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A PROJECTED DYNAMIC SYSTEM ASSOCIATED WITH A CYBERSECURITY
INVESTMENT MODEL WITH BUDGET CONSTRAINTS AND FIXED DEMANDS

GABRIELLA COLAJANNI, PATRIZIA DANIELE∗, DANIELE SCIACCA

Department of Mathematics, University of Catania, Catania, Italy

Abstract. In this paper, we present a cybersecurity investment supply chain model with nonlinear bud-
get constraints and fixed demands, which gives a generalized Nash equilibrium model. We define the
related variational equilibrium and study the associated projected dynamic system (PDS), establishing
the relationship between the solutions to the variational inequality and the stationary points of the PDS.
Then, we propose a computational procedure to find such stationary points and, finally, some numerical
examples illustrate the obtained results.
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1. INTRODUCTION

Cybersecurity consists in safeguarding the confidentiality, integrity and availability of infor-
mation managed by an organization. A safeguard not only from direct attacks, but also, for
example, from phenomena such as natural disasters or from accidental problems. More specif-
ically, IT security is a subset of information security and can be defined as the set of products,
services, organizational rules and individual behaviors that protect computer systems of a com-
pany.

In general, cybersecurity actually involves many distinct activities: security at the applica-
tion level, data level, at the network level (when you exchange data over the Internet, network
security must be guaranteed, so that these are not intercepted) and so on. According to a Gart-
ner analysis, in 2018 around 114 billion dollars in computer security have been spent globally
and network protection accounts for almost 12.5 billion. Investments in Identity and Access
management, also crucial in the corporate sphere, went from a value of 8.8 billion in 2017 to
9.7 billion in 2018, which will become 10.6 in 2019. According to a report from the Infor-
mation Security and Privacy Observatory of the Polytechnic of Milan, also in Italy there is a
development trend: in 2017 the market for information security solutions reached a value of
1.09 billion euros, in growth of 12% compared to 2016. A step forward clearly higher than
that observed in previous years, when the domestic market was at about 4-6%. The need to be
compliant with the new European privacy law, the GDPR, which alone accounts for about half
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of the expenditure increase identified by the research, pushes large companies more than the
great attacks mentioned above. It is worth mentioning that cybersecurity has a thirty-year his-
tory: the first computer virus in history, Brain A, arrived in 1986 directly from Pakistan. Later it
was the turn of AIDS in 1989, a malware that presented very strong analogies with the current
ransomware. From then on, every year there were particular viruses: in 1992 Michelangelo
arrived, in 1995 Concept, while the millennium ended with Happy 99. The new millennium
opened with Melissa and Loveletter, while 2003 was the year both of the first successful attack
against a critical infrastructure, the US transport company CSX, and of the first mobile virus
in history. Going forward over the years we get to more recent names like Zeus and Stuxnet.
The most attacked system is Android, in particular due to the lack of protection provided by
users, although iOS can certainly not be considered immune from the risk. The costs of all
these activities are considerable: in 2017 cybercrime alone caused damages for 500 billion dol-
lars. Scams, extortion, money and personal data theft hit almost a billion people in the world,
causing only an estimated loss of 180 billion dollars to private citizens. According to a recent
Kaspersky Lab and B2B International survey, the lack of IT security awareness is still alarming
in companies all around the world. The study, which involved 7,993 employees, showed that
only 12% of employees is fully aware of the IT security policies and rules established by the
company they work for and 24% of people believe that their company has not established any
policy. However, it is interesting to note that ignorance of the rules is not considered an ex-
cuse: almost half of respondents (49%) think, in fact, that all employees - themselves included
- should take responsibility for protecting corporate IT resources from threats computer. Given
these premises, employees not only risk to become the victims of cyber criminals, but they
also risk to make their company victims of cyber threats. The priority of organizations should
therefore be to engage in staff education. As we mentioned earlier, in recent years many secure
corporate investments have been driven by the entry into force of the GDPR. Despite the greater
overall attention regarding the issue of cyber security, the attacks of cybercrime show no sign
of abating, on the contrary. This is highlighted by a study released by Clusit, which refers to the
first half of 2018: in this period, 730 serious attacks were recorded globally, which correspond
to a 31% growth compared to the previous semester. Numbers that make the first half of 2018
the worst ever: in particular, during this period there was an average of 122 serious attacks per
month (compared to an average of 94 per month in 2017). At the global level in 2018, 1,552
serious attacks were registered, with an average of 129 episodes per month, which is almost
37.7% more than in 2017. As for the targets, health was certainly in the sights, so that they
suffered the greatest increase in actions, even 99% compared to 2017. One of the hottest areas
of computer security is undoubtedly the one related to Cyberwar: groups of hackers, specially
backed and financed by sovereign states, that carry out attacks with the aim of stealing data or
damaging the functioning of organizations (public or private) of powers considered rivals. Rus-
sia has often been accused of pushing such practices, but in July 2019 Moscow was the victim
of a cyberwar attack. In particular SyTech, provider of the FSB secret service (Federal Security
Service of the Russian Federation), was the victim of a cyber attack: the cyber criminals would
have stolen - according to what reconstructed by the BBC - about 7.5 terabytes of confidential
information. Subsequently the cyber criminals shared the information stolen from the collec-
tive hacker Digital Revolution, which sent it to some newspapers. In the literature cybersecurity
models have been studied both in the case of elastic (see [2] and [12]) and fixed demands (see
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[1]). Further, an analysis of the dual problem and its associated Lagrange multipliers has been
performed, together with the study of the marginal expected transaction utility for each retailer.
Other cybersecurity models have been introduced by Daras and Rassias in [3], by Nagurney
A., Nagurney L.S., Alvarez Flores and Shukla in [10, 11, 13, 14, 15] and by Shetty, Schwartz,
Felegehazy, and Walrand in [17].

