tn, { f n+1
ij } is computed by the following

steps

• Non-conservative step
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1. For k=1,··· ,s, interpolate f n,k
ij = f (xi−kvj∆t,vj ,t

n+1−k) in xk
ij := xi−kvj∆t from

{ f n+1−k
i,j } with a suitable generalized WENO reconstruction in [8].

2. Compute f ∗i,j =∑
s
k=1 ak f n,k

ij and

f
(1)
i,j = f ∗i,j+βs

∆t

κ

(
dM(1)

i,j − f
(1)
i,j

)
,

where dM(1)
i,j is computed imposing, within some tolerance, that

∑
j

φj dM(1)
i,j ∆v=∑

j

φj f ∗i,j∆v, φj =1,vj,v
2
j /2. (3.4)

• Conservative correction step

1. Reconstruct F̂
(1)
i+1/2,j from {vj f

(1)
i,j } using WENO reconstruction in the frame-

work of the conservative finite difference formulation (fd) [31].

2. Conservative convection:

f ∗∗i,j =
s

∑
k=1

ak f n+1−k
i,j −βs

∆t

∆x

(
F̂
(1)
i+1/2,j− F̂

(1)
i−1/2,j

)
.

3. Compute conservative solution:

f n+1
i,j = f ∗∗i,j +βs

∆t

κ

(
dMn+1

i,j − f n+1
i,j

)
.

Note that dMn+1
i,j =dM( f ∗∗i,j ) as in (3.4).

A schematic representation of BDF2 is illustrated in Fig. 5.

The next section is devoted to the stability analysis of RK and BDF schemes applied
to the linear advection equation.

4 Linear stability analysis

In this section we perform the stability analysis of conservative semi-Lagrangian scheme
for the 1D advection equation. Following [26] we consider the linear transport equation

ut+vux =0, u(x,0)=u0(x), v∈R. (4.1)

For simplicity, we assume a periodic boundary condition and x∈ [−π,π].
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Figure 5: Representation of BDF2 scheme with conservative correction. Black circles: grid nodes, grey circles:
points where interpolation is needed.

4.1 DIRK methods

Algorithm 3.3.1 applied to (4.1) gives

un+1
j =un

j −
∆t

∆x

s

∑
ℓ=1

bℓv
(

û
(ℓ)
j+1/2−û

(ℓ)
j−1/2

)
, (4.2)

where û
(ℓ)
j+1/2 are obtained from the stage values u

(ℓ)
j = un(xj−vcℓ∆t) by reconstruction,

and un(x) denotes a suitable interpolation from {un
j }.

4.1.1 Fourier interpolation

We look for the evolution of a Fourier mode of the form

un
j =ρneikj∆x =ρneijξ , ξ= k∆x, i=

√
−1.

In the analysis we first consider Fourier interpolation, so

un(x)=ρneikx =ρneiξx/∆x, ξ∈ [−π,π], (4.3)

where ρn=ρn(ξ) is the amplification factor associated with mode ξ. Plugging such ansatz
into the stage values, we get

u
(ℓ)
j =ρn exp(iξ(xj−v∆tcℓ)/∆x)=ρneijξ e−icℓaξ ,

where a= v∆t/∆x denotes the CFL number. In [31], the relation between u(x) and û is
given by

û(x+∆x/2)−û(x−∆x/2)

∆x
=

∂u

∂x
(x).
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Using this relation and (4.3) one has

ûn(x)=
un(x)

sinc(ξ/2)
, (4.4)

where sinc(x)=sin(x)/x.
Making use (4.4) and (4.3) in Eq. (4.2), one obtains the following formula for the am-

plification factor:

ρ(ξ)=1−iξa
s

∑
ℓ=1

bℓexp(−icℓaξ). (4.5)

The scheme is stable if |ρ(ξ)|≤1 for all ξ∈ [−π,π].
Such stability problem is closely related to the linear stability of the quadrature for-

mula when applied to the approximation of the integral form of a scalar linear ODE,

y′=λy, y(0)=1, ∀λ∈C.

In fact, the solution after one step of this ODE is: y(∆t)= eλ∆t = ez, where z :=∆tλ. Such
solution is stable iff R(z)≤0, i.e. if R(λ)≤0. Considering the following identity

ez =1+z
∫ 1

0
eczdc

and approximating the integral by a quadrature formula with nodes cℓ and weights bℓ,
one obtains the approximation of the exact solution after one step:

R(z)=1+z
s

∑
ℓ=1

bℓe
cℓz, (4.6)

with which the stability region can be drawn by the set {z∈C : |R(z)|≤ 1}. Comparing
Eq. (4.5) with (4.6), ones has ρ(ξ)=R(−iaξ) with ξ∈ [π,π]. Thus the stability of a quadra-
ture formula in a conservative semi-Lagrangian scheme for a linear advection equation is
closely related to the stability on the imaginary axis. Then in order to guarantee stability
we look of the largest interval I∗= [−y∗,y∗] of the imaginary axis such that |R(iy)| ≤ 1
∀y ∈ I∗. Note that the bound a∗ = y∗/π quantifies the maximum CFL number for the
semi-Lagrangian scheme that guarantees stability.

Now in order to maximize the stability interval on imaginary axis, we construct
quadrature formulas that allow a wide stability region. Let us consider the expression
R(iy) and write it in the form

R(iy)=1+iy(Cs(y)+iSs(y))=1−ySs(y)+iyCs(y),

where

Cs(y)=
s

∑
ℓ=1

bℓcos(cℓy), Ss(y)=
s

∑
ℓ=1

bℓsin(cℓy).
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The stability condition therefore becomes

|R(iy)|2 =1−2ySs(y)+y2(C2
s (y)+S2

s (y))≤1.

Such condition can be written in the form

yFs(y)≥0, where Fs(y) :=Ss(y)−
1

2

(
C2

s (y)+S2
s (y)

)
. (4.7)

Then the problem to find quadrature formulas with the widest stability region is con-
nected to determine the coefficients b=(b1,··· ,bs) and c=(c1,··· ,cs) so that the interval in
which (4.7) is satisfied is the widest. The analysis of quadrature formulas with even s and
symmetric distribution of nodes around the middle of the interval is performed in [26].

Here we numerically compute nodes and weights for a particular class of third order
DIRK schemes that satisfy the simplification conditions

s

∑
j=1

aij = ci, i=1,··· ,s

and which is stiffly accurate, i.e. for which the last row of the A-matrix coincides with the
weights, as,j=bj, j=1,··· ,s. This constraint is imposed in order to have L-stable schemes,
in view of the AP property in the fluid dynamic regime. Such schemes have the following
structure:

c1 c1 0 0
c2 c2−γ2 γ2 0
1 b1 b2 b3

b1 b2 b3

(4.8)

The coefficients of the scheme are determined taking into account the following require-
ments:

• the scheme has to be at least third order accurate;

• the scheme has to be A-stable (and therefore L-stable, because it is Stiffly Accurate,
(SA) i.e. asi=bi for i=1,2,3, see [18]);

• nodes and weight are selected in such a way that condition (4.7) is satisfied for a
wide region.

Order conditions for scheme (4.8), up to third order accuracy, are:

s

∑
i=1

bi=1,
s

∑
i=1

bici =1/2,
s

∑
i=1

bic
2
i =1/3,

s

∑
i,j=1

biaijcj =1/6. (4.9)

Solving these equations allows to express four parameters of the scheme as a function
of c1 and c2:

b2=
3c1−1

6(c2−c1)(c2−1)
, b3=

6c1c2−3c1−3c2+2

6(c2−1)(c1−1)
, γ2=

6c2
1c2−4c1c2−c1+c2

2(3c1−1)(c1−1)
(4.10)
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and b1 = 1−b2−b3. This leaves two free parameters, which are chosen according to the
two additional conditions.

In order to impose A-stability, from [18], we recall the following result.
An implicit R-K method is A-stable iff

1. the stability function R(z)=P(z)/Q(z) is analytic in C for Re(z)<0;

2. the method is I-stable, i.e. |R(iy)|≤1 for all y∈R (stability on the imaginary axis).

The I-stability is equivalent to the request that the polynomial

E(y)= |Q(iy)|2−|P(iy)|2 =
s

∑
j=0

E2jy
2j (4.11)

satisfies E(y)≥0 for all y∈R and i=
√
−1.

Performing a detailed calculation (reported in Appendix C), the condition for I-stability
(4.11) and (4.7) becomes: either

c1<1/3, c2>1 (4.12)

or
c1>1/3, c2<1.

The latter has to be excluded since it implies b3<0 and condition (1) for the analyticity of
the function R(z) above is not satisfied.

Then DIRK scheme (4.8) is A-stable and by the SA property, it’s also L-stable.

Remark 4.1. If we look for a third order Singly DIRK scheme i.e. with γ1 =γ2 =γ3 =γ,
as in [3], then there are no free parameters, and one obtains γ ≃ 0.4358665215 and δ =
3
2 γ2−5γ+ 5

4 ≃ 644363171. This scheme is A-stable and L-stable, but the weights and the
nodes do not satisfy condition (4.7) for any y>0, i.e. scheme (4.2) is not stable.

