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The RG improvement of the screened massive expansion is studied at one loop in two renormalization
schemes, the momentum subtraction (MOM) scheme and the screened momentum subtraction scheme. The
respective Taylor-scheme running couplings are shown not to develop a Landau pole, provided that the
initial value of the coupling is sufficiently small. The improved ghost and gluon propagators are found
to behave as expected, displaying dynamical mass generation for the gluons and the standard UV limit of
ordinary perturbation theory. In the MOM scheme, when optimized by matching with the fixed-coupling
framework, the approach proves to be a powerful method for obtaining propagators, which are in excellent
agreement with the lattice data already at one loop. After optimization, the gluon mass parameter is left
as the only free parameter of the theory and is shown to play the same role of the ordinary perturbative
QCD scale ΛQCD.
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I. INTRODUCTION

Being able to describe the nonperturbative regime of
QCD is of paramount importance for understanding the
low-energy phenomenology of hadrons, for predicting the
observed hadron-mass spectrum and for addressing many
unsolved problems like confinement, chiral symmetry
breaking, and dynamical mass generation [1–7]. Indeed,
almost all of the observed mass in the Universe seems to be
generated by such mechanisms. Unfortunately, since per-
turbation theory (PT) breaks down in the infrared of QCD
and in the pure-gauge Yang–Mills (YM) theory, to date a
complete analytical treatment of the nonperturbative low-
energy regime is still missing. In the last decades a
considerable amount of knowledge has been provided by
numerical methods based on lattice calculations [7–18] and
numerical integration of integral equations in the con-
tinuum [19–43]. The breakdown of PT and the lack of an
alternative analytical approach from first principles has also
motivated the study of phenomenological models, mainly
based on ad hoc modified Lagrangians [44–50].
In the last years, a purely analytical approach to the

exact gauge-fixed Lagrangian of QCD has been developed

[51–59] based on a mere change of the expansion point of
ordinary PT, showing that the breakdown of the theory may
not be due to the perturbative method itself, but rather a
consequence of a bad choice of its zero-order Lagrangian—
namely that of a massless free-particle theory—which is
good enough only in the UV because of asymptotic
freedom. In the IR, because of mass generation, a massive
free-particle theory could constitute the best expansion
point, leading to a screened perturbative expansion which
does not break down at any energy scale and is under
control if the coupling is moderately small (as it turns out to
be). Then, quite paradoxically, the nonperturbative regime
of QCD and YM theory may be accessible by plain PT.
Furthermore, in the IR and as far as the two-point functions
are concerned, the higher-order terms of the perturbative
series were shown to be minimized by an optimal choice of
the renormalization scheme [55,58,59], yielding a very
predictive analytical tool and one-loop results that are in
excellent agreement with the available lattice data for
YM theory. A remarkable feature of this optimized expan-
sion is that the method is genuinely from first principles and
does not require any external input apart from fixing the
energy units.
The screened massive expansion shares with ordinary

PT the problem of large logs that limit the validity of the
optimized expansion to a low energy range, up to about
2 GeV [59]. In this paper we show how the problem can be
solved by the renormalization group (RG), yielding an
improved screened expansion whose validity can be
virtually extended to any energy scale. Our findings
corroborate the idea that QCD is a complete theory valid
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at all energies. In what follows, the RG-improved
screened expansion is studied at one loop for the pure-
gauge YM theory in two different renormalization
schemes and is shown to be under control down to
arbitrarily small scales, even if higher-order terms become
important in the IR, where the one-loop RG-improved
results get worse than the optimized fixed-coupling
expressions. Eventually, a matching between the two
expansions provides a good agreement with the lattice
data at all energies.
It is remarkable that, at one loop, the RG equation for the

coupling can be integrated exactly in the different schemes
providing analytical expressions for the running coupling,
which merge with the universal one-loop result in the UV.
In the IR, due to the nonperturbative scale set by the gluon
mass, the coupling is scheme dependent and finite if the
flow starts from a moderate value in the UV, smaller than a
threshold value. Above that threshold the running coupling
develops an IR Landau pole.
This paper is organized as follows. In Sec. II the

optimized screened expansion is reviewed for pure YM
theory and its general renormalization and RG improve-
ment are discussed. In Sec. III the RG-improved expansion
is studied in the momentum-subtraction (MOM) scheme
and in its screened version, which we term screened MOM
(SMOM). In Sec. IV the results of the previous sections are
compared with the predictions of the optimized fixed-scale
expansion and with the available lattice data. A matching
between the two expansions provides a predictive theory,
which is in good agreement with the lattice data at all
energy scales. Finally, in Sec. V the main results are
summarized and discussed.

II. THE SCREENED MASSIVE EXPANSION
AND ITS RENORMALIZATION

IN THE LANDAU GAUGE

The screened massive expansion for the gauge-fixed
and renormalized YM Lagrangian was first developed
in Refs. [51,52], extended to finite temperature in
Refs. [56,57], and to the full QCD in Ref. [54]. The
extension to a generic covariant gauge [55,58] has already
demonstrated the predictive power of the method when the
expansion is optimized by the constraints of the Becchi-
Rouet-Stora-Tyutin (BRST) symmetry satisfied by the
Faddeev–Popov Lagrangian. The renormalization of the
screened expansion in the Landau gauge was discussed
in Ref. [59], where different renormalization schemes
were considered and analytical expressions were reported
for the beta function.
The screened expansion is obtained by a shift of the

expansion point of PT, performed after having renormal-
ized the fields and the coupling, as discussed in Ref. [59].
Following Refs. [52,55], the shift is enforced by simply
adding a transverse mass term to the quadratic part of the
action and subtracting it again from the interaction so that

the total action is left unchanged. The action term, which is
added and subtracted, is given by

δS ¼ 1

2

Z
AaμðxÞδabδΓμνðx; yÞAbνðyÞd4xd4y; ð1Þ

where the vertex function δΓ is a shift of the inverse
propagator,

δΓμνðx; yÞ ¼ ½Δ−1
m

μνðx; yÞ − Δ−1
0

μνðx; yÞ�; ð2Þ

and Δμν
m is a massive free-particle propagator,

Δ−1
m

μνðpÞ ¼ ð−p2 þm2ÞtμνðpÞ þ −p2

ξ
lμνðpÞ; ð3Þ

with the transverse and longitudinal projectors defined
according to

tμνðpÞ ¼ gμν −
pμpν

p2
; lμνðpÞ ¼

pμpν

p2
: ð4Þ

Adding the term δS is equivalent to substituting the new
massive propagator Δμν

m for the old massless one Δμν
0 in the

quadratic part of the action. The shift itself is motivated
a posteriori by the former being much closer to the exact
propagator in the IR than the latter and a priori by a
Gaussian effective potential (GEP) analysis of pure YM
theory [57].
In order to leave the total action unchanged, the opposite

term −δS is added in the interaction, providing a new two-
point interaction vertex δΓ. Dropping all color indices in the
diagonal matrices and inserting Eq. (3) into Eq. (2), the
vertex is just the transverse mass shift of the quadratic part,

δΓμνðpÞ ¼ m2tμνðpÞ: ð5Þ

The new vertex does not contain any renormalization
constant and is part of the interaction even if it does not
explicitly depend on the coupling. Thus the expansion itself
must be regarded as a δ-expansion, rather than a loop
expansion, since different powers of the coupling coexist at
each order in powers of the total interaction.
The self-energies and the propagators are evaluated,

order by order, by PTwith a modified set of Feynman rules
by which the gluon lines are associated to massive free-
particle propagators Δμν

m and the new two-point vertex δΓμν

is included in the graphs. Since the total gauge-fixed
Faddeev–Popov Lagrangian is not modified, and because
of gauge invariance, the exact gluon longitudinal polari-
zation is known to vanish. The exact gluon polarization can
thus be written as

ΠμνðpÞ ¼ Πðp2ÞtμνðpÞ: ð6Þ

GIORGIO COMITINI and FABIO SIRINGO PHYS. REV. D 102, 094002 (2020)

094002-2



It follows that in the Landau gauge, ξ ¼ 0, the exact gluon
propagator is transverse,

ΔμνðpÞ ¼ Δðp2ÞtμνðpÞ; ð7Þ

and defined by the single scalar function Δðp2Þ. In the
Euclidean formalism and Landau gauge, the dressed gluon
and ghost propagators of the screened expansion can be
expressed as

Δ−1ðp2Þ ¼ p2 þm2 − Πðp2Þ;
G−1ðp2Þ ¼ −p2 − Σðp2Þ; ð8Þ

where the proper gluon polarization Πðp2Þ and ghost self-
energy Σðp2Þ are the sum of all one-particle-irreducible
(1PI) graphs in the screened expansion, including the mass
and renormalization counterterms.
It is important to keep in mind that, since the total

Lagrangian is not modified, the exact renormalization con-
stants satisfy the Slavnov–Taylor identities. Nonetheless, the
addedmass term breaks the BRST symmetry of the quadratic
part and of the interaction when these are taken apart.
Therefore, some of the constraints arising from BRST
symmetry are not satisfied exactly at any finite order of the
screened expansion. While the soft breaking has no effect on
the UV behavior or on the diverging parts of the renormal-
ization constants, some spurious diverging mass terms do
appear in the expansion at some stage. However, as discussed
in Refs. [51,52,54,55], the insertions of the new vertex δΓ,
Eq. (5), cancel the spurious divergences exactly, without the
need of any mass renormalization counterterm, as a conse-
quence of the unbroken BRST symmetry of thewhole action.
This aspect makes the screened expansionvery different from
effective models where a bare mass term is added to the
Lagrangian from the beginning. In the screened massive
expansion, the gluonmass parameter is an arbitrary and finite
quantity which is added and subtracted again in the renor-
malized action and, as such, it can be taken to be an RG
invariant.
As shown, for instance, in Ref. [52], the exact self-

energies of the screened expansion can be written as

Πðp2Þ ¼ m2 − p2δZA þ Πloopðp2Þ;
Σðp2Þ ¼ p2δZc þ Σloopðp2Þ; ð9Þ

where the tree-level contribution m2 comes from the new
two-point vertex δΓ in Eq. (5), while the tree-level terms
−p2δZA, p2δZc arise from the respective field-strength
renormalization counterterms. Observe that the vertex mass
term in Eq. (9) exactly cancels the zero-order gluon
propagator’s mass in Eq. (8): in the screened expansion,
the gluon’s mass is not a mere artifact of the choice of a
massive tree-level propagator, but rather it is dynamically
generated by the loops’ contribution to the self-energy

(more precisely, it comes from the gluon loops [51,52,55]).
Indeed, the screened expansion of QED would not
predict the existence of a mass for the photons, which
are not self-interacting.
The proper functions Πloopðp2Þ, Σloopðp2Þ are given by

the sum of all 1PI graphs containing loops. The diverging
parts of δZA, δZc cancel the UV divergences of Πloop and
Σloop, respectively. Since these divergences do not depend
on mass scales, they are exactly the same as in the standard
PT so that in the MS scheme ZA and Zc have their standard
expressions, as manifest in the explicit one-loop calculation
[51,52,59]. The finite parts of δZA, δZc, on the other hand,
are arbitrary and depend on the renormalization scheme.
Indeed, the self-energies themselves each contain an
arbitrary term of the form Cp2, where C is a constant
whose value depends on the regularization method.
To one loop, the explicit expressions for the loop self-

energies, as computed from the diagrams in Fig. 1, can be
written as

Πloopðp2Þ ¼ αp2

�
13

18

�
2

ϵ
þ ln

μ̄2

m2

�
− FðsÞ − C

�
;

