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Abstract

Despite the unprecedented growth in our understanding of cell biology, it still remains chal-

lenging to connect it to experimental data obtained with cells and tissues’ physiopathological

status under precise circumstances. This knowledge gap often results in difficulties in

designing validation experiments, which are usually labor-intensive, expensive to perform,

and hard to interpret. Here we propose PHENSIM, a computational tool using a systems

biology approach to simulate how cell phenotypes are affected by the activation/inhibition of

one or multiple biomolecules, and it does so by exploiting signaling pathways. Our tool’s

applications include predicting the outcome of drug administration, knockdown experiments,

gene transduction, and exposure to exosomal cargo. Importantly, PHENSIM enables the

user to make inferences on well-defined cell lines and includes pathway maps from three dif-

ferent model organisms. To assess our approach’s reliability, we built a benchmark from

transcriptomics data gathered from NCBI GEO and performed four case studies on known

biological experiments. Our results show high prediction accuracy, thus highlighting the

capabilities of this methodology. PHENSIM standalone Java application is available at

https://github.com/alaimos/phensim, along with all data and source codes for benchmark-

ing. A web-based user interface is accessible at https://phensim.tech/.

Author summary

Despite the unprecedented growth in our understanding of cell biology, it still remains

challenging to connect it to experimental data obtained with cells and tissues’ physiopath-

ological status under precise circumstances. This knowledge gap often results in difficul-

ties in designing validation experiments, which are usually labor-intensive, expensive to

perform, and hard to interpret. In this context, ’in silico’ simulations can be extensively

applied in massive scales, testing thousands of hypotheses under various conditions,

which is usually experimentally infeasible. At present, many simulation models have
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become available. However, complex biological networks might pose challenges to their

performance.
We propose PHENSIM, a computational tool using a systems biology approach to sim-

ulate how cell phenotypes are affected by the activation/inhibition of one or multiple bio-

molecules, and it does so by exploiting signaling pathways. We implemented our tool as a

freely accessible web application, hoping to allow ’in silico’ simulations to play a more cen-

tral role in the modeling and understanding of biological phenomena.

This is a PLOS Computational Biology Methods paper.

Introduction

Cells of living organisms are continuously exposed to signals originating in both the extracellu-

lar and the intracellular microenvironments. These signals regulate multiple cellular functions,

including gene expression, chromatin remodeling, DNA replication and repair, protein syn-

thesis, and metabolism. The proper response to signals depends on the expression, activation,

or inhibition of sets of interrelated genes/proteins, acting in a well-defined order within the

framework of vector-driven biological processes, aiming to reach specific endpoints. Such sub-

cellular processes are referred to as biological pathways [1].

In this context, the study of genome and transcriptome, the definition of protein-protein

interaction networks, and association studies between gene sets and molecular mechanisms in

humans have produced valuable biological information. However, despite the improvements

in our understanding of cell biology, it is challenging to link omics data to the physiopathologi-

cal status of cells, tissues, or organs under specific conditions. Besides, studies addressing these

issues are often labor-intensive, expensive to perform, and produce big datasets for analysis.

Recently, systems biology computational approaches have emerged as efficient means capa-

ble of bridging the gap between experimental biology at the system-level and quantitative sci-

ences [2]. Indeed, such methods can be used as time- and cost-saving solutions for efficient in
silico predictions [2,3]. Here, network analysis is playing a central role in modeling and under-

standing biological phenomena. In this perspective, simulation methodologies can help under-

stand the intricate interaction patterns between molecular entities, significantly improving

manual analysis. Furthermore, ’in silico’ simulations can be extensively applied in massive

scales, testing thousands of hypotheses under various conditions, which is usually experimen-

tally infeasible.

At present, many simulation models have become available. However, they can be grouped

into two broad categories: (i) discrete/logic or (ii) continuous models [4]. Discrete models rep-

resent each element’s state in a biological network as discrete levels, and the temporal dynamic

is also discretized. At each time step, the state is updated according to a function, determining

how an entity’s state depends on the state of other (usually connected) entities. Boolean net-

works [5,6] and Petri nets [7] represent two types of discrete models. BioNSi (Biological Net-

work Simulator) [8] is an intuitive model, implemented as a Cytoscape 3 plugin [9]. It can use

KEGG pathways [10] as a network model and represents each element in discrete states (usu-

ally up to 10). At each simulation time point, the state of a node is updated using an effect
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function. The simulation ends as soon as it reaches a steady state. The model is easy to use.

However, a more complex biological network might pose challenges to its performance.

Continuous models usually produce real continuous measurements instead of discretized

values, simulating network dynamics over a continuous timescale. Although they could pro-

vide a greater degree of accuracy, these methods are limited by our current description of the

biological systems and our measurement techniques’ capabilities. Continuous linear models

[11,12] and flux balance analysis [13] are the most representative continuous models.

Pathway modeling is an essential step for building networks that simulation methodologies

can use. SBML is an open and interchange format for computer models of biological processes.

However, converting pathways in annotated SBML files suitable for simulation models is not

easy. Several tools such as KEGGconverter [14] or KENeV [15] have been specifically devel-

oped for this objective. These tools can also consider crosstalk with neighboring pathways,

providing improved simulation accuracy. However, KEGGconverter has not been updated

recently, and KENeV does not integrate post-transcriptional regulatory interactions or REAC-

TOME pathways.

