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Soil moisture information can improve shallow
landslide forecasting using the hydrometeorological
threshold approach

Abstract Empirical thresholds indicating the meteorological con-
ditions leading to shallow landslide triggering are one of the most
important components of landslide early warning systems
(LEWS). Thresholds have been determined for many parts of the
globe and present significant margins of improvement, especially
for the high number of false alarms they produce. The use of soil
moisture information to define hydro-meteorological thresholds is
a potential way of improvement. Such information is becoming
increasingly available from remote sensing and sensor networks,
but to date, there is a lack of studies that quantify the possible
improvement of the performance of LEWS. In this study, we
investigate this issue by modelling the response of slopes to pre-
cipitations, introducing also the possible influence of uncertainty
in soil moisture provided by either field sensors or remote sensing,
and investigating various soil depths at which the information may
be available. Results show that soil moisture information intro-
duced within hydro-meteorological thresholds can significantly
reduce the false alarm ratio of LEWS, while keeping at least
unvaried the number of missed alarms. The degree of improve-
ment is particularly significant in the case of soils with small water
storage capacity.

Keywords Shallow landslide . Rainfall-induced landslide . Early
warning system . Hydrological cause . Triggering rainfall
event . Hydro-meteorological thresholds . Landslide hazard and
risk management

Introduction
Forecasting rainfall-induced landslides is often entrusted to the
definition of empirical thresholds (usually expressed in terms of
rainfall intensity and duration) that link the precipitation to the
triggering of landslides (Guzzetti et al. 2008). However, rainfall
intensity-duration thresholds do not exploit the knowledge of
hydrological processes that occur in the slope, so they tend to
generate significant rates of false and missed alarms, reducing the
credibility of landslide early warning systems (LEWS). Rainfall-
induced shallow landslides usually occur in the initially unsatu-
rated soil cover following an increase of pore water pressure, due
to the increase of soil moisture, caused by large and persistent
rainfall. So, this opens the possibility to use soil moisture in
landslide research. Recently, Bogaard and Greco 2018 proposed
the cause-trigger conceptual framework to develop hydro-
meteorological thresholds that combine the antecedent causal
factors and the actual trigger connected with landslide initiation.
In fact, in some regions where rainfall-induced shallow landslides
are particularly dangerous and pose a serious risk to people and
infrastructures, the antecedent saturation is the predisposing fac-
tor, while the actual landslide triggering is associated with the
hydrological response to the recent and incoming precipitation
(Bogaard and Greco 2016).

Several studies introduced, directly or with models, the effects
of antecedent soil moisture content in the empirical thresholds for
improving landslide forecasting (Crozier 1999; Godt et al. 2006;
Ponziani et al. 2012; Ciabatta et al. 2016; Segoni et al. 2018; Lazzari
et al. 2018; Zhuo et al. 2019).

Soil moisture can be measured locally, by a range of on-site
measurement techniques (Schmugge et al. 1980; Walker et al. 2004;
Ochsner et al. 2013), or remotely, by satellites or airborne systems.
On-site measurements have proved promising in improving the
performance of thresholds for landslide early warning (Mirus et al.
2018; Zhao et al. 2019). On-site data are accurate but sparse, so
there is an increasing interest on the possible use of remotely
sensed data. And, in fact, recent research has shown that they
can provide useful information for landslide prediction at regional
scale, despite their coarse resolution and inherent uncertainty
(Stähli et al. 2015; Brocca et al. 2016; Segoni et al. 2018; Thomas
et al. 2019). Even at local scale, initial soil moisture derived from
satellite data proved to improve the prediction of the movements
of a large landslide (Brocca et al. 2012).

Remote sensing is the practice of acquiring information about
the earth’s surface through the acquisition of satellite images
(Shravan Kumar Yadav and Roy 2013). Remote sensing soil mois-
ture data are trustable, as showed in several studies comparing
satellite data with hydrological modelling and on-site observations
(Wagner et al. 2013; Peng et al. 2015; Ray et al. 2017; Ford and
Quiring 2019). Certainly, remote sensing soil moisture data have a
lower accuracy than field measurements (Al-Yaari et al. 2014),
especially in steep terrain (Thomas et al. 2019) and owing to the
presence of vegetation. Many satellites, placed in orbit in the past
decades, some with the specific purpose of measuring soil mois-
ture (e.g. Soil Moisture and Ocean Salinity (SMOS) by the Euro-
pean Space Agency, and Soil Moisture Active and Passive (SMAP)
by the National Aeronautics and Space Administration), others
including on board sensors providing estimates of soil moisture,
such as the Advanced Scatterometer (ASCAT) on satellites MetOp-
A and MetOp-B (Wagner et al. 2013), and the Advanced Microwave
Scanning Radiometers, on satellites Aqua and Global Change
Observation Mission-Water1 (Kawanishi et al. 2003), have proven
successful for estimating global mapping of near-surface (0–5 cm)
soil moisture at a spatial and temporal resolution, respectively, of
10–50 km and of 2–3 days (Rao et al. 1988; Schmugge 1998;
Entekhabi et al. 2010; Kerr et al. 2012; Enrekhabi et al. 2014; Das
et al. 2016; Mohanty et al. 2017; Lv et al. 2018). Recently, surface soil
moisture products with enhanced spatial and temporal resolution
(De Jeu et al. 2014; Parinussa et al. 2015) have been used in various
water resources management, agricultural and flood early warning
practices (Massari et al. 2014; Wanders et al. 2014; Li et al. 2016) .