Σloopðp2Þ ¼ −αp2

�
1

4

�
2

ϵ
þ ln

μ̄2

m2

�
− GðsÞ − C0

�
; ð10Þ

where

α ¼ 3Nαs
4π

¼ 3Ng2

16π2
; ð11Þ

C and C0 are constants and FðsÞ, GðsÞ are dimensionless
functions of the ratio s ¼ p2=m2, whose explicit expres-
sions were derived in Refs. [51,52] and are reported in the
Appendix. For further details on the screened expansion
we refer to [55,58,59], where explicit analytical expressions
for the propagators are reported to third order in the
δ-expansion and to one loop, also in an arbitrary covariant
gauge.
While the exact observables must be RG-invariant

and cannot depend on the renormalization scale, the

FIG. 1. Diagrams that contribute to the ghost self-energy and
gluon polarization to third order in the δ-expansion and one loop.
The crosses denote the insertions of the vertex δΓ.
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approximate one-loop expressions do depend on the scale
and on the scheme. Moreover, some exact consequences
of BRST symmetry, like the Nielsen identities [60–62],
might not be satisfied at any finite order of the screened
expansion. An optimal choice of the finite parts of the
renormalization constants provides propagators, which
are closer to the exact RG-invariant result, and can be
determined by the principle of minimal sensitivity [63]. The
resulting optimized PT is known as renormalization-
scheme optimized PT [64] and turns out to be quite
effective.
For an observable particle, the finite parts are usually

fixed on mass shell. For instance, the Nielsen identities are
satisfied at any finite order of PT for electrons and quarks
when the self-energy is renormalized on shell [62]. For the
gluons, without an observable mass at hand, the argument
can be reversed. The scheme can be defined by imposing
that the Nielsen identities are satisfied, i.e., by requiring
that the poles and residues of the propagator be gauge-
parameter independent. While this condition is not gen-
erally satisfied at one loop, in Refs. [55,59] we showed
that there exists an optimal choice of the renormalization
constants which makes the pole structure gauge invariant.
For this special choice, the higher-order terms turn out to be
minimal and negligible in the IR so that the optimized one-
loop analytical expressions provide an excellent agreement
with the available low-energy lattice data when the energy
scale is fixed by setting m ¼ 0.656 GeV. The resulting
optimized expansion is very predictive and gives valuable
quantitative information on the analytical properties in
Minkowski space even for different covariant gauges,
which are not accessible by lattice calculations.
Unfortunately, being based on an optimal choice of the

renormalization scale, the optimized expansion is not
reliable for p=m≳ 3 (corresponding to p≳ 2 GeV for
m ¼ 0.656 GeV) because of the large logs. For instance, in
Eq. (10), the ghost self-energy contains a leading term
GðsÞ ≈ lnðsÞ=4 which spoils the multiplicative renormaliz-
ability of the propagator for a finite change of scale, unless
the shift μ0 − μ ≪ m. This problem is usually solved by
integrating the RG flow, yielding an improved version of
the perturbative expansion.
The evaluation of the RG-improved gluon and ghost

propagators requires the knowledge of the respective anoma-
lous dimensions and of the beta function. In a momentum-
subtraction-like renormalization scheme defined by the
values of the propagators and coupling at the scale μ, the
calculation of the anomalous dimensions and beta function
from the explicit expressions of the self-energies in Eqs. (10)
is straightforward. At p2 ¼ μ2, using Eqs. (8) and (9), we
can write

μ−2Δ−1ðμ2Þ ¼ 1þ δZA − μ−2Πloopðμ2Þ;
−μ−2G−1ðμ2Þ ¼ 1þ δZc þ μ−2Σloopðμ2Þ; ð12Þ

so that

ZA ¼ μ−2½Δ−1ðμ2Þ þ Πloopðμ2Þ�;
Zc ¼ −μ−2½G−1ðμ2Þ þ Σloopðμ2Þ�: ð13Þ

The gluon and ghost anomalous dimensions γA and γc are
then defined as

γA ¼ 1

2

d lnZA

d ln μ
; γc ¼

1

2

d lnZc

d ln μ
: ð14Þ

As for the renormalized strong coupling constant g, this can
be defined as

g ¼ gB
ZcZ

1=2
A

Zc
1

; ð15Þ

where gB is the bare coupling, and Zc
1 is the renormalization

factor of the ghost-gluon vertex. In the Landau gauge, ξ ¼ 0,
the divergent part of the ghost-gluon vertex is known to
vanish, so that Zc

1 is finite. The simplest renormalization
condition for the vertex is, therefore, given by Zc

1 ¼ 1. The
latter defines the Taylor scheme [65–68], in which

g ¼ gBZcZ
1=2
A : ð16Þ

From the above equation we can immediately derive the beta
function:

β ¼ μ
dg
dμ

¼ gð2γc þ γAÞ: ð17Þ

Thus in the Taylor scheme the knowledge of γA and γc is
sufficient for computing β.
The RG-improved propagators renormalized at the scale

μ0 are defined in terms of the anomalous dimensions
according to

Δðp2; μ0Þ ¼ Δ̂ðp2Þ exp
�Z

p2

μ2
0

dμ02

μ02
γAðμ02Þ

�
;

Gðp2; μ0Þ ¼ Ĝðp2Þ exp
�Z

p2

μ2
0

dμ02

μ02
γcðμ02Þ

�
: ð18Þ

Here Δ̂ðp2Þ and Ĝðp2Þ are scheme-dependent functions
that are determined by the renormalization conditions:
since for any value of the initial renormalization scale

Δ̂ðμ20Þ ¼ Δðμ20; μ0Þ;
Ĝðμ20Þ ¼ Gðμ20; μ0Þ; ð19Þ

the functions Δ̂, Ĝ evaluated at p2 are simply equal to the
values of the respective propagators, renormalized at
μ2 ¼ p2, and evaluated at the same scale.
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In the next section we will investigate the behavior of the
one-loop RG-improved propagators and running coupling in
two renormalization schemes: the ordinary MOM scheme
and the SMOM scheme. In the UV, any RG-improvement of
the screened expansion must lead to the standard PT RG-
improved results since for p ≫ m the mass effects become
irrelevant. It follows that the improved screened expansion
predicts the correct asymptotic UV behavior for the propa-
gators and coupling already at one loop. On the other hand,
in the IR, where the one-loop optimized fixed-scale expan-
sion of Refs. [55,59] has already proven successful, the
RG-improved results may actually turn out to be quantita-
tively inaccurate (regardless of the value of m) when
truncated to leading order: while the higher-order terms
are minimal at the optimal scale, as the scale runs down with
the momentum the higher-loop corrections to the anomalous
dimensions can become quite large since, in the IR, the
running coupling becomes of order unity. Nevertheless,
perhaps remarkably, it turns out that already at one loop
the improvement of the screened expansion provides a
qualitatively accurate picture of the IR behavior of the
propagators with a running coupling that does not exhibit
a Landau pole. Quantitatively, we expect the accuracy of the
approximation to improve by including the higher-order
corrections to the anomalous dimensions and beta function.
The screened massive expansion introduces the gluon

mass parameter m as a spurious free parameter, whose value
cannot be determined from first principles since Yang-Mills
theory is scale invariant at the classical level. Of course, the
arbitrariness of m results in a loss of predictivity of the
method, allowing for infinitely many solutions for the YM
n-point functions, namely, one for every pair ðm2; αsðμ20ÞÞ.
In Sec. III we do not address this issue; instead, we study the
behavior of the gluon and ghost two-point functions by
expressing every dimensionful quantity in units of m and
letting αsðμ20Þ vary. When needed for comparison, we will
take m ¼ 0.656 GeV as determined, e.g., in Ref. [55], by
fitting the fixed-scale gluon propagator to the lattice data of
Ref. [18]. Then, in Sec. IV, we will present a method for
optimizing the initial value of the coupling αsðμ20Þ; the
dimensionful value of the renormalization scale μ0 itself will
depend on the mass scale set by m. With αsðμ20Þ fixed by
optimization, the redundancy in the choice of free parameters
is removed—thus restoring the predictivity of the screened
expansion—and m is left as the only free parameter to
determine the physics of the theory, playing the same role of
ΛQCD in standard perturbation theory as the fundamental
energy scale of YM theory.

III. RUNNING COUPLING AND
RG-IMPROVED PROPAGATORS

A. MOM scheme

The MOM scheme is defined by the renormalization
conditions

Δ−1ðμ2Þ ¼ μ2;

G−1ðμ2Þ ¼ −μ2: ð20Þ

When plugged into Eq. (13), these lead to the following
one-loop field strength renormalization counterterms (mod-
ulo irrelevant constants):

δZðMOMÞ
A ¼ α

�
13

18

�
2

ϵ
þ ln

μ̄2

m2

�
− F

�
μ2

m2

��
;

δZðMOMÞ
c ¼ α

�
1

4

�
2

ϵ
þ ln

μ̄2

m2

�
−G

�
μ2

m2

��
: ð21Þ

In the limit of large renormalization scales (μ2 ≫ m2,
x → ∞),

FðxÞ → 13

18
ln x;

GðxÞ → 1

4
ln x ð22Þ

(cf. the Appendix), and we recover the leading-order
counterterms of ordinary PT. From Eq. (21), the one-loop
gluon and ghost field anomalous dimensions in the MOM
scheme follow as

γðMOMÞ
A ðμ2Þ ¼ −αðμ2Þ μ

2

m2
F0ðμ2=m2Þ;

γðMOMÞ
c ðμ2Þ ¼ −αðμ2Þ μ

2

m2
G0ðμ2=m2Þ: ð23Þ

Due to the presence of the mass scale set by the gluon mass

parameterm, the anomalous dimensions γðMOMÞ
A and γðMOMÞ

c

depend explicitly on the renormalization scale, rather than
only implicitly through the running coupling αðμ2Þ. This
dependence is lost at high renormalization scales, where
F0ðxÞ and G0ðxÞ are proportional to x−1 [see Eq. (22)] and
the anomalous dimensions of ordinary PT are recovered.
To the coupling α we may associate a beta function βα,

defined as

βα ¼
dα

d ln μ2
¼ α

β

g
: ð24Þ

Using Eq. (17), βα can be computed in the MOM

scheme from the anomalous dimensions γðMOMÞ
A and

γðMOMÞ
c , yielding

βðMOMÞ
α ðμ2Þ ¼ −α2

μ2

m2
H0ðμ2=m2Þ ð25Þ

to one loop. Here the function HðxÞ, shown in Fig. 2, is
defined as
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HðxÞ ¼ 2GðxÞ þ FðxÞ; ð26Þ

and has limiting behavior [see Eq. (22)]

HðxÞ → 11

9
ln x ðx → ∞Þ: ð27Þ

From Eq. (25) we see that, along with the anomalous
dimensions, the MOM beta function of the screened
expansion also has an explicit dependence on the renorm-
alization scale μ. As we will show in a moment, this is a
most important feature of the modified perturbation theory,
bringing in mass effects which are able to prevent the
developing of a Landau pole in the running coupling.
To one loop, the differential equation for the running

coupling αðMOMÞðμ2Þ,

dαðMOMÞ

d ln s
¼ −ðαðMOMÞÞ2sH0ðsÞ; ð28Þ

(s ¼ μ2=m2) can be solved exactly. In terms of αs, its
solution is given by

αðMOMÞ
s ðμ2Þ ¼ αðMOMÞ

s ðμ20Þ
1þ 3N

4π α
ðMOMÞ
s ðμ20Þ½HðsÞ −Hðs0Þ�

; ð29Þ

where μ0 is the initial renormalization scale s0 ¼ μ20=m
2,

and αðMOMÞ
s ðμ20Þ is the value of the MOM coupling

renormalized at μ0 (initial condition of the RG flow).
This result was already derived directly from Eq. (16) in
Refs. [51,52].
In the limit of high initial and final renormalization

scales (s; s0 ≫ 1), using Eq. (27), it is easy to see that

αðMOMÞ
s ðμ2Þ reduces to the standard one-loop running

coupling,

αðMOMÞ
s ðμ2Þ → αsðμ20Þ

1þ 11N
3

αsðμ20Þ
4π lnðμ2=μ20Þ

: ð30Þ

At intermediate and low momenta, on the other hand, the

behavior of αðMOMÞ
s ðμ2Þ radically differs from that of its

counterpart in ordinary PT (see Fig. 3). Due to the explicit

dependence of βðMOMÞ
α on the renormalization scale, the

latter is allowed to vanish already at one loop for a nonzero
value of the coupling constant. The vanishing occurs at the
fixed renormalization scale μ⋆ that solves the equation

H0ðμ2⋆=m2Þ ¼ 0: ð31Þ

Numerically, one finds that

μ⋆ ≈ 1.022m ð32Þ

or μ⋆ ≈ 0.67 GeV form ¼ 0.656 GeV. Of course, since the
beta function vanishes as a function of μ, rather than for
some specific value of the coupling, the existence of a zero

for βðMOMÞ
α does not result in a fixed point of the RG flow.

