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Abstract
We present a hydrodynamical model for graphene nanoribbons that takes into account the
electron collisions with the lattice and with the edge of the ribbon. Moreover the bandgap
due to the low dimension of the ribbon is considered. The simulation shows that the model
describes qualitatively themacroscopic behavior of the charges and the results are comparable
with that ones obtained by solving numerically the Boltzmann equation but with a remarkable
reduction of the computational time.
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1 Introduction

In its pristine form graphene is a monolayer sheet of carbon atoms assembled in a honey-
comb structure and its electronic properties are due to the behavior of the electric charges in
proximity of the maximum of the valence band and of the minimum of the conduction band,
that correspond to the six vertices of the hexagonal Brillouin zone. In these points the two
bands are in contact making graphene a gapless conductor. The charge properties are studied
in only two equivalent points of the Brillouin zone, indicated by K and K ′ (Dirac points)
and the dispersion relation is

ε(k) = ±�vF |k|, (1)

(+ is for the conduction band and − is for the valence band), with � the Dirac constant, vF
(constant) the Fermi velocity and |k| the modulus of the wave number.
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This peculiar band structure makes graphene a semimetal with high mobility and good
conductivity and, as a consequence, one of the best candidates for the realization of new
nanodevices [1,2]. On the other hand the absence of the band gap does not permit to switch
off the current and even at equilibrium conditions the conductivity has a minimum value
of the order of ∼ 4e2/� [2]. This makes graphene in its pristine form not suitable for the
realization of Fields Effect Transistors (FETs).

A possible solution to overcome this problem is the use of graphene nanoribbons, narrow
strips of graphene that are semiconductors because the quantum confinement along with one
direction creates a bandgap tuned as a function of the width and of the edge structure [3].
In idealized situations the edges have zigzag or armchair structure, however today it is very
difficult the production of graphene ribbon with one well defined edge, but they are available
with a high degree of edge disorder. This leads to the investigation of the behavior of the
charge transport in graphene taking into account the bandgap [4] and the scattering with edge
[5,6] as well as the well known scattering with the lattice [8].

Here we develop a hydrodynamical model for simulating charge transport in graphene
nanoribbons by using themaximumentropy principle (hereafterMEP), a theoretical approach
already examined theoretically for graphene and other semiconductors in [8–10].

The evolution equations for the macroscopic variables like density, energy, velocity and
energy-flux are obtained by taking the moments of the transport equations. The constitutive
relations, needed to have a closed system of balance laws, are deduced by resorting to MEP
in a similar way to the Levermore moment approach [11]. It has been proved in [8,9] that
maximization problem, MEP leads to, is globally solvable in the physically relevant region
of the field variables and that in the same region the evolution equations form a hyperbolic
system of conservation laws.

Other macroscopic models are also available in the literature. For example in [12,13] a
spinorial Wigner function has been employed to get drift-diffusion like models for charge
transport in graphene, including spin transport as well. Quantum effects have been also
introduced with a Wigner formalism in [14–17].

The plan of the article is the following one. In Sect. 2 the semiclassical description is
recalled and in Sect. 3 themacroscopicmodel is developed. In Sect. 4 the closure relations are
furnished and discussed while in the subsequent section the production terms are calculated.
In penultimate section the results of a homogeneous case are presented and discussed.

2 Kinetic Model

The confinement of the charges in graphene nanoribbons has been widely treated and we
refer the reader to [3,4,18–20] for details. Here we suppose a high degree of edge disorder and
assume the model proposed by [4] that, in good agreement with DFT calculation, furnishes
the following energy dispersion relation

ε±(k) = ±�vF

√
k2x + k2y +

(π

L

)2
(2)

that unlike the (1) depends on the width L of the ribbon, so there is an energy gap given by

Δε = 2�vFπ

L
.