Here, we present PHENSIM (PHENotype SIMulator), a web-based, user-friendly tool

allowing phenotype predictions on selected cell lines or tissues in 25 organisms, including

models such as Homo sapiens, Mus musculus, Rattus norvegicus, and Caenorhabditis elegans.
PHENSIM uses a probabilistic algorithm to compute the effect of dysregulated genes, proteins,

microRNAs (miRNAs), and metabolites on KEGG and REACTOME pathways. Results are

summarized through a Perturbation, which represents the expected magnitude of the alter-

ation, and an Activity Score, which is an index of both the predicted effect of a gene dysregula-

tion on a node (up- or down-regulation) and its likelihood. All values are also computed at the

pathway-level. Moreover, to achieve greater accuracy, PHENSIM performs all calculations in

the KEGG meta-pathway, obtained by merging all pathways [16] (see Methods) and integrates

information on miRNA-target and transcription factor (TF)-miRNA extracted from online

public knowledge bases [17]. Furthermore, the meta-pathway can be extended with REAC-

TOME pathways to integrate a broader information source for cellular networks. We imple-

mented our tool as a freely accessible web application at the following URL: https://phensim.

tech/

Results

To assess the performances of PHENSIM, we performed a comprehensive experimental analy-

sis, as detailed in the "Experimental Procedure and Benchmarking" section. First, we built a

benchmark composed of transcriptomics experiments performed on cell lines where a single

gene was perturbed (knockdown, CRISPR, or transfection). Then, we quantitatively evaluated

PHENSIM performance with an additional dataset containing experimental measurements of

gene expression changes following drug treatment of a cell line [18]. Finally, in order to pres-

ent some of the experiments that PHENSIM can perform, we ran four simulations as case

studies and manually analyzed their results.

The benchmark was built by taking public GEO series of up-/down-regulation of single

genes in cell lines. We acquired 22 GEO series further divided into 50 sets of samples (see

Experimental Procedure and Benchmarking for more details). The sets were categorized based

on the genes present in KEGG pathways (DS1 contains all sample sets where the up- or down-

regulated gene was in KEGG; DS2 all the other samples). PHENSIM and BioNSi simulations

were evaluated in terms of Accuracy, Positive Predictive Value (PPV), Sensitivity and Specific-

ity for genes showing altered expression, and PPV and False Negative Rate (FNR) for the

others.
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Our results show that PHENSIM has an average accuracy of 0.6295 for the dataset in the

first category and 0.3650 for the second category. Whereas BioNSi offers an average accuracy

of 0.0640 and 0.0735 for the datasets in the first and second categories. Nevertheless, PHEN-

SIM has higher PPV than BioNSi (0.6899 and 0.5075, respectively) in the first and second cate-

gories (PHENSIM = 0.7350, BioNSi = 0.3282). PHENSIM also shows a greater Sensitivity and

Specificity to BioNSi. Furthermore, since PHENSIM can extend KEGG pathways with REAC-

TOME, we performed the same tests on such an extended network, comparing the results

before and after the integration. However, we could not evaluate BioNSi capabilities in this

context since it could not load the extended network due to its size. In this setting, PHENSIM

showed an average accuracy of 0.6437 with comparable PPV (0.6349) although lower Sensitiv-

ity (0.5416) and comparable Specificity (0.9854) for DS1. A slight decrease of performance can

be observed for DS2 (Accuracy: 0.3291, PPV: 0.7571, Sensitivity: 0.7622, Specificity: 0.9716).

S1 Table reports the detailed comparison in terms of average metrics.

To assess performance differences between the two systems for each dataset, we provide

several graphs comparing each metric. In Fig 1, we summarize the DS1 datasets’ results, and in

Fig 2, we report the results from the DS2 datasets. In each graph, we detail a single metric: Pos-

itive Predictive Value (PPV), Sensitivity and Specificity for genes showing altered expression,

and PPV and False Negative Rate (FNR) for the non-altered ones. On the x-axis, we have

PHENSIM performance, while on the y-axis, we have BioNSi. Each dot represents a dataset.

The black line marks the points where the two algorithms have the same performance. We

summarize the comparisons before and after adding REACTOME pathways in S1 Fig for DS1

and S2 Fig for DS2. In these graphs, the x-axis represents the PHENSIM performance with

REACTOME, while on the y-axis, we have PHENSIM without REACTOME.

Moreover, to quantitatively evaluate network perturbation prediction, we chose an addi-

tional dataset of protein expression measurements following drug treatment of a cell line [18].

The dataset contains measurements of 124 protein levels in a time series from 10 minutes to 67

hours (8 timepoints). The authors followed the perturbation caused by the administration of

54 drug combinations, including several gene inhibitors (MEKi, AKTi, STAT3i, SRCi,

mTORi, BETi, PKCi, RAFi, and JNKi). In Fig 3, we report the analysis results comparing

PHENSIM steady-state predictions with each time point in terms of the Pearson Correlation

Coefficient. Results show that PHENSIM predictions are coherent with the proteomics experi-

ments, reaching the maximal correlation at 24h and 48h.

Finally, to complete our assessment of PHENSIM capabilities, we run several simulations to

perform 4 case studies on known biological experiments: (i) anti-cancer effects of metformin,

(ii) Everolimus (RAD001) treatment in breast cancer, (iii) effects of exosomal vesicles on

hematopoietic stem/progenitor cells (HSPCs) in the bone marrow (BM) and (iv) testing

TNFα/siTPL2-dependent synthetic lethality on a subset of human cancer cell lines. We exam-

ined the ability of PHENSIM to correctly predict the activity status of both individual genes/

proteins and signaling pathways by comparing PHENSIM predictions with experimental data.

In the following sections, we briefly report the results of two case studies: the anti-cancer

effects of metformin and the testing TNFα/siTPL2-dependent synthetic lethality on a subset of

human cancer cell lines. Detailed descriptions of all case studies are provided in S1 Text.

Anti-cancer effects of metformin

Metformin is a widely prescribed agent for the treatment of type 2 diabetes [19–22]. It inhibits

glucose production in the liver and increases insulin sensitivity in the peripheral tissues. Fur-

thermore, metformin treatment reduces insulin secretion by β-pancreatic cells. The key mole-

cule that executes these functions is AMP-activated protein kinase (AMPK). Several evidence
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indicates that metformin may also possess anti-cancer effects, especially in diabetic patients

[19–21]. One of its major drivers seems to be the LBK1-AMPK signaling pathway [21]. An

overview of the metformin-mediated effects is reported in Fig 4.