In this paper we start from the model in [1] and characterize the solutions of the deriving
variational inequality through the critical points of a suitable projected dynamic system. The
paper is organized as follows. In Section 2, we present the model as a bipartite supply chain net-
work with retailers and consumers at demand markets in the presence of budget constraints and
with a mean value of the security levels which also depends on the flows of product. Then, we
give the variational equilibrium definition of the generalized Nash equilibrium. In Section 3, we
characterize the solutions to the variational inequality as the stationary points of an associated
projected dynamic system and find uniqueness results. In Section 4, we give a computational
procedure based on the Euler method to find the solutions to the variational inequality. Finally,
in Section 5, we provide some illustrative numerical examples and in Section 6, we present the
conclusions.

2. THE MODEL

As in [12], we consider a supply chain network consisting of retailers and consumers at
demand markets, as depicted in Figure 1. Each retailer i can transact with each demand market
j and Qi j denotes the product transaction from i to j, i = 1, . . . ,m, and j = 1, . . . ,n. We associate
with each retailer i a cybersecurity level s∈[0,1[, i= 1, . . . ,m. We group the product transactions
for each retailer i into the vector Qi ∈Rn and then we group all such retailer transaction vectors
into the vector Q ∈ Rmn. Analogously, the security levels of the retailers are grouped into the
vector s ∈ Rm.

Unlike [12], where the arithmetic mean of all the security levels is chosen as the average
value, here we assume that the mean value depends also on the quantity of product. Hence,
we choose the following weighted average as the cybersecurity level in the entire supply chain
network:

s̄ =

m

∑
i=1

si

n

∑
j=1

Qi j

m

∑
i=1

n

∑
j=1

Qi j

,

where we assume that
m

∑
i=1

n

∑
j=1

Qi j > 0, namely there exists some Qi j > 0.

Also, as in [14], we introduce a retailer’s vulnerability vi = 1− si, i = 1, . . . ,m, and the
network vulnerability v̄ = 1− s̄.

As in [1], the demand at each demand market j, d j, is assumed to be fixed and known and
such that it satisfies the following conservation law:

d j =
m

∑
i=1

Qi j, j = 1, . . . ,n. (2.1)

We group the demands at the demand markets into the vector d ∈ Rn.
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FIGURE 1. The Bipartite Structure of the Supply Chain Network Model

We denote by Q̄i j an upper bound of the product transactions, which have also to be nonneg-
ative, so that the following conditions have to be satisfied:

0≤ Qi j ≤ Q̄i j, with
m

∑
i=1

Qi j > d j i = 1, . . . ,m; j = 1, . . . ,n. (2.2)

We denote by usi the upper bound of the cybersecurity level of each retailer i, i = 1, . . . ,m,
with usi < 1, since perfect security cannot be guaranteed:

0≤ si ≤ usi, i = 1, . . . ,m, (2.3)

As in [1], we assume that the demand price functions are continuously differentiable and are
given by ρ̂ j(Q,s)≡ ρ j(d,s), j = 1, . . . ,n.

As in [17], in [14] and in [1], we choose as an investment cost function hi, i = 1, . . . ,m, the
following function:

hi(si) = αi

(
1√

(1− si)
−1

)
with αi > 0,

where the presence of the coefficient αi allows distinct retailers to have different investment
cost functions based on their size and needs.