Instead, it provides a mechanism by which, at scales of the
order of the gluon mass parameter, the running of the
coupling is allowed to slow down, thus making it possible

to prevent the developing of a Landau pole in αðMOMÞ
s ðμ2Þ.

Indeed, since μ2⋆=m2 is actually a minimum for HðsÞ,

HðsÞ ≥ Hðμ2⋆=m2Þ ≈ 3.090; ð33Þ

Eq. (29) implies that the one-loop MOM running coupling
remains finite at all renormalization scales, provided that its

 3

 4

 5

 6

 7

 8

 0.1  1  10

H
(x

)

x

FIG. 2. Function HðxÞ. The minimum Hðx0Þ ≈ 3.090 is found
at x0 ≈ 1.044.

 0

 0.5

 1

 1.5

 2

 2.5

 0.1  1  10

α s
(p

/m
)

p/m

αs = 0.15
αs = 0.20
αs = 0.25
αs = 0.30
αs = 0.35
αs = 0.40

FIG. 3. N ¼ 3 one-loop running coupling of the screened
expansion in the MOM scheme for different initial values of
the coupling at the scale μ0=m ¼ 6.098. With m ¼ 0.656 GeV as
in our previous works, this corresponds to μ0 ¼ 4 GeV. The

running coupling develops a Landau pole for αðMOMÞ
s ðμ20Þ ≥

0.469.
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value renormalized at the scale μ0 is smaller than the scale-

dependent threshold value αðMOMÞ
pole ðμ20Þ defined by

αðMOMÞ
pole ðμ20Þ ¼

1

Hðμ20=m2Þ −Hðμ2⋆=m2Þ : ð34Þ

At μ0 ¼ 6.098m (corresponding to μ0 ¼ 4 GeV in physical
units), Eq. (34) yields

αðMOMÞ
pole ð6.098mÞ ≈ 0.336; ð35Þ

or, in terms of αs ¼ 4πα=3N,

αðMOMÞ
s;pole ð6.098mÞ ≈ 0.469 ð36Þ

for N ¼ 3. If αðMOMÞðμ20Þ ≥ αðMOMÞ
pole ðμ20Þ, the denominator

of Eq. (29) eventually vanishes and the running still

encounters a Landau pole: for αðMOMÞðμ20Þ ¼ αðMOMÞ
pole ðμ20Þ

the pole is found exactly at μ ¼ μ⋆, whereas for larger
values of the coupling, it is found at scales between μ⋆
and μ0.

If the initial value of the coupling is smaller than αðMOMÞ
pole ,

as the momentum decreases the one-loop running coupling
remains finite and attains a maximum at μ ¼ μ⋆, where
the beta function switches from being negative to being

positive and αðMOMÞ
s ðμ2Þ starts to decrease. The value of the

coupling at the maximum is an increasing and unbounded

function of αðMOMÞ
s ðμ20Þ. At vanishing renormalization

scales (μ2 ≪ m2), due to the limiting behavior

HðxÞ → 5

8x
ðx → 0Þ ð37Þ

(cf. the Appendix), the running coupling decreases linearly
with μ2,

αðMOMÞ
s ðμ2Þ → 32π

15N
μ2

m2
; ð38Þ

and tends to zero with a derivative that does not depend on
the initial conditions of the RG flow. As we will see, even if
the coupling vanishes at μ ¼ 0, the low-energy dynamics of
the gluons remains highly nontrivial.
Once the running coupling is known, the RG-improved

gluon and ghost propagators can be computed using
Eq. (18) by an appropriate choice of the functions
Δ̂ðp2Þ and Ĝðp2Þ. In the MOM scheme, in order to fulfill
the renormalization conditions given by Eq. (20), one
must set

Δ̂ðMOMÞðp2Þ ¼ 1

p2
;

ĜðMOMÞðp2Þ ¼ −
1

p2
ð39Þ

(see Eq. (19). The one-loop RG-improved propagators
renormalized at the scale μ0 then read

ΔðMOMÞðp2;μ20Þ¼
1

p2
exp

�
−
Z

p2=m2

μ2
0
=m2

dsαðMOMÞðsÞF0ðsÞ
�
;

GðMOMÞðp2;μ20Þ¼−
1

p2
exp

�
−
Z

p2=m2

μ2
0
=m2

dsαðMOMÞðsÞG0ðsÞ
�
;

ð40Þ

where the running coupling is expressed as a function of the
adimensional variable s ¼ μ2=m2. The one-loop improved
gluon propagator and ghost dressing function renormalized
at the scale μ0 ¼ 6.098m (corresponding to μ0 ¼ 4 GeV in
physical units) are shown, respectively, in Figs. 4 and 5 for
different initial values of the coupling constant below the

threshold value αðMOMÞ
s;pole ≈ 0.47.

Since in the high momentum limit the MOM anomalous
dimensions and running coupling reduce to their standard
one-loop perturbative expression, asymptotically1 the one-
loop RG-improved propagators behave as known fractional
powers of the running coupling divided by the momentum
squared,

 0

 2

 4

 6

 8

 10

 0.1  1  10

m
2 Δ(

p)

p/m

αs = 0.15
αs = 0.20
αs = 0.25
αs = 0.30
αs = 0.35
αs = 0.40

FIG. 4. N ¼ 3 one-loop RG-improved gluon propagator in the
MOM scheme, renormalized at the scale μ0=m ¼ 6.098 (corre-
sponding to μ0 ¼ 4 GeV for m ¼ 0.656 GeV), and computed for
different initial values of the coupling at the same scale.

1Provided that the initial renormalization scale μ0 is much
larger than m.
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ΔðMOMÞðp2Þ → 1

p2

�
αsðp2Þ
αsðμ20Þ

�
13=22

;

GðMOMÞðp2Þ → −
1

p2

�
αsðp2Þ
αsðμ20Þ

�
9=44

: ð41Þ

At intermediate and low momenta, if the running coupling
does not develop a Landau pole, then the one-loop
improved gluon propagator attains a maximum at the
momentum p that solves the equation

1þ αðMOMÞðp2Þ p
2

m2
F0ðp2=m2Þ ¼ 0: ð42Þ

That Eq. (42) always admits a solution follows from the
asymptotic behavior

1þ αðMOMÞðsÞsF0ðsÞ → 2

45
s ln s ≤ 0 ðs → 0Þ;

1þ αðMOMÞðsÞsF0ðsÞ → 1 > 0 ðs → ∞Þ ð43Þ

(cf. the Appendix). The position of the maximum depends
on the initial conditions of the running and shifts from

higher to lower momenta as αðMOMÞ
s ðμ20Þ is decreased,

eventually coming arbitrarily close to p ¼ 0. At vanish-
ingly small momenta, due to the low energy limits

αðMOMÞðsÞF0ðsÞ → −
1

s
;

αðMOMÞðsÞG0ðsÞ → −
4

15
s ln s ð44Þ

(cf. the Appendix), the one-loop improved propagators
behave as

ΔðMOMÞðp2Þ → sek

p2
¼ ek

m2
;

GðMOMÞðp2Þ → −
ek

0

p2
; ð45Þ

where k and k0 are constants that generally depend on the
initial conditions of the running. SinceΔðMOMÞðp2Þ remains
finite as p2 → 0, in the MOM-scheme RG-improved
picture the gluons are still predicted to dynamically acquire
a mass. The ghosts, on the other hand, remain massless
(GðMOMÞðp2Þ → ∞ as p2 → 0).
The most notable feature of the one-loop RG-improved

screened expansion in the MOM scheme is the absence of
a Landau pole in its running coupling for sufficiently

small initial values of αðMOMÞ
s ðμ20Þ, a necessary condition

for the consistency of a perturbation theory which aims to
be valid at all energy scales. As we saw, instead of
growing to infinity at a finite momentum, the one-loop
MOM coupling interpolates between the standard high-
energy logarithmic behavior and a decreasing low-energy

behavior (αðMOMÞ
s ðp2Þ ∼ p2 as p2 → 0) by attaining a

maximum at the fixed scale μ⋆ ≈ 1.022m. Depending
on the initial conditions of the RG flow, the value of
the coupling at the maximum can become quite large for
the perturbative standards. As a consequence, the higher
orders of the perturbative expansion might become sig-
nificant at scales comparable to that of the gluon mass
parameter.
Since our one-loop, low-energy results evolve from a

region of generally large couplings, we should expect these
to give, at best, a good qualitative approximation of the
exact, nonperturbative behavior of Yang–Mills theory for
any given value of the pair ðm2; αsðμ20ÞÞ. In the absence of
estimates for the higher-order corrections to the propaga-
tors, the extent to which the approximation is good can be
established only a posteriori, by a comparison with non-
perturbative results such as those obtained on the lattice.
This aspect will be investigated in Sec. IV, where we will
also propose a method for fixing the value of the spurious
free parameter (either the gluon mass parameter m or the
value of the coupling at some fixed renormalization scale)
of the RG-improved screened expansion.

B. SMOM scheme

The SMOM scheme [59] is defined by the renormaliza-
tion conditions

Δ−1ðμ2Þ ¼ μ2 þm2;

G−1ðμ2Þ ¼ −μ2: ð46Þ

To one loop, these require the field strength counterterms to
be chosen (modulo irrelevant constants) according to

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0.1  1  10

χ(
p)

p/m

αs = 0.15
αs = 0.20
αs = 0.25
αs = 0.30
αs = 0.35
αs = 0.40

FIG. 5. N ¼ 3 one-loop RG-improved ghost dressing function
χðpÞ ¼ −p2GðpÞ in the MOM scheme, renormalized at the
scale μ0=m ¼ 6.098 (corresponding to μ0 ¼ 4 GeV for
m ¼ 0.656 GeV), and computed for different initial values of
the coupling at the same scale.
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δZðSMOMÞ
A ¼ m2

μ2
þ α

�
13

18

�
2

ϵ
þ ln

μ̄2

m2

�
− F

�
μ2

m2

��
;

δZðSMOMÞ
c ¼ α

�
1

4

�
2

ϵ
þ ln

μ̄2

m2

�
− G

�
μ2

m2

��
; ð47Þ

see Eq. (13). Observe that δZðSMOMÞ
A contains an Oðα0sÞ

term proportional to the gluon mass parameter m2. This
happens because in the SMOM scheme the tree-level
contribution to the gluon polarization arising from the first
single-cross diagram in Fig. 1, Πcross ¼ m2 does not get
cancelled by the equal and opposite mass term in the bare
massive gluon propagator.