This leads to the obvious question from scholars whether re-
motely sensed soil moisture information can be used to improve
landslide hazard assessment and ultimately landslide early
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warning systems (LEWS). Initiatives at global scale (Kirschbaum
et al. 2009, 2012) down to regional and local scale (Brocca et al.
2016; Segoni et al. 2018) for using remotely sensed soil moisture for
landslide hazard assessment are plentiful. Most of these applica-
tions use soil moisture products to obtain improved landslide
susceptibility maps (Ray and Jacobs 2007; Ray et al. 2010). These
maps can be used in conjunction with empirical landslide-
triggering thresholds formulated in terms of rainfall intensity
and duration (Kirschbaum et al. 2009, 2012).

However, the soil depth involved in a shallow landslide (the most
prominent landslide type globally) is typically 1–2 m below the
surface (Fiorillo et al. 2001; Greco et al. 2018), which is much thicker
than the soil depth currently directly measured by remote sensing
techniques, and in many cases overlaps with the root penetration
depth. Such zone is influenced by antecedent precipitation, soil
texture, vegetation, and therefore a clear relationship with near-
surface soil moisture may be difficult to find. Many studies have
attempted to derive root-zone soil moisture from near-surface mois-
ture, through physically based approaches and data-driven methods
(Kornelsen and Coulibaly 2014; Manfreda et al. 2014), data assimila-
tion schemes (Walker et al. 2002; Sabater et al. 2007; Li et al. 2010;
Dumedah et al. 2015; De Lannoy and Reichle 2016), and satellite
information (Ragab 1995; Wagner et al. 1999; Miralles et al. 2011;
Ford et al. 2014; Martens et al. 2017).

In our study, we address the question if soil moisture informa-
tion, derived from current or future large scale monitoring prod-
ucts (e.g. either airborne and satellite remote sensing or diffuse
sensor networks), can improve landslide hazard prediction, and to
what extent. Hereto, we performed an explorative investigation
based on real-world landslide and hydrological information from
two areas in Southern Italy, both characterised by frequent shallow

landslides, but with quite different geomorphologic features. To
get data sets long enough to carry out statistical analyses, synthetic
time series of rainfall and soil cover response have been generated
for both sites, using a stochastic rainfall model and a physically
based infiltration model.

Materials and methods

Synthetic data set generation
Aiming at comparing the landslide forecasting performances
of empirical thresholds, based on rainfall information alone,
with that of hydro-meteorological thresholds including also
soil moisture information, a rich data set of rainfall, soil
moisture, and landslides would be required. As the occurrence
of landslides is usually not frequent enough to allow observ-
ing several landslide events within the duration of currently
available rainfall records (i.e. some decades at maximum), in
this study, a synthetic data set of the duration of 1000 years
has been built with reference to two case studies, both
characterised by the occurrence of rapid shallow landslides
triggered by heavy rainfall.

This data set has been obtained by coupling a stochastic rainfall
model with a physically based model of infiltration and drainage
processes in the unsaturated slope cover (Peres and Cancelliere
2014, 2016, 2018). Specifically, a 1000 years hourly rainfall series has
been generated with the Neyman-Scott Rectangular Pulse (NSRP)
model (Neyman and Scott 1958), the parameters of which have
been calibrated based on experimental data available at the inves-
tigated sites. The unsaturated flow modelling has been carried out
using the vertical 1D Richards’ equation, implemented in the
HYDRUS-1D software (Šimůnek et al. 2008). In this case also, the

Fig. 1 Map of the test site of Cervinara (Campania, Southern Italy). The red zones represent the areas affected by debris flows triggered by a rainfall event of 325 mm in
48 h between 15 and 16 December 1999
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parameters of the model have been assigned according to available
laboratory and field observations at the investigated sites.

Case studies
The investigated areas, both located in southern Italy, are period-
ically affected by rainfall-triggered rapid shallow landslides. Spe-
cifically, the first case study refers to the slopes of the Partenio
mountains, about 40 km north-east of Naples, Campania. The
second case study is in Peloritani mountains, near Messina, Sicily.
The two sites have been chosen for the investigation because of the
different geomorphologic characteristics of the slopes, as well as
for their climatic differences.

Campania
In Campania, many mountainous areas are covered with shallow
volcanoclastic deposits, usually in unsaturated conditions, derived
from the activities of two volcanoes (Somma-Vesuvius and
Phlegrean Fields) during the last 40,000 years (Rolandi et al.
2003). Mesozoic-Cenozoic fractured limestones represent the basal
rock, in which large karst aquifers are present, and the covers are
mainly constituted by layers of coarse pumices, volcanic ashes,
finer pumices mixed with ash, and altered ashes, the latter often
observed near the soil-bedrock interface. The study area is along
the slopes of Mount Cornito, near the town of Cervinara, at the
base of the northern side of the Partenio mountains. The slope was
involved in a series of landslides evolving in the form of fast flows,
after a rainstorm of 325 mm in 48 h, in the night between 15 and 16
December 1999, causing the death of six people and heavy dam-
ages (Fiorillo et al. 2001). A map of the area, with indication of the
occurred landslides, is given in Fig. 1.