Assuming, as in [12] and in [1], that there is a limited budget for cybersecurity investments,
we have that the following nonlinear budget constraints must be satisfied:

αi

(
1√

(1− si)
−1

)
≤ Bi, i = 1, . . . ,m. (2.4)

Denoting by E(Ui) the expected utility of each retailer i, i = 1, . . . ,m, his aim is to maximize
such a profit given by:

E(Ui) =
n

∑
j=1

ρ̂ j(Q,s)Qi j− ci

n

∑
j=1

Qi j−
n

∑
j=1

ci j(Qi j)− piDi−hi(si), (2.5)

where the first term represents his revenue, the second term represents the production costs, the
third term represents the transportation costs, piDi is the expected financial damage in the case
of a successful cyberattack with pi = (1−si)(1− s̄), i = 1, . . . ,m, and the fourth term represents
the investment cost function.
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We define the feasible set:

K≡
{
(Q,s) ∈ Rmn+m :−Qi j ≤ 0, Qi j−Qi j ≤ 0, −si ≤ 0,

si−usi ≤ 0, h(si)−Bi ≤ 0, i = 1, . . . ,m, j = 1, . . . ,n
}
,

and we add the set of shared constraints S as follows:

S ≡ {Q|(1)holds}.

As in [1], we can state the following Generalized Nash Equilibrium (GNE) definition (see
also [6] and [18]).

Definition 2.1. (A Supply Chain GNE in Product Transactions and Security Levels) A
product transaction and security level pattern (Q∗,s∗) ∈ K, Q∗ ∈ S , is said to constitute a
supply chain Generalized Nash equilibrium if for each retailer i; i = 1, . . . ,m,

E(Ui(Q∗i ,s
∗
i , Q̂∗i , ŝ

∗
i ))≥ E(Ui(Qi,si, Q̂∗i , ŝ

∗
i )), ∀(Qi,si) ∈Ki,∀Q ∈S , (2.6)

where

Q̂∗i ≡ (Q∗1, . . . ,Q
∗
i−1,Q

∗
i+1, . . . ,Q

∗
m),

ŝ∗i ≡ (s∗1, . . . ,s
∗
i−1,s

∗
i+1, . . . ,s

∗
m)

and

Ki ≡
{
(Qi,si) : 0≤ Qi j ≤ Qi j, ∀ j;0≤ si ≤ usi, h(si)−Bi ≤ 0

}
.

Hence, we can determine the equilibrium solution via a variational inequality, rather than a
quasi-variational inequality, through a variational equilibrium ([7] and [8]), which is different
that the one in [1], since we have used a different mean value.

Definition 2.2. (Variational Equilibrium) A product transaction and security level pattern
(Q∗,s∗) is said to be a variational equilibrium of the above Generalized Nash equilibrium if
(Q∗,s∗) ∈K, Q∗ ∈S , is a solution of the variational inequality

−
m

∑
i=1

n

∑
j=1

∂E(Ui(Q∗,s∗))
∂Qi j

×
(
Qi j−Q∗i j

)
−

m

∑
i=1

∂E(Ui(Q∗,s∗))
∂ si

× (si− s∗i )≥ 0,

∀(Q,s) ∈K,∀Q ∈S ; (2.7)
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namely, (Q∗,s∗) ∈ K, Q∗ ∈S , is a supply chain Generalized Nash equilibrium product trans-
action and security level pattern if and only if it satisfies the variational inequality

m

∑
i=1

n

∑
j=1

[
ci +

∂ci j(Q∗i j)

∂Qi j
− ρ̂ j(Q∗,s∗)−

n

∑
k=1

∂ ρ̂k(Q∗,s∗)
∂Qi j

·Q∗ik

+(1− s∗i )

−s∗i
m

∑
h=1

n

∑
k=1

Q∗hk +
m

∑
h=1

s∗h

(
n

∑
k=1

Q∗hk

)
(

m

∑
h=1

n

∑
k=1

Q∗hk

)2 ·Di

]
× (Qi j−Q∗i j)

+
m

∑
i=1

[
−

n

∑
k=1

∂ ρ̂k(Q∗,s∗)
∂ si

·Q∗ik +
αi

2
1√

(1− s∗i )3
(2.8)

+

1−

m

∑
h=1

s∗h

(
n

∑
k=1

Q∗hk

)
m

∑
h=1

n

∑
k=1

Q∗hk

+(1− si)

n

∑
k=1

Q∗hk

m

∑
h=1

n

∑
k=1

Q∗hk

 ·Di

]
× (si− s∗i )≥ 0,

∀(Q,s) ∈K,∀Q ∈S .

Also in this case, problem (2.8) admits a solution since the classical existence theorem, which
requires that the set K ≡K∩S is closed, convex, and bounded and the function entering the
variational inequality is continuous, is satisfied (see also [9]).

