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ABSTRACT
We consider a congested traffic network where users behave
according to the Wardrop equilibrium principle, but the data
are uncertain and only known through their probability dis-
tributions. Within this framework, we propose a stochas-
tic equilibrium model to analyse the network performance,
which allows for nonlinear cost functions. The effectiveness
of our approach is shown through numerical experiments on
medium-size networks.
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1. Introduction

A systematic investigation of efficiency and vulnerability of transportation net-
works only started in the last 15 years and mainly from the topological point of
view. In this regards, an interesting approach is the one considered in [1,2] where
the authors proposed an efficiency measure for networks which has become very
popular among physicists and social scientists. Their measure, combined with
other topological measures, has been recently applied to assess the current and
future performance of Shanghai urban train transit network [3]. However, amore
detailed investigation of network vulnerability and efficiency must take into con-
sideration congestion effects, i.e. requires models which include the analysis of
flow distributions. This task has been carried out in the influential papers [4,5]
where the authors consider transportation networks where flows are regulated
by a central authority. On the other hand, the vulnerability analysis put forward
in [6,7] deals with the case where no central authority controls the traffic flows
and the users behave according to Wardrop equilibrium principle. A stochas-
tic approach to analyse the efficiency of congested networks with linear costs
and uncertain traffic demands has been proposed in [8], where the authors com-
bined the concepts introduced in [6,7] with the theory of stochastic variational
inequalities developed in the last decade [9–12].
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In this paper, we extend and improve the model considered in [8] to study the
performance and the vulnerability of congested networks where the relevant data
of the problem, regarding both costs and demands, are supposed to be uncertain
and known through their probability distributions. Our contribution is twofold:
from the theoretical point of view, we investigate the network performance and
vulnerability by allowing for the possibility that cost functions be nonlinear; the
network vulnerability is analysed by means of a measure of the importance of its
arcs. From the numerical point of view, we perform experiments onmedium-size
networkswith several origin-destination pairs instead of considering a simple test
problem with only one origin-destination pair as in [8].

The paper is structured as follows. In Section 2, we describe the traffic equi-
librium problem from the user viewpoint and define the measures of network
performance and importance of arcs that will be used throughout the paper. In
Section 3, we shortly recall the stochastic variational inequality theory and its
application to the traffic equilibrium problem with uncertain data. In Section 4,
we carry out the stochastic analysis of network performance and vulnerability in
the general case of nonlinear cost functions and prove an approximation theorem
which is useful for the numerical computation of the mean values of the con-
sidered measures. In Section 5, we first describe in detail the implementation
of the numerical approximation procedure for random traffic equilibria. Then,
we apply our methodology to three medium-size test networks and show the
impact of different probability densities of the random variables on the mean
values of the approximated solutions. We also illustrate a discretization strategy
that allows us to save CPU time and investigate the scalability of our approach.
The main results and possible further developments are shortly discussed in the
concluding section. We also provide an appendix in order to explain the numer-
ical approximation sketched in Section 3 and make the paper, to a certain extent,
self-consistent.

2. Efficiencymeasures for traffic networks under the user equilibrium
regime

For a comprehensive treatment of all the mathematical aspects of the traffic
equilibrium problem, we refer the interested reader to the excellent book of
Patriksson [13]. Here, we focus on the basic definitions and on the variational
inequality formulation of a network equilibrium flow. In what follows, we denote
with a�b the scalar product between two vectors and with A� the transpose of a
given matrix A. A traffic network consists of a triple G = (N,A,W), where N =
{N1, . . . ,Np} is the set of nodes,A = {A1, . . . ,An} represents the set of direct arcs
(also called links) connecting pairs of nodes andW = {w1, . . . ,wm} ⊆ N × N is
the set of the origin-destination (OD) pairs. The flow on the arc Ai is denoted
by fi, and we group all the arc flows in a vector f = (f1, . . . , fn). For the sake of
simplicity, we consider arcs with infinite capacities. A path (or route) is defined
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as a set of consecutive arcs and we assume that each OD pair wj is connected by
rj paths whose set is denoted by Pj, j = 1, . . . ,m. All the paths in the network are
grouped in a vector (R1, . . . ,Rk). We can describe the arc structure of the paths
by using the arc-path incidence matrix � = (δir), i = 1, . . . , n and r = 1, . . . , k,
with entries

δir =
{
1 if Ai ∈ Rr,
0 if Ai /∈ Rr.