This remark suggests to look for DIRK methods as (4.8) such that γ1=γ3=γ, i.e.

γ γ 0 0
c2 c2−γ2 γ2 0
1 1−b2−γ b2 γ

1−b2−γ b2 γ

(4.13)

From (4.9), we have four equations with five unknowns b2, c2 γ2, γ and b1 and from (4.10),
with c1=b3=γ, we compute b2, c2 and γ2 as functions of γ and b1=1−b2−γ.

Performing a detailed calculation (reported in Appendix C), we require to choose γ
in the union of the following intervals

]1−
√

2/2,1/3[, ]1+
√

2/2,+∞[. (4.14)

Note that the second interval can not be accepted because this implies values of γ larger
than 1+

√
2/2≈1.70710··· , and this is in contradiction with the hypothesis (4.12).
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Figure 6: Optimal choice of γ for scheme (4.13).

Numerical experiments show that the optimal value of γ in the first interval is ap-
proximately γ=0.3 (see Fig. 6). Then for this choice of γ, the coefficients of scheme (4.13)
are: γ=0.3, γ2=13/3, b2=−3/710 and c2=8/3. This scheme is stable under the condition
(4.7) for y≤y∗=4.715426442 with a∗≈1.5 and is also L-stable.

For the numerical experiments, we use the following two types of DIRK methods.
The first is a second order DIRK scheme (DIRK2) [3]

DIRK2 =

α α 0
1 1-α α

1-α α

where α=1−1/
√

2. This scheme is stable under condition (4.7) for y≤ y∗=4.586275880
with a∗≈1.46 and is also L-stable. The second one is the third order DIRK scheme (DIRK3)
(4.13).

4.2 BDF schemes

Now apply k-th order BDF schemes to system (4.1), and we get

un+1
j =

k

∑
ℓ=1

aℓu
n−ℓ+1
j −βkv

∆t

∆x

(
ûn+1

j+1/2−ûn+1
j−1/2

)
, (4.15)

and by (4.4)

ûn+1
j+1/2=

ũn+1(xj+1/2)

sinc(ξ/2)
, (4.16)
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with

ũn+1(xj)=
k

∑
ℓ=1

aℓu
n(xj−vℓ∆t). (4.17)

Then we look for the evolution of the Fourier mode identified by the parameter ξ ∈
[−π,π]. We set un(x)=ρneikx =ρneiξx/∆x so that un(xj)=un

j =ρneijξ . Then (4.17) becomes

ũn+1(xj)=
k

∑
ℓ=1

aℓρ
n−ℓ+1eiξ(xj−ℓv∆t)/∆x,

and (4.16) becomes

ûn+1(xj+1/2)=

(
k

∑
ℓ=1

aℓρ
n−ℓ+1eijξ e−iξaeiξ/2

)
/sinc(ξ/2).

After some algebraic manipulation, we obtain for (4.15):

ρn+1=
k

∑
ℓ=1

aℓρ
n−ℓ+1

(
1−βkae−iξℓaiξ

)
, (4.18)

where a=v∆t/∆x. Then the characteristic polynomial associated to (4.18) is:

p(ρ)=ρk−
k

∑
ℓ=1

aℓρ
k−ℓ
(

1−βkae−iξℓaiξ
)

.

Now again we compute the maximum a∗ such that

max
ξ∈[−π,π]

|ρ(a,ξ)|≤1, ∀a∈ [0,a∗ ]. (4.19)

Here ρ(a,ξ) represents the largest root in absolute value of the polynomial p(ρ). In partic-
ular, we consider the two BDF schemes BDF2 and BDF3 with k=2 and k=3, respectively.
We compute numerically (4.19) and we get for BDF2 a∗≈0.5678, while BDF3 is unstable
for each a>0.

This analysis confirms that the conservative correction imposes stability restriction on
the CFL number a∗ for the BDF methods.

We conclude that C-SL schemes based on RK framework have better stability proper-
ties that those based on BDF when applied to linear advection equation (4.1).

The result of the linear stability analysis performed on the advection equation is that
there are CFL restrictions imposed by the conservative reconstruction. We observe that
in practice CFL number higher that those predicted theoretically can be adopted, because
of the stabilising effect of the collision term.
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4.3 Collision stabilization

We analyse the stabilisation introduced by a dissipative term on the right hand side by
considering the model equation

ut+vux =−µu. (4.20)

We limit to simplest case corresponding to implicit Euler scheme, so s=1, b1= c1=1.
First compute the non-conservative step:

u
(1)
j =un(xj−v∆t)−µ∆tu

(1)
j ,

where un(x) denotes a suitable reconstruction of the solution at time n∆t. This gives

u
(1)
j =

un(xj−v∆t)

1+µ∆t
.

Now, computing the conservative correction step related to (4.20), we obtain

u∗
j =un

j −
(

1

1+µ∆t

)
v

∆t

∆x

(
û
(1)
j+1/2−û

(1)
j−1/2

)
. (4.21)

Finally we compute the conservative solution

un+1
j =u∗

j −µ∆tun+1
j .

Plugging (4.21) into the previous formula we get

un+1
j =

(1+µ∆t)un
j − ∆t

∆x v
(

û
(1)
j+1/2−û

(1)
j−1/2

)

(1+µ∆t)2
.

We now repeat the Fourier stability analysis introduced in Subsection 4.1.1. Making use
of (4.4) and (4.3) the expression of the amplification factor becomes

ρ(aξ,µ∆t)=
1+µ∆t−iaξexp(−iaξ)

(1+µ∆t)2
, (4.22)

where a=v∆t/∆x denotes the Courant number and ξ∈ [−π,π) denotes the angle corre-
sponding to a particular Fourier mode. The stability region is obtained by imposing that
|ρ(ξ)|≤1. For µ=0 it is

|ρ|2 =1+y2−2ysiny,

where y= aξ. Now |ρ2|≤1⇔y(y−2siny)≤0 therefore the scheme is stable for y∈ [0,y∗ ],
with y∗ ≈ 1.895494267033981, corresponding to a maximum allowed Courant number
a∗= y∗/π≈0.603354564401614. When µ>0 the stability region is obtained by imposing
that the amplification factor in (4.22) is bounded by 1:

max
−π≤ξ<π

|ρ2(aξ,µ∆t)|≤1. (4.23)
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Figure 7: Contour plot for the magnitude of amplification factor ρ in (4.22). The zigzag light blue curve

represents the line for which |ρ2(aπ,µ∆t)|= 1, the light green region is the one for which condition (4.23)
is satisfied. Note that the zigzag curve is between red and blue dashed lines corresponding, respectively, to
πa=(1+µ∆t)2+(1+µ∆t) and πa=(1+µ∆t)2−(1+µ∆t).

The stability region in the µ∆t-a plane is the shaded green one illustrated in Fig. 7. In
particular, if a < (µ∆t)2+µ∆t then the scheme is stable. From the analysis it follows
that for large values of µ∆t, the maximum allowed CFL number increases proportionally
to (µ∆t)2. A full stability analysis of the scheme for the BGK equation has not been
performed and will be subject of future investigation.

As a final remark, it appears from the analysis that for small values of µ, correspond-
ing to larger values of the Knudsen number, the stabilising effect of implicit treatment of
the collision term is less pronounced, therefore the stability limitation of the scheme be-
come more severe, so the gain with respect to the use of a conservative Eulerian scheme
is not as strong as in the case of small Knudsen number. On the other hand, we expect
that in the rarefied regime conservation properties are not so crucial, so classical semi-
Lagrangian schemes would be very effective. Furthermore, if the solution is smooth, then
classical semi-Lagrangian schemes have very good conservation properties. However, in
the rarefied regime the validity of the BGK model itself becomes questionable.

5 Extension of the scheme to two space dimensions

The extension to the two space dimensions is straightforward, since we just need to per-
form a dimension by dimension 1D interpolation on characteristic foots and 1D recon-
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struction of fluxes. For the description, let us denote by i ≡ (i1,i2) the index for the
space variable and the size of mesh is taken by (∆x,∆y). Similarly, we use the index
j≡(j1,··· , jdv

) for velocity variable, where dv is the dimension of the velocity domain, and
assume a uniform Cartesian mesh in velocity, with the same mesh spacing ∆v in all direc-
tions. Using a similar notation as in the 1D case, we summarize the s-order DIRK based
methods for two space dimensions as follows:

Algorithm DIRK for two space dimension

For k=1,··· ,s.

• Non-conservative step

1. Reconstruct the solution f
(k,0)
ij on x

(k,0)
ij :=(xi1−ckvj1 ∆t,yi2 −ckvj2 ∆t) along the

k-th characteristic with a suitable generalized WENO reconstruction in [8] as
follows:
– for each i2, approximate f (xi1−ckvj1 ∆t,yi2 ,vj,t

n) along the x-axis by interpo-
lation from { f n

i,j};

– using the values obtained on (xi1−ckvj1 ∆t,yi2 ), interpolate f
(k,0)
ij at the point

x
(k,0)
ij along the y-axis.

