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Abstract: Inadequate gestational weight gain (GWG) affects a growing number of pregnancies,
influencing intrauterine environment and long-term health. Uncovering molecular mechanisms
associated with GWG could be helpful to develop public health strategies for tackling this issue.
Here, our study aimed to understand the relationship of DNA telomere length with weigh gain
during pregnancy, using data and samples from the ongoing prospective “Mamma & Bambino” study
(Catania, Italy). GWG was calculated according to the Institute of Medicine (IOM) guidelines. Relative
telomere length was assessed by real-time quantitative polymerase chain reaction in 252 samples of
maternal leucocyte DNA (mlDNA) and 150 samples of cell-free DNA (cfDNA) from amniotic fluid. We
observed that relative telomere length of mlDNA seemed to weakly increase with GWG. In contrast,
telomere length of cfDNA exhibited a U-shaped relationship with GWG. Women with adequate
GWG showed longer telomere length than those who gained weight inadequately. Accordingly, the
logistic regression model confirmed the association between telomere length of cfDNA and adequate
GWG, after adjusting for potential confounders. Our findings suggest an early effect of GWG on
telomere length of cfDNA, which could represent a molecular mechanism underpinning the effects
of maternal behaviours on foetal well-being.

Keywords: pregnancy; aging; telomere; weight gain; body mass index

1. Introduction

Gestational weight gain (GWG)—which depends on body composition, weight of the
foetus, placenta and amniotic fluid [1]—represents a natural response to host the growing
foetus. The US-based Institute of Medicine (IOM) has promoted the development of
recommendations to identify an optimal amount of GWG according to the pre-pregnancy
Body Mass Index (BMI) [1–5]. However, more than half of pregnant women do not respect
clinical practice guidelines for weight gain [6–8]. The adherence to these guidelines is
crucial to reduce the risk of adverse outcomes for mothers and their newborns [9–13].
With respect to IOM guidelines, both greater and lower weight gain contribute to short-
and long-term health complications [2,14–16]. For instance, excessive GWG is associated
with an increased risk of high blood pressure [17], diabetes [18], caesarean section [19],
postpartum weight retention [20] and obesity [12]. As regard newborns born from mothers
who gained weight excessively, they are more likely to be large for gestational age [18,21,22]
and to develop metabolic disorders during adolescence and adulthood [23,24]. By contrast,
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low GWG is associated with increasing risks of pre-term delivery [25]. For all these reasons,
there is the need for uncovering molecular mechanisms associated with GWG to identify
mothers who could benefit more from preventive strategies.

In this scenario, telomere length represents a promising biomarker for biological aging
and age-related diseases. Telomeres are repeating DNA sequences at the ends of chromo-
somes that progressively shorten with cell division [26]. To maintain genomic stability,
telomeres protect the chromosomes from DNA damage and shorter telomeres are consid-
ered as a marker of the cumulative damage to which cells have been exposed [26]. Telomere
integrity is maintained by the specific activity of telomerase, characterized by an enzymatic
protein component that adds the telomeric DNA repeats at the end of chromosomes, and a
telomerase RNA template for telomeric DNA synthesis [27]. In adults, shorter telomeres
are associated with diabetes [28], cancer [29] and cardiovascular disease [30]. However,
also before the onset of age-related diseases, obesity might contribute to cumulative burden
of oxidative stress and chronic inflammation, accelerating the telomere shortening process.
During pregnancy, adverse exposures such as maternal stress, smoking and higher levels
of air pollution are associated with shorter telomeres measured in cord blood [31–33],
placenta [34] and other children’s samples [35]. In particular, it has been demonstrated
that maternal pre-pregnancy BMI was associated with telomere shortening in cord blood
and placenta [36]. Some studies evaluated the association of telomere length in cord blood
with preterm birth [37] and birth weight [38,39]. Moreover, since telomerase activity is
time- and location-regulated in both embryo and placental tissues, associations between
telomerase activity and pregnancy complications—such as intrauterine growth restriction—
have been previously observed [40]. Circulating cell-free DNA (cfDNA) in plasma and
serum has been proposed as a novel biomarker for prenatal diagnosis [41,42] and with
applications in oncology [43,44]. Moreover, the relationship between cfDNA in serum and
several diseases has raised much interest in investigating the role of cfDNA in other body
fluids, such as urine [45], saliva [46] and amniotic fluid [47]. In line, amniotic fluid has
been proposed as an alternative source of potential biomarkers for prenatal diagnosis [48].
Indeed, amniotic fluid surrounds the foetus with a continuous exchange with foetal or-
gans and gestational tissues [49–51]. After removing the cellular components, the cell-free
supernatant that remains reflects maternal and foetal well-being [51–59]. In particular,
amniotic fluid contains a greater amount of cell-free foetal- and pregnancy-related DNA
than maternal serum [60–63].

