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1. Mobility and mortality in COVID-19 disease 
 
The global epidemic of coronavirus disease 2019 (COVID-19) has threatened the 

loss of human life (Hu et al., 2021), public health, safety, and disruption of face-to-
face communication due to intangible, clinical severity of the infection, and fatal 
symptoms and has inhibited social-economic development worldwide in 2020, too 
(Liu et al., 2020). The COVID-19 epidemic has forced public decision makers to 
implement mobility blocking policies to reduce the spread of the disease and, 
consequently, of the mortality through social distancing, school closures, and general 
lockdown of economic activities. Since the general non-uniform spread of the 
contagion within a country, a relevant policy issue is whether to have a differentiated 
implementation of the lift of the lockdown restrictions for different geographic areas, 
called a zone-based social distancing (Friedman et al., 2020), or the geographic 
segmentation by World Health Organization (2020).  

The public health rationale behind lockdowns is the risk of disease spread 
associated with movement of people. These policies have included working from 
home (so-called, smart working), reducing the number of commuters with the implicit 
assumption that restricting the movement of people, the risk of infection for travellers 
and other commuters in their areas of residence, work, and all of other activities 
decreases since the people mobility is a known vector for the spread of disease.  

Despite the fact that lockdowns are aimed at restricting movement of people, this 
spatial dimension of infections is often overlooked in many empirical and theoretical 
papers addressing COVID-19 (Francetic and Munford, 2021). Since a consistent 
method to measure the evolution of contagion is missing, in the analyses of the spread 
and the consequences of the COVID-19 epidemic the spatial effects - in terms of 
dependence and heterogeneity (Bourdin et al., 2020) of the relationships among 
variables in different territorial areas - have been taken into account because the 
infection is concentrated in some areas and follows specific patterns according with 
territorial proximity (Kraemer et al., 2020; Gatto et al., 2020). The mobility 
restrictions play a key role in the spread of infection diseases mainly through social 
contacts between infectious and susceptible individuals (Zhang et al., 2020; Riley, 

Mac
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2007) in order to save lives (Jia et al., 2020; Wu et al., 2020). Mobility data, indeed, 
can be useful to understand the dynamics of the epidemic and limit the impact of 
future waves and excess deaths. Mobile positioning personal data, as proxy of human 
mobility, shows a high correlation of the mobility and the spread of COVID-19 in the 
initial phase of outbreak (Iacus et al., 2020).  

In the present study an analysis is proposed to gauge for spatial patterns in the data 
on excess deaths, as a reliable indirect indicator, less affected by territorial 
assumptions and available at provincial level. The relationship between human 
mobility variations and increasing of excess mortality in Italy is analysed by the 
means of spatial effect estimation models, comparing the epidemic period from 
February to December 2020 to the pre-epidemic period from 2015 to 2019.  

To analyse mobility flows among Italian provinces accounting spatial correlation, a 
spatial regression model is specified to estimate the effects of reduced human mobility 
on excess mortality using digital mobility data at provincial level after controlling for 
the time trend of the epidemic and provincial differences. The ongoing COVID-19 
epidemic has highlighted the potential benefit of geo-located smartphone data to 
inform public health (Oliver et al., 2020) and assess the impact of mobility restrictions 
on social distancing in near real-time (Pepe et al., 2020; Badr et al., 2020). Then, the 
relationship between mobility data, provided by Google Community Mobility Reports 
(GCMR, 2021) - a good source to assess changes in mobility due to different social 
distancing measures (Basellini et al., 2020) - and data on excess mortality, registered 
by ISTAT (2021) from January to December 2020, is examined. Since the variation in 
human mobility may take a long time before producing an effect on mortality, the 

excess mortality is mediated by a time lag of predictors (from the symptom onset to 
the death, the median value is equal to 24 days in June-September 2020) as estimated 
by National Institute of Health-ISS (2021).  

The study aims at testing if the mobility indicators affect the excess mortality in 
2020 both globally and locally in order to take into account temporal lag disparity 
among Italian provinces. In the first step, stepwise regression models have been 
specified selecting predictors related to human mobility. Afterwards, Geographically 
Weighted Regression (GWR) models (Wu et al., 2021) are employed to test for spatial 
heterogeneous effects of the mobility on the mortality variation. 