(1)

To each path Rr it is associated a flow Fr. The path flows are grouped into a vector
(F1, . . . , Fk) which is called the network path-flow (or simply, the network flow
if it is clear that we refer to paths). The flow fi on the arc Ai is equal to the sum of
the path flows on the paths which contain Ai, so that f = �F. We now introduce
the unit cost of going through Ai as a real function ci(f ) ≥ 0 of the flows on the
network, so that c(f ) = (c1(f ), . . . , cn(f )) denotes the arc cost vector on the net-
work. The meaning of the cost is usually that of travel time and, in the simplest
case, the generic component ci only depends on fi. Analogously, one can define a
cost on the paths as C(F) = (C1(F), . . . ,Ck(F)). Usually, Cr(F) is just the sum of
the costs on the arcs which build that path:

Cr(F) =
n∑

i=1
δirci(f ),

or in compact form,

C(F) = ��c(�F). (2)

For each pair wj, there is a given traffic demand Dwj = Dj ≥ 0, so that D =
(D1, . . . ,Dm) is the demand vector of the network. Feasible path flows are
nonnegative and satisfy the demands, i.e. belong to the set

K = {F ∈ R
k : F ≥ 0, �F = D}, (3)

where � is the pair-path incidence matrix whose entries, for j = 1, . . . ,m and
r = 1, . . . , k are

ϕjr =
{
1 if the path Rr connects the pair wj,
0 elsewhere.

(4)

The notion of a user traffic equilibrium is given by the following definition.

Definition 2.1: A network flowH ∈ R
k is a user equilibrium if for each OD pair

wj, and for each pair of paths Rr,Rs which connect wj

Cr(H) > Cs(H) =⇒ Hr = 0,

that is, if travelling along the path Rr takes more time than travelling Rs, the flow
along Rr vanishes.
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Remark 2.1: Among the various paths which connect a given OD pair wj, some
will carry a positive flow and others zero flow. It follows from the previous
definition that, for a given OD pair, the travel cost is the same for all nonzero
flow paths, otherwise users would choose a path with a lower cost. Hence, as an
equivalent definition of Wardrop equilibrium we can write that for each OD pair
wj one has

Cr(H)

{
= λj if Hr > 0,
≥ λj if Hr = 0.

(5)

Hence, with the notation λj we denote the equilibrium cost shared by all the
used paths connecting wj. The (heaviest) notation λw will also be used when we
want to stress that we are considering a property depending on the OD pair w
only. The variational inequality formulation of the user equilibrium is given by
the following theorem (see, e.g. [13]).

Theorem 2.2: A network flow vector H ∈ K is a user equilibrium iff it satisfies the
variational inequality

C(H)�(F − H) ≥ 0 ∀ F ∈ K. (6)

Sometimes it is useful to decompose the scalar product in (6) according to the
various OD pairs: ∑

w∈W

∑
r∈Pw

Cr(H)(Fr − Hr) ≥ 0 ∀ F ∈ K.

The network efficiency measure put forward in [6] is as follows. For a given net-
work topology G and a given traffic demand D, the performance (or efficiency)
of G is measured by

EG = 1
m

∑
w∈W

Dw

λw
, (7)

where m is the total number of OD pairs in the network and λw is the equilib-
rium cost for the OD pair w, see (5). Hence, each term in the sum (7) is the ratio
between the traffic demand of a single OD pair and the corresponding equilib-
rium cost; the overall performance of the network is defined as the average of
these quantities. Now, let g be a component of the network (i.e. a node or a link).
The importance of g is measured through the relative variation of efficiency after
g is removed from the network:

Ig = EG − EG−g

EG . (8)

Note that (8) can benegative if the efficiency of the network increases after remov-
ing the component g. This counterintuitive situation can actually occur due to
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the so-called Braess’ paradox [14,15] which is analysed in detail in [8] in the
case where the traffic demand is random. We generalize the above definitions
of performance and importance by using the theory of stochastic variational
inequalities, which we briefly recall in the following section.

3. Methodology

Let (�,A, P) be a probability space, A,B : R
k → R

k two given mappings, and
b, c ∈ R

k two given vectors. Moreover, let R and S be two real-valued random
variables defined on�,D a random vector in R

m, andG ∈ R
m×k a given matrix.

For ω ∈ �, we define a random set M(ω) := {x ∈ R
k : Gx ≤ D(ω)}. Consider

the following stochastic variational inequality: for almost every ω ∈ �, find x̂ :=
x̂(ω) ∈ M(ω) such that

(S(ω)A(x̂) + B(x̂))�(z − x̂) ≥ (R(ω)c + b)�(z − x̂) ∀ z ∈ M(ω). (9)

To facilitate the foregoing discussion, we set T(ω, x) := S(ω)A(x) + B(x). We
assume thatA,B and S are such that themapT : � × R

k 
→ R
k is a Carathéodory

function. We also assume that T(ω, ·) is monotone for every ω ∈ �, i.e.

(T(ω, x) − T(ω, y))�(x − y) ≥ 0 ∀ x, y ∈ R
k, ∀ ω ∈ �,

and if equality only holds for x = y we say that T is strictly monotone. Since
we are only interested in solutions with finite first- and second-order moments,
our approach is to consider an integral variational inequality instead of the
parametric variational inequality (9).