With these thoughts in mind, in order to study the relationship between telomere
length and weight gain during pregnancy we used data and samples from the ongoing
prospective “Mamma & Bambino” study, which enrolls mother–child pairs from Catania,
Italy. Here, we report findings about the relationship between GWG and telomere length in
maternal leucocyte DNA (mlDNA) and cfDNA of amniotic fluid.

2. Materials and Methods
2.1. Study Design

This study was conducted on samples and data obtained from mother-child pairs of
the “Mamma & Bambino” cohort. It is an ongoing prospective study research with the aim
of evaluating how the exposome affects mothers’ and children’s health [64–67]. Full details
and protocols of the “Mamma & Bambino” cohort are described elsewhere [64–67]. In brief,
the cohort consists of pregnant women attending for prenatal genetic counselling at the
Azienda Ospedaliero Universitaria Policlinico “G. Rodolico -San Marco” (Catania, Italy).
Those with multiple pregnancy, autoimmune and chronic diseases, pregnancy complica-
tions, intrauterine foetal death and congenital malformations are excluded. Women are
generally recruited from 4 to 20 weeks of gestation and the study entails planned follow-ups
at delivery and after two years birth. In the current analysis, we used data and samples
from mothers who completed singleton pregnancy and with available data on GWG at
delivery.
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2.2. Assessment of Gestational Weight Gain

At recruitment, women were asked to report their height and pre-pregnancy weight to
calculate pre-pregnancy body mass index (BMI) as kg/m2. Women were classified as under-
weight, normal weight, overweight or obese based on their pre-pregnancy BMI, according
to WHO criteria [68]. Firstly, maternal weight achieved at recruitment was calculated by
subtracting the self-reported pre-pregnancy weight from the weight at recruitment. Next,
maternal weight achieved at delivery was collected from clinical records and total GWG
was calculated by subtracting the self-reported pre-pregnancy weight from the weight at
delivery. As described by the IOM guidelines [6], GWG was classified as reduced, adequate,
or excessive according to pre-pregnancy BMI.

2.3. Covariate Ascertainment

Beyond anthropometric measures, our analysis considered several covariates that
might affect GWG, telomere length and their relationship. At recruitment, demograph-
ics, socio-economic information and lifestyles were assessed by trained epidemiologists
through structured questionnaires [64–67,69–71]. Maternal age and gestational ages at
recruitment and at delivery were considered because of their potential effect on sampling
and telomere length. In addition, we used the educational level and employment status
as two proxy indicators of socio-economic status. Educational level was classified as low
(having primary education), medium (having secondary education) or high (having ter-
tiary education). Employment status was categorized as employment or unemployment,
which also included students and housewives. We also categorized women in those who
have previously had at least a child and those who have not. Regarding lifestyles, we
assessed smoking status, daily energy intake and adherence to the Mediterranean Diet
(MD). Specifically, dietary data were collected using a 95-item semiquantitative Food Fre-
quency Questionnaire (FFQ). This tool was referred to 30 days before recruitment [72] and,
for each item, it asked to report both frequency of consumption and portion size. Daily
energy intake was calculated considering the table of food composition released by the US
Department of Agriculture and adapted to typical Italian foods. Adherence to MD was
evaluated using the Mediterranean Diet Score, as described in detail elsewhere [73].