The slope of Cervinara has an average inclination around 40°
and is located at an elevation between 500 m and 800 m a.s.l. The

thickness of the volcanoclastic soil cover is between 2 and
2.5 m, and it consists of an alternation of loose volcanic ashes
(sand to loamy sand) and pumices (sandy gravel), lying upon
a fractured limestone bedrock. The soils are characterised by
high porosity (i.e. up to 0.75 for the ashes, around 0.5 for the
pumices) and very high saturated hydraulic conductivity (i.e.
in the order of 10−5–10−4 m s−1 for the ashes, and even higher
for the pumices). The soil-bedrock interface is pervious, and
the leakage supplies both shallow and deep groundwater cir-
culation (Allocca et al. 2014; Greco et al. 2018). Hence, the soil
cover has high water retention capacity and allows for rapid
infiltration and drainage processes. The climate is Mediterra-
nean, with mean annual precipitation and potential evapo-
transpiration, respectively, of about 1600 mm and 750 mm,
this latter estimated with the empirical formula of
Thornthwaite (Shuttleworth 1993). The vegetation cover main-
ly consists of deciduous woods, mostly chestnuts, with a
dense underbrush developing in spring and summer.

Sicily
Peloritani mountains in Sicily extend for about 65 km from Capo
Peloro to Nebrodi, reaching the height of 1300 m. The mountains
represent the inside chain of the Apennine–Maghrebian domain
belonging geologically to the Calabrian-Peloritani Arc (Bonardi
et al. 2002; Vignaroli et al. 2008). The geology of the area is
characterised by a metamorphic bedrock (phyllites, schists, and
paragneiss) with few and small outcrops of sedimentary deposits
(marls, clays, and calcarenites). For our study, we consider the
upper Ionian part of the Peloritani mountains, in the vicinity of
the town of Giampilieri. On 1 October 2009, deadly landslides were
triggered in this area, by a rainfall event of more than 220 mm in
7 h (Maugeri and Motta 2011; Ardizzone et al. 2012; Stancanelli

Fig. 2 Map of the test site of Giampilieri (Sicily, Southern Italy). The red zones represent the areas affected by debris flows triggered by a rainfall event of 220 mm in 7 h
on 1 October 2009
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et al. 2017). Figure 2 below shows a map of the area, with the
landslides occurred on that occasion.

The unstable slopes in the area are mostly in the range 35–45°, and
the thickness of the heterogeneous, loose, and weathered layer cov-
ering the fractured metamorphic bedrock is 1.5–2.5 m. The soil has a
high coarse fraction (gravel content more than 50%) and a scarce
clay content; porosity is around 0.35–0.45, and saturated hydraulic
conductivity in the order of 10−5 m s−1 (De Guidi and Scudero 2013;
Peres and Cancelliere 2014; Schilirò et al. 2015). Climate in the
Peloritani area is Mediterranean, with hot and dry summers, and
precipitation, mainly convective, falls mostly in the period from
October to January; mean annual precipitation and potential evapo-
transpiration (estimated by Thornthwaite formula) are, respectively,
of about 1000mm and 800mm.A significant proportion of the soil is
almost bare; otherwise, Mediterranean scrub is present, and only
sparse areas are covered by trees (olive, oak, and beech).

Identification of parameters of the models

Rainfall generator
The NSRP stochastic model reproduces the point precipitation pro-
cess as a series of rain clusters (i.e. rain storms), composed by a
random number C of (possibly overlapping) rain cells, each
schematised as a rectangular pulse with random duration and con-
stant intensity, so that the total intensity is the sum of the intensities
of contemporary active cells (Neyman and Scott 1958; Rodriguez-
Iturbe et al. 1987; Cowpertwait et al. 1996). The arrival time of the
clusters follows a Poisson distribution with parameter λ [T−1]. Also,
the number of cells within a cluster follows a Poisson distribution
with mean ν [−]. The time of origin of each cell (elapsed from the
beginning of the cluster) is exponentially distributed with parameter
β [T−1]. Rectangular cell duration and intensity have, respectively,
exponential distribution, with parameter η [T−1], and Weibull distri-
bution, with cumulative probability function F(x) = 1 − exp(−ξxb),
with the parameter b [−] set to 0.8 for Partenio mountains and to 0.6
for Peloritani mountains, and the parameter ξ [TbL−b] to be calibrat-
ed. In total, five parameters need to be identified, and model cali-
bration was carried out with the method of moments, i.e. solving the
system of equations with the expressions of the first five moments
and minimizing a measure of the difference between theoretical and
sample moments (Peres and Cancelliere 2014). The parameters of the
NSRP model of rainfall were calibrated, for both the investigated
sites, based on available rainfall records. Specifically, data from the
rain gauge station of Cervinara, belonging to the Italian civil protec-
tion meteorological alert network, available from 1 January 2001 to 31
December 2017 with time resolution of 10min, were used for the case
study of Partenio mountains, Campania. For Peloritani mountains,
Sicily, the available rainfall data set, with hourly resolution, belongs
to the rain gauge station of Fiumedinisi and spans from 1 May 2002
to 31 December 2013. In Cervinara, the mean annual precipitation is
1600 mm, and, although autumn and spring are the rainiest seasons,
it normally rains throughout the whole year (Comegna et al. 2016). In
Giampilieri, instead, the mean annual precipitation is about
1000 mm, and the summers are usually almost dry, being intense
or prolonged rainfall events between April and August extremely
rare (Cama et al. 2015). To account for the seasonality, typical of
Mediterranean climate, the experimental data sets were split in
subsets corresponding to the periods of the year when precipitations
showed homogeneous characteristics. The statistically homogeneousTa
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periods were chosen by estimating the monthly values of the mo-
ments required for model calibration and then grouping the adjoin-
ingmonths which presented similar values of themoments. In such a
way, five homogeneous periods were identified for Fiumedinisi and
seven periods for Cervinara. Table 1 summarises the obtained pa-
rameters. It is worth to note that, for the rain gauge of Fiumedinisi,
the period from April to August presented so few rainfall events that
it could be considered dry for the purposes of this study, and thus the
NSRP model was not calibrated and no synthetic rainfall data were
generated for that part of the year.