We now put variational inequality (2.8) into standard form, that is: determine X∗ ∈K ⊂RN

such that
〈F(X∗),X−X∗〉 ≥ 0, ∀X ∈K , (2.9)

where F is a given function from K to RN and K is a closed and convex set. We define the
(mn+m)-dimensional column vector X = (Q,s) and the (mn+m)-dimensional column vector
F(X)≡ (F1(X),F2(X)), where the (i, j)-th component, F1

i j, of F1(X) is given by

F1
i j(X)≡−∂E(Ui(Q,s))

∂Qi j
, (2.10)

and the i-th component, F2
i , of F2(X) is given by

F2
i (X)≡−∂E(Ui(Q,s))

∂ si
, (2.11)

and the feasible set K is defined as above. Clearly, variational inequality (2.8) can be rewritten
as (2.9).

Now, we want to build the projected dynamic system associated with our Nash’s game model
for the network of cybersecurity investments, which has not been studied yet.

3. THE ASSOCIATED PROJECTED DYNAMIC SYSTEM

First, we propose a dynamic adaptation process that will be subsequently formulated in terms
of a projected dynamic system (see also [16]). Then, we show that the set of stationary points
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of the projected dynamic system coincides with the set of solutions to variational inequality
(2.8). As we know, in the feasible set K there are nonlinear budget constraints (2.4) and it
would not be a convex polyhedron. This could have some critical issues in the description of
the dynamic adjustment processes, according to which the variables of the problem vary over
time, and in the construction of the associated dynamic system to these processes. To overcome
these computational difficulties, constraints (2.4) can be relaxed by resorting to an alternative
variational formulation of the problem that incorporates the constraints in the objective function,
making use of the associated Lagrange function.

However, it is possible to realize a linearization of the feasible set K , by taking into account
the upper bounds on the levels of cybersecurity and the constraints (2.4). Observe, in fact, that
the quantities αi, Bi and usi , i = 1, . . . ,m, are fixed and not negative, so we can say that the
nonlinear budget constraints are met if and only if

αi

(
1√

(1− si)
−1

)
≤ Bi⇔

1√
(1− si)

−1≤ Bi

αi

⇔
(

Bi

αi
+1
)√

1− si ≥ 1⇔ si ≤ 1−
(

αi

Bi +αi

)2

.

Observe that
(

αi

Bi +αi

)2

has no dimension and
(

αi

Bi +αi

)2

< 1, for every i = 1, . . . ,m. As

a consequence, it follows:

1−
(

αi

Bi +αi

)2

< 1.

So, if we denote by

ŝi = min

{
usi,1−

(
αi

Bi +αi

)2
}
,

then the feasible set for each retailer can be written as:

K̃i =
{
(Qi,si) : 0≤ Qi j ≤ Q̄i j, i = 1, . . .0≤ si ≤ ŝi, j = 1, . . . ,n

}
,

and K̃=
m

∏
i=1

K̃i. Now, if we add the set of sharer constraints S , the feasible set of problem (2.8)

becomes ˜K = K̃∩S , which is a convex, closed, non empty and bounded polyhedron.
Moreover, ˜K can be rewritten as ˜K = ˜K1× ˜K2, where

˜K1 =

{
Q ∈ Rmn|0≤ Qi j ≤ Q̄i j, i = 1, . . . ,m, j = 1, . . . ,n,

m

∑
i=1

Qi j = d j, j = 1, . . . ,n

}
, (3.1)

˜K2 = {s ∈ Rm|0≤ si ≤ ŝi, i = 1, . . . ,m} . (3.2)

We first present the dynamics that describe at each time the behavior of the manufacturers as
a function of the product flows with the demand markets. Let us suppose that the product flows
between retailers and demand markets vary with a rate which is proportional to the marginal
profits with respect to the flows, i.e.

−F1
i j(Q,s)≡ ∂E(Ui(Q,s))

∂Qi j
, ∀i = 1, . . . ,m, j = 1, . . . ,n. (3.3)
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Hence, retailers continuously adapt the quantities Qi j with the intention of maximizing their
profits. However, the flows have to satisfy the capacity constraints and the conservation law,
which requires that the sum of the quantities sold by each retailer to a fixed market demand
is equal to the demand quantity, d j, which is fixed and known. Therefore, for each market
of demand, retailers adapt the quantities to be shipped with the aim of maximizing their own
expected profit. Therefore, the incentive of each retailer to avoid less advantageous flows will
adapt dynamically to the quantity of product that other retailers send to each demand market, so
that the sum of the flows is equal to the demand in each market of question. As a consequence,
the model suggests that product flows vary in relation to a rate that is equal to the projection of
the profit of each retailer within the feasible set ˜K1, namely,

Π ˜K1
(Q,−F1(Q,s)), (3.4)

where, for every given x∈K, K⊂Rm, and v∈Rn, ΠK : Ω×Rn→Rn is the projection of vector
v at x with respect to K defined by

ΠK(x,v) = lim
δ→0

(PK(x+δv)− x)
δ

, (3.5)

and PK : Rn→ K is the projection operator, where, for any v ∈ Rn, PK(v) is such that

‖PK(z)− z‖= inf
y∈K
‖y− z‖. (3.6)

Indeed, it represents the best direction along which it is possible to relocate the product flows
in order to increase the profit of the retailers (see [16]).