 
 

2. Spatial models for mobility and mortality data analysis 
 
Spatial-temporal analysis of COVID-19 is crucial to understanding the spread of 

COVID-19. Specifically, for the spatial study, we explore the inter-correlations among 
independent variables before building the models. The GWR modelling is taken into 
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account for the geographical disproportion of the number of deaths. More importantly, 
compared to OLS models, GWR models are local linear regression models. They 
embrace the calculation of a parameter estimate of variations over space in the link 
between independent and dependent variables. The ordinary least square (OLS) is a 
traditional method for estimating a linear regression between dependent and 
independent variables. OLS assumptions involve the disturbances that have 0 mean 
and constant variance, in addition to no correlation among explanatory variables. The 
ordinary least squares (OLS) regression is an empirical approach that has generally 
been applied in the field of demography. Model parameters are assumed to be applied 
globally over the entire territory where measurements have been taken into account 
under the assumption of spatial stationarity (Brunsdon et al., 1996; Fotheringham et 
al  
regression coefficients assuming that the relationships are constant over space.  

This approach may mask spatial variability in the relationships and ignores the 
spatial dependency among variables. This circumstance may sometimes provide 
biased estimates and overstated statistical significance of relationships. Moreover, 
ignoring spatial effects in a modelling process causes misleading significance tests and 
suboptimal model specification (Huang and Leung, 2002). Several approaches for 
controlling spatial variability have been developed in a regression model, including 
use of a term representing or spatial autocorrelation in the dependent variable or in the 
residuals of the independent variables (Crase et al., 2012) and the use of simultaneous 
autoregressive models (Pioz et al., 2012). Among these, the Geographically Weighed 
Regression (GWR) models are particularly suitable for analysing territorial 
phenomena characterized by non-stationary variability, in contrast to standard 
regression models (OLS) (Brunsdon et al., 1996; Fotheringham et al., 2002).  

The GWR procedure is founded upon two conditions. First, similarities between 

geography, widely adopted as a basic principle in Geographic Information Science 
(Tobler, 1970). Each local regression of GWR is estimated with data whose influence 
decays with distances, commonly defined as straight line or Euclidean. Second, there 
are disproportionate distributions of explanatory variables in different territorial units, 
due to spatial autocorrelation and spatial heterogeneity. Based on 
varying parameter regression, a Geographically Weighted Regression model (GWR) is 
localized through weighting each observation in the dataset. As pointed out by 
Fotheringham et al. (2002), local smooth processing was used to address the spatial 
heterogeneity. Under the consideration of spatial disparity, geographic coordinates and 
core functions are employed to carry out local regression estimation on adjacent 
elements. We recall that GWR model extend the traditional regression models by 
allowing the estimation of local parameters, so that the model can be written as: 

       for                               (1) 
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where:  denote the coordinates of the i-th location in space;  is a 
realization of the continuous function  at location  yi is the dependent 
variable at location I; xik, is the k-th independent variable at location i is random 
error at location i with normal distribution and variance a constant.  

GWR provides a regression equation for each observation weighted by location, 
which takes into account spatially varying relationships. To calibrate the model (1) 
Fotheringham et al. (2002) suggested using  local models (one for each location 
point) introducing a kernel weighting function. The principle of the kernel weighting 
function is to set a distance decay model (with weight range from 1 to 0 based on the 
distance of the points) around a point or spatial unit and to compute the local 
coefficients  using all the observations. Thus, around each regression point, 
nearer observations have more influence in estimating the local set of coefficients than 
observations farther away (Fotheringham et al., 2002). In essence, GWR measures the 
inherent relationships around each regression point i, where each set of regression 
coefficients is estimated by weighted least squares. 
 
 
3.  Mortality and mobility variation data  

 
The human mobility changes are observed through the data collected from Google 

Community Mobility Reports (GCMR, 2021) sources referred to human movement 
trends across different categories of settings: retail and recreation, grocery and 
pharmacy, parks, transit stations, workplaces and residential areas, during February-
December 2020 at the Italian territorial provincial level. The GCMRs show how the 
visits and their lengths change compared to the baseline day, calculated for a specific 
calendar date as a positive or negative percentage. A baseline day represents a normal 
value for that day of the week. Mobility data from the GCMR are considered as an 
additional fixed effect. Thus, the regression coefficient has been interpreted as the 
change in per capita excess mortality for a unit change in the mobility indicator, 
always as compared to the baseline period (Basellini et al., 2020).  

GCMRs define the baseline as the median value, for the corresponding day of the 
week, during the 5-weeks period from January 3rd to February 6th, 2020. Next, the 
GCMR database is linked with the total deaths in the year 2020 at the provincial level 
compared with the average deaths in the period 2015-2019 (ISTAT, 2021). Since the 
high uncertainty surrounding the number of infections and deaths, in line with the 
growing general consensus in the scientific community (National Academies of 
Sciences, Engineering, and Medicine, 2020) on the excess mortality as the best 
indicator to assess the impact of the epidemic, the present analysis is focused on 
estimation of the excess mortality rate in terms of number of deaths above what would 
be expected in a non-crisis period, controlling for the size of the population. So, the 
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excess mortality variation (MV) is compared with the human variation mobility, 
measured through the GCMR variables shown in table 1.  

