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Introduction

The problem of rationality of Fano fourfolds, with particular regard to the
cases of cubic fourfolds and Gushel–Mukai fourfolds, dates back to classical
works; see e.g. [10,23,26] (see also Table 2 below). Despite the great attention
received and the numerous results obtained, this is still an open problem for
the general fourfold. For instance, no examples of cubic fourfolds as well as
of Gushel-Mukai fourfolds are known to be irrational, and there are not so
many constructions of rational examples. The contribution of this paper is
in the construction of some new special examples of rational Gushel-Mukai
fourfolds. This is achieved by determining their equations through calcula-
tions with Macaulay2 [13], using mainly the packages SpecialFanoFourfolds
[34] and Cremona [31]. In particular, these packages provide the tools needed
to verify the claims in the paper.

Recall that by a result of Mukai [24] (extending to all dimensions a
result of Gushel proved in [14] only in dimension three), a complex smooth
prime Fano fourfold X of degree 10 and genus 6, also known as Gushel–Mukai
fourfold, can be embedded in P

8 as a quadratic section of a 5-dimensional
linear section Y ⊂ P

8 of the cone C(G(1, 4)) ⊂ P
10 over the Grassmannian

G(1, 4) ⊂ P
9 of lines in P

4. There are two cases:
• either Y does not contain the vertex of the cone C(G(1, 4)), in which

case Y is isomorphic to a hyperplane section of G(1, 4), and we have an
embedding γX : X ↪→ G(1, 4);

• or otherwise Y is isomorphic to a cone over a 4-dimensional linear section
Y0 of G(1, 4), and we have a double cover γX : X → Y0 ⊂ G(1, 4).

The fourfolds in the second case are called Gushel fourfolds, and they are spe-
cializations of fourfolds in the first case, called Mukai (or ordinary) fourfolds.
In both cases, the map γX from X to G(1, 4) is called the Gushel map.
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By results proved in [3] (see also [4–6]), Fano fourfolds as above are
parameterized (up to isomorphism) by the points of a coarse moduli space
M4 of dimension 24, where the Gushel fourfolds correspond to the points
of a closed irreducible subvariety MG

4 ⊂ M4 of codimension 2. A fourfold
[X] ∈ M4 is said to be special (or Hodge-special) if it contains a surface
whose cohomology class does not lie in γ∗

X(H4(G(1, 4),Z)); equivalently, [X]
is special if and only if rk(H2,2(X) ∩ H4(X,Z)) ≥ 3. A fourfold which corre-
sponds to a very general point in M4 or in MG

4 is not special. More precisely,
special fourfolds are parametrized by an infinite countable union of hyper-
surfaces

⋃
d(M4)d ⊂ M4, labelled by the integers d ≥ 10 with d ≡ 0, 2, or

4 (mod 8). If d ≡ 0 (mod 4) then the hypersurface (M4)d is irreducible,
while if d ≡ 2 (mod 8) then it is the union of two irreducible components
(M4)′

d ∪ (M4)
′′
d . When a fourfold [X] corresponds to a very general point of

a component of (M4)d, then the lattice H2,2(X) ∩ H4(X,Z) has rank 3 and
discriminant d. One says that X has discriminant d if [X] ∈ (M4)d.

Suppose we have a fourfold [X] ∈ M4 containing an irreducible surface
S of degree deg(S) and (sectional) genus g(S), which has smooth normaliza-
tion and only a finite number δ of nodes as singularities. Let aσ3,1 + bσ2,2

be the class of γX∗(S) in the Chow ring of G(1, 4). The double point for-
mula (see [12, Theorem 9.3] and also [3, Section 7]) gives the value of the
self-intersection of S in X:

(S)2X = 3 a + 4 b − 2 deg(S) + 4 g(S) − 12χ(OS) + 2K2
S − 4 + 2 δ. (0.1)

Thus we have that [X] ∈ (M4)d, where d is the discriminant of the lattice
spanned by (γ∗

X(σ1,1), γ∗
X(σ2), [S]), that is

d = disc

⎛

⎜
⎜
⎝

γ∗
X(σ1,1) γ∗

X(σ2) [S]
γ∗
X(σ1,1) 2 2 b
γ∗
X(σ2) 2 4 a
[S] b a (S)2X

⎞

⎟
⎟
⎠ = 4(S)2X − 2a2 + 4ab − 4b2.