By considering the interaction with the optical phonons (see forward for the details) an
electron can absorb a phonon and jump from the valence band to the conduction band (inter-
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Fig. 1 Schematic representation of a graphene nanoribbon, the transport direction is along x axis

band scattering) or jump in the opposite direction by emitting a phonon. In this paper we
assume a value of L so that Δε > �ω (where �ω is the highest phonon energy) and a Fermi
energy greater than the bottom of the conduction band. In this way the inter-band scattering
is avoided and the charge current is given only by electrons in the conduction band.

Under these conditions the charge transport in the framework of the semiclassical models
is described by the Boltzmann equation

∂ f (r,k, t)

∂t
+ v · ∇r f (r,k, t) − e

�
E · ∇k f (r,k, t) = C(r,k, t)

where f (r,k, t) is the distribution function for the electrons at position r, with wavevector
k and time t . e is the absolute value of the elementary (electron) charge, ∇r and ∇k are the
gradients with respect to the position and wavevector respectively, E is the electric field. v is
the microscopic velocity whose expression is

v = 1

�
∇kε = vF√

k2x + k2y + (π
L

)2 k.

The collisional term has the following generic form (to avoid cumbersome notation we omit
the dependence on r and t)

C(k) = 1

(2π)2

∫
R2

[
w(k,k′) f (k′) (1 − f (k)) − w(k′,k) f (k)

(
1 − f (k′)

)]
d2k′.

and describes a single scattering of the electron from a state with wavevector k to a state with
wavevector k′ with transition rate w(k,k′).

C(k) is the sum of the contributions of the scattering of the electrons with acoustic and
optical phonons and with the edge of the ribbon.

For the evaluation of production terms in this paper we consider a graphene ribbon of
width L along axis x so that the edges are located at y = 0 and y = L and the transport
direction is along x direction (see Fig. (1)).

In the case of acoustic phonons, usually one considers the elastic approximation. Therefore
the collision is only intraband and can be written as

C(k) = 2

(2π)2

∫
R2

w(ac)(k′,k)
(
f (k′) − f (k)

)
δ(ε(k′) − ε(k)) d2k′, (3)

where w(ac)(k′,k) = A(ac)(1 + cos θ ′′) with A(ac) = πD2
ackBT

ρ�vac
. Here θ ′′ is the convex

angle between k and k′, D2
ac is the acoustic phonon coupling constant, vac is the sound speed

in graphene, ρ the graphene areal density and T the graphene lattice temperature, which in
this paper will be kept constant (the reader interested in thermal effects in graphene can refer
to [8,21]). There are three relevant optical phonon scatterings: the longitudinal optical (LO),
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Table 1 Physical parameters for
the electron-phonon collision
term

Parameter Value

vF 108 cm/s

vp 2 × 106 cm/s

σm 7.6 × 10−8 g/cm2

Dac 6.8 eV

� ωopt 164.6 meV

Dopt 109 eV/cm

� ωK 124 meV

DK 3.5 × 108 eV/cm

the transversal optical (TO) and the K phonons. We label them by the index s. The general
expression of the collision term for a generic optical phonon interaction is given by

C(s)
α α′(k) =

∫
R2

[
w

(s)
α′ α(k′,k) f α′

(k′)
(
1 − f α(k)

)− w
(s)
α α′(k,k′) f α(k)

(
1 − f α′

(k′)
)]

d2k′

(4)

where w
(s)
α α′(k,k′) = w

(s,+)

α α′ (k,k′) + w
(s,−)

αα′ (k,k′), s = LO, T O, K . If α = α′ one has
an intraband scattering otherwise an inter-band scattering, here we consider only intraband
scattering and omit the α index. In the case s = LO, T O the expression of w

(s,±)

α α′ (k,k′) =
w(s,±)(k,k′) is

w(s,±)(k,k′) = A(op)D2
Γ

[
1 − ηsαα′ cos(θ + θ ′)