We ran PHENSIM to simulate the simultaneous upregulation of LKB1 and the downregu-

lation of both insulin (Ins), IGF1, and GPD1 [23]. As expected, PHENSIM returned significant

downregulation of Insulin and mTOR signaling (Insulin activity score = -8.7121, p-value

0.105; mTOR activity score = -8.7121, p-value 0.107). PI3K (phosphoinositide 3-kinase), AKT

(serine/threonine-protein kinase Akt), and metabolite PIP3 (phosphatidylinositol (3,4,5)-tri-

sphosphate) were also downregulated. We also predicted the negative regulation of mTOR

(perturbation = -0.00002) and the activation of the repressor of translation initiation 4EBP

(perturbation = 0.0009). PHENSIM also predicted the inhibition of downstream nodes

involved in protein synthesis as S6Ks (S3A Fig).

Fig 1. Comparison between PHENSIM and BioNSi for datasets where the altered gene was in the meta-pathway. Each graph reports one metric:

Positive Predictive Value (PPV), Sensitivity and Specificity for genes showing altered expression, and PPV and False Negative Rate (FNR) for the non-

altered ones. On the x-axis, we report PHENSIM performance, while on the y-axis, we present BioNSi. Each dot represents a dataset. The black line

marks the points where the two algorithms have the same performance. On a dataset below the line, PHENSIM has better performance than BioNSi;

above the line, it is the opposite.

https://doi.org/10.1371/journal.pcbi.1009069.g001
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MAPK (activity score = -8.7121, p-value 0.113, perturbation = -3.193292579) and NF-κB

(NF-κB perturbation = -0.0008) signaling were predicted downregulated. Furthermore, several

downregulated enzymes and metabolites were correctly detected by PHENSIM (S3B Fig).

Testing TNFα/siTPL2-dependent synthetic lethality on a subset of human

cancer cell lines

TNFα (tumor necrosis factor alpha), a type II transmembrane protein, is a member of the

tumor necrosis factor cytokine superfamily and has an essential role in innate immunity and

inflammation.

Although it can induce cell death, most cells are protected by a variety of rescue

mechanisms.

In a recent paper, Serebrennikova et al. [24] showed that TPL2 (MAP3K8) is one of the

TNFα-induced cell death checkpoints. Its knockdown resulted in the downregulation of miR-

21 and the upregulation of its target CASP8 (caspase-8). This response, combined with the

downregulation of caspase-8 inhibitor cFLIP (FADD-like IL-1β-converting enzyme inhibitory

protein), resulted in the activation of caspase-8 by TNFα and the initiation of apoptosis

Fig 2. Comparison between PHENSIM and BioNSi for datasets where the altered gene was not in the meta-pathway. Each graph

reports one metric: Positive Predictive Value (PPV), Sensitivity and Specificity for genes showing altered expression, and PPV and

False Negative Rate (FNR) for the non-altered ones. On the x-axis, we report the PHENSIM performance, while on the y-axis, we

have BioNSi. Each dot represents a dataset. The black line marks the points where the two algorithms have the same performance.

On a dataset below the line, PHENSIM has better performance than BioNSi; above the line, it is the opposite.

https://doi.org/10.1371/journal.pcbi.1009069.g002
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(Fig 5). The activation of caspase-8 also promotes the activation of the mitochondrial pathway

of apoptosis. It is worth noticing that the activation of the apoptotic (caspase-8-dependent)

pathway in TNFα/siTPL2 treated cells was observed in some but not all cancer cell lines, sug-

gesting that correct prediction will depend on whether the data analyzed by PHENSIM are

derived from sensitive or resistant cells.

To start the simulation, we set TPL2 and miRNA-21-5p as downregulated and TNFα as

upregulated. Since our goal was to simulate the outcome of such treatment in six different cell

lines (HeLa, HCT116, U2-OS, CaCo-2, RKO, and SW480), we ran six simulations. Each simu-

lation had a diverse list of non-expressed genes, one for each cell line.

Among these tumor cell lines, only HeLa, HCT116, U2-OS were sensitive to treatment with

TNFα/siTPL2. PHENSIM couldn’t predict the upregulation of caspase-8 and the

Fig 3. Comparison between PHENSIM predictions and the proteomics measurements of Nyman et al. [18]. We report the

Pearson Correlation Coefficient computed between PHENSIM and the proteomics measurements for each timepoint and drug

combination. Results are summarized through a violin plot detailing both the distribution and the values’ density.

https://doi.org/10.1371/journal.pcbi.1009069.g003
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downregulation of cFLIP for the six cell lines. PHENSIM did not predict any activity score for

MCL1 (Mcl-1 apoptosis regulator) and XIAP (X-linked inhibitor of apoptosis).

PHENSIM could not predict the upregulation of the apoptosis inhibitors BCL2 and

BCL-XL in all cell lines except for HCT116, where BCL2 results positively perturbated (pertur-

bation = 0.001). PHENSIM also showed a negative perturbation of the inducer of mitochon-

drial apoptosis BAX only in HCT116 among the sensitives cell lines (S4 Fig).

Although these results do not entirely reflect our expectations as there are discrepancies

between the in vitro experiment and our predictions, it was confirmed by results obtained in

Serebrennikova et al. [24] that the change in the expression of such molecules was due to the

activation of feedback mechanisms. Interestingly, this result was obtained only for four out of

six cancer cell lines, of which three were sensitive (HeLa, HCT116, and U2-OS), and one was

resistant (CaCo-2).

Furthermore, phosphorylated ERK, MEK, JNK, and p38 activity were strongly downregu-

lated for all cell lines except for RKO, where PHENSIM predict only ERK and p38, and for

Caco-2 cells, which result in a negative activity score for ERK and a weak perturbation for JNK

and p38 genes. Finally, PHENSIM could not predict cIAP2 (baculoviral IAP repeat containing

2) activity, although we could observe a weak negative perturbation in RKO, as confirmed by

the experimental data (S4A and S4B Fig).