(0.2)

Moreover, when d ≡ 2 (mod 8), we have that [X] ∈ (M4)′
d if a + b is even,

and [X] ∈ (M4)
′′
d if b is even.

For some values of the discriminant d, a fourfold [X] ∈ (M4)d has an
associated K3 surface of degree d; and for others, it has an associated cubic
fourfold of discriminant d; see [3, Section 6] for precise definitions. The first
values for which there is an associated K3 surface are:

10, 12, 16, 18, 20, 24, 26, 28, 32, 34, 36, 40, 42, 44, 48, 50, 52, 56, 58, 60, . . .

while, the first values for which there is an associated cubic fourfold are:

10, 12, 16, 18, 20, 24, 26, 28, 32, 34, 36, 40, 42, 44, 48, 50, 52, 56, 58, 60, . . .

The notion of associated K3 surface leads to the following conjecture, which
is analogous to the so-called Kuznetsov conjecture for the rationality of cubic
fourfolds (see [1,2,17,21,22,27,28]):
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Conjecture. A fourfold [X] ∈ M4 is rational if and only if it has an associated
K3 surface, that is [X] belongs to the infinite union:

(M4)
′
10 ∪ (M4)

′′
10 ∪ (M4)20 ∪ (M4)

′
26 ∪ (M4)

′′
26 ∪ (M4)

′
34 ∪ (M4)

′′
34 ∪ · · ·

(0.3)

The rationality for fourfolds in (M4)
′
10 is easy to show (see [3, Propo-

sition 7.3], [29, Section 4.4], and also [19, Example 1.1]), and moreover the
associated K3 surface of degree 10 appears naturally in the construction of
the birational map P

4 ��� X. The rationality for the fourfolds in (M4)
′′
10 is

classical: it is achieved by Roth in [26] as a consequence of a result of Enriques
[9,30]; see also [3, Proposition 7.5]. In this last case, however, the role of the
associated K3 surface is not so clear. In the recent paper [19], it is showed
that a general fourfold in (M4)20 (and hence every by the main result in
[20]) is rational. Again, the associated K3 surface of degree 20 appears in the
explicit construction leading to rationality. In conclusion, we have that every
fourfold in the first three components of (0.3) is rational.

Restricting attention to the case of Gushel fourfolds, we point out that
using the same method presented in [32], just by replacing the role of the
smooth cubic scroll surface in [32, Table 2] with that of a cone over a twisted
cubic curve, one can find explicit Gushel fourfolds in (M4)

′
10, (M4)

′′
10, and

(M4)20. In particular, the following three intersections

(M4)
′
10 ∩ MG

4 , (M4)
′′
10 ∩ MG

4 , (M4)20 ∩ MG
4

are not empty, and hence they parametrize rational fourfolds.
As far as the author knows, no other fourfolds in M4 as well as in

MG
4 are known to be rational. In the following of this paper, we explain

how to find explicit equations and parameterizations of rational fourfolds in
(M4)′′

26 ∩ MG
4 and (M4)′′

26 \ MG
4 ; see also Table 1 for a summary.

1. Construction of New Rational Gushel Fourfolds

In this section, we construct rational fourfolds in (M4)′′
26 ∩ MG

4 . Here we
briefly summarize the construction. In Sect. 1.1, starting with a general cubic
fourfold C in C26, we explain how to determine the equations of a smooth
surface S ⊂ P

8 of degree 17 and sectional genus 11, which is isomorphic to
a triple projection of a minimal K3 surface of degree 26 in P

14. In Sect. 1.2,
we embed the surface S into a smooth quadratic section X of a cone Y over
a smooth 4-dimensional linear section of G(1, 4). Then we deduce that X is
a fourfold in (M4)′′

26 ∩ MG
4 since γX∗([S]) = 11σ3,1 + 6σ2,2 in the Chow ring

of G(1, 4). In Sect. 1.3, we remark that the fourfold X may not be a general
point in (M4)′′

26 ∩ MG
4 . In Sect. 1.4, we illustrate two different methods to

deduce that the surface S admits inside the cone Y a congruence of 9-secant
rational normal quintic curves: through a general point of Y there passes a
unique rational normal quintic curve which is 9-secant to S and contained in
Y . In Sect. 1.5, we show how from this congruence of quintic curves, using
in an essential way that Y is not smooth, we can deduce that X is rational.
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In Sect. 1.6, we describe an explicit birational map between X and the cubic
fourfold C.