2.4. DNA Extraction

Biological samples included maternal blood obtained at recruitment and an aliquot
of amniotic fluid from women who underwent amniocentesis. Full details on protocols
of DNA extraction are reported elsewhere [67,71]. Genomic mlDNA was extracted from
200 µL of maternal blood, while cfDNA was extracted from the supernatant of amniotic
fluid obtained after centrifugation. DNA extraction and purification were performed using
the QIAamp Blood Kit (Qiagen, Milan, Italy) on the QIAcube instrument (Qiagen, Milan,
Italy), as described by the manufacturer’s protocol. Concentration and purity of DNA were
assessed by NanoDrop 1000 spectrometer and by Qubit 3.0 Fluorometer using dsDNA HS
Assay Kit (Thermo Fisher Scientific, Carlsbad, CA, USA).

2.5. Relative Telomere Length

Relative telomere length was measured by real-time quantitative polymerase chain
reaction (qPCR), using the Relative Human Telomere Length Quantification Assay Kit
(ScienCell Research Laboratories, Carlsbad, CA, USA). The qPCR was performed on a
QuantStudio 7 Flex Real-Time PCR System (Thermo Fisher Scientific, Carlsbad, CA, USA),
according to the manufacturer’s protocol. The following sets of primers were used: the
telomere (T) primer set amplified telomere sequences; the single-copy reference (S) primer
set amplified a 100 bp-long region on human chromosome 17 and was used as reference for
data normalization. The specificity of these primer sets was validated by the manufacturer
through qPCR with melt curve analysis. Each reaction contained 1 µL of DNA (5 ng/µL),
2 µL of primer solution (telomere or SCR), 10 µL of 2X GoldNStart TaqGreen qPCR master
mix (ScienCell Research Laboratories, Carlsbad, CA, USA) and 7 µL of nuclease-free water.
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The PCR conditions were as follows: denaturation (95 ◦C for 10 min); 32 cycles of 95 ◦C
for 20 s, 52 ◦C for 20 s and 72 ◦C for 45 s. The qPCR was calibrated including in each
plate a serial dilution of DNA from randomly selected samples. All reactions were run in
duplicate and relative telomere length was expressed as the average of telomere/single
copy reference (T/S) ratio.

2.6. Statistical Analysis

Statistical analyses were performed using SPSS v.25. Descriptive statistics was initially
performed using frequencies (percentage, %) or median and interquartile range (IQR) due
to the skewness of quantitative variables. Bivariate analyses were conducted using the
Mann–Whitney or the Kruskal–Wallis tests for quantitative variables and the Chi-squared
test for trend for categorical variables. Relative telomere length was also plotted against
weight gain at recruitment and at delivery to inspect linear or non-linear relationships.
Next, we plotted relative telomere length by the tertile distribution of GWG, as well as by
its classification in reduced, adequate, or excessive. We also applied a logistic regression
model using adequate GWG as dependent variables and the following covariates: relative
telomere length, maternal age, gestational age at recruitment, educational level, having
children, pre-pregnancy BMI, total daily energy intake and gestational age at delivery.
The adjusted association of relative telomere length with adequate GWG was reported
as β coefficient and its Standard error (SE). All tests were two-sided and performed at a
significance level α = 0.05.

3. Results
3.1. Characteristics of Study Population

The current analysis included 270 mothers who completed singleton pregnancy, with
available information on GWG at delivery. Table 1 describes the characteristics of the
study population and their comparison across categories of GWG (i.e., 101 women gained
weight adequately, while 91 and 78 reported reduced and excessive GWG, respectively).
As expected, there were strong relationships between maternal anthropometric measures
and GWG. Indeed, women with adequate GWG were those with the lowest pre-pregnancy
weight and BMI. By contrast, weight at delivery increased from reduced to excessive GWG
categories. A similar trend was observed for education, so that the proportion of women
with low or medium educational level increased from reduced to excessive GWG. Moreover,
the proportion of women who already had at least one child before the current study was
higher in those with adequate GWG than their counterparts. With respect to dietary habits,
we did not find any association with adherence to Mediterranean Diet (MD), but total daily
energy intake increased across GWG categories.