The calibrated models were used to generate 1000 years long
synthetic hourly rainfall series, the reliability of which was tested
by calculating several statistics (e.g. annual rainfall, yearly number
of storms, storm durations, and mean intensities) from randomly
extracted subsets of the same duration of the experimental ones
used for calibration (i.e. respectively, 17 years for Cervinara and
11 years for Fiumedinisi), and comparing their distributions with
those of the experimental data.

Unsaturated flow model
As in the considered shallow unsaturated soil covers only occasion-
ally subsurface downslope flow components occur (i.e. only whereas
a nearly saturated condition is attained somewhere in the cover), the
modelling of the flows, through the unsaturated soil cover of thick-
ness d [L], was carried out using the 1D Richards’ equation (Richards
1931). To such aim, the HYDRUS-1D software was used (Šimůnek
et al. 2008). More specifically, the infiltration equation is as follows:

∂θ
∂t

¼ ∂
∂z

Ks
∂ψ
∂z

þ cosα
� �� �

−S ð1Þ

where ψ is pore pressure head [L], θ is soil volumetric water content
[L3 L−3], z is the space coordinate orthogonal to slope surface [L], α
[rad] is the angle of slope inclination respect to the horizontal,Ks is the
unsaturated hydraulic conductivity function [L T−1], and S= ρ(ψ)Sp is
the root water uptake [L3 L−3 T−1], ρ(ψ) being the dimensionless water
stress response function of water potential (0 ≤ ρ ≤ 1), and Sp the
potential water uptake rate [T−1], depending on potential evapotrans-
piration and root distribution within the soil profile (Feddes et al.
1976). The soil water characteristic curves (SWCC) were expressed
with the van Genuchten–Mualem model (van Genuchten 1980):

θ ψð Þ ¼ θr þ θs−θr
1þ aψj jn½ �m ψ < 0

θs ψ≥0

8<
: ð2Þ

K ψð Þ ¼ KsSle 1− 1−S1−me

� �m� 	2 ð3Þ

where θr is residual soil volumetric water content [L3 L−3], θs is
saturated soil volumetric water content [L3 L−3], a, n, and m = 1–1/
n are the SWCC parameters, Ks [L T−1] is the saturated hydraulic

conductivity, and Se = (θ − θr)/(θs − θr) [−] is effective saturation.
The leakage component at the soil-bedrock interface is approxi-
mated by the following equation:

q hð Þ ¼ −Aqhexp Bqhjψ−h0j
� � ð4Þ

where Aqh and Bqh are empirical parameters, and h0 [L] is the
position of the groundwater level with respect to the base of the
soil cover.

For the case study of Cervinara, the parameters of SWCC have
been assigned based on laboratory measurements (Greco et al. 2010;
Damiano and Olivares 2010) and field monitoring data (Damiano
et al. 2012; Greco et al. 2013; Comegna et al. 2016). The parameters of
the leakage exponential relationship (4) have been adjusted in such a
way to have water potential fluctuations, near the base of the cover,
comparable with those observed in the field, where, at the depth of
around − 1.80 m, the potential drops to − 10 m or less in summer,
while it rises to more than − 1.0 m in winter (Damiano et al. 2012;
Comegna et al. 2016). In the case of Giampilieri (Peloritani moun-
tains), as no direct measurements of water retention nor hydraulic
conductivity were available, the van Genuchten parameters were
estimated from measured grain size distributions via the program
ROSETTA, based on pedo-transfer functions (Schaap et al. 2001;
Peres 2013). Regarding the parameters Aqh and Bqh of the bottom
leakage function (4), they were adjusted within the range of values
consistent with the actual hydraulic behaviour of the fractured bed-
rock, so to reproduce as closely as possible the four dates of past
observed slope failures. In Table 2 below, the parameters adopted for
the two case studies are reported.

Empirical landslide thresholds
Two different types of empirical thresholds have been defined to
assess the potential improvement that the inclusion of moisture
content information, prior the rain event, may determine in the
capability of predicting landslide initiation. Specifically, the pre-
cipitation intensity-duration threshold is compared with two
hydro-meteorological thresholds. The meteorological variable is
in both cases the event precipitation depth, while the hydrological
variable is either the near-surface soil moisture θNS (i.e. the aver-
age water content of the upper 5 cm of soil, provided by currently
available remote sensing techniques), or the root zone soil mois-
ture θRZ (here conventionally assumed as the average water con-
tent of the upper 100 cm of soil, which to date can be achieved by
field sensors). To define these thresholds, a rainfall event is con-
sidered triggering when at least one landslide occurs during its
course or after its end, but before the beginning of the following
rainfall event. The information about prior soil moisture refers to
a time interval before the beginning of the rainfall event, which
depends on the hypothesised frequency of acquisition of soil
moisture measurements.