1.1. Rationality of Cubic Fourfolds in C26

Here we recall some results from [27,28] (see also [29]) about the rationality
of special cubic fourfolds of discriminant 26; see also [15–17] for general facts
on cubic fourfolds.

Let D ⊂ P
5 be a septimic surface with one node, which is the projection

of a smooth del Pezzo surface of degree seven D′ ⊂ P
7 from a general line

intersecting the secant variety of D′ at one point. A cubic fourfold C ⊂ P
5

containing the surface D has discriminant 26, and more precisely the locus
C26 of cubic fourfolds of discriminant 26 can be described as the closure inside
the moduli space C of cubic fourfolds of the locus of fourfolds containing such
a surface.

The surface D ⊂ P
5 admits a congruence of 5-secant conics: through

a general point in P
5 there passes a unique 5-secant conic to D. Moreover,

the linear system |H0(I2
D,P5(5))| of hypersurfaces of degree 5 with points of

multiplicity 2 along D gives a dominant map

P
5 ��� Y0 ⊂ P

7, (1.1)

whose general fibers are the conic curves of the congruence, and where Y0

is a smooth 4-dimensional linear section of G(1, 4) ⊂ P
9. The restriction of

the map (1.1) to a general cubic fourfold C through D induces a birational
map C ��� Y0, whose inverse is defined by the linear system |H0(I2

S0,Y0
(5))|

of hypersurfaces in Y0 of degree 5 having points of multiplicity 2 along an
irreducible surface S0 ⊂ Y0 ⊂ P

7 of degree 17 and sectional genus 11 cut out
by the 5 quadrics defining Y0 and 13 cubics.

It turns out that S0 is the projection of a surface S ⊂ P
8 from a special

point p on the secant variety of S, where S is a smooth surface of degree
17, sectional genus 11, cut out by 12 quadrics, and isomorphic to a triple
projection of a minimal K3 surface of degree 26 in P

14. The equations of S can
be determined from those of S0 using the package IntegralClosure [8]; see also
the function associatedK3surface from the package SpecialFanoFourfolds
[34], which does most of this automatically.

1.2. Gushel Fourfolds in (M4)′′
26: Construction of a Triple S ⊂ X ⊂ Y

Continuing from the previous subsection, let νp : P8 ��� P
7 denote the pro-

jection from the point p such that νp(S) = S0, and let Y = ν−1
p (Y0) be the

cone over Y0 of vertex p. Let X ⊂ Y be a general quadratic section of Y
containing S. Then X is a smooth Gushel fourfold which belongs to (M4)′′

26.
Indeed, the surface S0 ⊂ Y0 ⊂ G(1, 4), which is equal to the image of

S via the Gushel map of X, has class 11σ3,1 + 6σ2,2 in the Chow ring of
G(1, 4), as one can verify by simple calculations with Schubert cycles. Then,
from (0.1) and (0.2) it follows that (S)2X = 37 and [X] ∈ (M4)

′′
26, since one

has deg(S) = 17, g(S) = 11, χ(OS) = 2, and K2
S = −1. This calculation can

be performed automatically using the functions discriminant and describe
from the package SpecialFanoFourfolds.
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1.3. Count of Parameters from the Triple S ⊂ X ⊂ Y

Let NS/X and NS/Y denote, respectively, the normal bundle of the surface
S in X, and of S in Y . A Macaulay2 calculation tells us that h1(NS/Y ) = 0,
h0(NS/Y ) = 37, and h0(NS/X) = 6. It follows that there exists a unique
irreducible component S of the Hilbert scheme of Y which contains [S], and
S is smooth at [S] of dimension 37. Since we have h0(IS,Y (2)) = 7 (and this
value is minimal on S), we deduce by the same semicontinuity argument ex-
plained in [32, Subsection 1.5] that inside the 39-dimensional projective space
P(H0(OY (2))) of quadratic sections of Y the family of fourfolds containing a
surface in S has codimension at most 39 − (37 + (7 − 1) − 6) = 2. This calcu-
lation can be performed automatically using the function parameterCount
from the package SpecialFanoFourfolds.

1.4. Congruence of 9-Secant Quintic Curves to S ⊂ Y

We claim that the surface S admits inside Y a congruence of 9-secant rational
normal quintic curves: through a general point of Y there passes a unique
rational normal quintic curve which is 9-secant to S and contained in Y .