3.2. Relationship of Telomere Length with Maternal Characteristics

Among recruited women, we collected 252 maternal blood samples used to analyse
telomere length of mlDNA. Notably, relative telomere length of mlDNA did not correlate
with maternal age, pre-pregnancy BMI, total energy intake, Mediterranean Diet Score
(MDS) and gestational age at sampling and at delivery (p-values > 0.05). Moreover, relative
telomere length did not differ across categories of educational level, employment, smoking
status, parity and pre-pregnancy BMI (p-values > 0.05).

We also obtained 150 samples of amniotic fluid from those who underwent amniocen-
tesis. These samples were used to evaluate telomere length of cfDNA. Relative telomere
length of cfDNA and mlDNA did not correlate with each other (p > 0.05). On the contrary,
relative telomere length of cfDNA was negatively but weakly correlated with gestational
age at sampling (Spearman coefficient = −0.152; p = 0.046) and positively with total en-
ergy intake (Spearman coefficient = 0.157; p = 0.038). No correlations were evident with
the remaining maternal characteristics, as well as with birth length and birth weight
(p-values > 0.05). Relative telomere length did not also differ across categories of educa-
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tional level, employment, smoking status, parity, pre-pregnancy BMI, type of delivery and
newborn gender (p-values > 0.05).

Table 1. Characteristics of women from the “Mamma & Bambino” cohort (n = 270) according to
gestational weight gain categories.

Characteristics Overall
(n = 270)

Reduced GWG
(n = 91)

Adequate GWG
(n = 101)

Excessive GWG
(n = 78) p-Value a

Age b 37.0 (4.0) 37.0 (4.0) 38.0 (4.0) 37.0 (4.0) 0.699
Gestational age at sampling b 16.0 (4.0) 16.0 (4.0) 16.0 (3.0) 16.0 (2.0) 0.953
Educational level (%)
Low 17.8% 16.5% 16.8% 20.5%

0.038Medium 47.8% 40.7% 45.5% 59.0%
High 34.4% 42.8% 37.7% 20.5%
Working (%)
Employment 57.4% 54.9% 61.4% 55.1%

0.593Unemployment 42.6% 45.1% 38.6% 44.9%
Smokers (%) 20.5% 15.4% 20.0% 27.3% 0.216
Having children (% yes) 67.7% 64.3% 76.8% 59.7% 0.041
Total energy intake b 1750 (620) 1667 (674) 1752 (545) 1858 (596) 0.045
MDS b 4.0 (2.0) 4.0 (2.0) 4.0 (2.0) 4.0 (2.0) 0.102
Pre-pregnancy weight b 61.0 (15.2) 62.0 (16.0) 59.0 (13.0) 64.5 (18.3) 0.012
Pre-pregnancy BMI b 22.8 (5.1) 22.8 (4.8) 22.0 (3.8) 25.0 (5.7) 0.002
Pre-pregnancy BMI categories
Underweight 6.7% 6.6% 6.9% 6.4%

<0.001
Normal weight 64.1% 68.1% 77.2% 42.3%
Overweight 17.4% 9.9% 8.9% 37.2%
Obese 11.9% 15.4% 7.0% 14.1%
Weight at delivery b 74.0 (15.0) 68.5 (11.5) 73.0 (12.7) 82.0 (15.2) <0.001
Gestational age at delivery b 39.0 (2.0) 38.0 (2) 39.0 (2) 39.0 (2.0) 0.383

a p-values are based on the Kruskal–Wallis test for quantitative variables, or chi-squared test for categorical
variables b Data are reported as median and interquartile range (IQR). Abbreviations: GWG, gestational weight
gain; MDS, Mediterranean Diet Score; BMI, body mass index.