Now, we describe the dynamics of the cybersecurity levels of each retailer i. In this case, the
feasible set, ˜K2, is defined only by box constraints and so it is possible to have a closed form
of the equations that regulate the dynamic adjustment processes. We assume that the rate of
change of the security levels si, denoted by ṡi, is equal to the difference between the following
two quantities:

• the expected marginal revenues related to cybersecurity investments, namely,
n

∑
k=1

∂ ρ̂k(Q,s)
∂ si

Qik;

• the difference between expected marginal costs related to cybersecurity investments,

namely,
∂hi(si)

∂ si
, and the marginal expenses related to expected damages (see [1]), that

is, 1−

m

∑
h=1

sh

(
n

∑
k=1

Qik

)
m

∑
h=1

n

∑
k=1

Qhk

+(1− si)

n

∑
k=1

Qik

m

∑
h=1

n

∑
k=1

Qhk

Di.

Therefore, as long as the security levels si are 0 < si < ŝi, it is reasonable to assume that
the rate of change of cybersecurity levels of a retailer i is proportional to −F2

i (X). So, if the
marginal revenues related to the sale to all the demand markets exceed the difference between
the expected marginal costs related to the cybersecurity investments and the marginal expenses



PDS FOR A CYBERSECURITY INVESTMENT MODEL 53

related to the expected damages, then the level of cybersecurity of the retailer i increases, oth-
erwise it decreases. Therefore, if 0 < si < ŝi, then we have the following dynamics:

ṡi =
n

∑
k=1

∂ ρ̂k(Q,s)
∂ si

Qik−

∂hi(si)

∂ si
−

1−

m

∑
h=1

sh

(
n

∑
k=1

Qik

)
m

∑
h=1

n

∑
k=1

Qhk

+

(1− si)
n

∑
k=1

Qik

m

∑
h=1

n

∑
k=1

Qhk

Di

 . (3.7)

On the other hand, when si = 0, the non-negativity of security levels in (2.3) guarantees that the
information security level remains at zero if F2

i (X)≥ 0. So, in this case, only an increase in the
cybersecurity level for the retailer i is possible and this happens only when the marginal rev-
enues related to the sale to all the demand markets exceed the difference between the expected
marginal costs related to security investments and the marginal expenses related to expected
damages. Therefore, when si = 0, then we have the following dynamics:

ṡi =max

0,
n

∑
k=1

∂ ρ̂k(Q,s)
∂ si

Qik−

∂hi(si)

∂ si
−

1−

m

∑
h=1

sh

(
n

∑
k=1

Qik

)
m

∑
h=1

n

∑
k=1

Qhk

+(1− si)

n

∑
k=1

Qik

m

∑
h=1

n

∑
k=1

Qhk

Di


 .

(3.8)

Finally, when si = ŝi, the new upper limit of security levels establishes that the cybersecurity
level remains at the limit value usi when F2

i (X) ≤ 0. Therefore, in this case, only a decrease
in the cybersecurity level is possible and this happens only when the marginal revenues related
to the sale to all the demand markets do not exceed the difference between the expected mar-
ginal costs related to the investments in cybersecurity and the marginal expenses related to the
expected damages. Therefore, when si = ŝi, we have the following dynamics:

ṡi =min

0,
n

∑
k=1

∂ ρ̂k(Q,s)
∂ si

Qik−

∂hi(si)

∂ si
−

1−

m

∑
h=1

sh

(
n

∑
k=1

Qik

)
m

∑
h=1

n

∑
k=1

Qhk

+(1− si)

n

∑
k=1

Qik

m

∑
h=1

n

∑
k=1

Qhk

Di


 .