Discussion

This paper introduces PHENSIM, a flexible, user-friendly pathway-based simulation tech-

nique, and an in silico tool based on it. PHENSIM has been mainly developed to predict the

effects of one or multiple molecular deregulations on cell/tissue phenotype. Thus, we view

Fig 4. The current model of metformin-mediated pharmacological effects. Black solid edges represent direct interaction between

first neighbor nodes. Dashed edges represent indirect interactions between nodes. Red dot-dashed edges evidence scientifically

validated interactions considered for PHENSIM prediction.

https://doi.org/10.1371/journal.pcbi.1009069.g004
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PHENSIM as an easy-to-use, supportive pathway-based method that can make predictions of

in vitro experiments targeting the expression of signaling processes’ activity.

To evaluate our tool’s potential, we built a benchmark of 50 case/control sample sets

derived from 22 GEO series. Each set contained expression data of experiments regarding the

up- or down-regulation of one single gene in a specific cell line. As previously described, 30

sample sets were directly used since the tested gene was already in KEGG. The remaining 20

sets were simulated through their differentially expressed genes (DEGs). Here, the main idea is

that the DEGs can summarize the downstream alterations caused by the experiment. We com-

pared our approach’s performance with BioNSi, a Cytoscape plugin for modeling biological

networks and simulating their dynamics. Results-based comparative evaluations were per-

formed in terms of accuracy, Positive Predictive Value (PPV), Sensitivity and Specificity for

genes showing altered expression, and PPV and False Negative Rate (FNR) for the non-altered

ones.

We show that, on average, our tool obtains better results than BioNSi in terms of accuracy,

PPV, Sensitivity, Specificity, and FNR. More in detail, for the 30 samples of DS1, we show that

only in 11 cases BioNSi achieves a greater PPV than PHENSIM. However, Sensitivity and

Specificity are still higher for our methodology. In the other 20 samples, PHENSIM consis-

tently outperforms BioNSi. Furthermore, when looking at non-expressed genes, BioNSi has

significantly higher FNR than PHENSIM.

Since PHENSIM can be easily extended with other pathway data sources, we integrated

REACTOME pathways in our knowledge base and performed the same experiments.

Fig 5. Generalized model showing molecular mechanisms underlying the TNFα/siTPL2-dependent synthetic lethality. Black solid edges represent

direct interaction between first neighbor nodes. Dashed edges represent indirect interactions between nodes. Red dot-dashed edges evidence

scientifically validated interactions considered for PHENSIM prediction.

https://doi.org/10.1371/journal.pcbi.1009069.g005
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However, we could not perform any comparison with BioNSi since it could not load the

extended network. Results show that although we have a decreased accuracy, the overall Sensi-

tivity and Specificity of the method are comparable or higher. Therefore, we can hypothesize

that integrating more provenance sources for cellular networks will positively impact the

results generated by PHENSIM.

Moreover, we quantitatively evaluated network perturbation prediction using a dataset of

protein expression measurements following drug treatment [18]. Results show that PHENSIM

predictions are coherent with the proteomics experiments, reaching the maximal correlation

at 24h and 48h.

To further explore PHENSIM capabilities, we performed four case studies in different sce-

narios: drug administration to cultured cells (simulations 1 and 2), effects of exosomal-derived

miRNAs in recipient cells (simulation 3), and the combined targeting of two signaling mole-

cules, which are known to induce synthetic lethality in a subset of cell lines (simulation 4).

After comparison, the literature data and PHENSIM predictions were in almost full agreement

with simulation #1 and partial agreement with the three remaining simulations, showing a dis-

crete degree of accuracy.

Discrepancies with baseline data suggest some limitations in the predictive potential of our

method. However, since pathway analysis relies on prior knowledge about how genes, pro-

teins, and metabolites interact, we hypothesize that such a negative outcome is at least partly

due to the incompleteness of the existing knowledge employed in the study. Indeed, since the

biological pathways on current databases are still largely fragmented, calculations based on

them will inevitably produce less than ideal results [25]. One example of this limitation is pro-

vided by mTORC1 downstream signaling. It is known that mTORC1 promotes protein syn-

thesis by phosphorylating p70SK and 4EBP. It also stimulates ribosome biogenesis via

inhibitory phosphorylation of the RNA Polymerase III repressor MAF1 [26]. mTORC1-in-

duced pyrimidine biosynthesis is stimulated by p70S6K-mediated phosphorylation of the

CAD enzyme (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroor-

otase). Furthermore, the upregulation of 5-phosphoribosyl-1 pyrophosphate (PRPP) is an allo-

steric CAD activator [27,28].

KEGG Pathways do not consider such interactions. Therefore, our tool could not predict

any perturbations for these biological processes. Similar observations can be made for the

downregulation of cFLIP in the siTPL2/TNFα-resistant cell lines by our method. However, we

were able to identify indirect evidence of such activity. On the other hand, the correct predic-

tions obtained for autophagy, RNA transport, and mTOR signaling in simulation 2, and the

mitochondrial apoptotic pathway activation in simulation 4, suggest that, provided with the

right information, PHENSIM is likely to obtain significantly better results.

A further limitation for pathway analysis methods is the current knowledge-base inability

to contextualize gene expression and pathway activation in a cell- and condition-specific man-

ner [25]. Furthermore, pathways do not consider protein isoforms encoded by different genes

or differently processed mRNAs derived from a single gene. This poses a significant limitation

since such isoforms may have unique and sometimes opposite signaling properties. By devel-

oping a strategy that allows removing non-expressed genes from the computation, we offer the

user the possibility to contextualize predictions in a cell- or tissue-dependent manner. In con-

junction with this, integrating KEGG pathways with information from post-transcriptional

regulators such as miRNAs increased the results’ accuracy, leading to considerable improve-

ments in predictions [29]. Moreover, using the meta-pathway approach, instead of single dis-

jointed pathways, partially addresses pathway independence [25].