Due to the presence of the Oðα0sÞ term in δZðSMOMÞ
A , a

naive application of Eq. (14) to the first of Eq. (47) would
yield an anomalous dimension that is not finite in the limit
ϵ → 0. In the SMOM scheme, in order to derive a finite γA,
one must first subtract the divergences from Eq. (47) and
then apply Eq. (14) to the resulting finite field-strength
counterterms.2 By doing so, one obtains the following one-
loop SMOM scheme anomalous dimensions:

γðSMOMÞ
A ¼ −

μ2

μ2 þm2

�
m2

μ2
þ α

μ2

m2
F0ðμ2=m2Þ

�
;

γðSMOMÞ
c ¼ −α

μ2

m2
G0ðμ2=m2Þ: ð48Þ

In Ref. [59] the same result was found by direct integration
of the RG flow. In the limit of large renormalization scales,

using Eq. (22), it is easy to see that γðSMOMÞ
A and γðSMOMÞ

c

reduce to the one-loop anomalous dimensions of ordi-
nary PT.
The one-loop SMOM beta function can be computed

from Eq. (48) and Eq. (17), yielding

βðSMOMÞ
α ¼ −

αm2

μ2 þm2
− α2

μ2

m2

�
μ2

μ2 þm2
F0ðμ2=m2Þ

þ 2G0ðμ2=m2Þ
�
: ð49Þ

As in the MOM scheme, βðSMOMÞ
α explicitly depends on the

renormalization scale μ and reduces to the ordinary
perturbative beta function for μ ≫ m. At variance with

βðMOMÞ
α , it contains an OðαsÞ term and a different scale-

dependent prefactor for the derivative F0ðsÞ.
The differential equation for the one-loop SMOM run-

ning coupling reads

dαðSMOMÞ

ds
¼ −b−1αðSMOMÞ − b0ðαðSMOMÞÞ2; ð50Þ

where s ¼ μ2=m2 and

b−1ðsÞ ¼
1

sðsþ 1Þ ;

b0ðsÞ ¼
�

s
sþ 1

F0ðsÞ þ 2G0ðsÞ
�
: ð51Þ

Equation (50) can be integrated exactly, yielding

αðSMOMÞðsÞ

¼ αðSMOMÞðs0Þe−
R

s

s0
ds0b−1ðs0Þ

1þ αðSMOMÞðs0Þ
R
s
s0
ds0b0ðs0Þe−

R
s0
s0

ds00b−1ðs00Þ
; ð52Þ

where s0 ¼ μ20=m
2 is the initial renormalization scale. With

b−1ðsÞ and b0ðsÞ as in Eq. (51), we find

exp

�
−
Z

s

s0

ds0b−1ðs0Þ
�
¼ sþ1

s
s0

s0þ1
;

Z
s

s0

ds0b0ðs0Þe−
R

s0
s0
ds00b−1ðs00Þ ¼ s0

s0þ1
½KðsÞ−Kðs0Þ�; ð53Þ

where the function KðxÞ, shown in Fig. 6, is defined as3

 3
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 7

 8

 0.1  1  10

K
(x

)

x

FIG. 6. Function KðxÞ. The minimum Kðx0Þ ≈ 3.224 is found
at x0 ≈ 0.726.

2Equivalently, one could derive the anomalous dimensions by
a term-by-term matching of coefficients in the Callan–Symanzik
equation for the inverse dressed propagators. 3Li2ðzÞ is the dilogarithm, Li2ðzÞ ¼

Pþ∞
n¼1

zn

n2.
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KðxÞ ¼
Z

dx

�
H0ðxÞ þ 2

x
G0ðxÞ

�

¼ HðxÞ − 1

3

�
Li2ð−xÞ þ

1

2
ln2x

þ x3 þ 1

3x3
lnð1þ xÞ − 1

3
ln x −

1

3x2
þ 1

6x

�
ð54Þ

and differs from the HðxÞ of the MOM scheme by the
integral of 2G0ðxÞ=x, which was evaluated analytically
in Eq. (54).
Using Eq. (53), the one-loop SMOM running coupling,

Eq. (52), can be brought to the final form

αðSMOMÞðμ2Þ ¼ μ2 þm2

μ2

×

μ2
0

μ2
0
þm2 αðSMOMÞðμ20Þ

1þ μ2
0

μ2
0
þm2 αðSMOMÞðμ20Þ½KðsÞ − Kðs0Þ�

:

ð55Þ

At large renormalization scales, as long as the initial
scale μ0 is much larger than m and because of the high
energy limit

KðxÞ → 11

9
ln x ðx → ∞Þ ð56Þ

(cf. the Appendix), the one-loop SMOM running coupling
reduces to the standard perturbative coupling, Eq. (30). At
intermediate and low momenta, on the other hand, its
behavior is entirely different from that of both the ordinary
PT and MOM-scheme couplings (see Fig. 7).
At scales of the order of the gluon mass parameter, as in

the MOM scheme, the μ-dependence of the SMOM beta
function is responsible for a slowing down of the running of
the coupling. Indeed, due to the inequality

KðsÞ ≥ Kðμ02⋆ =m2Þ ≈ 3.224; ð57Þ

where μ02⋆ =m2 is the position of the minimum of KðsÞ,

μ0⋆ ≈ 0.852m; ð58Þ

αðSMOMÞðμ2Þ does not develop a Landau pole so long as
αðSMOMÞðμ20Þ is smaller than the scale-dependent threshold
value

αðSMOMÞ
pole ðμ20Þ ¼

μ20 þm2

μ20

1

Kðμ20=m2Þ − Kðμ02⋆ =m2Þ : ð59Þ

At μ0 ¼ 6.098m (corresponding to μ ¼ 4 GeV in physical
units), Eq. (59) reads

αðSMOMÞ
pole ð6.098mÞ ≈ 0.304; ð60Þ

or, in terms of αs ¼ 4πα=3N, for N ¼ 3,

αðSMOMÞ
s;pole ð6.098mÞ ≈ 0.425: ð61Þ

If αðSMOMÞðμ20Þ < αðSMOMÞ
pole ðμ20Þ, the running coupling

attains a maximum at the renormalization scale that solves
the equation

βðSMOMÞ
α ¼ 0 ⇔ 1þ αðSMOMÞðsÞs2K0ðsÞ ¼ 0: ð62Þ

That Eq. (62) always admits a solution follows from the
asymptotic limits

1þ αðSMOMÞðsÞs2K0ðsÞ → −
4s
15

ln2s < 0 ðs → 0Þ;

1þ αðSMOMÞðsÞs2K0ðsÞ → s
ln s

> 0 ðs → ∞Þ ð63Þ

(cf. the Appendix). At variance with the MOM scheme and
due to the prefactor ðμ2 þm2Þ=μ2 in Eq. (55), the position
of the maximum of the one-loop SMOM running coupling
is not fixed. Instead, it depends on the initial conditions of
the RG flow and shifts towards lower renormalization
scales as αðSMOMÞðμ20Þ is decreased. In the limit of very
small αðSMOMÞðμ20Þ’s, an expansion of the solutions of
Eq. (62) around s ¼ 0 yields

ln2 s − 6
1þm2=μ20
αðSMOMÞðμ20Þ

¼ 0: ð64Þ
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FIG. 7. N ¼ 3 one-loop running coupling of the screened
expansion in the SMOM scheme for different initial values of
the coupling at the scale μ0=m ¼ 6.098. With m ¼ 0.656 GeV,
this corresponds to μ0 ¼ 4 GeV. The running coupling develops

a Landau pole for αðSMOMÞ
s ðμ20Þ ≥ 0.425. The dashed red line

displays the limiting value αðSMOMÞ
s ð0Þ ≈ 2.234.
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Therefore, in the limit of vanishingly small initial cou-
plings, the maximum of αðSMOMÞðμ2Þ is attained at the scale

μ ¼ m exp

 
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

1þm2=μ20
αðSMOMÞðμ20Þ

s !
: ð65Þ

Being its position exponentially suppressed, for small
enough initial values of the coupling, the maximum is
essentially indistinguishable from the μ → 0 limit of
αðSMOMÞðμ2Þ. The latter reads

αðSMOMÞðμ2Þ → 8

5

�
1þ 4

15

μ2

m2
ln2ðμ2=m2Þ

�
ðμ → 0Þ;

ð66Þ

so that the one-loop SMOM coupling saturates to a finite
value, given in terms of αs by

αðSMOMÞ
s ð0Þ ¼ 32π

15N
≈ 2.234 ð67Þ

for N ¼ 3.
The one-loop SMOM RG-improved propagators are

readily derived from Eqs. (18), (19), and (46). With

Δ̂ðSMOMÞðp2Þ ¼ 1

p2 þm2
;

ĜðSMOMÞðp2Þ ¼ −
1

p2
; ð68Þ

we find that, when renormalized at the scale μ0,

ΔðSMOMÞðp2; μ20Þ

¼ 1

p2 þm2
exp
�
−
Z

p2=m2

μ2
0
=m2

ds
1

sþ 1

×

�
1

s
þ αðSMOMÞðsÞsF0ðsÞ

��
;

GðSMOMÞðp2; μ20Þ

¼ −
1

p2
exp

�
−
Z

p2=m2

μ2
0
=m2

dsαðSMOMÞðsÞG0ðsÞ
�
: ð69Þ

Equivalently, the first of Eq. (69) can be expressed as

ΔðSMOMÞðp2;μ20Þ

¼ 1

p2

μ20
μ20þm2

exp

�
−
Z

p2=m2

μ2
0
=m2

ds
s

sþ 1
αðSMOMÞðsÞF0ðsÞ

�
:

ð70Þ

The improved gluon propagator and ghost dressing
function renormalized at the scale μ0 ¼ 6.098m

(corresponding to μ0 ¼ 4 GeV in physical units) are shown
in Figs. 8 and 9, respectively, for different initial values
of the coupling constant below the threshold value

αðSMOMÞ
s;pole ≈ 0.43. In the high momentum limit both the

SMOM anomalous dimensions and running coupling
reduce to the respective standard one-loop expressions.
Therefore, Eq. (41) is also verified in the SMOM scheme
for p; μ0 ≫ m. At intermediate and low momenta, the
general behavior of the SMOM propagators parallels that
of the MOM scheme. In particular, provided that the
SMOM running coupling does not develop a Landau pole,
the gluon propagator attains a maximum at the momentum
p ¼ ffiffiffi

s
p

m that solves the equation
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FIG. 8. N ¼ 3 one-loop RG-improved gluon propagator in the
SMOM scheme, renormalized at the scale μ0=m ¼ 6.098 (cor-
responding to μ0 ¼ 4 GeV for m ¼ 0.656 GeV), and computed
for different initial values of the coupling at the same scale.
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FIG. 9. N ¼ 3 one-loop RG-improved ghost dressing function
χðpÞ ¼ −p2GðpÞ in the SMOM scheme, renormalized at the
scale μ0=m ¼ 6.098 (corresponding to μ0 ¼ 4 GeV for m ¼
0.656 GeV), and computed for different initial values of the
coupling at the same scale.
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1þ s2

sþ 1
αðSMOMÞðsÞF0ðsÞ ¼ 0: ð71Þ

Equation (71) always admits a solution since

1þ s2

sþ 1
αðSMOMÞðsÞF0ðsÞ → −

4

15
sln2s ≤ 0 ðs → 0Þ;

1þ s2

sþ 1
αðSMOMÞðsÞF0ðsÞ → 1 > 0 ðs → ∞Þ ð72Þ

(cf. the Appendix). As in the MOM scheme, the position
of the maximum depends on the initial conditions of the
RG flow and shifts to lower momenta as αðSMOMÞðμ20Þ is
decreased. In the limit of vanishing momenta, since for
s → 0

s
sþ 1

αðSMOMÞðsÞF0ðsÞ → −
1

s
;

αðSMOMÞðsÞG0ðsÞ → −
4

15
ln s ð73Þ

(cf. the Appendix), the one-loop improved propagators
again have the same behavior as in the MOM scheme,
Eq. (45). In particular, while the ghosts remain massless,
the gluons acquire a mass.
In the SMOM scheme, the one-loop running coupling

has a distinctive behavior: as we saw, after attaining a
maximum at an intermediate scale, at low momenta it
saturates to a finite value which does not depend on the

initial conditions of the RG flow, namely αðSMOMÞ
s ð0Þ ≈

2.23 (forN ¼ 3). As a consequence, regardless of the initial
conditions, in the whole range μ ≲m the values of the one-
loop SMOM running coupling become quite large for the
perturbative standards. We should then expect the higher
orders of the perturbative series to become non-negligible
at scales lower than m. The situation is somewhat worse
than in the MOM scheme: in the latter, the one-loop
running coupling at any fixed scale is an increasing

function of αðMOMÞ
s ðμ20Þ, so that, at least in principle, for

sufficiently small initial values of the coupling the one-loop
results can still provide a good approximation to the exact
propagators if the gluon mass parameter m is chosen
appropriately. In the SMOM scheme, on the other hand,
it is the fixed value of the zero-momentum coupling that

dominates over the low-energy behavior of αðSMOMÞ
s ðμ2Þ. In

particular, we should expect the perturbative series to
converge more slowly in the SMOM scheme, rather than
in the MOM scheme.