2. Compute:

f
(k)
i,j = f

(k,0)
ij +∆t

k−1

∑
ℓ=1

akℓK
(k,ℓ)
ij +

∆t

κ
akk

(
dM(k)

i,j − f
(k)
i,j

)
,

where dM(k)
i,j is computed imposing, within some tolerance, that

∑
j

φj dM(k)
i,j (∆v)dv =∑

j

φj( f
(k,0)
ij +∆t

k−1

∑
ℓ=1

akℓK
(k,ℓ)
ij )(∆v)dv ,

for φj=1,vj,|vj|2/2.

3. Store the quantity:

K
(k)
i,j =

1

κ

(
dM(k)

i,j − f
(k)
i,j

)

that was used to compute f
(k)
i,j .

4. For each ℓ = k+1,··· ,s, compute the RK flux K
(ℓ,k)
ij in x

(ℓ,k)
ij := (xi1 −(cℓ−

ck)vj1 ∆t,xi2−(cℓ−ck)vj2 ∆t) along the ℓ-th characteristic with a suitable general-
ized WENO reconstruction in [8] as follows:
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– for each i2, approximate the RK flux at (xi1 −(cℓ−ck)vj1 ∆t,yi2 ) along the x-

axis by interpolation from {K
(k)
i,j };

– using the values obtained on (xi1−(cℓ−ck)vj1 ∆t,yi2 ), interpolate the RK flux

at the point x
(ℓ,k)
ij along the y-axis.

5. Reconstruct F̂
(k)
i1+1/2,i2,j along x-axis and F̂

(k)
i1,i2+1/2,j along y-axis from {vj f

(k)
i,j },

respectively, using 1D WENO reconstruction [31] within a finite difference for-
mulation (fd).

• Conservative correction step

1. Compute the conservative convection:

f ∗i,j = f n
i,j−

∆t

∆x

s

∑
ℓ=1

bℓ

(
F̂
(ℓ)
i1+1/2,i2,j− F̂

(ℓ)
i1−1/2,i2,j

)

− ∆t

∆y

s

∑
ℓ=1

bℓ

(
F̂
(ℓ)
i1,i2+1/2,j− F̂

(ℓ)
i,i2−1/2,j

)
.

2. Compute conservative solution:

f n+1
i,j = f ∗i,j+∆t

s−1

∑
ℓ=1

bℓK
(ℓ)
i,j +

∆t

κ
bs

(
dM(∗)

i,j − f n+1
i,j

)
,

where dM(∗)
i,j is computed imposing, within some tolerance, that

∑
j

φj dM(∗)
i,j (∆v)dv =∑

j

φj f ∗i,j(∆v)dv , φj =1,vj,|vj|2/2.

As in the 1D case, the terms K
(ℓ)
i,j vanish when we take moments with respect to φj. A

schematic representation of DIRK2 based method for two space dimension is described
in Fig. 8. For brevity, we here omit the descriptions for BDF based methods for two space
dimensions.

6 Numerical experiments

In this section, we present several tests to verify some properties of the proposed schemes.

In test 1, we compute the conservation error of the schemes. In test 2, we check the
correct order of accuracy for smooth solutions for various values of the Knudsen number
κ. In test 3, we check the relaxation to equilibrium for small Knudsen number. Test 4 is
devoted to verify the shock capturing capability in the Euler limit. Test 5 explores the
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Figure 8: Representation of DIRK2 scheme for two space dimension with conservative correction. Given velocity

vj, to interpolate f
(1,0)
ij on a characteristic foot x

(1,0)
ij (magenta circle), interpolate first the solutions on blue

points on x = xi1
−ckvj1 ∆t for y = yi2−3, yi2−2, yi2−1, yi2

along x-direction (red line), then use them in the

interpolation for f
(1,0)
ij along y-direction (blue line). The interpolations for f

(2,0)
ij and K

(2,1)
ij can be done similarly.

The green and cyan colored squares are RK fluxes at time level tn+c1∆t and tn+1 which are computable along
x and y directions, respectively.

use of large CFL numbers for small Knudsen numbers. Finally, test 6 deals with a two
dimensional problem with small Knudsen number. For the time step, we use the relation:

∆t=CFL×∆x/|vmax|. (6.1)

For space and velocity grids, we discretize ∆v := (vmax−vmin)/Nv and ∆x := (xmax−
xmin)/Nx. To distinguish the proposed conservative schemes from the non-conservative
SL schemes [17], we denote each scheme as follows:
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Scheme name Conservative ODE solver Reconstruction Maxwellian

RK2-W23-DM YES DIRK2 WENO 2-3 Discrete
RK3-W35-DM YES DIRK3 WENO 3-5 Discrete
RK2-W23-CM YES DIRK2 WENO 2-3 Continuous
RK3-W35-CM YES DIRK3 WENO 3-5 Continuous
RK2-W23 NO DIRK2 WENO 2-3 Continuous
RK3-W35 NO DIRK3 WENO 3-5 Continuous

A similar notation is used for the schemes based on BDF time integrator.

In particular for small Knudsen number, RK based schemes work well compared to
BDF based schemes.

6.1 Test 1. Check exact conservation

We consider the same single shock test adopted in Section 2.2, and apply the various
schemes based on the conservative correction. The results are summarized in Tables 4
and 5.

When using with the continuous Maxwellian with the conservative correction, a neg-
ligible conservation error can be achieved, but only using a large enough number of ve-
locity grid points. In contrast, conservation error can be suppressed to a negligible level
with relatively small number of velocity grid points when the discrete Maxwellian is used
(See Tables 4 and 5). We present the conservation error estimates in Appendix D.

It appears that the combined use of discrete Maxwellian and conservative correction
provides a scheme which maintains conservation within round-off error. In particular,
the use of discrete Maxwellian allows to maintain conservation with a small number of

Table 4: RK-based schemes, CFL=2. Conservation error of discrete moments in the relative L1 norm for Test 1.
Comparison between continuous Maxwellian (CM) and discrete Maxwellian (DM). We do not report the result
for (Nx,Nv)=(100,30) with RK3-W35-CM because solutions are destroyed due to the negativity of solutions.

RK3-W35-CM RK3-W35-DM

(Nx,Nv) Mass Momentum Energy Mass Momentum Energy

(100,30) · · · 1.28e-12 1.37e-12 1.52e-14

(100,40) 3.74e-07 1.51e-05 4.07e-06 5.47e-15 7.52e-14 8.59e-14

(100,50) 5.80e-12 3.58e-10 9.66e-11 5.55e-14 4.04e-13 5.22e-13

(100,60) 1.70e-13 1.45e-13 3.25e-13 1.92e-13 1.45e-13 3.43e-13

(100,90) 1.47e-13 8.85e-14 1.85e-13 1.30e-13 8.51e-14 2.27e-13

(200,40) 7.70e-07 4.37e-06 8.38e-06 1.28e-14 2.39e-15 7.45e-14

(200,50) 1.21e-11 1.03e-10 1.99e-10 2.13e-13 3.04e-13 2.59e-13

(200,60) 3.63e-13 1.74e-14 1.28e-13 3.73e-13 8.07e-14 1.79e-13

(200,90) 2.85e-13 1.47e-13 1.51e-13 2.83e-13 1.62e-13 1.75e-13
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Table 5: BDF-based schemes, CFL= 2. Conservation error of discrete moments in the relative L1 norm for
Test 1. Comparison between continuous one (CM) and discrete Maxwellian (DM). Here, we also do not report
the result for (Nx ,Nv)=(100,30) with BDF3-W35-CM because solutions are destroyed due to the negativity of
solutions.

BDF3-W35-CM BDF3-W35-DM

(Nx,Nv) Mass Momentum Energy Mass Momentum Energy

(100,30) · · · 4.96e-14 1.78e-13 2.74e-13

(100,40) 2.13e-07 6.30e-07 2.31e-06 3.55e-15 6.50e-15 3.40e-15

(100,50) 3.33e-12 1.50e-11 5.47e-11 6.08e-14 6.09e-14 3.43e-14

(100,60) 1.05e-13 1.95e-14 1.61e-14 1.06e-13 3.42e-15 6.49e-15

(100,90) 8.12e-14 1.16e-14 1.17e-14 8.39e-14 3.25e-14 1.54e-14

(200,40) 4.31e-07 2.19e-06 4.68e-06 1.49e-14 3.08e-14 3.80e-14

(200,50) 6.78e-12 5.22e-11 1.11e-10 1.60e-13 8.65e-14 1.51e-14

(200,60) 1.80e-13 4.75e-14 3.68e-14 1.82e-13 5.61e-14 4.48e-14

(200,90) 1.34e-13 8.03e-14 3.77e-14 1.36e-13 8.99e-14 4.42e-14

velocity nodes, which is particularly useful when adopting the method to capture the
fluid dynamic limit for small Knudsen number.