Thus, for a fixed p ≥ 2, consider the Banach space Lp(�, P,Rk) of random
vectors V from � to R

k such that the expectation (p-moment) is given by
EP(‖V‖p) = ∫

�
‖V(ω)‖p dP(ω) < ∞. For subsequent developments, we need

the following growth condition:

‖T(ω, z)‖ ≤ α(ω) + β(ω)‖z‖p−1 ∀ z ∈ R
k, (10)

where α ∈ Lq(�, P) and β ∈ L∞(�, P). Due to the above growth condition, the
Nemytskii operator T̂ associated to T, acts from Lp(�, P,Rk) to Lq(�, P,Rk),
where p−1 + q−1 = 1, and is defined by T̂(V)(ω) := T(ω,V(ω)), for anyω ∈ �.
Assuming D ∈ Lpm(�) := Lp(�, P,Rm), we introduce the following nonempty,
closed and convex subset of Lpk(�) :

MP :=
{
V ∈ Lpk(�) : GV(ω) ≤ D(ω), P−a.s.

}
.

Let S(ω) ∈ L∞, 0 < s < S(ω) < s, and R(ω) ∈ Lq. Equipped with these nota-
tions, we consider the following Lp formulation of (9). Find Û ∈ MP such that
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for every V ∈ MP, we have

∫
�

(S(ω)A[Û(ω)] + B[Û(ω)])�(V(ω) − Û(ω)) dP(ω)

≥
∫

�

(b + R(ω) c)�(V(ω) − Û(ω)) dP(ω). (11)

To get rid of the abstract sample space �, we consider the joint distribu-
tion P of the random vector (R, S,D) and work with the special probability
space (Rd,B(Rd),P), where d:=2+m and B is the Borel σ -algebra on R

d. For
simplicity, we assume that R, S, and D are independent random vectors. We set

r = R(ω), s = S(ω), t = D(ω), y = (r, s, t).

For each y ∈ R
d, we define the set M(y) := {x ∈ R

k : Gx ≤ t}. Consider the
space Lp(Rd,P,Rk) and introduce the closed and convex set

MP :=
{
v ∈ Lp(Rd,P,Rk) : Gv(r, s, t) ≤ t, P−a.s.

}
.

Without any loss of generality, we assume that R ∈ Lq(�, P) and D ∈
Lp(�, P,Rm) are nonnegative. Moreover, we assume that the support (i.e. the set
of possible outcomes) of S ∈ L∞(�, P) is the interval [s, s[⊂ (0,∞). With these
ingredients, we consider the variational inequality problem of finding û ∈ MP

such that for every v ∈ MP we have

∫ ∞

0

∫ s

s

∫
R
m+
(s A[û(y)] + B[û(y)])�(v(y) − û(y)) dP(y)

≥
∫ ∞

0

∫ s

s

∫
R
m+
(b + rc)�(v(y) − û(y)) dP(y). (12)

Details on the numerical approximation of the solution û can be found in the
appendix, but to allow the reader to understand the subsequent developments
without stopping on technicalities, we recall here the main steps:

• the setMP can be approximated by a sequence {Mn
P
} of finite-dimensional sets;

• r and s can be approximated by the sequences {ρn} and {σn} of step functions,
with ρn → ρ in Lp and σn → σ in L∞, respectively, where ρ(r, s, t) = r and
σ(r, s, t) = s;

• when the solution of (12) is unique, we can compute a sequence of step
functions {ûn} which converges strongly to û, under suitable hypotheses (see
Theorem A.1), by solving for each n ∈ N the following discretized variational
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inequality: find ûn := ûn(y) ∈ Mn
P
such that, for every vn ∈ Mn

P
, we have

∫ ∞

0

∫ s

s

∫
R
m+
(σn(y)A[ûn(y)] + B[ûn(y)])�(vn(y) − ûn(y)) dP(y)

≥
∫ ∞

0

∫ s

s

∫
R
m+
(b + ρn(y) c)�(vn(y) − ûn(y)) dP(y). (13)

In the absence of strict monotonicity, the solution of (11) and (12) can be
not unique and the previous approximation procedure must be coupled with
a regularization scheme as follows. We choose a sequence {εn} of regulariza-
tion parameters and choose the regularization map to be the duality map J :
Lp(Rd,P,Rk) → Lq(Rd,P,Rk) (see (A3)). We assume that εn > 0 for every n ∈
N and that εn ↓ 0 as n → ∞.

We can then consider the following regularized stochastic variational inequal-
ity: for any n ∈ N, find wn = wεn

n (y) ∈ Mn
P
such that, for every vn ∈ Mn

P
, we

have∫ ∞

0

∫ s

s

∫
R
m+
(σn(y)A[wn(y)] + B[wn(y)] + εnJ(wn(y))

)�
(vn(y) − wn(y)) dP(y)

≥
∫ ∞

0

∫ s

s

∫
R
m+
(b + ρn(y) c)�(vn(y) − wn(y)) dP(y). (14)

As usual, the solutionwn will be referred to as the regularized solution.Weak and
strong convergence of wn to the minimal-norm solution of (12) can be proved
under suitable hypotheses (see, e.g. Theorems A.2 and A.4).