This can be verified by considering the rational map φ : Y ��� P
6 defined

by the linear system |H0(IS,Y (2))| of quadratic sections through S, which is
birational onto a non-normal sextic hypersurface Z ⊂ P

6. If p ∈ Y is a general
point, then through the point φ(p) ∈ Z there pass 72 lines that are contained
in Z. These 72 lines come from (2e − 1)-secant curves to S of degree e ≥ 1
which pass through p and are contained in Y . Denoting by ne the number of
such degree-e curves, we have n1 = 11, n2 = 22, n3 = 32, n4 = 6, n5 = 1,
and ne = 0 for e ≥ 6. This calculation can be performed automatically using
the function detectCongruence from the package SpecialFanoFourfolds.

Alternately, using tools from the package Cremona, one verifies that the
linear system |H0(I5

S,Y (9))| of hypersurfaces in Y of degree 9 with points of
multiplicity 5 along S gives a dominant rational map

Y ��� X ′ ⊂ P
8, (1.2)

whose general fibers are rational normal quintic curves, the curves of the
congruence to S. The image X ′ is a Gushel fourfold, a smooth quadratic
section of a cone Y ′ ⊂ P

8 over a smooth 4-dimensional linear section of
G(1, 4).

The restriction of the map (1.2) to X induces a birational map

Y ⊃ X
���� X ′ ⊂ Y ′, (1.3)

whose inverse is of the same type, i.e, it is the restriction to X ′ of the rational
map Y ′ ��� X defined by the linear system of hypersurfaces in Y ′ of degree
9 with points of multiplicity 5 along a smooth triple projection S′ ⊂ Y ′ of a
minimal K3 surface of degree 26. In particular, the Gushel fourfold X ′ also
belongs to (M4)

′′
26.
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1.5. Rationality of X from the Rationality of a Particular Rational Singular
Fourfold X̂ with S ⊂ X̂ ⊂ Y

Let X̂ ⊂ Y be a general quadratic section of Y containing the surface S and
the vertex p of Y . Then X̂ has p as the only singularity and the restriction
of the projection from p induces a birational map X̂���Y0, whose inverse is
defined by the quadrics through a minimal K3 surface F of degree 10. Since
Y0 = G(1, 4)∩P7 is rational (indeed, the projection from the unique σ2,2-plane
contained in it gives a birational map onto P

4), we have that X̂ is rational.
On the other hand, the restriction of the map (1.2) induces a birational map

Y ⊃ X̂
���� X ′ ⊂ Y ′,

due to the fact that X̂ is transversal to the congruence to S: the quintic curve
of the congruence passing through a general point of X̂ is not contained in
X̂. Therefore we deduce that also X ′ and hence X are rational.

1.6. Summary Construction

Summing up we have the following diagram of birational maps, connecting
explicitly general cubic fourfolds in C26 to Gushel fourfolds in (M4)′′

26:

P
5

��

� � � �
�
�
�

Y

��

� � � �
�
�
�

Y ′

��

� � � �
�
�
�

C
��

��

|H0(I2
D(5))|

��	 
 � � �
Y0

|H0(I2
S0

(5))|

�� 	
���

|H0(IF (2))|
�� 
 � � �
X̂� �

��

��

��

|H0(Ip(1))|

�� 
���

|H0(I5
S(9))|

��	 
 � �
X ′�
�

��

� �

��
|H0(I5

Ŝ′ (9))|

��

���

|H0(I5
S′ (9))|

��
 � � �
X� �

��
|H0(I5

S(9))|

�� 	
��

Y

		

����
�

�
�

Y ′

		

����
�

�
�

Y

		

����
�

�
�

(1.4)

where [C] ∈ C26 is a general cubic fourfold of discriminant 26 containing
a septimic one-nodal del Pezzo surface D; [X], [X ′] ∈ (M4)′′

26 ∩ MG
4 are

(smooth) Gushel fourfolds of discriminant 26 contained, respectively, in cones
Y and Y ′ over Y0 = G(1, 4) ∩ P

7; X̂ ⊂ Y is a Gushel fourfold singular at p,
where p is the vertex of Y ; S ⊂ X ∩ X̂ and S′, Ŝ′ ⊂ X ′ are smooth surfaces,
isomorphic to triple projections of minimal K3 surfaces of degree 26 (the
intersection S′ ∩ Ŝ′ consists of a twisted cubic curve and 31 points); S0 ⊂ Y0

is the projection of S from p; and F ⊂ Y0 is a minimal K3 surface of degree
10.