C. Comparison between the MOM
and the SMOM schemes

As shown in Secs. III A and III B, both the MOM and
the SMOM one-loop running coupling and RG-improved
propagators have the ordinary perturbative UV limit. In the

IR, the behavior of the propagators is in mutual qualitative
agreement, while that of the running couplings shows
significant differences. In order to make a quantitative
comparison between the predictions of the two schemes,
what we need to do is find a correspondence between the
values of their renormalized couplings.
The qualitative difference between the MOM and the

SMOM one-loop running couplings ultimately originates
in the prefactor ðμ2 þm2Þ=μ2 in Eq. (55). Indeed, if we
define a function α̃ðSMOMÞðμ2Þ such that

αðSMOMÞðμ2Þ ¼ μ2 þm2

μ2
α̃ðSMOMÞðμ2Þ; ð74Þ

then

α̃ðSMOMÞðμ2Þ ¼ α̃ðSMOMÞðμ20Þ
1þ α̃ðSMOMÞðμ20Þ½KðsÞ − Kðs0Þ�

ð75Þ

is formally identical to the MOM running coupling,
Eq. (29), with the substitution HðsÞ → KðsÞ. As shown
in Fig. 10, the functionsHðsÞ andKðsÞ themselves have the
same qualitative behavior.
The factor ðμ2 þm2Þ=μ2 in Eq. (74) is a by-product of

the Oðα0sÞ term in the SMOM gluon anomalous dimension,

Eq. (48), which results in the SMOM beta function βðSMOMÞ
α

containing an OðαsÞ term. This is made explicit by
computing the beta function analogue associated to
α̃ðSMOMÞðμ2Þ: to one loop

βðSMOMÞ
α̃ ¼ dα̃ðSMOMÞ

d ln μ2
¼ −ðα̃ðSMOMÞÞ2 μ

2

m2
K0
�
μ2

m2

�
: ð76Þ

The latter contains no Oðα0sÞ terms and has the same
form of the MOM beta function, Eq. (25), again with
the substitution HðsÞ → KðsÞ. At the level of the
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FIG. 10. HðsÞ and KðsÞ as functions of the ratio p=m.
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renormalization conditions that define the two schemes, the
appearance of the factor of ðμ2 þm2Þ=μ2 can be under-
stood as follows. From Eq. (16) we know that in the Taylor
scheme

αðSMOMÞðμ2Þ
αðMOMÞðμ2Þ ¼ ZðSMOMÞ

A ðμ2ÞðZðSMOMÞ
c ðμ2ÞÞ2

ZðMOMÞ
A ðμ2ÞðZðMOMÞ

c ðμ2ÞÞ2
: ð77Þ

Now, while ZðSMOMÞ
c , ZðMOMÞ

A , and ZðMOMÞ
c are all equal to

1 to Oðα0sÞ,

ZðSMOMÞ
A ðμ2Þ ¼ 1þm2

μ2
þOðαsÞ: ð78Þ

Therefore,

αðSMOMÞðμ2Þ
αðMOMÞðμ2Þ ¼ μ2 þm2

μ2
þOðαsÞ: ð79Þ

In the next section we will show that the relation
αðSMOMÞðμ2Þ¼ðμ2þm2Þ=μ2×αðMOMÞðμ2Þ is indeed exact,
although not necessarily satisfied at any finite order in
perturbation theory.
In conclusion, we find that the conversion factor between

αðSMOMÞ and αðMOMÞ is precisely ðμ2 þm2Þ=μ2: in order
to compare the two schemes, to one loop we need to
choose values of the couplings such that αðMOMÞðμ20Þ ¼
α̃ðSMOMÞðμ20Þ. At μ0 ¼ 6.098m (corresponding to 4 GeV in
physical units), this translates into

αðSMOMÞðμ20Þ ≈ 1.027αðMOMÞðμ20Þ: ð80Þ

For our first comparison, in Fig. 11 we show the
one-loop MOM and SMOM running couplings for two
different values of αs at the initial renormalization scale
μ0 ¼ 6.098m. The SMOM coupling is plotted in terms of

α̃ðSMOMÞ
s , as per Eq. (79). As discussed above, αðMOMÞðμ2Þ

and α̃ðSMOMÞðμ2Þ have the same qualitative behavior: they
both attain a maximum at a fixed scale of the order of m
and tend to zero at vanishing renormalization scales. The

position of the maximum of α̃ðSMOMÞ
s ðμ2Þ, however, lies

below that of the MOM running coupling; moreover, in the

whole range p≲m the values of α̃ðSMOMÞ
s ðμ2Þ are generally

larger than those of αðMOMÞ
s ðμ2Þ. Since ðμ2 þm2Þ=μ2 > 1,

we find that in the IR αðSMOMÞ
s ðμ2Þ > αðMOMÞ

s ðμ2Þ, enforc-
ing the idea that the SMOM perturbative series may
converge more slowly than that of the MOM scheme.
In Figs. 12 and 13 we compare the one-loop improved

gluon propagators and ghost dressing functions renormal-
ized at the scale μ0 ¼ 6.098m (corresponding to μ0 ¼
4 GeV in physical units) in the two schemes with the
correspondence between the renormalized couplings as
discussed above. As we can see, at low momenta the
propagators agree only qualitatively: at scales less than ≈m
the MOM gluon propagator is enhanced with respect to
the SMOM propagator, while the ghost dressing function
shows the opposite behavior. The relative difference
between the propagators increases with the value of the
coupling at μ0 and decreases as a function of momentum
(indeed, we know that the propagators have the same,
standard perturbative UV behavior in both the renormal-
ization schemes). In the IR and for large values of the
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FIG. 11. Comparison between the N ¼ 3 MOM and SMOM
one-loop running couplings renormalized at the scale μ0=m ¼
6.098 (corresponding to μ0 ¼ 4 GeV for m ¼ 0.656 GeV). For
N ¼ 3, the MOM running coupling develops a Landau pole at
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comparison.
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for different initial values of the coupling at the same scale.
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renormalized couplings the difference between the two
schemes can become quite large.

IV. OPTIMIZED RG IMPROVEMENT AND
COMPARISON WITH THE LATTICE DATA

By removing the Landau pole from the running of the
coupling constant, the RG-improved screened massive
expansion provides us with a consistent analytical frame-
work for computing quantities at all scales in pure Yang-
Mills theory, albeit at the cost of introducing a new free
parameter, namely the gluon mass parameter m. Already at
one loop, the RG-improved gluon and ghost propagators
derived in such a framework display the correct qualitative
behavior (as found, for example, on the lattice), being able
to encode both the IR phenomenon of dynamical mass
generation for the gluons and the correct UV asymptotic
limits of standard perturbation theory.
Nevertheless, as discussed in Sec. III, the one-loop

RG-improved results are not expected to be quantitatively
reliable below scales of the order of the gluon mass
parameter m, the reason being that the one-loop running
coupling of the screened expansion either attains a maxi-
mum at μ ∼m (in the MOM scheme) or saturates to a finite
value at scales μ≲m (in the SMOM scheme), becoming
too large to justify the truncation of the perturbative series
to first order in the coupling. In the IR, it is the one-loop
fixed-scale optimized screened expansion of Refs. [55,59]
that proves successful in reproducing the lattice data for the
propagators: in Ref. [55,59] it was shown that the renorm-
alization scheme in which the pole structure of the gluon
propagator is gauge invariant also yields propagators for
which the terms of Oðα2sÞ and higher are negligible at low
energies. The fixed-scale expansion is predictive in that its

only free parameter is the energy scale of the theory, which
enters the equations through the gluon mass parameter m
itself. We then find ourselves in possession of two distinct
computational frameworks, one of which (the fixed-scale
expansion) works well in the IR, while the other (the
RG-improved expansion) works well in the UV. In the
respective domains of applicability, both of them yield
satisfactory approximations (at this stage at least qualita-
tively, as far as the RG-improved one is concerned) already
at one loop.
A natural question to ask is whether the predictions of

the two frameworks agree over some intermediate range of
momenta. In general, this may depend on which values are
chosen for the free parameters of the theory. Indeed, we
reiterate that whereas the results of the fixed-scale expan-
sion are completely determined once the energy scale is set
by the gluon mass parameterm (see Ref. [55]), those of the
RG-improved expansion also depend on the value of the
strong coupling constant at the initial renormalization
scale, αsðμ20Þ.
Actually, the fact that in the RG-improved formalism the

mass parameter m and the renormalized coupling αsðμ20Þ
can be chosen independently of one another is a major
weakness of the method: already in standard perturbation
theory, once the energy scale is set by the Yang-Mills
analogue of ΛQCD—which we denote by ΛYM—the value
of the coupling is fixed at all renormalization scales by the
equation

αsðμ2Þ ¼
12π

11N lnðμ2=Λ2
YMÞ

ð81Þ

(valid to one loop); in the fixed-scale framework the
redundancy of free parameters is dealt with by optimiza-
tion; in the formulation of the RG-improved screened PT
presented in Sec. III, no such constraint exists, resulting in a
loss of predictivity of the method.
The condition that the propagators and/or the running

coupling computed in the fixed-scale and RG-improved
frameworks match at intermediate energies can, however,
be exploited as a criterion for fixing the value of αsðμ20Þ: if
the matching singled out a value of the coupling αsðμ20Þ for
which the predictions of the two frameworks are in better
agreement, then the gluon mass parameter m—by setting
the scale for the dimensionful value of μ0—would play the
same role as the ΛYM of ordinary perturbation theory. In
particular, given some value ofm, the value of αsðμ2Þ at any
renormalization scale would be completely determined, just
as it happens in standard perturbation theory once ΛYM is
fixed. In turn, the redundancy in the free parameters of the
RG-improved framework would be removed and the
predictivity of the method would be restored.
In Sec. IVA we will show that, at least in the MOM

scheme, an optimal value of αsðμ20Þ for the matching of the
fixed-scale and the RG-improved results at intermediate
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FIG. 13. N ¼ 3 one-loop RG-improved ghost dressing function
χðpÞ ¼ −p2GðpÞ in the SMOM scheme, renormalized at
the scale μ0=m ¼ 6.098 (corresponding to μ0 ¼ 4 GeV for
m ¼ 0.656 GeV), and computed for different initial values of
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scales indeed exists. The predictions that follow, with the
low energy behavior dictated by the fixed-scale expansion,
are collected under the name of optimized RG-improved
screened PT and turn out to reproduce the lattice data quite
well in the whole available range of momenta, given an
appropriate choice of the energy units (cf. Sec. IV B, where
our results are compared with the data of Ref. [18]).