6.2 Test 2. Accuracy

This test is proposed in [17] to check the accuracy of the scheme. The initial condition for
the distribution function is the Maxwellian

f0(x,v)=
ρ0√
2πT0

exp

(
−|v−u0(x)|2

2T0

)
,

where initial velocity profile is given by

u0(x)=0.1exp
(
−(10x−1)2

)
−2exp

(
−(10x+3)2

)
.

Initial density and temperature are uniform, with constant value ρ0(x)=1 and T0(x)=1.
We use periodic boundary condition in space. The computation is performed on (x,v)∈
[−1,1]×[−10,10].

Since a shock appears at approximately t=0.35, we integrate up to time t f =0.32 when
the solution is still smooth even in the limit of vanishing Knudsen number. To check the
convergence rate, we take Nx =160, 320, 640, 1280, 2560, and 5120 uniform grid points in
x direction, and Nv =20 uniform grid points in v direction.

Concerning the conclusion of Section 4, here we set CFL= 2 for RK based schemes,
while CFL=0.5 for BDF based schemes in all range of κ.

The time step is computed using (6.1). The relative L1 norm is used to check the
accuracy. Here we expect the accuracy of the schemes to be between the order of accuracy
of time discretization and spatial reconstruction.
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Table 6: Test 2: Convergence rate for second and third order RK and BDF schemes. Final time t f =0.32.

Test 2 RK2-W23-DM Mass, CFL=2

κ=10−6 κ=10−4 κ=10−2 κ=10−0

Nx error rate error rate error rate error rate

160-320 1.01e-03 1.74 9.80e-04 1.79 1.79e-04 2.17 7.13e-04 1.69

320-640 3.02e-04 1.78 2.84e-04 1.86 3.97e-05 2.06 2.21e-04 1.84

640-1280 8.83e-05 2.17 7.82e-05 2.29 9.54e-06 2.01 6.19e-05 2.12

1280-2560 1.96e-05 2.38 1.60e-05 2.37 2.37e-06 1.99 1.42e-05 2.53

2560-5120 3.76e-06 3.09e-06 5.95e-07 2.47e-06

Test 2 BDF2-W23-DM Mass, CFL=0.5

κ=10−6 κ=10−4 κ=10−2 κ=10−0

Nx error rate error rate error rate error rate

160-320 1.01e-03 1.74 9.80e-04 1.78 1.77e-04 2.17 7.09e-04 1.68

320-640 3.03e-04 1.77 2.85e-04 1.86 3.93e-05 2.05 2.21e-04 1.84

640-1280 8.86e-05 2.18 7.84e-05 2.29 9.46e-06 2.01 6.19e-05 2.13

1280-2560 1.96e-05 2.38 1.60e-05 2.37 2.35e-06 1.99 1.42e-05 2.53

2560-5120 3.75e-06 3.09e-06 5.93e-07 2.45e-06

Test 2 RK3-W35-DM Mass, CFL=2

κ=10−6 κ=10−4 κ=10−2 κ=10−0

Nx error rate error rate error rate error rate

160-320 5.74e-05 3.31 5.07e-05 3.47 2.28e-06 4.34 1.28e-05 4.74

320-640 5.77e-06 4.23 4.58e-06 4.39 1.12e-07 3.59 4.80e-07 4.88

640-1280 3.08e-07 4.61 2.19e-07 4.43 9.31e-09 3.09 1.63e-08 4.66

1280-2560 1.26e-08 4.28 1.02e-08 3.58 1.09e-09 2.98 6.43e-10 4.06

2560-5120 6.49e-10 8.50e-10 1.38e-10 3.84e-11

Test 2 BDF3-W35-DM Mass, CFL=0.5

κ=10−6 κ=10−4 κ=10−2 κ=10−0

Nx error rate error rate error rate error rate

160-320 5.59e-05 3.30 4.93e-05 3.47 1.93e-06 4.99 1.26e-05 4.81

320-640 5.69e-06 4.28 4.44e-06 4.47 6.07e-08 5.31 4.47e-07 5.18

640-1280 2.93e-07 4.77 2.01e-07 4.90 1.53e-09 4.61 1.24e-08 5.00

1280-2560 1.07e-08 4.96 6.72e-09 4.98 6.27e-11 2.38 3.85e-10 2.95

2560-5120 3.45e-10 2.13e-10 1.20e-11 5.00e-11

In Table 6, the results show that the desired accuracy is obtained for each scheme.
For small time step space error appears to be dominant, and this explains the order of
accuracy higher than expected from the order of the RK or BDF schemes. Also, some
order reductions are observed in intermediate regimes.
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6.3 Test 3. Relaxation to a local Maxwellian

The aim of this test is to check relaxation to local equilibrium of the numerical solution
obtained by the C-SL scheme, as the Knudsen number becomes smaller. To this purpose
we take a similar test as in [7]. We check numerically that ‖ f −M‖1 =O(κ) for different
values of κ=10−4,10−5,10−6,10−7.

We take the following non-equilibrium initial data

f0(x,v)=
1

2

ρ0(x)√
2πT0(x)

(
exp

(
− (v−u0(x))2

2T0(x)

)
+exp

(
− (v+u0(x))2

2T0(x)

))
,

where initial density, velocity and temperature are given by

ρ0(x)=
2+sin2πx

3
, u0(x)=

cos2πx

5
, T0(x)=

3+cos2πx

4
.

We use periodic boundary condition. The computation is performed on x ∈ [−1,1],
v∈ [−8,8]. The final time is taken 0.02. We implemented RK3-W35-CM and RK3-W35-
DM with Nx =100 and CFL=1.

In Figs. 9-10, we show the time evolution of ‖ f −M‖1 for our C-SL scheme for differ-
ent values of κ and different values for the number of grid points in velocity space, i.e.,
Nv =20,32.

From the figures it appears that the norm of the difference between f and the
Maxwellian is roughly proportional to the Knudsen number κ, as expected. However,
if we use RK3-W35-CM with a continuous Maxwellian, such a norm depends also on the
number of velocity grid points, as appears in Fig. 9(a), where with Nv =20 the difference
does not decrease significantly when going from κ = 10−7 to κ = 10−8. On the contrary,
when using RK3-W35-DM with a discrete Maxwellian, the discrepancy between f and
the Maxwellian only depends on the Knudsen number: ‖ f −M‖1 =O(κ). We obtain
similar results for BDF based methods, and we omit to report them in the paper.

The proposed C-SL scheme (3.1) is an asymptotic preserving (AP) scheme for the
kinetic equation (1.1), that is, it becomes a consistent scheme for the underlying hydro-
dynamic limit. Note that in a recent review on AP schemes for kinetic and hyperbolic
equations [21], a necessary condition to be AP for a scheme for BGK model (1.1) is that
the solution f n must be driven to the local equilibrium Mn when κ→0

f n−M( f n)=O(κ), for n≥1

for any initial data f 0, namely, the numerical solution projects any data into the local
equilibrium Mn, with a discrepancy of O(κ), in one step. Such AP schemes are referred
to as strongly AP. In these tests we show that as the Knudsen number vanishes, the dis-
tribution function approaches a local Maxwellian, and the numerical solution of the mo-
ments agree with the solution of the Euler equation. A detailed consistency analysis of
both conservative and non-conservative schemes, for smooth solutions, is presented in
the following proposition (see Appendix E for its proof):
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(a) RK3-W35-CM, ‖ f −CM‖1 (b) RK3-W35-DM, ‖ f −dM‖1

Figure 9: Time evolution of ‖ f −M‖1 for high order methods for the BGK model. Nv = 20. When using
the continuous Maxwellian (left panel), the discrepancy between the distribution function and the Maxwellian
saturates for small values of the Knudsen number, while the method based on the discrete Maxwellian (right
panel) shows the expected behaviour ‖ f −M‖1=O(κ).

(a) RK3-W35-CM, ‖ f −CM‖1 (b) RK3-W35-DM, ‖ f −dM‖1

Figure 10: Time evolution of ‖ f −M‖1 for high order methods for the BGK model. Nv = 32. For large
enough number of velocity grid points the discrepancy between the function and the Maxwellian appears to be
proportional to κ, up to κ=10−8, for both schemes.

Proposition 6.1. Let f n(x,v) be a solution with time discretization. Assume there exist
positive constants C1,C2 independent of n such that

∑
0≤α≤2

sup
x,v

|∂α
x f n(x,v)|(1+|v|6)<C1, (6.2)

and
∫

R

f n(x,v)dv>C2 >0. (6.3)
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Then, the first order SL scheme (2.3) and C-SL scheme (3.1) are first order approximations
in time of the compressible Euler system.

6.4 Test 4. Shock capturing capability

The aim of the test is to check the shock capturing capability of the schemes, and to
compare conservative and non-conservative schemes in presence of shocks, when very
small (under-resolved) Knudsen number are adopted. To this purpose we consider some
classical Riemann problem. To observe the Euler limit, we take κ=10−6. Moreover, to see
the influence of the conservative correction, we compare our scheme with the standard
non-conservative semi-Lagrangian scheme. Initial condition is given by the Maxwellian
computed from

(ρ0,u0,p0)=

{
(2.25,0,1.125), for x≤0.5,

(3/7,0,1/6), for x>0.5.