In traffic network equilibrium problems, the demand and the cost are often
modelled as random variables. In our model, we assume that the main source of
uncertainty comes from the demand, but to allow for possible different appli-
cations, we consider in this section the general case of random demand and
cost. The uncertainties or random fluctuations in the traffic demand, and in the
cost functions lead us to consider the stochastic variational inequality model of
a traffic equilibrium problem. Thus, let � be a sample space and P be a prob-
ability measure on �, and consider the following feasible set which takes into
consideration random fluctuations of the demand:

K(ω) = {F ∈ R
k : F ≥ 0, �F = D(ω)}, ω ∈ �.

Moreover, letC : � × R
k → R

k be the random cost function.We can thus intro-
duceω as a randomparameter in (6) and consider the problem of finding a vector
H(ω) ∈ K(ω) such that, P − a.s:

C(ω,H(ω))�(F − H(ω)) ≥ 0 ∀ F ∈ K(ω). (15)
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Definition 3.1: A random vectorH ∈ K(ω) is a randomWardrop equilibrium if
for P-almost every ω ∈ �, for each OD pair wj and for each pair of paths Rr,Rs
which connect wj, we get

Cr(ω, (H(ω)) > Cs(ω, (H(ω))) =⇒ Hr(ω) = 0.

Let D ∈ Lp(�, P,Rm) and consider then the set

KP = {F ∈ Lp(�, P,Rk) : Fr(ω) ≥ 0, P−a.s., ∀ r = 1, . . . , k,

�F(ω) = D(ω), P−a.s.},

which is convex, closed and bounded, hence weakly compact. Furthermore,
assume that the cost function C satisfies the growth condition:

‖C(ω, z)‖ ≤ α(ω) + β(ω)‖z‖p−1 ∀ z ∈ R
k, P−a.s.,

for some α ∈ Lq(�, P),β ∈ L∞(�, P), and p−1 + q−1 = 1. The Carathéodory
function C gives rise to a Nemytskii map Ĉ : Lp(�, P,Rk) → Lq(�, P,Rk)

defined through the usual position Ĉ(F)(ω) = C(ω, F((ω)), and, with abuse of a
notation, instead of Ĉ, the same symbolC is often used for both the Carathéodory
function and the Nemytskii map that it induces. We thus consider the following
integral variational inequality: find H ∈ KP such that∫

�

C(ω,H(ω))�(F − H(ω)) dP(ω) ≥ 0 ∀ F ∈ KP. (16)

A solution of (16) satisfies the random Wardrop conditions in the sense shown
by the following lemma (see [8] for the proof).

Lemma 3.2: If H ∈ KP is a solution of (16), then H is a random Wardrop
equilibrium.

As a consequence of the previous lemma, we get that there exists a vector
function λ ∈ Lp(�, P,Rm) such that

Cr(ω,H(ω)) = λj(ω) = λwj (17)

for all paths Rr which connect wj, with Hr(ω) > 0, P-almost surely. We assume
that the operator is the sum of a purely deterministic term and a random term
where randomness act as a modulation:

C(ω,H(ω)) = S(ω)A[H(ω)] + B[H(ω)] − b − R(ω)c,

where S ∈ L∞(�, P),R ∈ Lq(�), A,B : Lp(�, P,Rk) → Lq(�, P,Rk), b, c ∈ R
k.

The integral variational inequality now reads: find H ∈ KP such that, for all
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F ∈ KP, we have∫
�

( S(ω)(A[H(ω)])� + (B[H(ω)])�)(F − H(ω)) dP(ω)

≥
∫

�

( b� + R(ω)c�)(F − H(ω)) dP(ω). (18)

4. Definitions and approximate computation of themean values of the
efficiency indices of the network

Let us now assume that the traffic demand between the origins and destinations
be a random functionD : � → R

m, and Ĉ : Lp(�, P,Rk) → Lq(�, P,Rk) be the
cost operator. As usual, we denote by P the probability measure on �, while EP
is the expectation (or mean value) with respect to the probability P. We consider
the following definitions:

(1) The average cost at equilibrium is defined as

EP[λG(ω)] =
∫

�

λG(ω) dP(ω), (19)

where λG(ω) = (λG1 (ω), . . . , λGm(ω)) is defined as in (17).
(2) The average performance of the network is defined as

EP[EG(ω)] = 1
m

∑
w∈W

∫
�

Dw(ω)

λGw(ω)
dP(ω). (20)

(3) We define the average importance of an arc l in the network (see (8)) as

EP[I l(ω)] =
∫

�

EG(ω) − EG−l(ω)

EG(ω)
dP(ω). (21)

Remark 4.1: Let us note that the integral in (19) is different from zero under the
natural assumption that in each path Rr there is a link where the cost is bounded
from below by a positive number (uniformly in ω ∈ �). This hypothesis is ful-
filled in real networks because the cost is positive for positive flows, but also the
cost at zero flow (called the free flow time) is positive, because it represents the
travel time without congestion. We also assume that 0 < α ≤ Dj(ω) ≤ β holds
P-a.s.. The integrals in (20) and (21) are thus finite. We shall make these two
blanket assumptions throughout this section.