In conclusion, PHENSIM showed good accuracy in most applications and could predict

the effects of several biological events starting from the analysis of their impact on KEGG. We
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believe that several discrepancies can be traced to the incompleteness of knowledge in KEGG

pathways or the lack of appropriate cell- and condition-specific information. Such incomplete-

nesses can be partially addressed through a manual annotation of the pathways with the miss-

ing elements and links, including miRNA-target and TF-miRNA interactions. Furthermore,

we plan to add other pathway databases such as Reactome or NCI pathway to enhance our

meta-pathway. PHENSIM is limited to the simulation of changes in the expression or activity

of signaling molecules. It is not suitable to simulate genetic aberrations unless they affect mole-

cules’ expression or activity directly. Despite these limitations, our approach shows appreciable

utility in the experimental field as a tool for the reliable prioritization of experiments with

greater success chances.

Methods

Overview of the method

PHENSIM is a randomized algorithm to predict the effect of (up/down) deregulated genes,

metabolites, or microRNAs on the KEGG meta-pathway [16]. The meta-pathway is a network

obtained by merging all KEGG pathways through their common nodes. This approach allows

us to consider pathway crosstalk and, ideally, gives a more comprehensive representation of

the human cell environment. Furthermore, the KEGG meta-pathway is annotated with experi-

mentally validated miRNA-target and Transcription Factor-miRNA interactions to consider

post-transcriptional expression modulation.

Currently, our method uses all KEGG pathways (downloaded on April 2020) with details

on validated miRNA-targets inhibitory interactions downloaded from miRTarBase (release

8.0) [30] and miRecords (updated to April 2013) [31], and TF-miRNAs interactions obtained

from TransmiR (release 2.0) [32]. Furthermore, since the method’s architecture is easily exten-

sible, we include the possibility of integrating REACTOME pathways to the meta-pathway

environment, yielding a richer and more comprehensive model.

To start a simulation, PHENSIM requires a set of nodes (at least one) together with their

"deregulation type" (up-/down-regulation) as input values. We can also provide: (i) a list of

non-expressed genes, (ii) a set of new nodes or edges that will be added to the meta-pathway,

and (iii) the organism. For the sake of clarity, we first define the case when input elements are

independently altered. That is, input nodes whose expression is independently changed from

one another (i.e., transfection of two siRNAs for knockdown of two genes). Next, we report an

efficient and reliable technique to deal with dependent alterations.

PHENSIM uses the input to compute synthetic Log-Fold-Changes (LogFC) values. These

values are then propagated within biological pathways using the MITHrIL algorithm proposed

in Alaimo et al. 2016 [17] to establish how these local perturbations can affect the cellular envi-

ronment. This propagation result is called a "Perturbation," reflecting the change of expression

for a gene in a pathway (negative/positive for down-/up-regulation). This value is computed

for each gene in the meta-pathway. Finally, PHENSIM summarizes all results using two values

for each gene: the "Average Perturbation" and the "Activity Score" (AS). The average perturba-

tion is the mean for all perturbation values computed during the simulation process and repro-

duces the expected change of expression for the entire process. The function of the Activity

Score is twofold. The sign gives the type of predicted effect: positive for activation, negative for

inhibition. The value is the log-likelihood that this effect will occur. Together with the AS,

PHENSIM also computes a p-value through a bootstrapping procedure. All p-values are then

corrected for multiple hypotheses using the q-value approach [33]. PHENSIM p-values are

used to establish how biologically relevant the predicted alteration is for the simulated phe-

nomena—i.e., the lower is a node p-value, the less likely it is that such alteration will occur by
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chance. An overview of the PHENSIM algorithm is depicted in Fig 6. The algorithm com-

prises of 5 main steps. Given a user input, (i) synthetic LogFC are generated and a (ii) simula-

tion step is performed. These steps are repeated 1000 times to (iii) compute the AS. Next,

user input is (iv) randomized, and 100 synthetic LogFC are generated to estimate AS using

the simulation step. The input is randomized 1000 times to obtain greater precision. Finally,

(v) p-values are computed, and the False Discovery Rate is estimated using the q-value

methodology.

PHENSIM is implemented as a Java application for easy deployment on multiple operating

systems. The source code is included in the MITHrIL platform and available at https://github.

com/alaimos/mithril-standalone/tree/mithril-2.2. A web application is also available at https://

phensim.tech/. All experimental data and source codes generated or analyzed during this

study are available at https://github.com/alaimos/phensim.

Synthetic LogFC generation

PHENSIM relies on MITHrIL perturbation analysis to compute the state of a node in the

KEGG meta-pathway. Starting from LogFCs, MITHrIL propagates them through the network

to estimate node and pathway perturbation. Hence a critical step in the PHENSIM simulator is

the generation of Synthetic LogFCs.

By analyzing experimental data from "The Cancer Genome Atlas (TCGA)," we infer the

space of feasible LogFCs. First, we got all cancer and control samples of TCGA to compute

LogFCs of each gene for each cancer sample. With these data, we then fit two normal distribu-

tions for positive and negative LogFCs, respectively. This analysis produced two normal distri-

butions with a mean of 5 for up-regulation (-5 for down-regulation) and a standard deviation

of 2.

Synthetic LogFCs are estimated by sampling the two distributions. More precisely, let x 2
{−1,0,1} be an input value, where −1 represents downregulation, +1 upregulation, and 0 no

expression. At each simulation step, we generate a standard gaussian pseudorandom number,

Fig 6. Description of the PHENSIM algorithm. First, the user provides a set of genes and the type of alteration (over-/under-

expression). Then, synthetic LogFCs are generated, and a simulation step is performed. This procedure is repeated 1000 times to

compute the Activity Scores. Next, user input is randomized, and 100 synthetic LogFC are generated to estimate Activity Scores using

the simulation step. This input randomization is repeated 1000 times for greater precision. Finally, p-values are computed, and the

False Discovery Rate is estimated using the q-value methodology.

https://doi.org/10.1371/journal.pcbi.1009069.g006
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rN xð Þ, by using the polar method [34]. Synthetic LogFCs are then computed as:

LFC xð Þ ¼

max 0; 2 � rN xð Þ þ 5
� �

if x ¼ 1

min 0; 2 � rN xð Þ � 5
� �

if x ¼ � 1

0 if x ¼ 0

8
><

>:
ð1Þ

PHENSIM simulation step

Let the meta-pathway be defined as a graph G(V, E) where V = {V1, V2, . . ., Vm} is the set of all

biological elements (genes, metabolites, miRNAs), and E� V × V is the set of activating or

inhibiting interactions. Moreover, without loss of generality, we define PHENSIM input I ¼
V1 ¼ v1; . . . ;Vn ¼ vnf g where vk 2 {1,0,−1} for 1� k� n, and n�m. As previously described,

we represent downregulation with −1, upregulation with +1, and no expression with 0.