A. Intermediate-scale matching of the fixed-scale
and RG-improved results

In order to determine which value of αsðμ20Þ, if any,
results in the best agreement between the IR fixed-scale and
the UV RG-improved predictions, we may investigate the
intermediate energy behavior either of the propagators or of
the strong running coupling. In what follows we choose to
work with the latter, the reason being that in the Taylor
scheme the running coupling contains immediate informa-
tion about both the gluon and the ghost propagators: from
Eq. (16) one finds that

αsðp2Þ ¼ αsðμ20Þ
ZAðp2ÞZ2

cðp2Þ
ZAðμ20ÞZ2

cðμ20Þ
; ð82Þ

where the renormalization factors ZAðμ2Þ and Zcðμ2Þ can
be obtained from the propagators through the relations

ZAðμ2Þ ¼
JBðq2Þ
Jðq2; μ2Þ ; Zcðμ2Þ ¼

χBðq2Þ
χðq2; μ2Þ ; ð83Þ

with Jðq2; μ2Þ and χðq2; μ2Þ the gluon and ghost dressing
functions renormalized at the scale μ2,

Jðq2; μ2Þ ¼ q2Δðq2; μ2Þ;
χðq2; μ2Þ ¼ −q2Gðq2; μ2Þ; ð84Þ

and JBðq2Þ and χBðq2Þ their bare counterparts,

JBðq2Þ ¼ q2ΔBðq2Þ;
χBðq2Þ ¼ −q2GBðq2Þ: ð85Þ

Plugging Eqs. (83) into Eq. (82) after setting q2 ¼ p2

yields the following expression for the Taylor-scheme
running coupling in terms of the renormalized gluon and
ghost dressing functions:

αsðp2Þ ¼ αsðμ20Þ
Jðp2; μ20Þχ2ðp2; μ20Þ
Jðp2;p2Þχ2ðp2;p2Þ : ð86Þ

In the above equation, which can be explicitly checked for
the MOM and SMOM schemes of Sec. III, the functions
Jðp2;p2Þ and χðp2;p2Þ define the renormalization of the
propagators. For instance, in the MOM scheme

JðMOMÞðp2;p2Þ ¼ χðMOMÞðp2;p2Þ ¼ 1; ð87Þ

whereas in the SMOM scheme

JðSMOMÞðp2;p2Þ ¼ p2

p2 þm2
;

χðSMOMÞðp2;p2Þ ¼ 1: ð88Þ

Apart from these functions, Eq. (86) shows that in the
Taylor scheme the running coupling is proportional to a
product of the gluon and ghost dressing functions, so that a
comparison between the couplings of different frameworks
also yields a comparison between the propagators.
Incidentally, Eq. (83) can be used to prove that Eq. (79)

is exact: taking the ratio between the field-strength renorm-
alization factors defined in the SMOM and in the MOM
scheme and setting q2 ¼ μ2, we find

ZðSMOMÞ
A ðμ2Þ
ZðMOMÞ
A ðμ2Þ

¼ μ2 þm2

μ2
;

ZðSMOMÞ
c ðμ2Þ
ZðMOMÞ
c ðμ2Þ

¼ 1: ð89Þ

Once these ratios are plugged back into Eq. (77), the
relation αðSMOMÞðμ2Þ ¼ ðμ2 þm2Þ=μ2 × αðMOMÞðμ2Þ is
recovered, with no higher-order contributions.
The Taylor scheme is also suitable for defining a running

coupling in the context of the fixed-scale perturbation
theory.4 Indeed, if we renormalize the fixed-scale
propagators in a MOM-like fashion by requiring that
Jðp2;p2Þ and χðp2;p2Þ be momentum independent, then
we can define a fixed-scale (FS) scheme Taylor running
coupling as

αðFSÞs ðp2Þ ¼ κJðFSÞðp2ÞχðFSÞðp2Þ2; ð90Þ

where at one loop, absorbing the multiplicative renormal-
ization constants of the dressing functions into the adimen-
sional constant κ,

JðFSÞðp2Þ ¼ 1

Fðp2=m2Þ þ F0

;

χðFSÞðp2Þ ¼ 1

Gðp2=m2Þ þ G0

ð91Þ

(cf. Sec. II and the Appendix). Of course, Eqs. (90) and (91)

do not fix the overall normalization of αðFSÞs ðp2Þ, which at
this stage remains undefined. The constant κ will be
determined in what follows by the matching condition.

4In the formalism of Refs. [51–58] (see also the Appendix) the
gluon and ghost propagators are expressed in an essentially
coupling-independent way, so that an explicit definition of what
αsðp2Þ is in the fixed-scale framework is still required. See also
Ref. [59] for a different definition of the coupling in the SMOM
scheme.
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The unnormalized one-loop FS running coupling is
shown in Fig. 14. Its qualitative behavior is that of the
MOM-scheme running coupling (cf. Fig. 3), as one would
expect from having chosen momentum-independent
Jðp2;p2Þ and χðp2;p2Þ. Accordingly, the comparison

between αðFSÞs ðp2Þ and the SMOM running coupling will

be carried out using α̃ðSMOMÞ
s ðp2Þ rather than αðSMOMÞ

s ðp2Þ
(cf. the discussion in Sec. III C).

With αðFSÞs ðp2Þ as in Eq. (90) and αðMOMÞ
s ðp2Þ and

α̃ðSMOMÞ
s ðp2Þ as in Eqs. (29) and (75), we must now identify

a range of momenta over which the running couplings of
the FS and RG-improved frameworks may be expected to
agree. To one loop, the latter becomes unreliable below
μ ∼m, corresponding to μ ≈ 0.7 GeV in physical units; the
matching window, therefore, should lie somewhat above
this value. Likewise, the upper limit of the matching
interval should be set by the scale at which the one-loop
results derived in the FS framework are likely to break
down; this should happen at scales larger than m but of the
same order of m.
As for the normalization of the FS running coupling,

under the hypothesis that at intermediate momenta the latter

agrees with αðRGÞs ðp2Þ—where this is taken to be either

αðMOMÞ
s ðp2Þ or α̃ðSMOMÞ

s ðp2Þ, depending on the scheme we

are interested in—we may require αðFSÞs ðp2Þ to be equal to
the RG-improved coupling at some fixed renormalization
scale p ¼ μ1 belonging to the momentum range that we
have just identified,

αðFSÞs ðμ21Þ ¼ αðRGÞs ðμ21Þ: ð92Þ

This amounts to setting

κ ¼ αðRGÞs ðμ21Þ
JðFSÞðμ21ÞχðFSÞðμ21Þ2

ð93Þ

in Eq. (90). Of course, the actual value of the so-defined
constant κ will depend not only on the matching scale μ1,

but also—through αðRGÞs ðμ21Þ—on the initial value αðRGÞs ðμ20Þ
of the RG coupling.
In Figs. 15 and 16 we show a comparison of the

normalized FS running coupling and, respectively, the
MOM-scheme and SMOM-scheme running couplings,

for N ¼ 3 and different initial values of αðRGÞs ðp2Þ renor-
malized at the scale μ0 ¼ 6.098m (corresponding to 4 GeV
in physical units). For these plots the matching scale μ1 was
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FIG. 14. One-loop running coupling of the screened expansion
in the FS scheme. The normalization of the curve is arbitrary.
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4 GeV in physical units). The matching scale (see the text for
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1

2

3

α s
(p

/m
)

α~s = 0.31 α~s = 0.33

0

1

2

3

0.1 1

α s
(p

/m
)

p/m

α~s = 0.35

1 10

p/m

α~s = 0.37

FIG. 16. N ¼ 3 intermediate-energy matching between the FS
running coupling (black curves) and the SMOM running cou-
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renormalized at the scale μ0=m ¼ 6.098 (corresponding to μ0 ¼
4 GeV in physical units). The matching scale (see the text for
details) is set to μ1=m ¼ 1.372 (corresponding to μ1 ¼ 0.9 GeV).
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chosen equal to 1.372m (corresponding to 0.9 GeV).

Clearly, despite the αðRGÞs ðμ20Þ-dependent matching condi-
tion contained in Eq. (93), the running couplings computed
in the two frameworks do not agree at intermediate

momenta for arbitrary values of αðRGÞs ðμ20Þ. In the MOM

scheme, the choice αðMOMÞ
s ðμ20Þ ≈ 0.39 leads to the overlap

of the running couplings at scales between p ≈m and
p ≈ 2m. In the SMOM scheme, on the other hand, no single

choice of α̃ðSMOMÞ
s ðμ20Þ results in the running couplings to

agree over a comparably wide momentum interval.5 Why
this is so can be understood in the light of the consid-
erations made at the end of Sec. III B: at scales of order m
and at one loop, the SMOM scheme is expected to be less
reliable than the MOM scheme; therefore, under the
assumption that the one-loop predictions of the FS frame-
work are nearly exact up to p ∼m, the better agreement of

αðFSÞs ðp2Þ with αðMOMÞ
s ðp2Þ, rather than with α̃ðSMOMÞ

s ðp2Þ,
could have been anticipated. In what follows we will push
no farther the comparison between the FS and the SMOM-
scheme RG-improved frameworks, limiting ourselves to
present our results for the MOM scheme.

In order to single out an optimal value of αðMOMÞ
s ðμ20Þ

for the matching, we will adopt the following criterion.
Denoting with εðp2Þ the momentum-dependent relative
difference between the MOM running coupling and the FS
running coupling [the latter normalized as in Eq. (93)],

εðp2Þ ¼ αðMOMÞ
s ðp2Þ − αðFSÞs ðp2Þ

αðFSÞs ðp2Þ
; ð94Þ

we say that αðMOMÞ
s ðμ20Þ is optimal for the matching if it

results in a MOM running coupling for which jεðp2Þj ≤ 1%
over the widest possible range of momenta in the pre-
viously identified matching interval. The matching scale μ1
itself—Eq. (92)—is fixed according to the same criterion.
In Fig. 17 we show the relative difference εðp2Þ

computed for the optimal value αðMOMÞ
s ðμ20Þ ¼ 0.391

(μ0 ¼ 6.098m, i.e., 4 GeV in physical units) obtained
for N ¼ 3 at the matching scale μ1 ¼ 1.372m (0.9 GeV)
by the criterion detailed above. The range over which
jεðp2Þj ≤ 1% has width Δp ≈ 0.9m (0.6 GeV) and extends
from p ≈ 1.1m to p ≈ 2m. In Fig. 18 the corresponding
running couplings are displayed. The combined red curve,

which we denote by αðoptÞs ðp2Þ, is obtained by gluing the
low-energy portion of the FS coupling to the high-energy
portion of the MOM coupling at p ¼ μ1. Note that αðoptÞs ðp2Þ attains a maximum at p ¼ pmax ≈ 0.847m

(corresponding to 0.556 GeV in physical units),

pmax ≈ 0.847m;

αðoptÞs ðp2
maxÞ ≈ 2.527: ð95Þ
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FIG. 17. Relative difference between the N ¼ 3 MOM run-
ning coupling and the FS running coupling for the optimal

value αðMOMÞ
s ðμ20Þ ¼ 0.391. The initial renormalization scale is

μ0=m ¼ 6.098 (corresponding to μ0 ¼ 4 GeV in physical
units), while the matching scale is μ1=m ¼ 1.372 (correspond-
ing to μ1 ¼ 0.9 GeV).
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FIG. 18. Intermediate-energy matching between the FS run-
ning coupling (black curve) and the N ¼ 3 MOM running

coupling (blue curve) for the optimal value αðMOMÞ
s ðμ20Þ ¼

0.391 (μ0 ¼ 6.098m, corresponding to 4 GeV in physical units).
The matching scale is μ1 ¼ 1.372m (0.9 GeV) and the FS
coupling is normalized by κ ¼ 1.200. The red curve is obtained
by combining the low-energy FS coupling and the high-energy
MOM coupling.