As explained in Section 3, the random variable t = D(ω) and the two ran-
dom variables r = R(ω), s = S(ω) generate a probability P in the image space
R
2+m of (r, s, t) from the probability P on the abstract sample space�. Hence, we

can express the earlier defined quantities in terms of the image space variables,
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thus obtaining functions which can be approximated through a discretization
procedure. The integration now runs over the image space variables, but to
keep notation simple we just write

∫
instead of

∫ ∞
0

∫ s
s
∫

R
m+
. The transformed

expressions read as follows:

EP[λG(r, s, t)] =
∫

λG(r, s, t) dP(r, s, t), (22)

EP[EG(r, s, t)] = 1
m

∑
w∈W

∫
tw

λGw(r, s, t)
dP(r, s, t), (23)

EP[(I l(r, s, t)] =
∫ EG(r, s, t) − EG−l(r, s, t)

EG(r, s, t)
dP(r, s, t). (24)

Let us recall that the solution H(r, s, t) of the stochastic variational inequality
which describes the network equilibrium can be approximated by a sequence
{Hn} of step functions such that Hn → H in Lp. In the theorem that follows, we
give converging approximations for the mean values defined previously.

Theorem 4.1: Let λG,nw (r, s, t) = CG
i [r, s, t,H

n(r, s, t)], where Hi(r, s, t) > 0, P-
a.s. for all paths Ri which connect w, and, for t = (t1, . . . , tm), let {Tn} be any
sequence of Lp functions such that Tn → t in Lp. Moreover, assume that there exists
a>0 such that CG

i (r, s, t, F) > a, for each i, andP-a.s. and that there existα,β ∈ R

such that 0 < α ≤ tw = Dw(ω) ≤ β, for every OD pair w ∈ W.We then have

(1) The sequence

{EP[λG,n(r, s, t)]}n =
{∫

λG,n(r, s, t) dP(r, s, t)
}
n

converges to EP[λG(r, s, t)].
(2) The sequence

{EP[EG,n(r, s, t)]}n =
{
1
m

∑
w∈W

∫
Tw,n

λ
G,n
w (r, s, t)

dP(r, s, t)

}
n

converges to EP[EG(r, s, t)].
(3) The sequence

{EP[I l,n(r, s, t)]}n =
{∫ EG,n(r, s, t) − EG−l,n(r, s, t)

EG,n(r, s, t)
dP(r, s, t)

}
n

converges to EP[I l(r, s, t)].



OPTIMIZATION 11

Proof: (1) Since Hn → H strongly in Lp, it follows that A[Hn] → A[H] and
B[Hn] → B[H], strongly in Lq = L

p
p−1 because of the continuity of the Nemyt-

skii operators A and B. Moreover, ρn → ρ strongly in Lq and σn → σ strongly
in L∞. As a consequence,

σnA[Hn] + B[Hn] − b − ρnc → σA[H] + B[H] − b − ρc

strongly in Lq, and also strongly in L1 because P is a probability measure. Hence,
for each i = 1, . . . , k, we get Cn

i [ρn, σn,H
n] → Ci[r, s,H] strongly in L1 and, by

the definitions of λ and λn, the thesis is proved.
(2) We prove convergence of each summand. We have

∫ ∣∣∣∣Tw,n

λ
G,n
w

− tw
λGw

∣∣∣∣ dP(r, s, t) ≤ 1
a2

∫
|Tw,nλ

G
w − twλG,nw | dP(r, s, t)

≤ 1
a2

∫
|Tw,n| |λG − λG,nw | dP(r, s, t)

+ 1
a2

∫
|λG,nw | |Tw,n − tw| dP(r, s, t)

≤ c1‖λGw − λG,nw ‖Lq + c2‖Tw,n − tw‖Lp −→ 0

as n → ∞.
(3) Finally,

|EP[I l(r, s, t)] − EP[I l,n(r, s, t)]| ≤
∫ ∣∣∣∣∣E

G−l,n

EG,n − EG−l

EG

∣∣∣∣∣ dP(r, s, t)

≤
∫ ∣∣∣∣∣E

G−l(EG,n − EG)

EGEG,n

∣∣∣∣∣ dP(r, s, t)

+
∫ ∣∣∣∣∣E

G(EG−l,n − EG−l)

EGEG,n

∣∣∣∣∣ dP(r, s, t)

≤ k1‖EG,n − EG‖L1 + k2‖EG−l,n − EG−l‖L1

and the last expression vanisheswhen n → ∞ because of the convergence proved
in the previous point. �

5. Numerical experiments

We now report some numerical results for the network efficiency indices defined
in Section 4. In what follows, the traffic demand is randomly distributed as D =
d + δe, where d and e are deterministic vectors in R

m and δ is a random variable
with support in the interval [a, b], distributed according to a probability measure
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P. Moreover, the link cost functions are supposed to be exactly known and of the
BPR form [16]:

ci(fi) = t0i

[
1 + 0.15

(
fi
ui

)β
]
, (25)

where t0i and ui represent the free flow travel time and the capacity of link
i, respectively, and β > 0 is a network parameter. Hence, the average cost at
equilibrium (19), the average performance of the network (20) and the average
importance of arcs (21) depend only on the random vector t = D(ω).