Table 1  Mobility and mortality variables. 

Since the analysis aims at assessing if an association between excess mortality and 
human mobility changes over time still exists, after controlling for the variation in 
provinces, it focuses on the period between May-September 2020 only to avoid 
mobility constraints imposed by national and local lockdowns. Moreover, considering 
that changes in human mobility may take some time to have an effect on mortality, the 
relationship between excess mortality and lagged indicators of human mobility is 
analysed. In other studies, accounting for a time lag of 5 or more weeks, a positive 
correlation between increased mobility and excess mortality, and a negative 
correlation between time spent at home and excess mortality has been measured. 
These relationships were significant within a mixed-effects regression setting that 
controls for the time trend of the epidemic and the different regional effects (Basellini 
et al., 2020). The time period is set in about 30 days considering four times: 1) the 
onset of the symptoms of the disease; 2) the SARS-CoV-2 test; 3) hospitalization and 
4) deaths as reported by Italian National Institute of Health-ISS (2021). In figure 1, the 
monthly trends for all the mobility categories, except for residential, show a strong 
decrease in mobility compared to the baseline.  

The mortality variation (MV) is shown in the figure 2A. The highest values are 
concentrated in northern provinces despite the average national value: 15.57% 

mortality data such just to support the spatial regression analysis. The trend for MV 
follows the so- wav  of March and October (figure 2C). 

Variable Label          Source 

Retail and recreation Mobility trends for places like restaurants, cafes, shopping 
centers, theme parks, museums, libraries, and movie theaters.  

Google 

Grocery and pharmacy Mobility trends for places like grocery markets, food 
warehouses, farmers markets, specialty food shops, drug 
stores, and pharmacies.  

Google 

Parks Mobility trends for places like local parks, national parks, 
public beaches, marinas, dog parks, plazas, and public 
gardens. 

Google 

Transit stations Mobility trends for places like public transport hubs such as 
subway, bus, and train stations.  

Google 

Workplaces Mobility trends for places of work.  Google 

Residential Mobility trends for places of residence. Google 

Mortality variation Mortality variation between 2020 and mean 2015-2019. ISTAT 
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Figure 1 Mobility trends by places from February to December 2020 (Change 
from the baseline).

Figure 2 MV in Italian provinces (2020 vs 2015-2019) - (A); Moran index - (B); MV 
trend from February 2020 to December 2020 (C).
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4. Results 
 

Before using the GWR model, stepwise regression models are specified to select 
the best lagged predictor of human mobility for the variable MV. Afterwards, the 
spatial analysis proceeds specifying the GWR model out the lockdown period (June, 
July, and August). The GWR model is specified if the test for spatial non-stationarity 
of the parameters is significant. A Monte-Carlo test has been employed to perform the 
analysis (Brunsdon et al., 1996; Fotheringham et al., 2002).  

The results of the estimates for the 3 months are shown in table 2, where the 
correlation is positive (0.377) between MV in June 2020 and the time that people 
spent for retail and recreation in May 2020; negative correlation (-0.987) between MV 
in July 2020 and time that people spent at home in June 2020 and negative correlation 
(-0.938) between MV in August 2020 and time that people spent at home in July 2020.  

 

Table 2  Estimates for the OLS and GWR model. 

 

As we can see for the June MV (model 1), the stepwise OLS model identifies the 
retail and recreation variable (mobility trends for places like restaurants, cafes, 
shopping centres, theme parks, museums, libraries, and movie theatres) as the best 
predictor. But the spatial non-stationarity test is not significant. Therefore the spatial 
analysis is not carried out (however, GWR estimates are shown).  

In the models for the explanation of the July (model 2) and August MV (model 3) 
the best predictor is residential (mobility trends for places of residence or time spent 
in places of residence). In these two models the spatial non-stationarity test is 
significant and therefore the GWR is conducted in addition to the stepwise regression. 
Moreover the local coefficient mappings are shown in figure 3 for model 2 and 3 only.  