5We checked that tuning the matching scale μ1 between ≈m
and ≈2.5m does not improve this behavior: in no case were we
able to obtain an overlap between the FS and the SMOM running
coupling over a wider range of momenta without entering a
regime in which the SMOM coupling develops a Landau pole.
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In Sec. IV B the combined predictions of the FS andMOM-
scheme RG-improved frameworks will be compared with
the lattice data for N ¼ 3.

B. Comparison with the lattice data

Having found that the optimal value of αðMOMÞ
s ðμ20Þ for

the matching of the N ¼ 3 one-loop RG-improved MOM
scheme to the one-loop FS framework is 0.391 (with μ0 ¼
6.098m as the renormalization scale and μ1 ¼ 1.372m as
the matching scale), we now proceed to compare our
combined results with the lattice data of Ref. [18]. We
reiterate that once the RG-improved expansion is optimized

by fixing αðMOMÞ
s ðμ20Þ—with μ0 expressed in units of m—

the gluon mass parameter is left to stand as the only free
parameter of the theory. Being a mass scale, m plays the
same role as ΛYM in standard perturbation theory, entering
the MOM running coupling through the ratio p2=m2 in the
denominator of

αðMOMÞ
s ðp2Þ ¼ 4π

9½Hðp2=m2Þ − H̄� ðN ¼ 3Þ; ð96Þ

which is just Eq. (29) with H̄ defined as

H̄ ¼ Hðμ20=m2Þ − 4π

9½αðMOMÞ
s ðμ20Þ�optim

≈ 2.4926 ð97Þ

(having been obtained by optimization, H̄ must be regarded
as a constant; it does not depend either on m nor on μ0). As
a consequence, m must be inferred from experiments or, in
our case, from the lattice data. Since up until this point the
conversion from adimensional to physical units has been
made by taking m ¼ 0.656 GeV (as in our previous works,
see e.g., Ref. [55]), in what follows we will present our
results both for the aforementioned value of the mass
parameter and for the value that is obtained from a fit of the
combined propagators to lattice data. We remark that fitting
m to the lattice data only serves the purpose of fixing the
energy scale of the combined results, in order to be able to
compare them with the former. When all the dimensionful
quantities of the theory are expressed in units of m, unlike
the results of Sec. III—which still depended on a spurious
free parameter—the combined propagators are uniquely
determined.
In Figs. 19 and 20 the N ¼ 3 gluon propagator and ghost

dressing function renormalized at the scale μ0 ¼ 4 GeV are
shown as functions of momentum. The energy scale for the
analytical results is set by the gluon mass parameter m,
preliminarly taken to be equal to 0.656 GeV. In the figures,
the red curves are obtained by combining the high-
energy predictions of the RG-improved MOM scheme at

αðMOMÞ
s ðμ20Þ ¼ 0.391 (displayed as blue curves) with the

low-energy ones of the FS framework (displayed as black
curves), the latter normalized so as to match the former at

p ¼ μ1 ¼ 0.9 GeV. For comparison, the standard pertur-
bative one-loop results for αsðμ20Þ ¼ 0.391 (corresponding
to ΛYM ¼ 0.928 GeV) are also displayed in the figures as
orange curves. In Fig. 21 we show the N ¼ 3 gluon
dressing functions associated to the propagators of Fig. 19.
As we can see, already at one loop and for m ¼

0.656 GeV, the combined results manage to reproduce
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FIG. 19. N ¼ 3 gluon propagator renormalized at the scale
μ0 ¼ 4 GeV. The lattice data are taken from Ref. [18]. The
one-loop predictions of the MOM-scheme RG-improved

and FS frameworks, computed for αðMOMÞ
s ðμ20Þ¼0.391 and

m¼0.656GeV, are reported in blue and in black, respectively.
The red curve is obtained by their matching at μ1 ¼ 0.9 GeV.
The orange curve is the standard perturbative one-loop RG-
improved result. See the text for details.
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FIG. 20. N ¼ 3 ghost dressing function renormalized at
the scale μ0 ¼ 4 GeV. The lattice data are taken from Ref. [18].
The one-loop predictions of the MOM-scheme RG-improved

and FS frameworks, computed for αðMOMÞ
s ðμ20Þ ¼ 0.391 and

m ¼ 0.656 GeV, are reported in blue and in black, respectively.
The red curve is obtained by their matching at μ1 ¼ 0.9 GeV.
The orange curve is the standard perturbative one-loop RG-
improved result. See the text for details.
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quite well the lattice data over the whole available range of
momenta (approximately 0.1 GeV to 8 GeV), especially for
what concerns the ghost dressing function. At scales larger
than p ≈ 3 GeV, the RG-improved screened-PT propaga-
tors are indistinguishable from their standard-PT analogues
and constitute a considerable improvement over the FS
screened results, which are unable to reproduce the lattice
propagators for p > 1–3 GeV. At lower intermediate scales,
as the momentum p approaches ΛYM, the mass effects of
screened PT kick in and the screened propagators deviate
from the standard perturbative behavior, avoiding the
Landau pole and following the lattice data. Below p ≈m,
as was to be expected, the higher-order terms of the
RG-improved expansion become non-negligible, and the
one-loop improved MOM-scheme calculations no longer
provide a good approximation to the exact results. A good
approximation is nonetheless provided by the combined
results, which in this regime follow the predictions of the
FS framework.
The agreement improves further if the value of m is

determined by fitting the combined gluon propagator to the
lattice data. In Figs. 22 and 23 we show the combined gluon
propagator and ghost dressing function, respectively, com-
puted for the fitted value of the gluon mass parameter,
namely m ¼ 0.651 GeV (the curves computed for m ¼
0.656 GeV are also displayed in the figures for compari-
son). Clearly, the ever so slight decrease in the value of the
mass parameter is sufficient to enhance the gluon propa-
gator at low momenta, bringing it onto the lattice data
without spoiling either its intermediate- and high-energy
behavior, or that of the ghost dressing function.

We should remark that, for these last plots, in changing
the value of m the previously reported values of μ1 and μ0
in physical units have also changed. The matching scale
μ1 ¼ 1.372m for combining the fixed-scale results with
the MOM-scheme RG-improved ones is now equal to
0.89 GeV (instead of 0.9 GeV for m ¼ 0.656 GeV),
whereas the scale μ0 ¼ 6.098m, interpreted as the scale

at which, by optimization, αðMOMÞ
s ¼ 0.391, now equals

3.97 GeV (instead of 4 GeV). As for the renormalization
scale of the propagators—previously denoted also with μ0
and rigorously defined by Eqs. (20)—in order to compare
our results with the lattice data we had to set it back to
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FIG. 21. N ¼ 3 gluon dressing function renormalized at the
scale μ0 ¼ 4 GeV. The lattice data are taken from Ref. [18].
The one-loop predictions of the MOM-scheme RG-improved

and FS frameworks, computed for αðMOMÞ
s ðμ20Þ ¼ 0.391 and

m ¼ 0.656 GeV, are reported in blue and in black, respectively.
The red curve is obtained by their matching at μ1 ¼ 0.9 GeV.
The orange curve is the standard perturbative one-loop RG-
improved result. See the text for details.
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FIG. 22. N ¼ 3 gluon propagator renormalized at the scale
μ0 ¼ 4 GeV with the lattice data of Ref. [18]. The one-loop
predictions of the combined MOM-scheme RG-improved/FS
frameworks, computed for m¼0.656GeV and m¼0.651GeV,
are reported in red and gold, respectively. See the text for details.
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FIG. 23. N ¼ 3 ghost dressing function renormalized at the
scale μ0 ¼ 4 GeV with the lattice data of Ref. [18]. The one-loop
predictions of the combined MOM-scheme RG-improved/FS
frameworks, computed for m¼0.656GeV and m¼0.651GeV,
are reported in red and gold, respectively. See the text for details.
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4 GeV, rather than keeping it equal to the new value
3.97 GeV. Indeed, observe that the scale at which the
propagators are defined and the one at which the initial
value of the running coupling is defined do not need to
coincide, as long as the initial value of the coupling is
chosen so as to follow the RG flow. If we want to know
the value of the coupling constant at 4 GeV for
m ¼ 0.651 GeV, then we can compute it directly from
Eq. (96) using physical units: we find

αðMOMÞ
s ð4 GeVÞ ¼ 0.389 ðm ¼ 0.651 GeVÞ: ð98Þ

Of course, the difference between 0.391 and 0.389,
3.97 GeV and 4 GeV, 0.89 GeV and 0.90 GeV, etc., is
minimal; we may expect larger approximation errors to
influence the numerical outcome of our analysis. None-
theless, these calculations make explicit the role of the gluon
mass parameter as the (only) mass scale of the theory, fol-
lowing the optimization of the screened massive expansion.

V. DISCUSSION

The dynamical generation of an infrared mass for the
gluons raises questions as to whether the standard expan-
sion point of QCD perturbation theory—namely, a mass-
less vacuum for the gauge sector—is an appropriate choice
for describing the low-energy behavior of the theory. That
in the IR a massive expansion point for the gluons may
improve the QCD perturbative series is corroborated by a
GEP variational analysis of pure Yang–Mills theory: by
minimizing the vacuum energy of the latter, a massive zero-
order gluon propagator was shown [57] to bring us closer
to the exact, nonperturbative vacuum of the gauge sector.
The resulting perturbation theory—defined by a simple
shift of the kinetic and interaction Lagrangian—was termed
screened massive expansion and studied in Refs. [51–59].
In its fixed-coupling, fixed-scale formulation, the

screened massive expansion proved successful in accu-
rately reproducing the infrared lattice data for the propa-
gators of pure Yang–Mills theory already at one loop
[51,52,55]. Moreover, it was proven capable of describing
the phenomenon of dynamical mass generation for the
gluons in a nontrivial manner: whereas the zero-order gluon
propagator is massive by the definition of the method itself,
the tree-level mass terms, which appear in the dressed
propagator, cancel out so that the saturation of the gluon
propagator at zero momentum turns out to be an actual
effect of the loops, i.e., of the strong interactions between
the gluons. Nonetheless—strictly speaking—the screened
expansion alone cannot be used to prove that the gluons
acquire a mass in the infrared. Albeit it being a nontrivial
prediction of the method for any nonzero value of the gluon
mass parameterm, when the latter is set to zero the ordinary
perturbative series of YM theory is recovered so that no
mass generation occurs. In the context of the screened
expansion, that m ≠ 0 should lead to more reliable results

in the IR can only be inferred from the aforementioned
GEP analysis.
Following the optimization of the screened expansion by

principles of gauge invariance [55,59], the gluon mass
parameter m is left as the only free parameter of the theory,
playing the same role as the QCD/YM scale ΛYM of the
standard perturbative expansion, with respect to which all the
dimensionful values—including the proper gluon’s mass—
are to be measured. One could still wonder how a mass
parameter, which is added and subtracted again in the
Lagrangian, can have a physical role at all in the dynamics
of the theory. From a variational point of view, since the
optimal value of m yields the best expansion around a
Gaussian massive vacuum [57], the mass parameter itself
must be regarded as the best Gaussian approximation for the
dynamically generated mass of the full theory. Such a mass
is then subject to quantum corrections, which ultimately
determine the value of the proper gluon’s mass.
At energies larger than about 2 GeV, the fixed-scale one-

loop approximation breaks down due to the presence of large
logarithms. This can be dealt with by resorting to ordinary
RG methods, i.e., by defining a scheme-dependent running
coupling constant and integrating the RG flow for the
propagators. A second, most important, reason to study
the RG flow of the screened expansion is to address the
issues related to the strong interactions’ IR Landau pole.
From both a theoretical and a practical point of view, the
negativity of the coefficients of the standard QCD beta
function (at least to five loops [69] and for a sufficiently
small number of quarks), paired with the absence of mass
scales in the Lagrangian (other than the quark masses),
results in a strong running coupling which, in mass-
independent renormalization schemes, diverges in the infra-
red, thus making ordinary perturbation theory inconsistent at
energies of the order of the QCD scale. In order for the
screened expansion to be meaningful in the IR, the Landau
pole must be shown to disappear from the running coupling
constant when the former is used to compute the latter.
In the previous sections, the RG improvement of the

screened massive expansion was studied at one loop in
two renormalization schemes, namely, the MOM and the
SMOM schemes, with the running coupling αsðp2Þ defined
in the Taylor scheme (Zc