The numerical computation of random Wardrop equilibria has been imple-
mented in Matlab 2020a and tested on an Intel Core i7 system at 2.5 GHz with
16 GB of RAM running under macOS 10.15.

The rest of this section is organized as follows. Section 5.1 describes in detail
the implementation of the approximation procedure reported in the appendix.
Section 5.2 shows the convergence of the approximated mean values of the three
efficiencymeasures on three test networks. Section 5.3 shows that a non-uniform
discretization may improve the convergence rate of the approximated mean val-
ues. Finally, Section 5.4 reports the scalability of the approximation procedure
for medium-large test networks.

5.1. Implementation of the numerical approximation procedure

Wedescribe how the approximation procedure for the solution of stochastic vari-
ational inequalities, reported in the appendix, is applied to the case of our traffic
problems with random demand.

First, transform the link cost function c (see (25)) to the path cost function C
according to (2). Then, consider a partition of [a, b] into N subintervals accord-
ing to: a = δN0 < δN1 < · · · < δNN = b, and let INj = [δNj−1, δ

N
j [, j = 1, . . . ,N. We

recall that if the map C is strongly monotone, then the random Wardrop equi-
librium that solves the integral variational inequality (16) can be approximated
by a sequence of step functions {uN}, where each uN is the solution of the
discretized variational inequality (13) that can be split in N finite-dimensional
variational inequalities. In order to derive such variational inequalities for each
index j = 1, . . . ,N, we must first specify the corresponding feasible sets. For this,
for any j = 1, . . . ,N, we define the vector

q̄Nj = 1
P(INj )

∫ δNj

δNj−1

[d + δe] dP,

that represents the mean value of the traffic demand in the interval INj , and the
set

KN
j = {vj ∈ R

k : vj ≥ 0, �vj = q̄Nj }, (26)
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where thematrix� is defined in (4), that represents the set of path flows satisfying
the demand q̄Nj . We can now write the finite-dimensional variational inequality
for each j as: find uNj ∈ KN

j such that

[C(uNj )]�(vj − uNj ) ≥ 0 ∀ vj ∈ KN
j . (27)

The step function uN approximating the random Wardrop equilibrium is then
given by

uN =
N∑
j=1

uNj 1INj , (28)

where 1A is the characteristic function of a set A. Notice that the solution uNj
of (27) is the deterministic Wardrop equilibrium on the network where q̄Nj is
the traffic demand vector. In the following numerical experiments, we used the
algorithm designed in [17] to approximate the deterministicWardrop equilibria.

When the path cost operator is monotone but not strictly monotone, we need
to apply the regularization procedure described in the appendix. Remember that
the exponent p in Lp is fixed by the growth condition (10), that is, in our traffic
application, we have p = β + 1, where β is the degree of the polynomial cost of
BPR type (25).

In the case β = 1 (linear cost functions), we get p = 2, thus the duality map J
is the identity and it is sufficient to add to the cost term C in (27) the term, where
I is the k × k identity matrix. Hence, the approximating step function uN is of the
form (28), where uNj ∈ KN

j solves the finite-dimensional variational inequality

[C(uNj ) + εNuNj ]
�(vj − uNj ) ≥ 0 ∀ vj ∈ KN

j . (29)

We note that also the solution of (29) can be interpreted as the deterministic
Wardrop equilibrium on the network where the traffic demand is q̄Nj and the
path cost operator is modified according to the regularization term.

In the case β > 1 (nonlinear cost functions), we get p>2, thus the duality
map J is different from the identitymap (see (A3)) and the regularized variational
inequality (14) cannot be split into N finite-dimensional variational inequalities.
For the subsequent development it is useful to notice that for a step function
vN = ∑N

j=1 v
N
j 1INj , where v

N
j ∈ R

k, we have

‖vN‖Lp =
⎡
⎣ N∑

j=1

(√
(vNj1)2 + · · · + (vNjk)

2
)p

P(INj )

⎤
⎦
1/p

, (30)

and define f (vN1 , . . . , v
N
N) := ‖vN‖2−p

Lp . It is important to specify how the elements
vNj ∈ R

k are ordered in a vector (ṽNα ) ∈ R
k×N , but in our example of one random
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variable this can be done in the simple manner suggested by (30), specifically

ṽN = (ṽNα ) = (vN11, . . . , v
N
1k, v

N
21, . . . , v

N
2k, . . . , v

N
N1, . . . , v

N
Nk).

The feasible set to consider in this case is

KN = {ṽN ∈ R
k×N : vNj ∈ KN

j for any j = 1, . . . ,N}, (31)

where KN
j has been defined in (26). With these ingredients, the regularized vari-

ational inequality (14) in our application is equivalent to: find ũN ∈ KN such
that

N∑
j=1

[C(uNj ) + εNf (uN1 , . . . , u
N
N)‖uNj ‖p−2

2 uNj ]
�[vNj − uNj ] ≥ 0 ∀ṽN ∈ KN .