To compute the activity of a biological element, each node Vi is considered as a discrete ran-

dom variable that can assume three possible values: activated (1), inhibited (-1), or unchanged

(0).

Given the input, the probability distribution of each variable is unknown. Therefore, we try

to estimate it by generating synthetic LogFCs, which are then employed by MITHrIL perturba-

tion analysis. Indeed, MITHrIL perturbation reflects the expected gene expression change

when an alteration (expressed in terms of LogFC) is applied to a set of elements in the meta-

pathway. Therefore, we collect these details to estimate a probability distribution empirically.

More in detail, given an input I , at each step t of the simulation, we compute a set of

LogFCs, DEI k; tð Þ for 1 � k � m, where:

DEI k; tð Þ ¼
0 if Vk =2 I

LFC vkð Þ if Vk 2 I
:

(

ð2Þ

Next, for each node 0� i�m, we estimate perturbation at step t as:

PI i; tð Þ ¼ DEI i; tð Þ þ
X

u2U ið Þ

w u; ið Þ
X

d2D ið Þ
w u; dð Þ

PI u; tð Þ; ð3Þ

where U(k) and D(k) are the set of upstream and downstream nodes of Vk, respectively, and w
(j,k) is a weight reflecting the type of interaction between nodes Vj and Vk. In PHENSIM, we

use w(j,k) = 1 for all activating interactions, w(j,k) = −1 for all inhibiting ones. Finally, pertur-

bations are returned for the computation of the Activity Scores. A detailed graphical represen-

tation of the calculation of Eq 3 is depicted in S5 Fig.

Activity score computation

Given the input I , PHENSIM summarizes the activity of a node Vi in an Activity Score, AI ið Þ.
The function of the AS is twofold. The sign gives the type of predicted effect: positive for acti-

vation, negative for inhibition. The value is the log-likelihood that such a result will occur.

Therefore, to determine its value, we need to estimate the probability distribution of each

node. To this end, we repeat the simulation step T times to compute a set of perturbations

PI ið Þ ¼ PI i; tð Þ where 1 � t � Tf g for each node Vi of the graph.

Since the perturbation is negative for downregulation, positive for upregulation, and 0 for

no alteration, we can use the sign function to determine node state. Therefore, by counting the

number of times each state appears during the simulation, we can empirically estimate the
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probability Pr Vi ¼ vijIð Þ for 1� k�m as:

Pr Vi ¼ vijIð Þ ¼
p 2 PI ið Þjsign pð Þ ¼ vif g

T
: ð4Þ

Finally, the activity score for a node Vi can be determined as:

AI ið Þ ¼

log
2

Pr Vi ¼ 1jIð Þ

1 � Pr Vi ¼ 1jIð Þ

� �

if Pr Vi ¼ 1jIð Þ > 1 � Pr Vi ¼ 1jIð Þð Þ

� log
2

Pr Vi ¼ � 1jIð Þ

1 � Pr Vi ¼ � 1jIð Þ

� �

if Pr Vi ¼ � 1jIð Þ > 1 � Pr Vi ¼ � 1jIð Þð Þ

0 if Pr Vi ¼ 0jIð Þ > 1 � Pr Vi ¼ 0jIð Þð Þ

8
>>>>>><

>>>>>>:

: ð5Þ

In all our experiments, we set T ¼ 1000 for the simulation step. A detailed graphical repre-

sentation of the computation of Eqs 4 and 5 is depicted in S5F Fig.

Bootstrapping and randomization

With the Activity Score, PHENSIM computes a p-value to establish which of the observed

alterations are biologically relevant and not obtained by chance. Our idea is that a node is bio-

logically relevant for the input if it is unlikely to observe a similar alteration when perturbing

random nodes in the same way. We achieve this through a bootstrapping procedure together

with input randomization. Given the I ¼ V1 ¼ v1; . . . ;Vn ¼ vnf g, we compute R random

input set by taking arbitrary nodes from the KEGG meta-pathway. That is, for each randomi-

zation 1 � r � R; we define a random input set IR rð Þ ¼ Vj1 rð Þ ¼ v1; . . . ;Vjn rð Þ ¼ vn
n o

where

Vjk rð Þ 2 V is a node of the meta-pathway chosen randomly in V. Next, for each input set, we

compute synthetic LogFCs and run T simulation steps to determine random Activity Scores,
AIR rð Þ ið Þ. For the bootstrapping and randomization procedures, we set R ¼ 1000 and

T ¼ 100.

P-values computation and False Discovery Rate

PHENSIM p-value is empirically computed using the results from all simulations. Let AI ið Þ be

the Activity Score computed for node 1� i�m in the input simulation, and AIR rð Þ ið Þ be the

random Activity Score computed for an input randomization 1 � r � R. We can say that a

node alteration is not biologically relevant for the input if its probability is more significant

than what might happen by chance. Therefore, if AIR rð Þ ið Þ > AI ið Þ for most cases, we can say

that the alteration is not specific for the simulated phenomena. We can synthesize this by

using an empirically computed p-value as:

pvI ið Þ ¼
jfrkAIRðrÞ

ðiÞj > jAIðiÞjgj
R

: ð6Þ

All p-values are then corrected for multiple hypotheses using the q-value approach and

given as output together with the Activity Score and Average Perturbation.

Dealing with dependent nodes

Eq 1 implies that all input nodes are altered independently from one another. However, we

might want to simulate the case where two or more nodes are dependent. Since we do not

always know how this dependency might alter the LogFC distribution, we can employ a

PLOS COMPUTATIONAL BIOLOGY PHENSIM: Phenotype Simulator

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009069 June 24, 2021 14 / 21

https://doi.org/10.1371/journal.pcbi.1009069


simplified solution to address this. Indeed, we can modify the meta-pathway avoiding any

changes to Eq 1.