1.7. Ancillary Files

We provide an ancillary file, named gushel26.m2,1 containing explicit equa-
tions for an example of map as (1.3) over the finite field F10000019 (this is only
necessary to reduce the size of the file). After loading that file in Macaulay2,
some variables will be defined as follows:

X, X’ two instances of the type SpecialGushelMukaiFourfold, re-
spectively, the source and target of the map (1.3);

1It is available at https://github.com/giovannistagliano/RationalGushelFourfolds.

https://github.com/giovannistagliano/RationalGushelFourfolds
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psi, psi’ two instances of the type RationalMap, respectively, the bira-
tional map (1.3) and its inverse (psi’ is the same that inverse
psi);

Psi, Psi’ two instance of the type RationalMap, respectively, the domi-
nant rational map (1.2) from Y to X ′ that extends psi, and the
analogous map from Y ′ to X that extends psi’.

For technical details about these types of data, we refer to the documentation
of the packages Cremona [31] and SpecialFanoFourfolds [34]. We now show
how to load the file and extract some basic information from it (some output
lines are omitted for brevity).

$ M2 --no-preload
Macaulay2, version 1.16
i1 : needs "gushel26.m2"
i2 : describe X
o2 = Special Gushel-Mukai fourfold of discriminant 26(’’)

containing a surface in PP^8 of degree 17 and sectional genus 11
cut out by 12 hypersurfaces of degree 2
and with class in G(1,4) given by 11*s_(3,1)+6*s_(2,2)
Type: Gushel (not ordinary)

i3 : describe Psi
o3 = rational map defined by forms of degree 9

source variety: 5-dimensional variety of degree 5 in PP^8
cut out by 5 hypersurfaces of degree 2

target variety: 4-dimensional variety of degree 10 in PP^8
cut out by 6 hypersurfaces of degree 2

dominance: true
projective degrees: {5, 45, 211, 200, 50, 0}

i4 : S = first ideals X; -- the surface S
i5 : h = detectCongruence(X,5); -- the congruence to S
i6 : p = point X; -- random point on X
i7 : C = h p; -- 9-secant quintic curve to S passing through p

2. Rationality Without Passing Through Singular Fourfolds

A count of parameters shows that a general triple projection of a general
minimal K3 surface of degree 26 is contained in a one-dimensional family
of 5-dimensional linear sections of cones C(G(1, 4)) ⊂ P

10. So one expects
that the Gushel fourfolds constructed in Sect. 1 can be deformed to ordinary
fourfolds. Anyway, the simple argument given in Sect. 1.5 to deduce the
rationality of the fourfold X is not available in the ordinary case. In this
section, we remedy this with a construction that does not involve singular
Gushel fourfolds.

Indeed, keeping the notation as in Sect. 1, here we construct a special
Gushel fourfold X̃ with S ⊂ X̃ ⊂ Y , uniquely determined by the embedding
S ⊂ Y , which turns out to be smooth and transversal to the congruence of 9-
secant quintic curves to S. We then show that X̃ contains another “simpler”
surface T which admits inside Y a congruence of 5-secant cubic curves. So
we deduce that X̃ is rational, and hence that X is rational.
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2.1. Construction of X̃ and of a Dominant Map X̃ ��� P
2

Consider again the birational map introduced in Sect. 1.4,

φ : Y ��� Z ⊂ P
6,

defined by the linear system |H0(IS,Y (2))|, where Z = φ(Y ) ⊂ P
6 is a sextic

hypersurface. We take X̃ to be the top dimensional component of the (closure
of the) exceptional locus of φ, and the map X̃ ��� P

2 to be defined by
the quadrics through the (closure of the) union of all 4-secant conics to S

contained in X̃. Let us provide some more detail.

2.1.1. The Fourfold X̃. Using tools from the package Cremona, one verifies
that the base locus scheme of the inverse map φ−1 : Z ��� Y is the union of
the following components:

• a smooth cubic fourfold C̃ ⊂ P
5 ⊂ P

6 (with [C̃] ∈ C26, see Remark 2.2);
the fiber of φ at a general point of C̃ consists of two points;

• a smooth cubic scroll surface Σ3 ⊂ P
4 ⊂ P

6, which is double; the fiber of
φ at a general point of Σ3 is an irreducible conic curve which is 4-secant
to S;

• a surface of degree 46 cut out in P
6 by 81 quintic hypersurfaces; the

fiber of φ at a general point of this surface is a 2-secant line to S.