We use free-flow boundary condition. Computations are performed on x ∈ [0,1], v ∈
[−10,10] up to final time t f = 0.16. With small Knudsen number, both conservative and
non-conservative schemes are stable and they enable us to use CFL=2. We take Nx=200
for both schemes. For the proposed schemes, RK3-W35-DM and BDF3-W35-DM, we take
Nv = 30. For non-conservative schemes, RK3W35 and BDF3W35, we take Nv = 60. The
larger number of velocity grid points ensures that the conservation error due to the use of
continuous Maxwellian is negligible with respect to the one due to lack of conservation of
the transport term. The results are shown in Fig. 11. It appears that conservative schemes
capture shocks correctly and are in perfect agreement with the exact reference solution.

6.5 Test 5. Long time behaviour

Here we provide a numerical evidence to support the stabilizing effect of the collision
operator on numerical schemes for the solution of the BGK equations. Several schemes
are used and compared, namely: three semi-Lagrangian Runge-Kutta schemes, RK3W35,
RK3-W35-CM and RK3-W35-DM, and an Eulerian Runge-Kutta scheme IMEX3-W35-CM
taken from [24], in which the convective terms are treated explicitly in Eulerian frame-
work, while the collision term is treated implicitly, through the use of an IMEX-Runge-
Kutta scheme of order 3. We verify that both our RK based semi-Lagrangian conserva-
tive schemes and the IMEX based Eulerian scheme remain stable for CFL numbers much
larger than 1 when the Knudsen number is sufficiently small, even in presence of shocks.
We consider the same initial data as in Test 2 with a small Knudsen number κ=10−6 (see
Fig. 12). We compare macroscopic variables obtained by the various methods with a ref-
erence solution of the Euler equations computed by a WENO3 shock capturing scheme
with RK4 time integrator. The final time is t f = 10. For the first four schemes, we take
Nx = 200, and two values of CFL numbers, CFL= 1 (left column) and CFL= 5 (right col-
umn). The reference solution is computed with Nx =5000 grid points in space, CFL=0.2,
and WENO3. Also, to emphasize the efficiency of the proposed conservative method, we
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(a) Density (b) Density

(c) Velocity (d) Velocity

(e) Temperature (f) Temperature

(g) Pressure (h) Pressure

Figure 11: Test 4. Riemann problem in 1D space and velocity with κ=10−6. RK based schemes (left column)
and BDF based schemes (right column). From top to bottom: Density, Velocity, Temperature and Pressure.
Blue point: standard SL schemes, red dashed line: new conservative schemes, black solid line: exact solution.
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(a) Density (b) Density

(c) Velocity (d) Velocity

(e) Temperature (f) Temperature

Figure 12: Test 5. Long time shock test in 1D space and velocity with κ= 10−6. Black solid lines: reference
solution, magenta dash-dotted lines: RK3W35, red dash-dashed lines: RK3-W35-CM, blue solid lines: RK3-
W35-DM, green dots: IMEX3-W35-CM. We used CFL=1 for left column, and CFL=5 for right one.
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Figure 13: Test 5. The value of fluid dynamic CFL number:=maxi

(
|ui|+

√
3Ti

)
∆t
∆x up to final time t f = 10.

Magenta dash-dotted lines: RK3W35, red dash-dashed lines: RK3-W35-CM, blue solid lines: RK3-W35-DM,
green dots: IMEX3-W35-CM. We used CFL=1 for left column, and CFL=5 for right one.

take different number of velocity grid points: Nv =60 for RK3W35 and IMEX3-W35, and
Nv =20 for RK3-W35-CM and RK3-W35-DM methods.

In Fig. 12, one can observe that both non-conservative schemes and RK3-W35-CM
give inaccurate solutions regardless of the CFL numbers, because of lack of conservation.
In case of RK3W35, although it is computed with enough velocity grids, severe oscilla-
tions are observed near discontinuity, and the shock positions are located inaccurately.
The RK3-W35-CM scheme gives non-oscillatory solutions, however, the profile of mo-
ments are far from the reference solution. On the contrary, RK3-W35-DM scheme gives
non-oscillatory solutions and capture shock position exactly even with Nv = 20. These
observations imply that oscillations in the classical schemes come from non-conservative
reconstructions such as GWENO, and conservation is an essential property for solutions
to be consistent with Euler’s equations in presence of shocks. The Eulerian based scheme
(dots) is able to correctly capture shocks, and is stable even for large CFL numbers, how-
ever in this case its solution becomes oscillatory. We also note that the fluid dynamic CFL
number, defined as

CFLF ≡max
i

(
|ui|+

√
3Ti

) ∆t

∆x
,

does not exceed 1 for whole simulation time. (See Fig. 13.)

6.6 Test 6. Mixed regime

In this section, we consider a mixed regime 1d space and 2d velocity problem in [7]. We
set initial data by

f0(x,v1,v2)=
ρ0(x)

4πT0(x)

(
e
− |v−u0(x)|2

2T0(x) +e
− |v+u0(x)|2

2T0(x)

)
,
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Figure 14: The values of κ(x) given in (6.4).

where

ρ0(x)=
2+sin(2πx)

3
, u0(x)=

(
cos(2πx)

0

)
, T0(x)=

3+cos(2πx)

4
.

The Knudsen number is given by

κ(x)=

{
κ0+0.5(tanh(16−20x)+tanh(−4+20x)), x<0.7,

κ0, x>0.7,
(6.4)

with κ0 = 5×10−4. The values of κ(x) are plotted in Fig. 14. Therefore, in this problem
we are treating Knudsen numbers which range from 5×10−4 to 1. For physical space, we
consider periodic boundary conditions, while velocity domain is truncated by [−8,8]. For
comparison, we compute a reference solution using an second order explicit RK method
in the Eulerian framework. Due to the stability restriction of the explicit RK scheme, we
use a time step ∆t= 1.25×10−4 corresponding to CFL= 0.2 for Nx = 200. For numerical
solutions, we implement the RK2-W23-CM method, and take a relatively large CFL= 2
and less grid points Nx = 100. For both methods, we take the same number of velocity
grids Nv=322, which is enough to guarantee good conservation properties even with the
use of a continuous Maxwellian. Fig. 15 shows that RK3-W35-CM scheme gives results
similar to the reference solutions even with coarse grids and larger time step. Since our
result is obtained by solving only BGK model, it is different from the literature [7]. In
order to obtain more accurate solutions for this problem, one may apply our technique
to another approximation model of the Boltzmann equation such as ES-BGK model [20].
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(a) Density (b) Velocity (c) Temperature

Figure 15: Test 6. Macroscopic variables at different times. From top to bottom, we plot results on the space
domain [0,1] at time t=0.25, t=0.5 and t=0.75.

6.7 Test 7. 2D shock problem

Here we test a 2D shock problem in [15]. The initial condition is the local Maxwellian
with parameters

(ρ0,u10,u20,T0)=

{
(1,0,0,5), for (x−1)2+(y−1)2≤ (0.2)2,

(0.125,0,0,4), for (x−1)2+(y−1)2> (0.2)2,

where x,y denotes the Cartesian coordinates. Here we compare two-dimensional ver-
sions of RK2W23 and RK2-W23-DM. We use κ = 10−4 and perform the computation
on (x,v) ∈ [0,2]2×[−15,15]2 upto final time t f = 0.07. Here we take a uniform mesh
with 200×200 grid points in physical space. Time steps are taken to satisfy CFL=
vmax

∆t
∆x = vmax

∆t
∆y = 1 and CFL= 4 where vmax = 15. In the velocity discretizations, we

use (60+1)×(60+1) points for RK2W23, and (30+1)×(30+1) points for RK2-W23-DM.
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(a) Density (b) Velocity in x-direction

(c) Velocity in y-direction (d) Temperature

Figure 16: Test 6. Shock test in 2D space and velocity. Macroscopic quantities obtained by RK2-W23-DM
with CFL=4.

In Figs. 16 and 17, our conservative scheme shows good agreement with the result
in [15] even for CFL=4. Furthermore, our solution shows much smaller oscillations near
shocks compared to the one obtained by scheme RK2W23.

7 Conclusions

In this paper we present high-order conservative semi-Lagrangian schemes for the nu-
merical solution of the BGK model of the Boltzmann equation.

Lack of conservation in standard semi-Lagrangian schemes is shown to be due to non-
linear weights in the non-oscillatory reconstruction of the distribution function at the foot
of the characteristic, and to the use of a continuous Maxwellian for the computation of
the moments.