Table 2 Parameters of the unsaturated flow model for the two test sites

Case study θs θr Ks d a α m n Aqh Bqh h0
- - - m h−1 m m−1 ° – – m h−1 m−1 m

Cervinara 0.75 0.05 0.29 2.5 12 40 0.31 1.45 − 0.0107 − 6.0 0

Giampilieri 0.35 0.045 0.072 2.5 4 40 0.5 2 − 0.0145 − 2.085 2
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Definition of rainfall events
The identification of possible cause-effect relationships, linking
rainfall and soil moisture to landslides, requires the definition of
rainfall events within the 1000 years long generated rainfall series.
To this aim, a minimum inter-event time interval of 24 h has been
introduced, characterised by a rainfall depth smaller than 2.0 mm
(i.e. rainfall smaller than the mean daily potential evapotranspi-
ration) (Peres et al. 2018). Hence, the obtained rainfall events were
periods with at least 2.0-mm rainfall depth, preceded and followed
by at least 24 h with less than 2.0-mm rainfall. Table 3 summarises
some major statistical characteristics of the obtained series of
rainfall events.

Rainfall events in Giampilieri are less frequent and longer
than in Cervinara. The variability of both duration and
intensity is smaller in Cervinara than in Giampilieri, where
the maximum values of mean event rainfall intensity are
attained.

Definition of landslide triggering condition
Landslide triggering conditions are defined as a limit value of
pore water pressure, chosen according to the geotechnical
characteristics of the soil constituting the cover. In both the
test sites, the potential failure surface has been assumed at
the depth of 2.0 m below the ground surface, and the critical
water pressure height, ψc, corresponding to landslide trigger-
ing, has been defined so to have Fs~1 with a uniformly wet
soil profile.

The considered 1-D geometry of the soil cover allows the
assumption of the infinite slope hypothesis for the evaluation of
the factor of safety:

Fs ¼ τlim
τ0 ¼ c

0 þ γdf cos2αtanϕ0−χ ψð Þγwψtanϕ0

γdf sinαcosα
ð5Þ

In Eq. 5, α [−] is the slope inclination angle, df [L] is the vertical
depth, below the ground surface, at which the factor of safety is
evaluated, γ [M L−2 T−2] is soil unit weight, γw [M L−2 T−2] is water
unit weight, ϕ′ [−] and c′ [M L−1 T−2] are, respectively, effective
friction angle and cohesion of the soil, and χ [−] is Bishop’s
coefficient for the calculation of the effects of pore water pressure
on soil shear strength (Bishop 1959). At saturation, it is χ = 1, while
in unsaturated conditions, the simplified assumption χ = Se (Lu
et al. 2010) has been made, as it seems acceptable for granular soils
(Greco and Gargano 2015). Table 4 gives the geotechnical proper-
ties of the soils at the two test sites (Damiano and Olivares 2010;
Peres and Cancelliere 2014), the major geometrical characteristics
of the two slopes and the corresponding critical pore water pres-
sure height.

The results of the unsaturated flow model (“Unsaturated
flow model” section) show that the critical pressure height
was overcome 231 times in 1000 years in Giampilieri (Sicily),
which is consistent with the return period of landslides in
Peloritani mountains along slopes inclined at 40°, i.e. about
5 years, estimated by (Peres and Cancelliere 2016). In
Cervinara (Campania), instead, 42 landslide triggering events
occurred along the 1000 years long simulation, corresponding
to a return period of about 25 years, which appears consistent
with the historical occurrence of landslides in other similar
contexts of Campania (Bisson et al. 2007; Papa et al. 2011). Ta
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Definition of empirical thresholds for landslide initiation
Rainfall events are represented in the plane (D, I) for the
identification of intensity-duration (meteorological) threshold,
and in the planes (θNS, H) and (θRZ, H) to define hydro-
meteorological thresholds. The thresholds are power-law equa-
tions (i.e. Y = A XB) separating rainfall events with landslides
from those without, and the parameters A and B are identi-
fied by maximizing the true skill statistics T [−] (Peirce 1884),
a measure of the performance of the threshold which con-
siders both missed alarms and false alarms:

T ¼ 1−
M
P
−
F
N

ð6Þ

In Eq. (6), M represents the number of missed alarms (i.e.
events not exceeding the thresholds, but associated with the
occurrence of a landslide), P the total number of occurred
landslides, F the number of false alarms (i.e. events exceeding
the threshold, but without the occurrence of any landslide), N
the total number of rainfall events which are not followed by
any landslide. T = 1 indicates a threshold which makes no
error, T = 0 a random prediction, and T = − 1 a threshold that
yields systematically inverted predictions. Considering also the
false alarms in the definition of the threshold avoids produc-
ing the well-known cry-wolf effect (Breznitz 1984), caused by
a system launching too many alarms not followed by any
landslide. It is worth to note that, when dealing with phe-
nomena so rare as rainfall-induced landslides along a slope, it
is always N≫ P; thus, the value of T is more sensitive to
missed alarms than to false alarms.

Results and discussion

Meteorological threshold
In Fig. 3, the scatterplots of the triggering (red points) and non-
triggering (blue points) rainfall events of Cervinara and
Giampilieri are shown in the log-log plane of rainfall duration
and intensity. In both the graphs, a power-law threshold curve
has been drawn, defined by maximization of T (Eq. (6)).

For Cervinara (Fig. 3a, Table 5), the obtained threshold (I =
175.56 D−1, 08) performs excellently, as denoted by the value of T =
0.934. Interestingly, the long triggering events (with D > 100 h) are
arranged in a less inclined way than the linear threshold line,
which implies that more rainfall is required to trigger landslides.
This is consistent with the fact that rainfall average intensity tends
to decrease with longer durations and therefore the drainage of the
infiltrating water plays a more significant role. The meteorological
I-D landslide threshold correctly identifies nearly all the land-
slides, occurring about once every 25 years, but it yields nearly
one false alarm per year. Although the missed alarms are very few
(5% of the total number of predicted landslides, 2 of 42), the
question arises whether people would still trust the warning mes-
sages launched by a LEWS based on the threshold, which issues so
many alarms not followed by a landslide.