Variable OLS Min 
I  

Quartile 
Median 

III 
Quartile 

Max 
Test for 

non- 
stationarity 

Model 1 - Dependent variable - MV_June  

(Constant) 20.121* 18.656 19.743 20.838 21.793 23.812 1.258  
Retail_May 0.377* 0.345 0.370 0.389 0.412 0.449 0.026  

Model 2 - Dependent variable - MV_July  
(Constant) 4.868* -6.844 2.071 4.910 6.359 31.863 6.642* 
Residential 
June 

-0.997** -5.669 -1.372 -1.062 -0.587 0.439 1.112* 

Model 3 - Dependent variable - MV_August  

(Constant) 6.144** 5.895 5.981 6.006 6.041 6.298 4.302* 
Residential 
July  

-0.908* -1.102 -0.963 -0.859 -0.796 -0.741 1.107* 

*p<0.05 **p<0.01. Both stepwise OLS and GWR (with Gaussian Kernel function) estimations are produced 
through STATA ver. 14.  
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In particular, the global analysis (OLS) shows that the reduction of time spent at 
home in the period of June (residential) is correlated to an increasing in the variation 
of mortality in July (table 2, model 2). Taking into account that isolation in Italy ended 
on May 4th, 2020, a time lag of about 1 month is needed to identify a relationship 
between excess mortality and change in human mobility. This is consistent with the 
amount of time over which the change in mobility affects the excess mortality. The re-
opening of restaurants and in general of all activities related to leisure has (probably) 
an impact on the contagions and as a result on mortality in June. This impact does not 
show local clustering at the provincial level but the effect is across the country. July 
and August are traditionally characterized by holidays, with principal trips from Nord 
to Centre-South and in the main islands of Italy. So, the time spent at the home 
decreases significantly compared to the lockdown period (see figure 1, category 
residential).  

Figure 3  Local coefficient estimates of Residential by quintiles range in June (A), 
July (B).   
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5. Conclusions 
 

In this paper the relationship between MV and changes in human mobility out of 
the lockdown period in Italy is explored. In detail spatial analysis shows the provinces 
where the lagged mobility predictors have the greatest impact on MV. Early results 
provide evidences to support that changes in human mobility are (probably) a 'conduit' 
for the changes in mortality observed in the summer of 2020. This is coherent with the 
findings of Francetic and Munford (2021) and Basellini et al. (2020). Although other 
experiments should be done, a time lag of approximately one month needs for the 
relation between excess mortality and change in human mobility.  

However, the findings must be considered with great caution. GCMR data do not 
represent a perfect random sample of the target population as smartphone and tablet 
users. They may differ from the general population in terms of demographic, social, 
and economic features. Thus the results could be affected by a sampling self-selection 
bias. Nevertheless, the analysis shows not only that the mobility restrictions are 
effective to limit the potential negative effects of the COVID-19 epidemic on 
mortality but also the specific setting of mobility such as mobility trends for places of 
residence, is crucial. Furthermore, we plan to deepen the research considering an 
analysis by gender and re-estimate the models for the year 2021 also. In our opinion, 
the results obtained are consistent with the evidence that the re-opening in the summer 
after the lockdown probably favoured the re-start of infections and the second 
epidemic wave of autumn 2020 in Italy.  

Finally, the analysis framework can be useful not only to address the debate within 
the scientific community in order to improve the understanding of the course of the 
epidemic and the actual benefit of a strategy to control the spread of COVID-19, but 
also to assess the crucial implications for public health decision-making in the event of 
future such inauspicious occurrences, as current events show, unfortunately. 
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SUMMARY 
 

Mobility and Mortality in Covid-19 Epidemic: A Spatial Analysis  
 

 The COVID-19 epidemic forced authorities to implement lockdown policies to reduce the 
spread of the disease and, as a consequence, the excess mortality. These policies encouraged 
homeworking, hence reducing the number of commuters with the implicit assumption that 
restricting human mobility reduces the risk of infection in areas of residence, work, and other 
activities. Yet, the spatial relationship among different areas has been rarely addressed both in 
the public discourse and in early accounts of the consequences of mortality in COVID-19 time 
period. As shown in literature, the spatial regression models are useful to analyse phenomena 
with non-stationarity variability in contrast to standard regression models.  

 By employing spatial regression models, the findings suggest that the higher the mobility 
to places of residence, the higher the excess mortality. This increasing in mortality is not 
homogeneous throughout the Italian provinces. Specifically, the variability in the mortality on 
August 2020 compared to the average value on 2015-2019 period (baseline) is greater in the 
Central-Southern provinces, due to the movements to the residence places in July 2020.  

In conclusion, the spatial interactions between mobility and COVID-19 spread could 
support the analysis about the relationship between excess mortality and socio-economic 
settings, highlighting the importance of modelling spatial variability. 
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