1 ¼ 1). In both schemes, the
existence of a nonperturbative mass scale set by the gluon
mass parameter m causes the beta function to explicitly
depend on the renormalization scale, thus providing a
mechanism by which the running of the coupling is allowed
to slow down in the infrared. The most notable feature of
the RG-improved screened expansion in the MOM and
SMOM schemes is indeed the absence of Landau poles in
their running couplings (at one loop and for sufficiently
small initial values of the coupling), a necessary condition
for the consistency of any perturbative approach which
aims to be valid at all scales. Instead of diverging, the

one-loop MOM running coupling αðMOMÞ
s ðp2Þ attains a
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maximum at the fixed scale μ⋆ ≈ 1.022m and then
decreases to zero as p2 → 0. The one-loop SMOM running

coupling αðSMOMÞ
s ðp2Þ, on the other hand, attains a maxi-

mum at a scale that depends on the initial value of
the coupling and then saturates to the finite nonzero

value αðSMOMÞ
s ð0Þ ¼ 32π=15N ≈ 2.234 for N ¼ 3. Both

αðMOMÞ
s ðp2Þ and αðSMOMÞ

s ðp2Þ have the ordinary perturba-
tive (one-loop) limit in the UV, where the mass effects due
to the gluon mass become negligible.
Since in both the renormalization schemes the one-loop

running coupling becomes quite large at scales of the order
of m, the one-loop predictions of the RG-improved
framework are expected to become quantitatively unreli-
able at low energies. In particular, for comparable initial
values of the coupling, the one-loop SMOM running
coupling is always larger than the one-loop MOM running
coupling in the IR (a feature which is mostly, but not
exclusively, due to the saturation of the former at low
momenta), so that the perturbative series is expected to
converge more slowly in the SMOM scheme than in the
MOM scheme.
The MOM and SMOM RG-improved gluon and ghost

propagators were computed at one loop, for different initial
values of the coupling constant, by numerically integrating
the respective anomalous dimensions. We found that
the improved propagators have the expected qualitative
behavior—as determined, for instance, by the lattice
calculations—showing mass generation for the gluons,
no mass generation for the ghosts, and the logarithm-to-
rational-power UV tails of ordinary perturbation theory.
Under the hypothesis that the one-loop RG-improved

results are sufficiently accurate down to p ≈m, the initial
value of the coupling αsðμ20Þ—one of the two free param-
eters of the RG-improved screened framework, together
with the gluon mass parameter—can be fixed by requiring
the improved predictions to match those of the fixed-scale
expansion at intermediate energies. The matching was
found to work better in the MOM scheme, where the

optimal choice αðMOMÞ
s ðμ20Þ ¼ 0.391 at μ0 ¼ 6.098m yields

a running coupling, which agrees to less than 1% with its
FS analogue over a momentum range of width Δp ≈m.
The optimization of the value of αsðμ20Þ, where the initial

renormalization scale μ0 itself is expressed in units of m,
leaves the gluon mass parameter as the only free parameter
of the RG-improved framework. This is, of course, highly
desirable since (modulo the renormalization conditions)
pure Yang–Mills theory has only one free parameter,
namely, the coupling or the QCD/YM scale ΛYM. In the
optimized framework, m uniquely determines the value of
the running coupling at any given renormalization scale
and, more generally, it sets the scale for the dimensionful
values of the theory. In this sense, optimization enables us
to truly regard the gluon mass parameter as the screened-
expansion analogue of ΛYM.

The predictions obtained by combining the low-energy
results (p < 1.372m) for the propagators in the FS screened
expansion with the high-energy ones (p > 1.372m) of the
optimized MOM-scheme RG-improved screened expan-
sion were compared with the lattice data of Ref. [18]
and found to be in excellent agreement if the value
m ¼ 0.651 GeV (obtained by a fit of the data themselves)
is used.
The intermediate-scale matching between the FS and

RG-improved MOM frameworks proves to be a powerful
method for quantitatively predicting the behavior of the
gluon and ghost propagators, over a wide range of
momenta and from first principles, already at one loop.
This reinforces the idea that the full dynamics of YM theory
and, perhaps, of full QCD, may be accessible by plain—
albeit optimized—PT, by a mere change of the expansion
point of the perturbative series, allowing for massive
transverse gluons at tree level.
At present, whether the optimized implementations of

the screened massive expansion yield a good approxima-
tion of the exact results beyond the two-point sector
remains an open issue. In this respect, it would be
interesting to make use of the present formalism to study
the behavior of the ghost-gluon and three-gluon vertices,
which have already been computed—for specific kinematic
configurations of the external momenta—e.g., on the lattice
[70–73] and by the numerical integration of Schwinger–
Dyson equations [28,74,75]. Encouraging signs that the
screened expansion may work in the three-point sector
come from the asymptotic analysis of the fixed-scale-
framework gluon propagator Δðp2Þ in the deep IR, where
(cf. Eqs. (A6) and (A9) in the Appendix)

ZΔΔ−1ðp2Þ → 5m2

8
þ 13

18
p2 lnðp2=m2Þ þOðp2Þ: ð99Þ

Here ZΔ is a multiplicative renormalization constant, and
the logarithmic term comes from the massless ghost loop in
the gluon polarization tensor. By the Slavnov–Taylor
identities, such a logarithm is inherited by the form factor
of the three-gluon vertex [76–78] and is responsible for
its characteristic “zero crossing”, i.e., its becoming
negative at low energies, a feature which has been con-
firmed by multiple studies. Thus the behavior of the
propagators computed in the screened expansion appears
to be consistent with what we know—both analytically and
numerically—about the three-point functions. An explicit
computation of the latter will help to clarify the extent to
which the screened massive expansion is able to describe
the full dynamics of pure Yang–Mills theory and QCD.
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APPENDIX: FIXED-SCALE SCREENED PT AND
THE FUNCTIONS HðxÞ AND KðxÞ

In Euclidean space, the renormalized one-loop gluon

polarization ΠðRÞ
loop and ghost self-energy ΣðRÞ

loop computed in
the framework of the massive screened expansion are given
by [51,52]

ΠðRÞ
loopðp2Þ ¼ −αp2ðFðsÞ þ CÞ;

ΣðRÞ
loopðp2Þ ¼ αp2ðGðsÞ þ C0Þ; ðA1Þ

where s ¼ p2=m2 (m being the gluon mass parameter),

α ¼ 3Nαs
4π

¼ 3Ng2

16π2
; ðA2Þ

and C and C0 are renormalization-scheme-dependent con-
stants. The adimensional functions F and G [51,52] are
defined as

FðxÞ ¼ 5

8x
þ 1

72
½LaðxÞ þ LbðxÞ þ LcðxÞ þ RðxÞ�;

GðxÞ ¼ 1

12
½LgðxÞ þ RghðxÞ�; ðA3Þ

where the logarithmic functions Li are

LaðxÞ ¼
3x3 − 34x2 − 28x − 24

x

×

ffiffiffiffiffiffiffiffiffiffiffi
4þ x
x

r
ln

� ffiffiffiffiffiffiffiffiffiffiffi
4þ x

p
−

ffiffiffi
x

pffiffiffiffiffiffiffiffiffiffiffi
4þ x

p þ ffiffiffi
x

p
�
;

LbðxÞ ¼
2ð1þ xÞ2

x3
ð3x3 − 20x2 þ 11x − 2Þ lnð1þ xÞ;

LcðxÞ ¼ ð2 − 3x2Þ ln x;

LgðxÞ ¼
ð1þ xÞ2ð2x − 1Þ

x2
lnð1þ xÞ − 2x ln x; ðA4Þ

and the rational parts Ri are

RðxÞ ¼ 4

x2
−
64

x
þ 34;

RghðxÞ ¼
1

x
þ 2: ðA5Þ

The fixed-scale one-loop gluon and ghost propagators
computed in the screened expansion can be expressed as

Δðp2Þ ¼ ZΔ

p2½Fðp2=m2Þ þ F0�
;

Gðp2Þ ¼ −
ZG

p2½Gðp2=m2Þ þ G0�
; ðA6Þ

where ZΔ and ZG are multiplicative renormalization factors
and F0 and G0 are additive renormalization constants. In
Refs. [55,59], the latter were optimized by requirements of
gauge invariance and minimal sensitivity, and their optimal
value was found to be

F0 ¼ −0.876; G0 ¼ 0.145: ðA7Þ

As for the functions F and G, in the limit x → ∞, we find

FðxÞ → 13

18
ln xþ 17

18
þ 5

8x
þOðx−2Þ;

GðxÞ → 1

4
ln xþ 1

3
þ 1

4x
þOðx−2Þ: ðA8Þ

On the other hand, for x → 0,6

FðxÞ → 5

8x
þ 1

36
ln xþ 257

216
þ 389

1080
xþOðx2Þ;

GðxÞ → 5

24
−
1

6
x ln xþ 2

9
xþOðx2Þ: ðA9Þ

The function HðxÞ, whose derivative is proportional
to the beta function of the MOM running coupling, is
defined as

HðxÞ ¼ 2GðxÞ þ FðxÞ: ðA10Þ

For x → ∞ we have

HðxÞ → 11

9
ln xþ 29

18
þ 9

8x
þOðx−2Þ; ðA11Þ

whereas for x → 0

HðxÞ → 5

8x
þ 1

36
ln xþ 347

216
−
1

3
x ln xþ 869

1080
xþOðx2Þ:

ðA12Þ

The one-loop MOM running coupling αðMOMÞ
s ðp2Þ has the

following asymptotic behavior:

αðMOMÞ
s ðp2Þ → 32π

15N
p2

m2

�
1 −

2

45

p2

m2
ln

p2

m2

�
ðA13Þ

as p → 0 and

αðMOMÞ
s ðp2Þ → 12π

11N lnðp2=m2Þ ðA14Þ

as p → ∞.

6Here we correct an error in Ref. [59], where the coefficients of
x in the expansion of LaðxÞ; LbðxÞ, and FðxÞ around x ¼ 0
(Eqs. (A7) and (A8) of Ref. [59]) were reported incorrectly.
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The expressions for the SMOM scheme beta function
and running coupling involve the function KðxÞ, defined as

KðxÞ ¼
Z

dx

�
H0ðxÞ þ 2

x
G0ðxÞ

�

¼ HðxÞ − 1

3

�
Li2ð−xÞ þ

1

2
ln2x

þ x3 þ 1

3x3
lnð1þ xÞ − 1

3
ln x −

1

3x2
þ 1

6x

�
; ðA15Þ

where Li2ðzÞ is the dilogarithm Li2ðzÞ ¼
Pþ∞

n¼1
zn

n2. In the
limit x → ∞ we find

KðxÞ → 11

9
ln xþ π2 þ 29

18
þ 5

8x
þOðx−2Þ; ðA16Þ

whereas in the limit x → 0

KðxÞ → 5

8x
−
1

6
ln2xþ 5

36
ln xþ 113

72
þ

−
1

3
x ln xþ 1139

1080
xþOðx2Þ: ðA17Þ

The asymptotic limits of the one-loop SMOM running

coupling αðSMOMÞ
s ðp2Þ are computed to be

αðSMOMÞ
s ðp2Þ → 32π

15N

�
1þ 4

15

p2

m2
ln2

p2

m2

�
ðA18Þ

as p → 0 and

αðSMOMÞ
s ðp2Þ → 12π

11N lnðp2=m2Þ ðA19Þ

as p → ∞.
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