For Giampilieri (Fig. 3b), the optimal I-D threshold is I = 73.3
D−1, 0 but it suffers both false and missed alarms (Table 5). The
threshold correctly predicts more than 85% of the landslides, but
also in this case, people would experience around 15 false alarms
on every single true alarm. Considering that missed alarms would
also be, on average, once every 30 years, also for Giampilieri,

Table 4 Major geotechnical and geometrical characteristics, and critical pore water pressure height, corresponding to landslide triggering, at the two test slopes

Test sites Soil dry unit
weight, γdry
(N m−3)

Soil effective
cohesion, c′

(kPa)

Soil effective
friction angle, ϕ′

(°)

Failure surface
depth, df (m)

Slope
inclination
angle, α (°)

Critical pressure
height, ψc (m)

Cervinara 6500 0 38 2.0 40 − 0.16

Giampilieri 15600 5.7 37 2.0 40 0.51

Fig. 3 Meteorological (Precipitation Intensity-Duration, I-D) landslide threshold of Cervinara (a) and of Giampilieri (b). In the 1000 years long synthetic data set, the red
dots represent rainfall events followed by the triggering of a landslide; the blue points are rainfall events after which no landslide was recorded; the power-law red lines,
obtained by maximising the true skill statistic (T), so to get the optimal trade-off between missed and false alarms, represent the thresholds separating the two classes of
events
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reducing the false alarms would be necessary to ensure a reliable
LEWS. Note that the value of the exponent of the I-D threshold is
− 1. This implies that one of the two rainfall characteristics does
not add valuable information for the identification of the thresh-
old, which corresponds to a constant triggering rainfall depth H =
I × D = 73.3 mm (indeed, this consideration holds also for
Cervinara, although in that case the exponent results slightly
different from − 1). Nevertheless, in the case of Giampilieri, trig-
gering events with D > 15–20 h are no longer aligned with such a
line. Probably drainage becomes significant already for relatively
short events, owing to the low storage capacity of the soil profile
(porosity 0.35), making easier to reach wet conditions.

Hydro-meteorological threshold
To test whether antecedent soil moisture information improves the
performance of the thresholds, the best hydro-meteorological
thresholds have been identified as power-law equations in the
plane (θ,H), by maximizing T. As in real applications, the temporal
resolution of moisture measurements is limited and there may be
uncertainty in the timing of the landslides, both the near-surface
soil moisture (θNS) and the root-zone soil moisture (θRZ) have
been tested, not only at the onset of the rainfall event but also
going backwards, in steps of 24 h, up to 120 h before the beginning
of the rainfall.

For Cervinara, the thresholds defined in the (θNS, H) and (θRZ, H)
planes provide a slight improvement, especially in terms of reducing
false alarms (Fig. 4 and Table 6), compared with the ones obtained in
the I-D plane (Fig. 3, Table 5). This is especially true if θRZ is used as a
measurement of antecedent soil moisture conditions, as false alarms
would be launched once every few years, while nearly all the land-
slides would be correctly predicted. For Giampilieri, the improved
performance of the hydro-meteorological threshold is more evident
than for Cervinara. Note that in both cases, soil moisture, either
near-surface or root-zone, is representative of conditions predispos-
ing the slope to failure even if it refers to few days before the
potentially triggering rainfall events. This is a very important feature,
considering the coarseness of the temporal resolution of soil mois-
ture measurements, both for field and remote sensing techniques
(e.g. SMOS and SMAP satellites acquire images once every 1 to
3 days). For Cervinara, where the number of landslides is less than
1/1000 of the total observed rainfall events, the threshold corre-
sponding to the maximum T may result too conservative. Indeed,
for near-surface soil moisture, the most reliable threshold is identi-
fied when antecedent moisture conditions are measured 24 h before
rainfall events, minimizing both M and F. Differently, a time lag of

Table 5 Performance indicators of the meteorological landslide thresholds for the
two tested sites. The thresholds have been obtained by maximising the true skill
statistic T for 1000 years long synthetic data sets (T = 1 indicates perfect
predictions)

Indicator Cervinara Giampilieri

Optimal true skill statistic, T 0.934 0.720

Total number of landslides, P 42 231

True alarms, P-M 40 198

Missed alarms, M 2 33

False alarms, F 963 3327
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48 h seems preferable for root-zone moisture content, as it corre-
sponds to the smallest F with only two missed alarms in 1000 years
(Fig. 5 a and b, and Table 6). For Giampilieri, where there is nearly a
landslide every 100 rainfall events, the most reliable thresholds are a
trade-off between M and F, specifically with θNS measured 48 h
before the rainfall, and θRZ exactly at the onset of the rainfall events
(Fig. 5 c and d, and Table 6). These results clearly indicate that the
optimal choice of an empirical thresholds strictly depends on the
characteristics of a specific site, namely on the frequency of the
feared phenomenon. More rigorously, for practical application in
LEWS, the choice should be made quantifying the costs suffered in
case of missed activations of the system, as well as the costs related to
useless activations.

The slope of the threshold line in the log(θ) – log(H) plane is in
all cases very high (i.e. two to five times steeper than the I-D
thresholds), indicating that the obtained hydro-meteorological
thresholds are very sensitive to both the near-surface and root-
zone water content. This shows the information content of ante-
cedent soil moisture for landslide forecasting.