3.3. Relationships between Gestational Weight Gain and Telomere Length

We next evaluated the relationship of relative telomere length in mlDNA and cfDNA
with gestational weight gain (Figure 1). To do that, we also classified women according
to the tertile distribution of GWG: first tertile from −2 to 9 Kg; second tertile from 10 to
13 Kg; third tertile from 14 to 28 Kg. As depicted in Figure 1A, relative telomere length
of mlDNA seemed to weakly increase with GWG. However, Figure 1B did not show a
significant difference according to the tertile distribution of GWG (p = 0.559). By contrast,
Figure 1C suggested a U-shaped relationship between GWG and relative telomere length of
cfDNA. The U-shaped relationship was confirmed by the comparison of relative telomere
length across tertiles of GWG (p = 0.016; Figure 1D). In particular, women in the third
tertile showed shorter relative telomere length than those in the second tertile (p = 0.014;
Figure 1D).

We next compared relative telomere length across categories of GWG that considered
reduced, adequate, or excessive weight gain during pregnancy. Regarding mlDNA, we
showed longer telomere length in women with excessive GWG that in those who gained
weight adequately (p = 0.017; Figure 2A). By contrast, telomere length of cfDNA was
lower in amniotic fluid from women with reduced or excessive GWG, if compared with
those who gained weight adequately (Figure 2B). Yet, the difference was statistically
significant for women with excessive GWG (p = 0.044) but not for those with reduced GWG
(p = 0.117; Figure 2B). It is also worth mentioning that the relationship was already evident
if considering weight gain at recruitment (Figure 3).
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We next compared relative telomere length between women who gained weight
adequately and those who did not. This comparison showed higher relative telomere
length of cfDNA in women with adequate GWG (p = 0.017; Figure 4). Finally, we applied
a logistic regression model including other maternal characteristics (i.e., age, gestational
age at sampling, educational level, parity, pre-pregnancy BMI, total daily energy intake,
gestational age at delivery) that might affect telomere length and/or GWG. Interestingly,
the association between cfDNA telomere length and adequate GWG was significant, after
adjusting for the abovementioned maternal characteristics (β = 0.464; SE = 0.189; p = 0.014).
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4. Discussion

In the present study, we show for the first time a link between relative telomere length
and GWG, though the shape of the relationship depends on DNA source. In particular, we
observed a U-shaped relationship when analysing cfDNA in amniotic fluid, with longer
relative telomere length in samples from mothers who gained weight adequately. To place
our results in context, it is worth mentioning that a meta-analysis of nearly 120,000 subjects
suggested an inverse association between obesity and telomere length [29]. This is in
line with a collaborative cross-sectional meta-analysis of 87 observational studies and
146,114 individuals, showing a 3.99 bp decrease in telomere length for each unit increase in
BMI [74]. However, these analyses indicated a high degree of heterogeneity across studies
and an overall lack of evidence on pregnant women [29,74]. This heterogeneity could, at
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least in part, explained by the effect of chronological age on telomere length. In fact, it has
been greatly demonstrated how telomere length decreased with increasing chronological
age [75,76]. However, in our study, we did not find a correlation between maternal age
and telomere length of mlDNA and cfDNA. Yet, during the gestational period, maternal
body could experience changes at cellular and molecular levels that might prevent the
relationship between age and telomere length [77]. For instance, it has been proposed
that gestational age, rather than chronological age, could influence telomere shortening
in placental DNA [78]. Moreover, other factors could interact with and/or mediate this
relationship.

To our knowledge, only few studies investigated the effect of maternal pre-pregnancy
BMI on telomere length, and none focused on maternal GWG. For instance, Martens and
colleagues reported a decline in newborns’ telomere length with increasing maternal pre-
pregnancy BMI, as assessed in both cord blood and placental tissues [36]. Interestingly, this
effect seemed to persist in childhood, as demonstrated by Clemente and colleagues [79].
The authors used data from the Human Early-Life Exposome (HELIX) study to demonstrate
that child’s leukocyte telomere length decreased with increasing maternal pre-pregnancy
BMI [79]. However, the role of telomerase in the association between increased BMI and
shortened telomere length is not well investigated. Epel and colleagues described reduced
telomerase activity with increasing BMI in healthy women, which may be an important
factor for the observed relationship between shorter telomeres and body weight. Further
research is needed to evaluate whether the relationship between telomerase activity and
BMI in pregnant women could be associated with altered neonatal telomerase activity [80].