Then, the fourfold X̃ is taken to be φ−1(C̃), so that the restriction of φ

induces a generically finite map of degree 2 from X̃ to C̃. One sees that
X̃ is a smooth Gushel fourfold which is transversal to the congruence to S
and in particular it is birational to X ′ via the restriction of the map (1.2).
Moreover, the inverse map X ′ ��� X̃ is defined once again by the linear
system |H0(I5

S̃′(9))|, where S̃′ ⊂ X ′ ⊂ Y ′ is a smooth triple projection of a
minimal K3 surface of degree 26. We stress that this surface S̃′ ⊂ Y ′ and the
fourfold X̃ are uniquely determined by the embedding S ⊂ Y .

2.1.2. The Map X̃ ��� P
2. The intersection C̃ ∩ Σ3 is a twisted cubic curve,

and the fiber of φ at a general point of this curve is a 4-secant conic curve
to S contained in X̃. The inverse image R = φ−1(C̃ ∩ Σ3) is an irreducible
surface contained in X̃ of degree 17 and sectional genus 6 cut out in P

8 by 9
quadrics and 7 cubics. Let

η : Y ��� P
3 (2.1)

be the rational map defined by the linear system |H0(IR,Y (2))| of quadratic
sections of Y through R. Since R ⊂ X̃, the restriction of η induces another
map

η|X̃ : X̃ ��� P
2 ⊂ P

3. (2.2)

One sees that η (resp., η|X̃) is a dominant map, whose general fibers are
surfaces like S, that is, smooth triple projections of minimal K3 surfaces of
degree 26. Moreover the surface S is recovered as a special fiber, and all these
fibers share the same twisted cubic curve contained in S.
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Remark 2.1. The projection of the surface S from the plane spanned by a
general 4-secant conic to S contained in Y (computable as the fiber of φ at a
general point on Σ3) is a smooth surface in P

5 of degree 13 and sectional genus
11 cut out by 6 cubics. This surface in P

5 admits a congruence of 14-secant
rational normal quintic curves from which one can deduce the rationality
for cubic fourfolds of discriminant 26. (See also the example in [28, Table 1,
row 15] of a nodal surface in P

5.)

2.2. Special Fibers of the Map X̃ ��� P
2: Construction of a Surface T ⊂

X̃ ⊂ Y

The 3-dimensional projective space, image of the map η, contains a special
plane Π which intersects η(X̃) 	 P

2 along a line L. The fiber of η at a general
point of L (as well as of Π) is an irreducible rational surface T ⊂ Y ⊂ P

8

of degree 11, sectional genus 3, cut out in P
8 by 16 quadrics, having smooth

normalization and a node as the only singularity. In the Chow ring of G(1, 4)
we have [γX̃(T )] = 7σ3,1 + 4σ2,2, so from (0.1) it follows that (T )2

X̃
= 19

(this is also confirmed from the fact that two fibers of η corresponding to two
general points of L intersects at 19 points), and (0.2) tells us that any smooth
quadratic section of Y containing T is a Gushel fourfold of discriminant 26,
hence corresponding to a point of (M4)

′′
26.

From another point of view, using the map η, we are able to obtain a
degeneration of the surface S as the union of the surface T and a smooth
surface Q of degree 6 and sectional genus 2 with [γX̃∗(Q)] = 2(2σ3,1+σ2,2) =
2σ2σ

2
1 and such that the intersection T ∩ Q is an irreducible curve of degree

7 with pa = 2 and pg = 1. This surface Q is contained in the base locus of η.
More precisely, the support of the base locus of η is the union of Q with the
surface R.

Remark 2.2. The plane Π can be calculated as the image via η of the 3-
dimensional linear space ν−1

p (P ), where νp : Y ��� Y0 is the projection from
the vertex of Y , and P is the unique σ2,2 plane contained in Y0. Moreover,
the intersection ν−1

p (P ) ∩ X̃ is a quadric surface which is sent birationally
by φ to a one-nodal septimic surface D̃ ⊂ C̃ as the surface D ⊂ C consid-
ered in Sect. 1.1. In particular, we also deduce that C̃ is a cubic fourfold of
discriminant 26.