] (
Ns
B + 1

2
± 1

2

)
δ(ε′

α′ − εα ± �ω)

where A(op) = π/ρωs , D2
Γ is the optical phonon coupling constant and Ns

B is the Bose-
Einstein distribution

Ns
B = 1

e�ωs/kBT − 1

with �ωs phonon energy. θ and θ ′ are the convex angles between k and k′ − k and between
k′ and k′ − k. ηs is a parameter which takes the following values

ηs =
{

1 if s = LO
−1 if s = TO

Here we assume for LO and T O phonon energy �ωLO = �ωT O and hereafter it will be
indicated by �ωopt .Moreover, under the previous assumptions,w(s)(k,k′) = w(s,+)(k,k′)+
w(s,−)(k,k′) reads

w(s)(k,k′) = A(op)D2
Γ

(
Ns
B + 1

2
± 1

2

)
δ(ε′

α′ − εα ± �ω)

If s = K the transition rate is given by

w(s,±)(k,k′) = A(K )D2
K

(
1 − αα′ cos θ ′′) (Ns

B + 1

2
± 1

2

)
δ(εα′ − εα ± �ωs)

where A(K ) = π/ρωs and D2
K is the K -phonon coupling constant. The physical parameters

for electron-phonon scatterings are reported in Table 1.
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Table 2 Physical parameters for
the electron-edge collision term

Parameter Value

Ni 104 cm−1

V0 4.56 × 10−14 eV cm2

a 10−8 cm

To include the edge scattering we suppose disordered edges and consider an additional
term as proposed by [6] whose expression is

C(edge)(k) = NiV 2
0

2π�W

∫
R2

e−2(kx−k′
x )

2a2 ( f (k′) − f (k)
)
δ(ε(k) − ε(k′))d2k′

where Ni is the linear density of the scatterer (defects) along with the graphene edge, and
the quantity

V0e
−a2(k′

x−kx )2

is the matrix element due to the potential of a single scatterer at the edge, being V0 a constant
and a a characteristic range, along with the edge direction, so that electron scattering with
rather strong kx -momentum transfer, |kx −k′

x | > 1/a, is effectively suppressed. For the edge
scattering we adopt the parameter reported in Table 2.

Direct simulations of the kinetic models [22,23] require a huge computational effort
(similar difficulties arise also for other semiconductors materials). This has prompted the
formulation of hydrodynamical models given by balance equations for the macroscopic
quantities of interest like density, energy, current.

3 Moment Equations

Macroscopic quantities can be defined as moments of the distribution function with respect
to some suitable weight functions, assuming a sufficient regularity for the existence of the
involved integrals. In particular we propose as a set of moment equations for the conduction
band the balance equations for average densities ρ, velocities V , energies W and energy
fluxes S defined as

ρ = 2

(2π)2

∫
R2

f (r,k, t) d2k,

ρV = 2

(2π)2

∫
R2

f (r,k, t) v d2k,

ρW = 2

(2π)2

∫
R2

f (r,k, t) ε d2k,

ρS = 2

(2π)2

∫
R2

f (r,k, t) εv d2k.
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By integrating the Boltzmann equation with respect to k, one has the balance equations for
the macroscopic quantities defined above

∂

∂t
ρ + ∇r · (ρ V) = ρ Cρ

∂

∂t
(ρ W ) + ∇r · (ρ S) − eρE · V = ρ CW

∂

∂t
(ρ V) + ∇r ·

(
ρ F(0)

)
− e ρG(0) · E = ρ CV

∂

∂t
(ρ S) + ∇r ·

(
ρ F(1)

)
e ρG(1) · E = ρ CS. (5)

Of course other choices are possible, but the accuracy in the choice of these moments has
been well tested in [14]. In particular it is crucial to include the average energy and energy-
flux because the thermal effects are supposed to be very relevant in graphene, as confirmed
at a kinetic level. We note that, besides the average densities, velocities, energies and energy
fluxes, additional quantities appear (omitting for the sake of brevity the dependence on space
and time)