We add to this knowledge, suggesting the influence of maternal weight gain during
pregnancy on telomere length of cfDNA from amniotic fluid. The observed difference,
though small, could add motivations to keep studying the effect of weight gain on aging
biomarkers. Of note, the relationship remained significant after controlling for the potential
effects of covariates (i.e., age, gestational ages at recruitment and at delivery, educational
level, previous pregnancies, pre-pregnancy BMI and total daily energy intake). Interestingly,
the effect of maternal weight gain on telomere length of cfDNA was already evident in
early pregnancy (i.e., considering GWG at a median gestational age of 16 weeks). This was
consistent with the Developmental Origins of Health and Disease (DOHaD) hypothesis,
for which prenatal environment programs the foetus for challenges that it is likely to
experience after birth [81]. For instance, it has been proposed a potential relationship
between epigenetic mechanisms (i.e., DNA methylation) and telomere attrition rate in early
life, which in turn could be influenced by internal and external stressors [82]. However, it is
necessary to investigate if even small differences in telomere length could be associated with
pregnancy and neonatal outcomes. In this scenario, identifying activators of telomerase that
could complement the benefits of a healthy lifestyle will be an important field of research
in the ongoing evaluation of the telomere system [83].

In line, there is the current need for developing non-invasive tests to understand foetal
well-being. These tests should be based on maternal serum or urine, avoiding invasive
tests such as amniocentesis. Yet, more than 80% of cfDNA fragments in the maternal serum
are short and fragmented [84]. Compared to maternal serum, amniotic fluid contains a
much greater concentration of cfDNA [85], which is largely uncontaminated by maternal-
and trophoblast-derived nucleic acids. Thus, amniotic fluid represents a relatively pure
foetal sample and its supernatant is a valuable and widely available but under-utilized
resource [86]. It was not our intention to prefer amniotic fluid over maternal blood for the
analysis of relative telomere length. However, in future, it will be interesting to evaluate if
foetal DNA from maternal blood reflects the same difference observed in our study.

Our findings also provide further motivation to study telomere length and telomerase
activity as potential molecular mechanisms underpinning the effects of maternal behaviours
on the development of chronic disease later in life. Although mechanisms by which
inadequate weight gain affects telomere length are not yet fully understood, it is plausible
that they rely on a chronic inflammatory and oxidative state in utero [87]. Despite this
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speculation, however, we currently need more experimental work to better understand
how maternal weight gain affects telomere dynamics in the foetus.

Our study had some limitations that should be considered. Firstly, the information
on pre-pregnancy weight was self-reported, which cannot completely exclude a potential
reporting bias. It is also true, however, that previous studies demonstrated how self-
reported pre-pregnancy weight correlated with that measured [88,89]. Secondly, we worked
on total GWG reached at delivery without accounting for weight trajectories throughout
pregnancy. Yet, our analysis at the time of recruitment already showed an effect of maternal
weight gain on telomere length of cfDNA. Although we observed an early influence of
GWG on telomere length, our analysis did not focus on their causal–effect relationship.
Thirdly, although amniotic fluid seems a relatively pure foetal sample, a low proportion of
cfDNA from placenta cannot be completely excluded [90]. Moreover, we assessed relative
telomere length by qPCR, which has higher assay variability than terminal restriction
fragment analysis [91]. Finally, the presence of residual confounders cannot be completely
ruled out, such as that deriving from fatherly influence [92,93].

5. Conclusions

In conclusion, we found that relative telomere length of cfDNA is associated with
maternal weight gain during pregnancy and at delivery. This suggests an early influence of
GWG on telomere length, which could represent a molecular mechanism underpinning the
effects of maternal behaviours on foetal well-being. However, further experimental studies
are needed to biological events that regulate this relationship and to consider other factors
influencing the uterine environment during pregnancy.
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