2.3. Count of Parameters from the Triple T ⊂ X̃ ⊂ Y

As in Sect. 1.3, we compute with Macaulay2 that h1(NT/Y ) = 0, h0(NT/Y ) =
29, and h0(NT/X̃) = 2. Assuming that the Hilbert scheme HilbY of Y is
smooth at [T ] (which is reasonable, but not guaranteed since T is not a lo-
cal complete intersection), we have that HilbY contains a unique irreducible
component T which contains [T ], and the dimension of T is 29. There-
fore, since we have h0(IT,Y (2)) = 11 and this value is minimal, we deduce
that inside the projective space P(H0(OY (2))) of quadratic sections of Y
the family of fourfolds containing a surface in T has codimension at most
39 − (29 + (11 − 1) − 2) = 2.
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2.4. Congruence of 5-Secant Cubic Curves to T ⊂ Y and Rationality of X̃

The surface T ⊂ Y admits inside Y a congruence of 5-secant twisted cubic
curves, and X̃ is transversal to this congruence.

Indeed one verifies that the linear system |H0(I3
T,Y (5))| of hypersurfaces

in Y of degree 5 with points of multiplicity 3 along T gives a dominant rational
map

Y ��� W ⊂ P
10 (2.3)

onto a smooth 4-dimensional linear section W of G(1, 5) ⊂ P
14, and whose

general fibers are twisted cubic curves. The restriction of (2.3) to X̃ induces
a birational map

Y ⊃ X̃
���� W ⊂ P

10, (2.4)

whose inverse is defined by the linear system of hypersurfaces of degree 5
with points of multiplicity 3 along a smooth surface U ⊂ W of degree 21 and
sectional genus 13, isomorphic to a double projection of a simple projection
of a minimal K3 surface of degree 26.

We deduce the rationality of X̃ from that of W . Indeed, W must contain
a quintic del Pezzo surface, and it is classically known that the linear system
of hyperplanes through this surface gives a birational map W ��� P

4.
The congruence to T ⊂ Y can be also verified by considering the map

Y ��� P
10, defined by the linear system |H0(IT,Y (2))| of quadratic sections

of Y through T , which turns out to be birational onto a fivefold of degree 20
cut out by 7 quadrics. Through the general point of this fivefold there pass
12 lines, which come from seven 1-secant lines to T , four 3-secant conics to
T , and one single 5-secant twisted cubic to T .

There is a further way to find the congruence to T ⊂ Y . Indeed, one
has that the reducible surface T ∪ Q considered in Sect. 2.2, which is a de-
generation of the surface S, admits a congruence of 9-secant quintic curves,
exactly as S does. In this degenerate case, the curves of the congruence split
into 4-secant conics to T ∪ Q and 5-secant twisted cubics to T .

2.5. Summary Construction

With the notation above introduced, we have the following diagram involving
cubic fourfolds in C26 and Gushel fourfolds in (M4)

′′
26, and where all the

fourfolds are smooth.

C̃ Y

��

� � � �
�
�
�

Y ′

��

� � � �
�
�
�

W

|H0(I3
U (5))|

��	 
 � � �
X̃

2:1

H0(IS(2))





�
�

�
����

� �

��

��

��

|H0(I3
T (5))|

�� 	
���

|H0(I5
S(9))|

��	 
 � �
X ′�
�

��

� �

��
|H0(I5

S̃′ (9))|

��

���

|H0(I5
S′ (9))|

��
 � � �
X� �

��
|H0(I5

S(9))|

�� 	
��

Y

		

����
�

�
�

Y ′

��

����
�

�
�

Y

��

����
�

�
�

(2.5)
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2.6. Ancillary Files

Continuing from Sect. 1.7, after the loading of the ancillary file in Macaulay2,
some other variables are defined as following:

Xtilde an instance of the type SpecialGushelMukaiFourfold, the
Gushel fourfold corresponding to the pair (T, X̃) constructed
above;

Eta, eta two instances of the type RationalMap, respectively, the map
Y ��� P

3 in (2.1) and its restriction X̃ ��� P
2 ⊂ P

3 in (2.2).
Psi2, psi2 two instances of the type RationalMap, respectively, the map

Y ��� W in (2.3) and its restriction X̃ ��� W in (2.4).
By way of example, we now compute a general and a special fiber of the map
(2.2).