(32)
We note that the above variational inequality cannot be split into N variational
inequalities with dimension k because of the term f (uN1 , . . . , u

N
N) involving all the

sub-vectors of ũN . Moreover, the solution of (32) can be interpreted as the deter-
ministic Wardrop equilibrium in a network withN connected components, each
of which has the same topology as the original network and the traffic demand
vector of the jth component is equal to q̄Nj .

5.2. Convergence of approximatedmean values of the network efficiency
indices

In this section, we compute the approximatedmean values of the considered net-
work efficiency measures on three test networks. In Example 5.1 the path cost
operator C is strongly monotone, in Example 5.2 the operator C is monotone
and linear, while in Example 5.3 the operator C is monotone and nonlinear.

Example 5.1: We consider the grid network with 36 nodes and 60 arcs shown
in Figure 1. The arc cost functions are defined as in (25) with β = 4 for all the
links, while t0i = 1 and ui = 25 for any i = 1, . . . , 30, and t0i = 5 and ui = 50
for any i = 31, . . . , 60. We consider five OD pairs: (1,12), (7,18), (13,24), (19,30),
(25,36). We assume that the traffic demand is Dj = 150 + δ, for any j = 1, . . . , 5,
where δ is a random variable which varies in the interval [−50, 50] with either
uniform distribution or truncated normal distribution withmean 0 and standard
deviation 5. Let us mention that uniform and truncated normal distributions are
widely used in stochastic traffic equilibrium models (see e.g. [18,19]).

Notice that each OD pair is connected by six paths and any arc Ai, with
i = 31, . . . , 60, belongs to a unique path, thus the arc-path incidence matrix �

has full column rank and the path cost operator is strongly monotone (see [20,
Lemma 1]). The approximation procedure considers a uniform partition of the
interval [−50, 50] into N subintervals and solves problems as (27) for each N.
Moreover, the regularization procedure is not needed for this instance.
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Figure 1. Grid network of Example 5.1.

Table 1 shows the convergence of the mean values of the approximate perfor-
mance and cost at equilibrium for different values ofN when the random variable
δ varies in the interval [−50, 50] with uniform distribution. Table 2 shows the
convergence of the mean values of the approximate performance and cost at
equilibrium when δ varies in the interval [−50, 50] with truncated normal dis-
tribution with mean 0 and standard deviation 5. We note that the mean values of
the cost at equilibrium decrease by about 16% from uniform to truncated normal
distribution, but also the mean value of the network performance decreases by
about 19%.

Table 3 reports the ranking and the approximated average importance of
the ten most important arcs for two different probability distributions of the
random variable δ (uniform and truncated normal). The approximated values
of the average importance have been computed by uniformly partitioning the
interval [−50, 50] into 100 subintervals. In contrast to performance and cost at
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Table 1. The convergence of the approximated mean values of performance and cost at equilib-
rium in Example 5.1 for δ ∼ U(−50, 50).

Avg cost at equilibrium

N Avg performance (1,12) (7,18) (13,24) (19,30) (25,36)

10 0.3775 590.4129 599.9754 602.6772 599.8602 590.3997
20 0.3782 591.2331 600.8086 603.5153 600.6935 591.2210
50 0.3784 591.4631 601.0429 603.7496 600.9275 591.4499
100 0.3784 591.4958 601.0758 603.7833 600.9606 591.4832
200 0.3785 591.5039 601.0840 603.7916 600.9689 591.4915
300 0.3785 591.5055 601.0858 603.7931 600.9706 591.4928

Table 2. The convergence of the approximated mean values of performance and cost at equilib-
rium in Example 5.1 for δ ∼ N (0, 5) on [−50, 50].

Avg cost at equilibrium

N Avg performance (1,12) (7,18) (13,24) (19,30) (25,36)

10 0.3076 487.2105 495.0727 497.2941 494.9780 487.1997
20 0.3080 487.7426 495.6136 497.8375 495.5188 487.7318
50 0.3081 487.9447 495.8190 498.0438 495.7241 487.9338
100 0.3081 487.9758 495.8506 498.0756 495.7557 487.9650
200 0.3081 487.9833 495.8580 498.0834 495.7637 487.9733
300 0.3081 487.9849 495.8597 498.0850 495.7652 487.9746

Table 3. Average importance for the 10 most important arcs in Example 5.1 for δ ∼ U(−50, 50)
(on the left) and for δ ∼ N (0, 5) on [−50, 50] (on the right).

δ ∼ U(−50, 50) δ ∼ N (0, 5) on [−50, 50]

Rank Arc Avg importance Arc Avg importance

1 1 0.520024 1 0.522308
2 60 0.520013 60 0.522296
3 59 0.449418 59 0.451680
4 3 0.449417 3 0.451678
5 58 0.379124 58 0.381267
6 5 0.379122 5 0.381265
7 14 0.329059 14 0.330633
8 51 0.329057 51 0.330631
9 49 0.326574 49 0.328540
10 16 0.326572 16 0.328539

equilibrium, the average importance of the arcs and the corresponding ranking
do not seem to depend significantly on the probability distribution of δ.