(3.9)
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Ultimately, the dynamics of the cybersecurity levels can be expressed as:

ṡi =



max

0,
n

∑
k=1

∂ ρ̂k(Q,s)
∂ si

Qik−

∂hi(si)

∂ si
−

1−

m

∑
h=1

sh

(
n

∑
k=1

Qik

)
m

∑
h=1

n

∑
k=1

Qhk

+(1− si)

n

∑
k=1

Qik

m

∑
h=1

n

∑
k=1

Qhk

Di


 ,

,

if si = 0

n

∑
k=1

∂ ρ̂k(Q,s)
∂ si

Qik−

∂hi(si)

∂ si
−

1−

m

∑
h=1

sh

(
n

∑
k=1

Qik

)
m

∑
h=1

n

∑
k=1

Qhk

+(1− si)

n

∑
k=1

Qik

m

∑
h=1

n

∑
k=1

Qhk

Di

,
if 0 < si < ŝi

min

0,
n

∑
k=1

∂ ρ̂k(Q,s)
∂ si

Qik−

∂hi(si)

∂ si
−

1−

m

∑
h=1

sh

(
n

∑
k=1

Qik

)
m

∑
h=1

n
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k=1

Qhk

+(1− si)

n

∑
k=1

Qik

m

∑
h=1

n

∑
k=1

Qhk

Di


 ,

,

if si = ŝi.
(3.10)

In a more compact form, the previous estimates can be rewritten as:

ṡ = Π ˜K2
(s,−F2(Q,s)). (3.11)

Since the projection operator ΠK can be splitted with respect to the Cartesian product (see [4]),
that is, ˜K = ˜K1× ˜K2, we have Π ˜K = (Π ˜K1

,Π ˜K2
), and the previous dynamic adaptation

process can be expressed by the following dynamic projected system on the whole space ˜K

Ẋ = Π ˜K (X ,−F(X)), X(0) = X0, (3.12)

where F is defined as in the previous section, X = (Q,s) ∈ Rmn+m, ˜K = ˜K1× ˜K2 and X0 =
(Q0,S0) is a generic point of the border of ˜K corresponding to the initial product transaction
between all retailers and all demand markets and to the initial security levels in each retailer.
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The next theorem establishes that the projected dynamic system evolves until it reaches a
stationary point, that is, until Ẋ = 0, when there is no transaction variation of products and cy-
bersecurity levels and that the stationary points of the PDS (3.12) coincide with the equilibrium
points of the network, according to Definition 2.2.

Theorem 3.1. A vector (Q∗,s∗) ∈ ˜K is a stationary point of the projected dynamic system
(3.12) if and only if (Q∗,s∗) is an equilibrium point according to Definition 2.2.

Proof. Following [16], X∗ is a stationary point of the projected dynamic system (3.12) if and
only if X∗ is a solution to the variational inequality

〈F(X∗),X−X∗〉 ≥ 0, ∀X ∈ ˜K . (3.13)

Explicitly, (3.13) gives:

m

∑
i=1

n

∑
j=1

[
ci +

∂ci j(Q∗i j)

∂Qi j
− ρ̂ j(Q∗,s∗)−

n

∑
k=1

∂ ρ̂k(Q∗,s∗)
∂Qi j

·Q∗ik

+(1− s∗i )

−s∗i
m

∑
h=1

n

∑
k=1

Q∗hk +
m

∑
h=1

s∗h

(
n

∑
k=1

Q∗hk

)
(

m

∑
h=1

n

∑
k=1

Q∗hk

)2 ·Di

× (Qi j−Q∗i j)

+
m

∑
i=1

∂hi(s∗i )
∂ si

+

1−

m

∑
h=1

s∗h

(
n

∑
k=1

Q∗ik

)
m

∑
h=1

n

∑
k=1

Q∗hk

+(1− s∗i )

n

∑
k=1

Q∗ik

m

∑
h=1

n

∑
k=1

Q∗hk

Di

−
n

∑
k=1

∂ ρ̂k(Q∗,s∗)
∂ si

·Q∗ik

]
× (si− s∗i )≥ 0, ∀(Q,s) ∈ ˜K ,

(3.14)

and (3.14) coincides with variational inequality (2.8). Hence, every stationary point (Q∗,s∗) of
the projected dynamic system (3.12) is a solution to the variational inequality (2.8) and, hence,
a Nash equilibrium, according to Definition 2.2. �

Theorem 3.2. Function F (or, equivalently, −F) is Lipschitz continuous if the utility func-
tion of each retailer i, i = 1, . . . ,m, is continuously differentiable with respect to the variables
Qi1, . . . ,Qin and si.

Proof. We remark that the following generalization of the Lagrange theorem holds true: let F
be a real differentiable function on an open set U ⊆ Rn → Rm, which contains the segment
[X ,Y ]; then:

‖F(X)−F(Y ))‖ ≤ sup
ξ∈ ˜K

‖JF(ξ )‖‖X−Y‖ , (3.15)

where JF(·) denotes the Jacobian matrix of F .
F and ˜K satisfy all the assumptions of such a theorem, hence (3.15) holds. Moreover, since



56 G. COLAJANNI, P. DANIELE, D. SCIACCA

˜K is a bounded set, then the derivatives of F with respect to the variables Qi1, . . . ,Qin and si
are bounded in such a set. As a consequence, we obtain:

sup
ξ∈ ˜K

‖JF(ξ )‖= L < ∞.