Conservation properties are restored at a discrete level by making use of a discrete
Maxwellian in the collision operator, and by a conservative correction of the advection
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(a) Density (b) Velocity in x-direction

(c) Velocity in y-direction (d) Temperature

Figure 17: Test 6. Macroscopic quantities obtained by RK2W23 and RK2-W23-DM at x = x100. Blue and
magenta dashed lines: new conservative schemes, red and green dash-dotted lines: standard SL schemes.

term. Exact conservation can be reached up to round-off errors. Together with L-stable
treatment of the collisions, exact conservation allows the construction of schemes which
become consistent shock-capturing schemes for the underlying Euler limit, as the Knudsen
number κ vanishes (AP property), even when using a relatively small number of grid
points in velocity.

High order accuracy in space is obtained by a modification of the classical WENO
reconstruction, while high order accuracy in time is obtained by either Runge-Kutta of
multistep time discretization.

The method is described and implemented both in the one and two dimensions, both
in space and velocity.

The conservation properties, and the consequent AP property, have been proven
mathematically and verified in several numerical tests. A drawback of the conserva-
tive correction procedure is the limitation it imposes on the stability of the schemes. A
stability analysis has been performed to understand the reason of such limitation. It is
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observed that Runge-Kutta based schemes have a wider stability region than multistep-
bases ones, with a net improvement over Eulerian based schemes for all Knudsen num-
bers. Stability restrictions become less severe for small Knudsen numbers, as supported
by the stability analysis at the end of Section 4, making the schemes competitive in such
regimes.

As a work in progress, we are developing a new conservative semi-Lagrangian
scheme that does not suffer from such a CFL limitation, which will be the subject of a
forthcoming paper.
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Appendices

A Proof of the estimate on the conservation error for IE-SL

scheme with the discrete Maxwellian

Let us check in what sense the scheme (2.5) has a better conservative nature compared to
that of (2.3). For this, we first rewrite (2.5) as

f n+1
i,j − f̃ n

ij =
∆t

κ+∆t

(
dM( f̃ n

ij )− f̃ n
ij

)
, (A.1)

where f̃ n
ij=θj f n

i∗+1,j+(1−θj) f n
i∗ ,j with i∗=⌊i−vj∆t/∆x⌋, θj=(x̃ij−xi∗)/∆x and x̃ij=xi−vj∆t.

Since θj does not depend on i, we find that the following telescoping cancellation

holds so that f n
i,j and f̃ n

ij share the first moment:

Nx

∑
i=1

f̃ n
ij =

Nx

∑
i=1

(
θj f n

i∗+1,j+(1−θj) f n
i∗ ,j

)
=

Nx

∑
i=1

f n
i,j. (A.2)

Multiplying (A.1) by φ(vj)=(1;vj;v
2
j /2), taking summation on i, j and inserting (A.2), one

gets
Nx

∑
i=1

Nv

∑
j=0

(
f n+1
i,j − f n

i,j

)
φ(vj)∆v∆x=

∆t

κ+∆t

Nx

∑
i=1

Nv

∑
j=0

(
dM( f̃ n

ij )− f̃ n
ij

)
φ(vj)∆v∆x.
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Summing further in time step, we have

Nx

∑
i=1

Nv

∑
j=0

(
f Nt
i,j − f 0

i,j

)
φ(vj)∆v∆x

=
∆t

κ+∆t

Nt−1

∑
k=0

Nx

∑
i=1

Nv

∑
j=0

(
dM( f̃ k

ij)− f̃ k
ij

)
φ(vj)∆v∆x,

then, denoting the ℓth component of φ(vj) by φℓ(vj), ℓ=1,2,3, and using a variant of (2.4):

max
1≤ℓ≤3

∣∣∣∣∣
Nv

∑
j=0

[
dM( f̃ k

ij)− f̃ k
ij

]
φℓ(vj)∆v

∣∣∣∣∣< tol,

we obtain the following estimate:

max
1≤ℓ≤3

∣∣∣∣∣
Nx

∑
i=1

Nv

∑
j=0

(
f Nt
i,j − f 0

i,j

)
φℓ(vj)∆v∆x

∣∣∣∣∣

≤ ∆t

κ+∆t

Nt−1

∑
k=0

Nx

∑
i=1

max
1≤ℓ≤3

∣∣∣∣∣
Nv

∑
j=0

(
dM( f̃ k

ij)− f̃ k
ij

)
φℓ(vj)∆v

∣∣∣∣∣∆x

≤ Nt∆t

κ+∆t
(xmax−xmin)tol.

This estimate tells us that error is stacked in each time step by tol. So, for small values of
κ, the total conservation error in the end essentially depends on Nt×tol uniformly in κ.
Therefore, tol should be taken small enough to attain a machine precision conservation
error.

B General framework of G-WENO interpolation

In this section, we illustrate the G-WENO interpolation of degree 2n−1. Let U={uj}, j∈ I
be a set of given values of a function u on a space grid xj, j∈ I.

We start with the Lagrange polynomial Q(x) built on the stencil S={xj−n+1,··· ,xj+n}:

Q(x)=
n

∑
k=1

Ck(x)Pk(x),

where the “linear weights” Ck(x) are polynomials of degree n−1 and Pk are polynomials
of degree n interpolating U on the stencil Sk = {xj−n+k,··· ,xj+k}, k= 1,··· ,n. The linear
weights Ck(x) (k=1,··· ,n) are determined to satisfy the following two properties [8]:

1. Ck(xi)=0 for xi ∈S−Sk.
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2. ∑
k

Ck(xi)=1 for xi ∈S.

To guarantee non-oscillatory property, we replace the linear weights Ck(x) by the
non-linear weights ωk(x):

ωk(x)=
αk(x)

∑l α
l(x)

,

where αk(x) is defined by

αk(x)=
Ck(x)

(βk+ǫ)2
, (B.1)

with the choice of ǫ=10−6. The smoothness indicators βk in (B.1) is defined by

βk =
n

∑
l=1

∫ xj+1

xj

∆x2l−1(P
(l)
k )2dx.

The nonlinear weights ωk(x) are designed to put more weights on the smooth part of
u and less weights on the discontinuous part of u.

Finally, the G-WENO reconstruction of the values U={uj}j∈I reads

I[U](x)=
n

∑
k=1

ωk(x)Pk(x).

In the following, we explicitly construct the G-WENO interpolations of degree 3 and
5.

B.1 G-WENO of degree 3 (WENO23)

The G-WENO interpolation of degree 3 can be represented with two degree 2 polynomi-
als PL and PR built respectively on stencils {xj−1,xj,xj+1} and {xj,xj+1,xj+2}:

P(x)=ωLPL(x)+ωRPR(x),

where the non-linear weights ωL and ωR are given by

ωℓ=
αℓ

∑ℓαℓ

, αℓ=
Cℓ

(ǫ+βℓ)2
, ℓ= L,R,

with

CL=
xj+2−x

3∆x
, CR=

x−xj−1

3∆x
,

and

βL =
13

12
u2

j−1+
16

3
u2

j +
25

12
u2

j+1−
13

3
uj−1uj+

13

6
uj−1uj+1−

19

3
ujuj+1,

βR =
13

12
u2

j +
16

3
u2

j+1+
25

12
u2

j+2−
13

3
ujuj+1+

13

6
ujuj+2−

19

3
uj+1uj+2.
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B.2 G-WENO of degree 5 (WENO35)

For the G-WENO interpolation of degree 5, we use degree 3 polynomials PL,
PC and PR built respectively on stencils {xj−2,xj−1,xj,xj+1}, {xj−1,xj,xj+1,xj+2} and
{xj,xj+1,xj+2,xj+3}:

P(x)=ωLPL(x)+ωCPC(x)+ωRPR(x),

where the non-linear weights ωL, ωC and ωR are given by

ωℓ=
αℓ

∑ℓαℓ

, αℓ=
Cℓ

(ǫ+βℓ)2
, ℓ= L,C,R,

with

CL =
(x−xj+2)(x−xj+3)

20∆x2
, CC=− (x−xj−2)(x−xj+3)

10∆x2
, CR=

(x−xj−2)(x−xj−1)

20∆x2
,

and

βL =
407

90
u2

j+1+
721

30
u2

j +
248

15
u2

j−1+
61

45
u2

j−2−
1193

60
uj+1uj−2+

439

30
uj+1uj−1

− 683

180
uj+1uj−2−

2309

60
ujuj−1+

309

30
ujuj−2−

553

60
uj−1uj−2,

βC =
61

45
u2

j−1+
331

30
u2

j +
331

30
u2

j+1+
61

45
u2

j+2−
141

20
uj−1uj+

179

30
uj−1uj+1

− 293

180
uj−1uj+2−

1259

60
ujuj+1+

179

30
ujuj+2−

141

20
uj+1uj+2,

βR =
407

90
u2

j +
721

30
u2

j+1+
248

15
u2

j+2+
61

45
u2

j+3−
1193

60
ujuj+3+

439

30
ujuj+2

− 683

180
ujuj+3−

2309

60
uj+1uj+2+

309

30
uj+1uj+3−

553

60
uj+2uj+3.