ρ Cρ = 2

(2π)2

∫
R2

C(k) d2 k, ρ CV = 2

(2π)2

∫
R2

v C(k) d2 k,

ρ CW = 2

(2π)2

∫
R2

ε C(k) d2 k, ρ CS = 2

(2π)2

∫
R2

ε vC(k) d2 k

ρ

(
F(0)

F(1)

)
= 2

(2π)2

∫
R2

(
1
ε

)
v ⊗ v f (r,k, t) d2k,

ρ

(
G(0)

G(1)

)
= 2

� (2π)2

∫
R2

f (r,k, t)∇k

(
v
ε v

)
d2k,

that must be expressed as function of the basic variables ρ, W , V, S (closure problem).

4 Closure Relations

A well theoretically motivated way to get the desired closure relations is to resort to the
maximum entropy principle according to which the electron distribution functions is esti-
mated with the distributions fMEP obtained solving the following constrained optimization
problem [8,10]. For fixed r and t ,

fMEP = argmax
f ∈FΨ

S[ f ] under the constraints:

ρ = 2

(2π)2

∫
R2

f (r,k, t) d2k, ρW = 2

(2π)2

∫
R2

f (r,k, t) ε d2k, (6)

ρV = 2

(2π)2

∫
R2

f (r,k, t) v d2k, ρS = 2

(2π)2

∫
R2

f (r,k, t) εv d2k, (7)

where S[ f ] is the entropy of the system, which in the semiclassical approximation reads

S[ f ] = − 2kB
(2π)2

∫
R2

[ f ln f + (1 − f ) ln (1 − f )] d2 k

andFΨ is the space of the distribution functions such that the expectation values with respect
to the considered weight functions there exist [8]. In order to take into account the constraints

123



Hydrodynamical Model for Charge Transport in Graphene Nanoribbons Page 7 of 14 23

let us introduce the Lagrange multipliers λ, λW , λV, λS and the Legendre transform of S

S′ = S +
[
λ

(
ρ − 2

(2π)2

∫
R2

f (r,k, t) d2k
)

+λV

(
ρV − 2

(2π)2

∫
R2

f (r,k, t) v d2k
)

+λW

(
ρW − 2

(2π)2

∫
R2

f (r,k, t) ε d2k,

)

+λS

(
ρS − 2

(2π)2

∫
R2

f (r,k, t) εv d2k
)]

.

The optimality condition δS′ = 0 gives

fMEP (r,k, t) = 1

1 + exp [λ + λW ε + (λV + ελS) · v] .

The multiplicative constant kB/2π2 has been included into the multipliers for the sake of
simplifying the notation. In order to invert the relations (6)–(7) and express the Lagrangian
multipliers as functions of the basic variables, we linearize the above distributions around
the isotropic part by neglecting the anisotropic part of higher order

fMEP ≈ f (i)(ε) + f (a)(ε) (8)

where

f (i)(ε) = 1

1 + eλ+λW ε
, f (a)(ε) = − eλ+λW ε

(
1 + eλ+λW ε

)2 (λV + ελS) · v (9)

The comparison between linear and non-linear models can be found in [24]. A comparison
between both models and numerical solutions of the kinetic equations is presented in [25].

We remark that the expectation values of any tensorial function of the type
∑m

i=1 ⊗viε
n

with respect to the density (8) there exists for each m and n non negative integers provided
λW > 0 which constitutes the realizability condition.

Since at equilibriumλW = 1/kBT > 0, the equilibria are interior points of the realizability
region. It is simple to prove the following property.