The different behaviour of the two studied sites with respect to
slope instability, reflected by the different performances of the
obtained thresholds, can be ascribed to differences in both soil
hydraulic properties and climate at the two test sites. In Cervinara,
owing to the very high storage capacity of the cover and to the
precipitations spread throughout the entire year, long-term soil
water content fluctuations are relatively limited and typically

Fig. 5 Optimal hydro-meteorological thresholds for the two tested sites. Data are represented in the (θ,H) plane (θ = soil moisture; H = total event rainfall depth; suffix
NS and RZ indicate near surface and root zone soil moisture, respectively). In the 1000 years long synthetic data set, the red dots represent rainfall events followed by the
triggering of a landslide; the blue points are rainfall events after which no landslide was recorded; the red power-law lines, obtained by maximising the true skill statistic
(T), so to get the optimal trade-off between missed and false alarms, represent the thresholds separating the two classes of events: θNS with 24 h lead time for Cervinara
(a); θRZ with 48 h lead time for Cervinara (b); θNS with 48 h lead time for Giampilieri (c); θRZ at the onset of rainfall for Giampilieri (d)

Fig. 4 Optimal T of hydro-meteorological landslide threshold for Cervinara (a) and for Giampilieri (b). NS indicates near-surface soil moisture (i.e. the upper 5 cm soil
layer); RZ indicates root-zone soil moisture (i.e. the upper 1.0 m soil layer); the dashed line indicates the performance of the purely meteorological thresholds. T = 1
indicates perfect predictions
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remain far from soil saturation. In addition, the high hydraulic
conductivity makes the infiltration capacity higher than the peak
intensity of all rainfall events, preventing overland runoff. Conse-
quently, the attainment of landslide triggering conditions is rare
and mostly depends on the total precipitation depth, H, of the
triggering event. In Giampilieri, the higher variability of climate
forcing, together with the much smaller storage capacity of the
cover, enhances the fluctuations of soil water content, favouring
the build-up of pore water pressure in response to rainfall events.
Furthermore, the smaller hydraulic conductivity, while making the
activation of overland runoff more frequent, delays the establish-
ment of leakage through the soil-bedrock interface. Hence, the
attainment of landslide triggering conditions depends both on H
and on the predisposing soil moisture conditions.

Effects of uncertainty in soil moisture information
All the presented results refer to the “ideal” case in which real values
of rainfall, soil moisture, and pore pressure are available, and they all
belong exactly to the point of the slope where the landslide predic-
tion should be carried out. In real applications, instead, one should

deal with uncertainty in the data, originating from errors in the
estimates provided by the available measurement devices, and with
variability owing to their spatial and temporal coarse resolution,
which in most cases obliges to make use of data collected at some
distance (in space and time) from the location and the time at which
the prediction is needed. The issue of spatial variability is particularly
sensitive for uppermost soil moisture, as it is affected by local factors
such as vegetation, soil texture, and drainage conditions.

How uncertainty and variability in rainfall data and landslide
inventories may affect I-D thresholds has been discussed exten-
sively (e.g. (Berti et al. 2012; Nikolopoulos et al. 2014; Peres et al.
2018; Marra 2019)). Hence, the discussion will be limited here to
the effects of the uncertainty of soil moisture information.

All the indirect measurement techniques, either on site or
remote, adopted to get estimates of soil water content in the field,
rely on a calibration relationship, often non-linear, which may
enhance the uncertainty of estimated soil moisture (e.g.
(Robinson et al. 2003; Mohanty et al. 2017; Capparelli et al. 2018)).

As the proposed hydro-meteorological thresholds are empiri-
cal, i.e. they do not make use of any physically based approach for

Fig. 6 Effects of uncertainty in soil moisture measurements on optimal hydro-meteorological thresholds for Cervinara (a) and Giampilieri (b). Data are represented in the
(θNS,H) plane (θNS = near surface soil moisture; H = total event rainfall depth). In the 1000 years long synthetic data set, the red dots represent rainfall events followed
by the triggering of a landslide; the width of the horizontal bars is 0.1, i.e. twice the maximum considered standard deviation of the errors (σe = 0.05 m3 m−3). The power-
law lines are obtained by maximising the true skill statistic (T), so to get the optimal trade-off between missed and false alarms for various degrees of uncertainty. They
represent the thresholds separating events followed by the triggering of a landslide, from those after which no landslide was recorded

Table 7 Effects of uncertainty in soil moisture measurements on the performance of empirical hydro-meteorological thresholds at the site of Cervinara. The thresholds,
identified in the (θNS,H) plane (θNS = near surface soil moisture; H = total event rainfall depth), exploit soil water content 24 h before the onset of rainfall events in a
1000 years long synthetic data set. Events followed by the triggering of a landslide have been separated from those after which no landslide was recorded by maximising
the true skill statistic (T), so to get the optimal trade-off between missed and false alarms. σe is the standard deviation of soil moisture measurement errors; θ the mean
water content prior to the onset of rainfall

Error standard deviation, σe (m
3 m−3) σe

θ
A B T M F

0 0 24.7 − 2.01 0.947 2 301

0.01 0.029 23.2 − 1.94 0.944 2 437

0.02 0.059 32.4 − 1.66 0.945 2 383

0.03 0.088 28.4 − 1.66 0.942 2 548

0.04 0.117 29.6 − 1.68 0.944 2 466

0.05 0.147 31.1 − 1.55 0.940 2 633
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which the degree of saturation is required, the soil moisture data
should be able merely to distinguish wetter from dryer antecedent
soil conditions. In this respect, systematic errors or bias in the
estimates of soil moisture is not much worrisome, while random
errors, if large, may completely change the picture.