C Details on the stability analysis

Here we find conditions such that Eq. (4.11) is satisfied. In order to make clear the calcu-
lation in the method (4.8) we take c1 =γ1 and b3 =γ1 then we get the stability function
(see [18]). Note that it is sufficient to have all E2j ≥ 0 for the I-stability. These are the
conditions that we actually use, in order to simplify the analysis.

We consider

R(z)=
P(z)

Q(z)
=

p0+p1z+p2z2+p3z3

q0−q1z+q2z2−q3z3
(C.1)

with the following quantities:

p0=1, p1=
( q0

1!
− q1

0!

)
, p2=

( q0

2!
− q1

1!
+

q2

0!

)
, p3=

( q0

3!
− q1

2!
+

q2

1!
− q3

0!

)
(C.2)
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and

q0=1, q1=γ1+γ2+γ3, q2=γ1γ2+γ1γ3+γ2γ3, q3=γ1γ2γ3, (C.3)

and from (4.11) we have

E2=(q2
1−p2

1)−2(q2q0−p2 p0)≥0,

E4=(q2
2−p2

2)−2(q3q1−p3 p1)≥0,

E6=q2
3−p2

3≥0.

By (C.3) it follows E2=0, and by SA we have R(∞)=0, and from (C.1) we get p3 =0
and then E6=q2

3≥0. Now we compute E4, and by (C.2)-(C.3) we get E4=(q2
2−p2

2)−2q3q1.
From p3 =0, it follows

q3=
1

6
− q1

2
+q2

and substituting this in E4 we obtain E4=8q1−12q2−3≥0.
Now if we substitute the quantities (C.3) in E4, and using (4.10) we get a function that

depends on γ1 and c2

− S

(3γ1−1)(γ1−1)2(c2−1)
≥0,

with

S=(108c2
2−72c2+18)γ4

1+(−144c2
2+105c2−33)γ3

1

+(84c2
2−69c2+24)γ2

1+(−24c2
2+21c2−7)γ1+3c2

2−3c2+1.

The function S is always positive for γ1= c2≥0, then we have that E4≥0, if

γ1≤1/3, c2≥1, or γ1≥1/3, c2≤1.

Now in order to justify the requirement to choose γ in the intervals (4.14) we consider
again E4=8q1−12q2−3≥0.

In (4.13) with γ1=γ3=γ, we compute from (4.10) b2, c2 and γ2 as functions of γ:

b2=−3

4

(2γ2−4γ+1)2

3γ3−9γ2+6γ−1
, c2=

1

3

(6γ2−9γ+2

(2γ2−4γ+1)
, γ2=

1

3

(6γ2−6γ+1

(2γ2−4γ+1)
(C.4)

and b1=1−b2−γ. Furthermore it follows: q1=(2γ+γ2) and q2=(2γ2γ+γ2) and substi-
tuting this values in E4 we get

γ2≥
3−16γ+12γ2

8−24γ
. (C.5)

Now substituting γ2 from (C.4) in (C.5) and solving this inequality for γ we get (4.14).
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D Conservation error estimates for discrete moments

In this section, we carry out some elementary conservation error estimate for each of
the schemes derived so far. For simplicity we denote macroscopic moments mn

i :=
(ρn

i ,ρn
i Un

i ,En
i )

T and tolerance tol.

Now, we give discrete conservation error estimates with high order C-SL schemes
with the discrete Maxwellian.

Proposition D.1. In the periodic boundary condition, conservation error estimates for
the DIRK scheme of order s=1,2,3 in mass, momentum and energy are given by

∥∥∥∥∥
Nx

∑
i=1

(mNt
i −m0

i )∆x

∥∥∥∥∥
∞

≤
(

s−1

∑
k=1

|bk|+|bs|
)

Nt∆t

κ+bs∆t
(xmax−xmin)tol,

where bk, k=1,··· ,s are determined for each s=1,2,3.

Proof. The DIRK scheme of order s is given by

f n+1
i,j = f ∗n+1

i,j +
∆t

κ

s−1

∑
k=1

bk

(
dM(k),n+1

i,j − f
(k),n+1
i,j

)
+

∆t

κ
bs

(
dM∗n+1

i,j − f n+1
i,j

)
, (D.1)

where f ∗n+1
i,j = f n

i,j−∑
s
k=1bk

∆t
∆x

(
F̂
(k),n

i+ 1
2 ,j
−F̂

(k),n

i− 1
2 ,j

)
and dM∗n+1

i,j is the discrete Maxwellian com-

puted from f ∗n+1
i,j . For k = 1,··· ,s−1, we denote by dM(k),n+1

i,j the discrete Maxwellian

computed from the k-th stage values f
(k),n+1
i,j computed with classical schemes. From

(D.1), we have

(
1+bs

∆t

κ

) Nx

∑
i=1

Nv

∑
j=0

(
f n+1
i,j − f ∗n+1

i,j

)
φ(vj)∆v∆x

=
Nx

∑
i=1

Nv

∑
j=0

[
∆t

κ

s−1

∑
k=1

bk

(
dM(k),n+1

i,j − f
(k),n+1
i,j

)
+

∆t

κ
bs

(
dM∗n+1

i,j − f ∗n+1
i,j

)]
φ(vj)∆v∆x. (D.2)

Using

max
i

∥∥∥∥∥
Nv

∑
j=0

[
f
(k),n+1
i,j −dM(k),n+1

i,j

]
φ(vj)∆v

∥∥∥∥∥
∞

≤ tol,

max
i
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Nv

∑
j=0

[
f ∗n+1

i,j −dM∗n+1
i,j

]
φ(vj)∆v

∥∥∥∥∥
∞

≤ tol,
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we can get from (D.2)
∥∥∥∥∥

(
1+bs

∆t

κ

) Nx

∑
i=1

Nv

∑
j=0

(
f n+1
i,j − f ∗n+1

i,j

)
φ(vj)∆v∆x
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∞

≤ ∆t

κ

Nx

∑
i=1

(
s−1

∑
k=1

|bk|+|bs|
)

tol∆x

=

(
s−1

∑
k=1

|bk|+|bs|
)

∆t

κ
(xmax−xmin)tol.

For DIRK schemes of order s in Section 4.1, we have bs>0, which implies
∥∥∥∥∥

Nx

∑
i=1

(
f n+1
i,j − f ∗n+1

i,j

)
φ(vj)∆v∆x
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∞

≤
(

s−1

∑
k=1

|bk|+|bs|
)

∆t

κ+bs∆t
(xmax−xmin)tol.

Moreover, the periodic boundary condition gives

Nx

∑
i=1

Nv

∑
j=0

f ∗n+1
i,j φ(vj)∆v∆x=

Nx

∑
i=1

Nv

∑
j=0

f n
i,jφ(vj)∆v∆x,

and hence ∥∥∥∥∥
Nx

∑
i=1

(mn+1
i −mn

i )∆x
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∞

≤
(

s−1

∑
k=1

|bk|+|bs|
)

∆t

κ+bs∆t
(xmax−xmin)tol.

Finally, we can conclude that
∥∥∥∥∥

Nx

∑
i=1

(mNt

i −m0
i )∆x

∥∥∥∥∥
∞

≤
Nx

∑
i=1

Nt

∑
r=1

∥∥∥(mr
i −mr−1

i )∆x
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∞

≤
(

s−1

∑
k=1

|bk|+|bs|
)

Nt∆t

κ+bs∆t
(xmax−xmin)tol.

This completes the proof.

Analogue results hold for the BDF methods, which can be derived by similar (but
more tedious) calculations. We present it without proof.

Proposition D.2. In the periodic boundary condition, conservation error estimates for
the BDF scheme of order s=2,3 in mass, momentum and energy are given by

∥∥∥∥∥
Nx

∑
i=1

(mNt
i −m0

i )∆x
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∞

≤γs

(
(Nt−s)βs∆t

κ+βs∆t
+

(
s−1

∑
k=1

|bk|+|bs|
)

s∆t

κ+bs∆t

)
(xmax−xmin)tol,

where bk, k=1,··· ,s and βs are determined for each s=2,3 and γ2=
3
2 and γ3=

146
11 .
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E Consistency of C-SL method to the Euler equation in the limit

of small Knudsen number

Here, we prove Proposition 6.1.

Proof. Step 1: SL scheme: Consider the characteristic formation of (1.1):

d f

ds
=

1

κ
(M( f )− f ) , f (x(t),v(t),t)= f (x,v,t),

dx

ds
=v, x(t)= x,

dv

ds
=0, v(t)=v.