1.i8 : p = point image eta; -- random point on the image of eta

i9 : L = ideal (gens target eta)_{2,3}; -- the special line L in P^3 (Sect. 2.2)

i10 : q = point L; -- random point on L

i11 : describe(eta||p) -- fiber at p

o11 = source variety: surface of degree 17 and sectional genus 11 in PP^8

cut out by 12 hypersurfaces of degree 2

target variety: one-point scheme in PP^3

i12 : describe(eta||q) -- fiber at q

o12 = source variety: surface of degree 11 and sectional genus 3 in PP^8

cut out by 16 hypersurfaces of degree 2

target variety: one-point scheme in PP^3

3. Construction of New Rational Mukai Fourfolds

In this section, we briefly explain how using the same method given in [32],
one can directly construct a rational one-nodal surface T ⊂ Y of degree 11
and sectional genus 3 as the one constructed in Sect. 2. Actually, we do better
than this: We are able to construct a rational one-nodal surface T̆ of degree
11 and sectional genus 3 inside a smooth hyperplane section Y̆ of G(1, 4).
This leads us to find out rational ordinary fourfolds in (M4)

′′
26.

3.1. Construction of T̆ ⊂ Y̆

Let E′ ⊂ P
6 be the image of the plane via the linear system of quartic curves

with one double point q0 and 5 simple base points q1, . . . , q5. Then E′ is a
smooth surface of degree 7 and sectional genus 2 cut out by 8 quadrics.2 Let
E ⊂ P

5 be the projection of E′ from a general point on the secant variety of
E′. Then E is an irreducible surface of degree 7, sectional genus 2, cut out
by 2 quadrics and 5 cubics, with a single node as the only singularity, and
having normalization isomorphic to E′. Take B ⊂ P

5 to be a general smooth
cubic scroll surface which cuts E along a quintic elliptic curve (such a curve

2The surface E′ ⊂ P6 is a hyperplane section of a so-called Edge variety [7]. This surface

also occurs in the classification of special birational transformations, see [33, Table 4,
Case VI].
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is obtained as the image on E′ and hence on E of a general plane cubic curve
passing through the six base points q0, . . . , q5).

The linear system of quadrics through B defines a birational map

P
5 ��� Y̆ 	 G(1, 4) ∩ P

8 ⊂ P
8 (3.1)

onto a smooth hyperplane section Y̆ of G(1, 4) ⊂ P
9. The restriction of this

map to E induces an isomorphism between E and a surface T̆ ⊂ Y̆ .
This surface T̆ ⊂ Y̆ shares all the properties of the surface T ⊂ Y

constructed in Sect. 2. In particular, T̆ ⊂ Y̆ is a one-nodal irreducible surface
of degree 11, sectional genus 3, cut out in P

8 by 16 quadrics, and having class
7σ3,1 + 4σ2,2 in the Chow ring of G(1, 4). A general quadratic section of Y̆

through T̆ gives an ordinary Gushel–Mukai fourfold in (M4)
′′
26, and such a

fourfold is birational to a smooth 4-dimensional linear section of G(1, 5) ⊂ P
14

via the linear system of quintic hypersurfaces with triple points along T̆ .

Remark 3.1. By counting parameters, one sees that the family of the re-
ducible surfaces B ∪ E ⊂ P

5 has dimension 48, and hence the family of the
surfaces T̆ ⊂ Y̆ obtained by this construction has dimension 48 − 35 + 15 =
28 < 29 = h0(NT̆ /Y̆ ); see also [32, Remark 2.4].

Remark 3.2. Our ancillary file (see Sects. 1.7 and 2.6) also provides an ex-
plicit example of ordinary Gushel–Mukai fourfold corresponding to the pair
(T̆ , X̆), where X̆ is a general quadratic section of Y̆ through T̆ . The file in-
cludes the parameterization of E′, the nodal projection of E′ onto E, the map
(3.1), the dominant map Y̆ ��� G(1, 5)∩P

10 whose general fibers are 5-secant
twisted cubic curves to T̆ , and the restriction of this map to X̆ together with
its inverse.

4. Summary Table of Examples

Table 1 summarizes some information about the Gushel-Mukai fourfolds
known to be rational. It includes all the examples we found in the litera-
ture, the example constructed in the present paper, and some few others of
which we omit the details. In all cases, except the 4th, the rationality of the
fourfold follows from a congruence of (2e − 1)-secant curves of degree e ≥ 1.
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