Let I be the input and Vi1
; . . . ;Vit

n o
� I the dependent nodes, where 1� ik� n and 1�

k� t� n. We can create a novel node V� in the KEGG meta-pathway. Then, each edge con-

necting V� ! Vik
is built, and its weight is assigned as w V�;Vik

� �
¼ vik , where vik is the direc-

tion of the deregulation we wish to simulate. Therefore, we can build a new input set I �, where

all nodes are independent, as:

I � ¼ V� ¼ 1f g [ I n Vi1
; . . . ;Vit

n o
:

This new set can be used to approximate synthetic LogFC, taking dependencies into

account, without estimating how such dependencies alter Log-Fold-Changes distribution. A

detailed graphical representation of the process is depicted in S6 Fig.

Experimental procedure and benchmarking

To assess PHENSIM prediction reliability, we built a benchmark based on data published in

the GEO [35] database. More in detail, we want to determine how much PHENSIM can cor-

rectly predict the biological outcomes of the up-/down-regulation of a gene in a cell line

through comparisons with expression data collected before and after the alteration. Therefore,

we gathered 22 GEO series of cell lines with a perturbed gene. Since these series could contain

multiple perturbation experiments of different genes or in several cell lines, we obtained a total

of 50 case/control sample sets. Their details are shown in S2 Table together with the name and

code of the GEO series, the technology used to determine gene expression, the perturbed gene,

the type of experiment (knockout, knockdown, transfection, CRISPR, etc.), whether the gene

is present in KEGG pathways, and the GEO accessions of the case and control samples. Each

sample set was then divided into two categories, which were analyzed differently: (i) samples

whose altered gene is present in the meta-pathway (called DS1), and (ii) samples whose per-

turbed gene is not in the meta-pathway (called DS2). For DS1, we directly simulated the alter-

ation of the gene using PHENSIM. For DS2, we simulated the alteration of the differentially

expressed genes (DEGs) computed between cases and controls. The rationale behind this

choice is that DEGs somehow represent the effect of the source alteration.

For each dataset, non-expressed genes were identified according to the experiment type:

Microarray or Sequencing. For sequencing, we chose all genes with an average count of less

than 10. For microarrays, we selected all genes exhibiting an average expression less than the

10th percentile.

DEGs were computed using Limma [36] with a p-value threshold of 0.05 and a LogFC

threshold of 0.6.

Each sample set was simulated as described above. Then, we compared PHENSIM predic-

tions (up/down-regulation) with LogFC computed on the expression data. All genes showing

an absolute LogFC lower than 0.6 were considered as non-altered. Finally, we assessed the

results in terms of accuracy (the number of correctly predicted genes divided by the total num-

ber of genes). Furthermore, since accuracy can be influenced by class imbalance, we chose to

compute Positive Predictive Value (PPV), Sensitivity, Specificity, and False Negative Rate

(FNR) according to the type of alteration found in the expression data. More in detail, for

altered genes (LogFC > 0.6), we want to identify upregulation and downregulation events cor-

rectly. Therefore, the True Positives (TPs) are genes predicted as upregulated with positive

LogFC in the expression data. In contrast, genes predicted as downregulated with a negative
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LogFC are the True Negatives (TNs). Furthermore, genes predicted as upregulated with a neg-

ative LogFC are False Positives, and downregulated genes with a positive LogFC are False Neg-

atives. Now, we can determine the ability of PHENSIM to correctly identify upregulated genes

by computing PPV and Sensitivity, while the performance regarding downregulated ones can

be assessed through Specificity:

PPV ¼
TP

TP þ FP
;

Sensitivity ¼
TP

TP þ FN
;

Specificity ¼
TN

TN þ FP
:

Concerning non-altered genes, we are interested in determining whether PHENSIM is

capable of correctly identifying them. In this case, a gene that is predicted as non-altered with

a LogFC < 0.6 is considered as a True Positive, while a gene indicated as altered with a

LogFC < 0.6 is a False Negative. Therefore, we can estimate the rate of correctly identified

non-altered genes in terms of PPV, while the FNR shows us the percentage of non-altered

genes that are wrongly identified as perturbed by PHENSIM:

FNR ¼
FN

FN þ TP
:

To compare performances with BioNSi, we ran the same simulations and computed the

same metrics on the results. BioNSi requires an expression (in the range 0–9) for each gene

and tracks how it changes until a steady state is reached. Therefore, a gene is up-/down-regu-

lated if the simulated expression increases/decreases between the initial and the final state,

respectively. If no change is observed, the gene is not perturbed. To run the simulation, we

loaded the meta-pathway and set all genes’ expression levels to 5. Next, we gave expression 9

for upregulated genes and 1 for down-regulated ones.

Moreover, since PHENSIM can extend KEGG pathways with REACTOME ones, we

decided to run all tests on this extended network, comparing the results before and after the

extension. However, we could not perform any comparison with BioNSi since it could not

load the extended network due to its size. Finally, to quantitatively evaluate network perturba-

tion prediction, we chose an additional dataset containing experimental measurements of pro-

tein expression changes following drug treatment in a cell line [18]. The dataset comprises 124

protein levels in a time series from 10 minutes to 67 hours (8 timepoints). The authors fol-

lowed the perturbation caused by the administration of 54 drug combinations, including sev-

eral gene inhibitors (MEKi, AKTi, STAT3i, SRCi, mTORi, BETi, PKCi, RAFi, and JNKi). To

perform the comparison, we first gathered all drug targets from Nyman et al. [18]. Then, we

simulated the alteration of their targets for each drug combination and collected the results

concerning the 124 proteins. Finally, we computed the Pearson Correlation Coefficient

between our predictions and the actual measurement to indicate results consistency.