Applying the implicit Euler method to this, we obtain

f n+1− f̃ n

∆t
=

1

κ

(
M( f n+1)− f n+1

)
, (E.1)

where f̃ n := f n(x−v∆t,v). Now, take moments of (E.1) with respect to φ(v)
∫

R

φ(v) f n+1dv=
∫

R

φ(v) f̃ ndv, (E.2)

which implies that

M( f n+1)=M( f̃ n) (E.3)

because both Maxwellians have the same moments. Then, the classical SL scheme is
explicitly represented by

f n+1=
κ

κ+∆t
f̃ n+

∆t

κ+∆t
M( f̃ n), (E.4)

and hence

f n+1=M( f̃ n)+O(κ),

for any n≥0 regardless of the initial data. Furthermore, the relation (E.3) implies

f n+1=M( f n+1)+O(κ). (E.5)

Therefore, as κ→0, we get from (E.5) that

f n =M( f n), for n≥1. (E.6)

For n≥1, we substitute this into (E.2)
∫

R

φ(v)M( f n+1)dv=
∫

R

φ(v) f n(x−v∆t,v)dv=
∫

R

φ(v)M( f n)(x−v∆t,v)dv,
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and expand the r.h.s. in Taylor series to get,

∫

R

φ(v)M( f n+1)dv=
∫

R

φ(v)M( f n)(x−v∆t,v)dv

=
∫

R

φ(v)

[
M( f n)(x,v)−v∆t∂xM( f n)(x,v)

+
∫ x−v∆t

x
∂2

x f n(y,v)(x−v∆t−y)dy

]
dv

=:
∫

R

φ(v)[M( f n)(x,v)−v∆t∂xM( f n)(x,v)]dv+R. (E.7)

From our assumption (6.2), the remainder term R is estimated as

|R|≤
∫

R

(1+|v|2)
∣∣∣∣
∫ x−v∆t

x
∂2

x f n(y,v)(x−v∆t−y)dy

∣∣∣∣ dv

≤sup
x,v

∣∣∂2
x f n(x,v)(1+|v|2)3

∣∣
∫

R

1

(1+|v|2)2

∣∣∣∣
∫ x−v∆t

x
(x−v∆t−y)dy

∣∣∣∣dv

≤sup
x,v

∣∣∂2
x f n(x,v)(1+|v|2)3

∣∣
∫

R

v2(∆t)2

2

1

(1+|v|2)2
dydv

=O(∆t2). (E.8)

Hence, we have from (E.7) and (E.8) that

m[ f n+1]−m[ f n]

∆t
+∂x




ρnUn

ρn|Un|2+ρnTn

(En+ρnTn)Un


=O(∆t), (E.9)

where m[ f n+1] :=(ρn+1,ρn+1Un+1,En+1)⊤.

Step 2. C-SL scheme: We apply the implicit Euler method to (1.1):

f n+1− f n

∆t
=−v∂x f n+1+

1

κ

(
M( f n+1)− f n+1

)
. (E.10)

Then, we compute the convection term v∂x f n+1 is using the classical SL scheme (E.4):

f (1),n+1=
κ

κ+∆t
f̃ n+

∆t

κ+∆t
M( f̃ n). (E.11)

If there is no confusion, we hereafter omit the time index for f (1),n+1. Now, we replace
v∂x f n+1 in (E.10) with v∂x f (1):

f n+1− f n

∆t
=−v∂x f (1)+

1

κ

(
M( f n+1)− f n+1

)
. (E.12)
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Integrating this with respect to φ(v)dv, we obtain

∫

R

φ(v) f n+1dv=
∫

R

φ(v)( f n−v∆t∂x f (1))dv, (E.13)

and hence

M( f n+1)=M( f n−v∆t∂x f (1)). (E.14)

To sum up, we can rewrite our C-SL scheme (E.12) as

f n+1=
κ

κ+∆t
( f n−v∆t∂x f (1))+

∆t

κ+∆t
M( f n−v∆t∂x f (1)). (E.15)

Note that (E.14) and (E.15) imply

f n+1=M( f n+1)+O(κ), (E.16)

for any n≥0 regardless of initial data. Therefore, as κ→0, we can deduce from (E.6) and
(E.16) that

f (1),n+1=M( f (1),n+1), f n+1=M( f n+1), n≥0.

For n≥1, substituting these identities into (E.13) yields

∫

R

φ(v)M( f n+1)dv=
∫

R

φ(v)
(
M( f n)−v∆t∂xM( f (1))

)
dv,

which leads to

m[ f n+1]−m[ f n]

∆t
+∂x




ρ(1)U(1)

ρ(1)|U(1)|2+ρ(1)T(1)

(E(1)+ρ(1)T(1))U(1)


=0,

where




ρ(1)

ρ(1)U(1)

Ẽ(1)


(x)=

∫

R

φ(v) f (1)(x,v)dv, T(1)(x)=
1

ρ(1)

∫

R

|v−Un(x,v)|2 f (1)(x,v)dv.

Now, we will show that

∂x




ρ(1)U(1)

ρ(1)|U(1)|2+ρ(1)T(1)

(E(1)+ρ(1)T(1))U(1)


=∂x




ρnUn

ρn|Un|2+ρnTn

(En+ρnTn)Un


+O(∆t). (E.17)
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For this, we recall (E.7):

∫

R

φ(v) f (1)dv

=
∫

R

φ(v)

[
M( f n)(x,v)−v∆t∂xM( f n)(x,v)+

∫ x−v∆t

x
∂2

x f n(y,v)(x−v∆t−y)dy

]
dv

=:
∫

R

φ(v)[M( f n)(x,v)−v∆t∂xM( f n)(x,v)]dv+R.

Here the remainder term R satisfies

∂xR=∂x

{∫

R

φ(v)

[∫ x−v∆t

x
∂2

x f n(y,v)(x−v∆t−y)dy

]
dv

}
=
∫

R

φ(v)∂2
x f n(x,v)v∆tdv,

which, in view of the assumption (6.2) gives

∂x




ρ(1)

ρ(1)U(1)

E(1)


=∂x

{∫

R

φ(v)[M( f n)(x,v)−v∆t∂xM( f n)(x,v)]dv+R

}

=
∫

R

φ(v)
[
∂xM( f n)(x,v)−v∆t∂2

xM( f n)(x,v)
]

dv+∂x R

=∂x




ρn

ρnUn

En


+O(∆t). (E.18)

Therefore, the first row in (E.17) follows from the second row in (E.18). Owing to the
following identity

ρ(1)|U(1)|2+ρ(1)T(1)=2E(1),

the second row in (E.17) also holds due to the third row in (E.18). Then, it remains to
show that

∂x

{
(E(1)+ρ(1)T(1))U(1)

}
=∂x{(En+ρnTn)Un}+O(∆t).

For this, we need to show the following identities:

U(1)=Un+O(∆t), ∂xU(1)=∂xUn+O(∆t).

Note that assumptions (6.2) and (6.3) together with estimates (E.9) and (E.18) implies that

U(1)−Un =
(ρ(1)U(1)−ρnUn)+(ρnUn−ρ(1)Un)

ρ(1)
=O(∆t),
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and

∂x{U(1)−Un}=
∂x

{
ρ(1)U(1)−ρnUn

}

ρ(1)
−

(
ρ(1)U(1)−ρnUn

)
∂xρ(1)

(ρ(1))2

+

(
∂x{ρn−ρ(1)}Un+{ρn−ρ(1)}∂xUn

)
ρ(1)−

(
ρnUn−ρ(1)Un

)
∂xρ(1)

(ρ(1))2

=O(∆t).

Consequently, our claim (E.17) holds and it gives the desired result:

m[ f (n+1)]−m[ f n]

∆t
+∂x




ρnUn

ρn|Un|2+ρnTn

(En+ρnTn)Un


=O(∆t).

This completes the proof.

In the proof, it is worth noting that both the classical SL scheme (E.11) and the C-
SL scheme (E.15) preserve macroscopic moments. For simplicity, consider the periodic
boundary condition T := R/Z on the physical space. The classical SL scheme (E.11)
satisfies

∫

T

∫

R

φ(v) f (1)dvdx=
∫

R

∫

T

φ(v) f n(x−v∆t,v)dxdv

=
∫

R

∫

T

φ(ṽ) f n(x̃,ṽ)

∣∣∣∣
∂(x,v)

∂(x̃,ṽ)

∣∣∣∣dx̃dṽ,

where we use the change of variable x̃= x−v∆t, ṽ=v. Using
∣∣ ∂(x,v)

∂(x̃,ṽ)

∣∣=1, we obtain

∫

T

∫

R

φ(v) f (1)dvdx=
∫

T

∫

R

φ(v) f ndvdx.

Also, in case of the C-SL scheme (E.15), it satisfies (E.13) and hence
∫

T

∫

R

φ(v) f n+1dvdx=
∫

T

∫

R

φ(v) f ndvdx−
∫

T

∫

R

φ(v)v∆t∂x f (1)dvdx.

Using (E.11), the second term can be written as
∫

T

∫

R

φ(v)v∆t∂x f (1)dvdx=
∫

T

∫

R

φ(v)v∆t∂x

(
κ

κ+∆t
f̃ n+

∆t

κ+∆t
M( f̃ n)

)
dvdx,

which vanishes due to the periodicity of the physical domain. Therefore, we can conclude
that

∫

T

∫

R

φ(v) f n+1dvdx=
∫

T

∫

R

φ(v) f ndvdx.

Here we only consider time discretization for SL and C-SL schemes. Note that conserva-
tion is also valid for the fully discretized C-SL schemes (See Appendix D).
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