Theorem The distribution (8) satisfies the constraints (6)–(7) if the Lagrangian multipliers
are given by

ρ = 1

π(�vF )2
I1(λ, λW ), ρW = 1

π(�vF )2
I2(λ, λW ) (10)

(
λV
λS

)
=
(
a11 a12
a21 a22

)(
ρV
ρS

)
:= A

(
ρV
ρS

)
(11)

where

A = 2π�
2

Deλ

(−J3(λ, λW ) J2(λ, λW )

J2(λ, λW ) −J1(λ, λW )

)
(12)
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with

In(λ, λW ) =
∫ +∞

π�vF
L

εn

1 + eλ+λW ε
d ε, (13)

Jn(λ, λW ) =
∫ +∞

π�vF
L

εneλW ε

(
1 + eλ+λW ε

)2
[
1 −

(
π�vF

Lε

)2
]
d ε (14)

D = J1(λ, λW )J3(λ, λW ) − J 22 (λ, λW ). (15)

For the proof the reader is referred to [8,9].
It is also possible to prove that the relationships (10) and (11) are locally and globally

invertible in the region λ ∈ R, λW > 0.
Also for these propositions the reader can find the proof in [8,9].
Moreover we observe that inverse relation of (11) is(

ρV
ρS

)
= − eλ

2π�2

(
J1 J2
J2 J3

)(
λV
λS

)
:= J

(
λV
λS

)

and is simple to prove that detJ 	= 0 and J−1 = A. 
�
Once fMEP has been expressed in terms of the basic variables, from the relative definition

we are able to determine the closure relations for fluxes and production terms. In particular
for fluxes one obtains

ρ

(
F(0)

F(1)

)
= 1

2π�2

(
I1(λ, λW )

I2(λ, λW )

)
I, (16)

ρ

(
G(0)

G(1)

)
= 1

2π�2

( I0(λ, λW )

2I1(λ, λW )

)
I (17)

where I is the identity matrix and

I0(λ, λW ) =
∫ +∞

π�vF
L

1

1 + eλ+λW ε

[
1 +

(
π�vF

Lε

)2
]

.

Themoment equations form a hyperbolic system of balance laws in the realizability region
λWA > 0 [8,9].

Regarding the production terms, they are given by a sum of contributions arising from the
different types of phonon scattering

Cψ = Cac
ψ +

∑
s=LO,T O,K

Cs
ψ + C (edge)

ψ ,

with ψ = ρ,V,W ,S. In the next sections all the productions terms will be explicitly cal-
culated completing the formulation of the model. The constitutive relations involve some
integral functions which can be easily evaluated numerically.

5 Production Terms

5.1 Production Terms of Acoustic Phonon Scattering

The acoustic phonons scattering conserves density and energy, so

C (ac)
ρA

= C (ac)
WA

= 0 (18)
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while velocity and energy-flux production terms are given by(
ρCV
ρCS

)
= − A(ac)

4Dπ�2v2F

(
J2 J3
J3 J4

)(−J3 J2
J2 −J1

)(
ρV
ρS

)
. (19)

5.2 Production Terms of LO and TO Optical Phonon Scattering

The production terms due to optical phonon scattering are the sum of two contributions, LO
and TO. Each of them gives an intravalley and an intervalley contribution. Here we consider
only intravalley contribution. The intraband scattering conserves the particle number

ρAC
(opt)
ρA

= 0. (20)

The energy production term is given by

ρC (opt)
W = A(opt)D2

Γ N (opt)
B

π2(�vF )4
�ωopt

(
eλW�ωopt − eβ�ωopt

)
IW (λ, λW ) (21)

with

IW (λ, λW ) =
∫ +∞

π�vF
L

ε(ε + �ωopt )

1 + eλ+λwε

eλ+λW ε

1 + eλ+λW (ε+�ωopt )
dε.