So, the robustness of the proposed hydro-meteorological ap-
proach to the definition of empirical thresholds for landslide
predictions has been tested by assuming that the real values of
soil moisture were affected by a Normal-distributed random error
with zeromean, the entity of which was characterised by its standard
deviation, σe. The soil moisture data, provided by the infiltration
model (i.e. the “true” soil moisture values), have been perturbed by
adding to them random errors, and the hydro-meteorological
thresholds for landslide prediction have been identified, on the so
obtained “non-ideal” data set, by maximization of T.

The described procedure has been applied to the two examined
sites, in both cases with reference to the hydro-meteorological
threshold which, making use of near-surface soil moisture, pro-
vided the optimal Twith the “true” soil moisture data. Specifically,
for the case of Cervinara, θNS acquired 24 h prior the beginning of
rainfall events is used (T = 0.947 with “true” data), for Giampilieri,
the hydro-meteorological threshold with θNS acquired 48 h before
the beginning of the rainfall events (T = 0.857). Various scenarios
have been tested, by considering σe varying from 0.01 to
0.05 m3 m−3. The lower limit can be interpreted as representative
of errors of on-site TDR measurements for which a soil-specific
calibration relationship has been experimentally determined
(Robinson et al. 2003). The upper is the reported uncertainty of
the currently available soil moisture retrievals from satellite radar
measurements (Chan et al. 2016).

In Cervinara (Fig. 6a), given the high storage capacity of the soil
(porosity 0.75), it looks clear that the additional spreading of soil
water content data, caused by the introduced random errors, only
slightly affects the performance of the threshold, even in the worst
analysed scenario, slightly increasing only the number of false
alarms. The effect of water content spreading, however, is clearly
visible on the inclination of the threshold curves in the log-log
plane. In fact, the larger are the errors, the less pronounced is the
dependence of the limit rainfall depth H on the initial soil mois-
ture, indicating that the information provided by the initial con-
ditions becomes progressively less significant. Similar effects, but
quantitatively larger, are obtained also for Giampilieri (Fig. 6b),
likely owing to the smaller storage capacity of the soil (porosity

0.35), which makes larger the impact of moisture measurement
errors, leading to a possible increase of false alarms.

Thus, to better quantify the different impacts of soil moisture
measurement errors on the two sites, the standard deviation of the
errors can be divided by the mean of the water content values
preceding all the rainfall events at each site, θ.

In Cervinara (Table 7), even in the worst analysed scenario, σe

does not exceed 15% of the mean pre-event soil water content.
In Giampilieri (Table 8), instead, the errors are relatively larger,

with σe reaching almost 35% of θ, and this affects both the number
of false alarms and missed alarms. However, even in the worst
scenario, about 88% of the landslides are correctly predicted.

Conclusions
Our study shows the advancements in landslide forecasting that
can be achieved by including near surface and root-zone soil
moisture, compared with the traditional, and widely used, meteo-
rological thresholds usually in the form of precipitation intensity-
duration power-law relationships. The results show that the
improvements depend on climate, soil, and geomorphologic
features of the area of interest. Specifically, in the case of soils
with high water storage and infiltration capacity, the use of
soil moisture information can significantly reduce the number
of false alarms. This improvement is robust with respect to
uncertainty in soil moisture data, such as those coming from
remote sensing soil moisture products. In the case of soils
with lower storage capacity and hydraulic conductivity, the
improvement is even stronger, as both false alarms and
missed alarms are reduced, though less robust with respect
to uncertainty in soil moisture data. Our analysis also shows
that the use of root-zone soil moisture enhances the capability
of forecasting shallow landslides more than using near surface
soil moisture information only. Good predictive performances
are obtained with soil moisture measured 1 to 4 days prior to
the onset of a triggering rainfall event, which links with the
current remote sensing temporal resolution. This confirms
that antecedent soil moisture is an important causal, and
dynamic, predisposing factor for landslide initiation, and
therefore a key variable to include in shallow landslide fore-
casting. Our contribution may stimulate a wider use of re-
motely sensed soil moisture products in landslide forecasting,
as their current quality can make landslide early warning

Table 8 Effects of uncertainty in soil moisture measurements on the performance of empirical hydro-meteorological thresholds at the site of Giampilieri. The thresholds,
identified in the (θNS,H) plane (θNS = near surface soil moisture; H = total event rainfall depth), exploit soil water content 48 h before the onset of rainfall events in a
1000 years long synthetic data set. Events followed by the triggering of a landslide have been separated from those after which no landslide was recorded by maximising
the true skill statistic (T), so to get the optimal trade-off between missed and false alarms. σe is the standard deviation of soil moisture measurement errors; θ the mean
water content prior to the onset of rainfall

Error standard deviation, σe (m
3 m−3) σe

θ
A B T M F

0 0 0.0570 − 3.96 0.857 10 2431

0.01 0.069 0.0632 − 3.91 0.848 12 2435

0.02 0.138 0.0946 − 3.54 0.780 17 3558

0.03 0.207 0.0764 − 3.61 0.754 17 4181

0.04 0.277 0.0940 − 3.37 0.704 16 5492

0.05 0.346 0.299 − 2.85 0.687 28 4654
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systems more robust, especially for soil covers characterised
by small storage capacity. Importantly, we hope our results are a
stimulus to continue improving the quality and reliability of remote-
ly sensed near-surface soil moisture measurements as well as root-
zone soil moisture estimates, as they could play an important role in
regional landslide hazard management.
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