If we choose as the Lipschitz constant for F exactly L, then we get the assertion immediately.
�

The following corollary is a consequence of the previous theorem.

Corollary 3.1. If the utility function of each retailer i, i= 1, . . . ,m, is continuously differentiable
with respect to the variables Qi1, . . . ,Qin and si, then, for every X0 ∈ ˜K , there exists a unique
solution X0(τ) to the problem (3.12).

Further, the following theorem holds (see [16]).

Theorem 3.3. The following conditions hold:
(1) if F is monotone and (Q∗,s∗) ∈ ˜K is a solution to variational inequality (2.8), then

(Q∗,s∗) is a global monotone attractor;
(2) if F is strictly monotone, then the unique solution (Q∗,s∗) ∈ ˜K to variational inequal-

ity(2.8) is a global strictly monotone attractor;
(3) if F is strongly monotone, then the unique solution (Q∗,s∗)∈ ˜K to variational inequal-

ity (2.8) is globally exponentially stable;
(4) if F is strongly monotone with degree α < 2, then the unique solution (Q∗,s∗) ∈ ˜K to

variational inequality (2.8) is a finite-time attractor.

4. COMPUTATIONAL PROCEDURE

In this section we, will present a computational procedure for the resolution of the projected
dynamic system (3.12) in order to find its stationary points. We can solve variational inequality
(2.8) using the Euler method presented in [16]. The general iterative scheme to obtain a solution
to the projected dynamic system (3.12) at iteration τ takes the form:

Xτ+1 = P ˜K (Xτ −aτF(Xτ)), (4.1)

where P ˜K is the ortogonal projection (on the feasible set ˜K ) defined in (3.6). As in [5], in order
to get the convergence of the method, the sequence aτ has to satisfy the following conditions:

∞

∑
τ=0

aτ = ∞, aτ > 0, aτ → 0, when τ → ∞.

As in the case of the traffic model with fixed demand (see [16]), the presence of a fixed
demand does not allow us to calculate the projection operator in a closed form, but, rather,
as the solution to a quadratic optimization problem. However, using a special structure of the
deriving subproblems, each of these projections can be computed using an exact balancing
algorithm. Nevertheless, these considerations refers only to the flow variables Qi, i = 1, . . . ,m,
since, as we shall see, for the security variables it is possible to write closed formulas deriving
from the processes of dynamic adjustment (3.10). Specifically, at each iteration τ of the Euler
method, formula (4.1), restricted to the variables Q, has the following form:

Qτ+1 = min
Q∈ ˜K1

1
2

QT ·Q− (QT −aτF1(Qτ ,sτ))T ·Q, (4.2)
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where, at each iteration τ , sτ+1 is the m-dimensional vector, whose components are:

sτ+1
i = max

0,min

usi,s
τ
i +aτ


n

∑
k=1

∂ ρ̂k(Qτ ,sτ)

∂ si
·Qτ

ik−

1−

m

∑
h=1

sτ
h

(
n

∑
k=1

Qτ
ik

)
m

∑
h=1

n

∑
k=1

Qτ
hk

+(1− sτ
i )

n

∑
k=1

Qτ
ik

m

∑
h=1

n

∑
k=1

Qτ
hk

Di



 .

(4.3)

Given the structure of the feasible set ˜K1, each subproblem (4.2), in turn, can be decomposed
into mn subproblems, one for each retailer/demand market pair, each of which is a quadratic
optimization problem with a special structure that can be solved in closed form using an exact
balancing. In particular, subproblem (4.2) is equivalent to the solution of the following mn
subproblems: for each retailer/demand market pair, calculate

min
1
2

m

∑
i=1

n

∑
j=1

Q2
i j +

m

∑
i=1

n

∑
j=1

hτ
i jQi j (4.4)

under the constraints
n

∑
j=1

Qi j = d j, ∀ j = 1, . . . ,n, (4.5)

and
0≤ Qi j ≤ Q̄i j, ∀i = 1, . . . ,m, j = 1, . . . ,n, (4.6)

where
hτ

i j = aτF1(Qτ)−Qτ . (4.7)

5. NUMERICAL EXAMPLES

In this section, we apply the model to some numerical examples that consist of a network with
two retailers and two demand markets, as depicted in Figure 2. Since we want to report all the

m

m

1

1

Retailers

Demand Markets

m

m

2

2
? ?

@
@
@
@
@
@
@
@
@R

�
�

�
�

�
�
�

�
�	

FIGURE 2. Network Topology for the Numerical Examples

results for transparency purposes, we select the size of the problem as reported. The numerical
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data are inspired by realistic values and are constructed for easy interpretation purposes. These
examples are inspired by related examples as in [1]. We assume the following cost function
data are given:

c1 = 5, c2 = 10,
c11(Q11) = 0.5Q2

11 +Q11, c12(Q12) = 0.25Q2
12 +Q12,

c21(Q21) = 0.5Q2
21 +Q21, c22(Q22) = 0.25Q2

22 +Q22.