At equilibrium λW = β and therefore C (opt)
WA

vanishes.
The other production terms read(

ρC (opt)
V

ρC (opt)
S

)
= A(opt)D2Γ N (opt)

B

π(vF�)2Deλ

(
Z1 + V1 Z2 + V2
Z2 + V2 Z3 + V3

)(−J3 J2
J2 −J1

)(
ρV
ρS

)
(22)

with

Zn =
∫ +∞

π�vF
L

eβ�ωopt + eλ+λW (ε+�ωopt )

1 + eλ+λW (ε+�ωopt )

eλ+λW ε

(1 + eλ+λW ε)2
εn(ε + �ωopt )

[
1 −

(
π�vF

L
)2
)]

dε

and

Vn =
∫ +∞

π�vF
L

1 + eβ�ωopt+λ+λW ε

1 + eλ+λW ε

eλ+λW (ε+�ωopt )(
1 + eλ+λW (ε+�ωs )

)2 ε(ε + �ωopt )
n

√
1 −

(
π�vF

L(ε + �ω)

)2
√
1 −

(
π�vF

Lε

)2

dε.

5.3 Production Terms of K-Phonon Scattering

For the production terms arising from the K -phonon scattering the same considerations as
regarding the optical phonon hold. Again we consider only intraband scattering. One has

ρAC
(K )
ρ = 0

ρC (K )
W = A(K )D2

K N (K )
B

4πv2F�2Deλ
�ωK

(
eλW �ωK − eβ�ωK

) ∫ +∞
π�vF

L

ε(ε + �ωK )eλ+λW ε(
1 + eλ+λW ε

) (
1 + eλ+λW (ε+�ωK )

)dε

(
ρC (K )

V

ρC (K )
S

)
= A(K )D2

K N (K )
B

4πv2F�2Deλ

(
D1 1(0, 0) + D̄1 1(0, 0) D1 2(0, 0) + D̄2 1(0, 0)
D1 1(1, 1) + D̄1 1(1, 1) D2 1(1, 1) + D̄2 1(1, 1)

)(−J3 J2
J2 −J1

)(
ρV
ρS

)
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with

Dm n(p, q, λ, λW ) =
∫ +∞

πvF�

L

εm(ε + �ωK )n
1 + eβ�ωK+λ+λε

1 + eλ+λW ε

eλ+λW (ε+�ωK )

(
1 + eλ+λW (ε+�ωK )

)2
⎡
⎣2(ε + �ωK )p

(
1 −

(
π�vF

L(ε + �ωK )

)2
)

+ εq

√
1 −

(
π�vF

L(ε + �ωK )

)2
√
1 −

(
π�vF

Lε

)2
⎤
⎦ dε,

D̄m n(p, q, λ, λW ) =
∫ +∞

πvF�

L

εm(ε + �ωK )n
eλ+λW (ε+�ωK ) + eβ�ωK

1 + eλ+λW (ε+�ωK )

eλ+λW ε

(
1 + eλ+λW ε

)2
⎡
⎣2ε p

(
1 −

(
π�vF

L(ε + �ωK )

)2
)

+ (ε + �ωK )q

√
1 −

(
π�vF

L(ε + �ωK )

)2
√
1 −

(
π�vF

Lε

)2
⎤
⎦ dε.

5.4 Production Terms of the Edge Scattering

The edge scattering conserves the particle numbers and the energy, so

ρC (edge)
ρ = 0

ρC (edge)
W = 0

while the expressions of the production terms for the velocityV and for the energy flux S are
(

ρC (edge)
V

ρC (edge)
S

)
= NiV 2

0

�3v2F LDeλ

(
ML0(λ, λW ) ML1(λ, λW )

ML1(λ, λW ) ML2(λ, λW )

)(−J3 J2
J2 −J1

)(
ρV
ρS

)

with

MLn(λ, λW )

=
∫ 2π

0
dθ ′
∫ 2π

0
dθ

∫ +∞
π�vF

L

dε εn

(
ε2 −

(
π�vF

L

)2
)
e
−
(

a
�vF

)2(
ε2−

(
π�vF

L

)2)
(cos θ−cos θ ′)2

(cos θ − cos θ ′)cosθ eλ+λW ε

(
1 + eλ+λW ε

)2
where θ and θ ′ are the angles between k and the edge and k′ and edge respectively.