All raw data, input files, and other source codes are available for download at https://github.

com/alaimos/phensim/tree/master/Benchmark.
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Supporting information

S1 Table. Summary of the comparisons between PHENSIM and BioNSi. We computed for

both software accuracy, Positive Predictive Value (PPV), Sensitivity and Specificity for genes

showing altered expression, and PPV and False Negative Rate (FNR) for the non-altered

ones. The sample sets were categorized based on the KEGG meta-pathway genes: DS1 con-

tains all sample sets where the up- or down-regulated gene was in KEGG; DS2 all the remain-

ing ones.

(XLSX)

S2 Table. List of sample sets used for the benchmark. Here we report a list of all sample

sets used to evaluate performances of both PHENSIM and BioNSi. For each sample set, we

report the GEO series from which the samples were taken together with the title and the

technology used to assess expression. Furthermore, we report the altered gene, its type of

alteration (Overexpression or Underexpression), and the GEO sample identifiers for both

cases and controls. We also report if the gene was present and not isolated in the KEGG

meta-pathway.

(XLSX)

S3 Table. Summary of the predictions for the MAPK and NF-κB signaling pathways. Here,

we report the most important predictions made by PHENSIM for the MAPK and NF-κB sig-

naling pathways. We report a set of relevant nodes for each pathway together with their pertur-

bation, activity score, and p-value.

(XLSX)

S1 Text. Supplementary results.

(DOCX)

S2 Text. Stability of the perturbation analysis.

(DOCX)

S1 Fig. Comparison between PHENSIM with and without REACTOME for datasets where

the altered gene belongs to the meta-pathway. Each graph reports one metric: Positive Pre-

dictive Value (PPV), Sensitivity and Specificity for genes showing altered expression, and PPV

and False Negative Rate (FNR) for the non-altered ones. On the x-axis, we report PHENSIM

performance with REACTOME, while on the y-axis, we present PHENSIM without REAC-

TOME. Each dot is a dataset. The line marks the points where the two variants have the same

performance.

(TIF)

S2 Fig. Comparison between PHENSIM with and without REACTOME for datasets where

the altered gene was not in the meta-pathway. Each graph reports one metric: Positive Pre-

dictive Value (PPV), Sensitivity and Specificity for genes showing altered expression, and PPV

and False Negative Rate (FNR) for the non-altered ones. On the x-axis, we report the PHEN-

SIM performance with REACTOME, while on the y-axis, we have PHENSIM without REAC-

TOME. Each dot is a dataset. The black line marks the points where the two algorithms have

the same performance.

(TIF)

S3 Fig. Anti-cancer effects of metformin predicted by PHENSIM. The simulation was

launched by assuming the downregulation of INS and IGF-1 and upregulation of LKB1. In

S3A Fig, we show predictions related to the mTOR signaling. In S3B Fig, we show predictions

related to a subset of nodes belonging to the MAPK signaling and involved in the TNF
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signaling pathway. Downregulated nodes are colored in blue. Upregulated nodes are colored

in red.

(TIF)

S4 Fig. Effects of TPL2 KD and TNFα simulated by PHENSIM. In S4A and S4B Fig are

shown results obtained for TNF signaling and Apoptosis pathway, respectively, in the context

of HeLa cells (chosen as representative for sensitive cell lines). In S4C and S4D Fig are shown

results obtained for TNF signaling and Apoptosis pathway, respectively, in the context of RKO

cells (chosen as representative for resistant cell lines). Results for CaCo-2 cells, for which

PHENSIM returned a deregulation pattern like that of sensitive cell lines, are not shown.

Downregulated nodes are colored in blue. Upregulated nodes are colored in red.

(TIF)

S5 Fig. Toy example of the computation process of Eqs 3, 4 and 5. (A) By making use of the

input (upregulation of genes a and d), the algorithm prepares the starting point of the pertur-

bation analysis (DEI ) by sampling from the LogFCs distributions. Such values are then propa-

gated through the network using Eq 3 (B-E) to determine perturbation values. As soon as the

steady-state is reached, we collect each gene’s result. Then the process is repeated. Next, for

each pathway node, we count the number of times the perturbation is positive (up-regulation),

negative (down-regulation), or zero (non-expressed), and the probabilities of each state are

empirically estimated (Eq 4). Finally, the activity score is established using Eq 5.

(TIF)

S6 Fig. Manipulation of the meta-pathway when simulating dependent nodes. We wish to

simulate the upregulation of nodes V1 and V2 and downregulation of V3. Since we know that

the expression of V2 and V3 are dependent, we add a novel node V� which activates V2 ((V�,

V2) = 1) and inhibits V3 ((X�, X2) = −1). Finally, we can simulate by upregulating both nodes

V1 and V�.

(TIF)

S7 Fig. mTORC1 and its downstream signaling pathways. Black solid edges represent direct

interaction between first neighbor nodes. Dashed edges represent indirect interactions

between nodes. Red dot-dashed edges evidence scientifically validated interactions considered

for PHENSIM prediction.

(TIF)

S8 Fig. Prediction of perturbation on pathways in mammary tissue caused by Everolimus.

S8A Fig reports the top 10 list of negatively deregulated pathways, among which figured both

the RNA transport and mTOR signaling pathways. In S8B Fig are shown predictions related to

the mTOR signaling. Downregulated nodes are colored in blue. Upregulated nodes are colored

in red.

(TIF)

S9 Fig. A reconstructed model showing cellular components involved in hematopoiesis

and motility of HSPCs and their downregulation mediated by exosomal-miRNAs derived

from AML cells. Black solid edges represent direct interaction between first neighbor nodes.

Dashed edges represent indirect interactions between nodes. Red dot-dashed edges evidence

scientifically validated interactions considered for PHENSIM prediction.

(TIF)

S10 Fig. Prediction of perturbations caused by AML-derived exosomal miRNAs on recipi-

ent cells. S10A and S10B Fig show the deregulation of several nodes belonging to the
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Osteoclast differentiation pathway and the Cytokine-cytokine receptor interaction pathway,

respectively. In S10C Fig, we show downregulation of c-Myb within the PI3K-Akt signaling

pathway. Downregulated nodes are colored in blue. Upregulated nodes are colored in red.

(TIF)
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