The demand price functions are:

ρ1(d,s) =−d1 +0.1s+100, ρ2(d,s) =−0.5d2 +0.2s+200.

The damage parameters are: D1 = 200 and D2 = 210 with the investment functions taking
the form:

h1(s1) =
α1√
1− s1

−1, h2(s2) =
α2√
1− s2

−1,

where α1 = α2 = 1.
The maximum budget, the upper bounds of the cybersecurity level and of the product trans-

actions are respectively:

B1 = B2 = 2.5, us1 = us2 = 0.91, Qi j = 100,∀i, j = 1,2.

The demand at the demand markets, for each example respectively, are expressed in Table 1.

Example d1 = Q11 +Q21 d2 = Q12 +Q22
Example1 20 80
Example2 40 190
Example3 60 200
Example4 80 380

TABLE 1. Demand at the demand markets

To solve the examples we used Matlab on a laptop with an HP 255.5 computer, compute
cores 2C+3G, 2.60 GHz, RAM: 8 GB. For the convergence of the method a tolerance ε = 10−4

was fixed; that is, the Euler method was considered to have converged if the absolute value of
the difference between the variables in two successive iterations differed by no more than ε .
Specifically, the method has been implemented with a constant step α = 0.1. Furthermore, we
initialized the algorithm by setting each variable equal to 0.

The optimal variables and the elapsed time are shown in the following Table 2.

Example Q∗11 Q∗12 Q∗21 Q∗22 s∗1 s∗2 Elapsed time
Example1 10.10 40.19 9.90 39.81 0.91 0.91 18.24 s
Example2 20.26 95.27 19.74 94.73 0.91 0.91 1.31 s
Example3 30.26 100.00 29.74 100 0.9092 0.9092 9.65 s
Example4 40.25 190.26 39.75 189.74 0.9099 0.9099 7.52 s

TABLE 2. Optimal variables and elapsed time

Therefore, following a percentage change of d1 and d2, as shown in Table 3, Q∗11,Q
∗
12,Q

∗
21

and Q∗22 in turn undergo a percentage variation as shown in Table 4.
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Example 1-2 Example 2-3 Example 3-4 Example 1-4
d1 1 0.50 0.33 3
d2 1.38 0.05 0.90 3.75

TABLE 3. Percentage variation of d1,d2 in %

Example 1-2 Example 2-3 Example 3-4 Example 1-4
Q∗11 1 0.49 0.33 2.99
Q∗12 1.37 0.05 0.90 3.73
Q∗21 0.99 0.51 0.34 3.01
Q∗12 1.38 0.06 0.90 3.77

TABLE 4. Percentage variation of Q∗11,Q
∗
12,Q

∗
21 and Q∗22 (%)

We also calculate the marginal profits with respect to the flows, namely, the marginal expected
transaction utilities, and the marginal expected cybersecurity investment utilities and reported
them in Table 5.

Example 1 Example 2 Example 3 Example 4
∂E(U1(Q,s))

∂Q11
−2538.7 −8258.0 −10599 −25228

∂E(U1(Q,s))
∂Q12

−2618.7 −8310.8 −10649 −25233

∂E(U2(Q,s))
∂Q21

−2606.5 −8408.1 −10876 −25536

∂E(U2(Q,s))
∂Q22

−2686.7 −8460.6 −10926 −25541

∂E(U1(Q,s))
∂ s1

41.0205 34.9708 35.6513 24.4532

∂E(U2(Q,s))
∂ s2

42.3637 36.4137 37.3172 25.9325

TABLE 5. Marginal profits

Table 5 clearly shows that the marginal expected transaction utilities are always negative and
decreasing, whereas marginal expected cybersecurity investment utilities always have positive
values.

In Figure 3, we report the changes of the optimal solutions Q∗i j in each situation, when d1 and
d2 vary.

6. CONCLUSIONS

In this paper, we proposed a cybersecurity investment model based on networks with nonlin-
ear budget constraints and fixed demands. We used as the average value of the security levels
for the entire supply chain network a weighted average which depends also on the flow of com-
modities. We obtained a GNE and the related variational equilibrium. Furthermore, we studied
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FIGURE 3. Sensitivity analysis

the associated projected dynamic system and characterized the solutions to the variational in-
equality with the stationary points of the PDS. Also, we presented a computational procedure,
based on the Euler method, to find the optimal distribution of commodities. The results in
this paper add to the growing literature of operations research for cybersecurity modeling and
analysis.
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