6 Simulation of Charge Transport in the Homogeneous Case

To test the model we consider a simple case with a constant electric field E along the x
direction so the distribution is f (k, t) and equations (5) became

∂
∂t ρ = ρCρ

∂
∂t (ρW ) − eρE · V = ρCW

∂
∂t (ρV) − eρG(0) · E = ρCV

∂
∂t (ρS) − eρG(1) · E = ρSV
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or in array form

∂

∂t

⎛
⎜⎜⎝

ρ

ρW
ρV
ρS

⎞
⎟⎟⎠− eE

⎛
⎜⎜⎝

0
ρV

ρG(0)

ρG(1)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ρCρ

ρCW

ρCV
ρCV

⎞
⎟⎟⎠ .

To reduce the numerical cost we have considered as independent variables λ, λW , ρV, ρS so
the evolution equations are

M
d

dt

⎛
⎜⎜⎝

λ

λW

ρV
ρS

⎞
⎟⎟⎠ = eE

⎛
⎜⎜⎝

0
ρV

ρG(0)

ρG(1)

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

ρCρ

ρCW

ρCV
ρCV

⎞
⎟⎟⎠

with

M =

⎛
⎜⎜⎜⎝

− P1(λ,λW )

π(�vF )2
− P2(λ,λW )

π(�vF )2
0 0

− P2(λ,λW )

π(�vF )2
− P3(λ,λW )

π(�vF )2
0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ and Pn =

∫ +∞
π�vF

L

εneλ+λW ε

(1 + eλ+λW ε)2
dε.

In the simulation here presented we use an applied electric field of 0.4 V /μm, a Fermi energy
of 0.4 eV and several values of the width of the ribbon. The results are shown in Fig. 2 and
in Fig. 3.

From the top to the bottom of Fig. 2 themean energy (left) and themean velocity (right) are
plotted for increasing values of thewidth of the ribbon. The plots show that the edge scattering
reduces the mean velocity and the mean energy of the charges and that this degradation
disappears by increasing the width of the ribbon. This can be ascribed to the boundary
effects, being more relevant if the ribbon is narrow. As consequence, the electron mobility is
reduced, leading to worse material performances, despite to the presence of an energy gap,
leading to a better behavior of electron device. This is a key point in the design of new field
effect transistors made of graphene where the efficiency is related to the electron mobility
and the absence of a gap is a drawback because there exists an inversion current due to the
holes. The stationary state is reached after 1.0–1.5 ps.

Figure 3 shows the increase of the density current for unit length by the increase of the
width of the ribbon. For larger ribbons the density current is higher because the channel is
larger.

7 Conclusions

The hydrodynamical model for charge transport in graphene nanoribbons here formulated
takes into account the energy gap due to the charge confinement and the scattering of the
electrons with the lattice as well as the scattering with the edge of the ribbon by supposing
an high degree of edge disorder and assuming the energy band model proposed in [4]. The
evolution equations have been obtained by taking suitable moments of the semiclassical
transport equations and getting the needed closure relations by employing the maximum
entropy principle. The model is free from adjustable parameters, apart from those already
present at kinetic level.
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Fig. 2 Mean energy value (left) and mean velocity (right) with an applied electric field of 0.4 V /μm and
a Fermi energy of 0.4 eV for different width of the nanoribbon (greater to the bottom): 7 nm, 10 nm, 100
nm, 1000 nm. It is remarkable the degradation of the mean velocity and of the mean energy due to the edge
scattering. The effect decreases for higher values of the width and disappears in the limit case of graphene
sheet
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Fig. 3 Current density for unit length versus time. The applied electric field is 0.4 V /μm and the Fermi energy
0.4 eV

The simulation has shown that themodel describes qualitatively themacroscopic behavior
of the charge transport and is able to differentiate the graphene ribbons from the graphene
sheets. Moreover the obtained results are comparable with that ones obtained by solving
numerically the Boltzmann equation [22,23,25,26] but with a remarkable reduction of the
computational time.

The code for the simulation is available upon request.
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