Example 5.2: We consider the Sioux Falls network shown in Figure 2 consisting
of 24 nodes and 76 links. The link cost functions are of the form (25) with β = 1
for all the links, while the parameters t0i and ui are given in [21] (see Sioux Falls
2). We assume that the traffic demand for the 528 OD pairs isDj = dj + δ if dj ≥
1100, and Dj = dj otherwise, where the deterministic demand d is given in [21]
and δ is a random variable which varies in the interval [−1000, 1000] with either
uniform distribution or truncated normal distribution withmean 0 and standard
deviation 100.
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Figure 2. Sioux Falls network of Example 5.2.

Notice that in this case the arc-path incidence matrix � has not full column
rank and the path cost operator is monotone but not strongly monotone. Hence,
the discretization procedure, coupled with the regularization scheme with p = 2,
solves problems as (29). The interval [−1000, 1000] has been uniformly parti-
tioned intoN subintervals in the approximation procedure and the regularization
parameter εN has been chosen equal to 1/N2.

Table 4 shows the convergence of the mean values of the approximate perfor-
mance and cost at equilibrium of five selected OD pairs: (4,11), (10,13), (14,15),
(16,22) and (20,17), for different values ofN when the random variable δ varies in
the interval [−1000, 1000] with uniform distribution. Table 5 shows the conver-
gence of themean values of the approximate performance and cost at equilibrium
when δ varies in [−1000, 1000] with truncated normal distribution with mean 0
and standard deviation 100. We note that the probability distribution of δ has
a weaker impact both on average performance and average cost at equilibrium
than in Example 5.1.

Table 6 reports the ranking and the approximated average importance of the
ten most important arcs for two different probability distributions of the random
variable δ (uniform and truncated normal). The approximated values of the aver-
age importance have been computed by partitioning the interval [−1000, 1000]
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Table 4. The convergence of the approximated mean values of performance and cost at equilib-
rium in Example 5.2 for δ ∼ U(−1000, 1000).

Avg cost at equilibrium

N εN Avg performance (4,11) (10,13) (14,15) (16,22) (20,17)

10 1.0e−02 4.0790 118.6775 342.3687 148.4124 222.4286 182.1626
20 2.5e−03 4.4868 106.8025 332.8790 137.1493 212.8895 174.4598
50 4.0e−04 4.6307 103.4114 330.0372 133.9382 210.1524 172.3478
100 1.0e−04 4.6527 102.9465 329.6548 133.5142 209.7731 172.0823
200 2.5e−05 4.6582 102.8327 329.5449 133.4239 209.6765 171.9907

Table 5. The convergence of the approximated mean values of performance and cost at equilib-
rium in Example 5.2 for δ ∼ N (0, 100) on [−1000, 1000].

Avg cost at equilibrium

N εN Avg performance (4,11) (10,13) (14,15) (16,22) (20,17)

10 1.00e−02 4.1151 116.8386 343.6712 149.7758 223.2194 181.5447
20 2.50e−03 4.5248 104.6739 331.5677 137.3640 213.3099 174.0132
50 4.00e−04 4.6696 101.3736 328.4031 134.2994 210.5215 171.8286
100 1.00e−04 4.6917 100.9129 327.9967 133.8407 210.1110 171.5318
200 2.50e−05 4.6973 100.8069 327.9054 133.7464 210.0099 171.4756

Table 6. Average importance for the 10 most important arcs in Example 5.2 for δ ∼
U(−1000, 1000) (on the left) and for δ ∼ N (0, 100) on [−1000, 1000] (on the right).

δ ∼ U(−1000, 1000) δ ∼ N (0, 100) on [−1000, 1000]

Rank Arc Avg importance Arc Avg importance

1 37 0.06381 37 0.06421
2 26 0.06231 26 0.06383
3 25 0.06171 25 0.06281
4 43 0.06105 43 0.06133
5 56 0.06103 38 0.06102
6 60 0.06088 28 0.06066
7 28 0.06077 56 0.06057
8 38 0.06069 60 0.06037
9 50 0.05250 50 0.05242
10 55 0.05232 55 0.05224

into 50 subintervals. We note that the average importance of each arc slightly
depends on the probability distribution of δ, while the ranking of arcs is more
sensitive to it.

Example 5.3: We consider again the grid network shown in Figure 1, where the
arc cost functions are defined as in (25) with β = 4 for all the links, while t0i = 1
andui = 50 for any i = 1, . . . , 30, and t0i = 5 andui = 100 for any i = 31, . . . , 60.
We consider threeODpairs: (1,18), (13,30) and (19,36).We assume that the traffic
demand isDj = 150 + δ, for any j = 1, . . . , 3, where δ is a randomvariable which
varies in the interval [−100, 100] with either uniform distribution or truncated
normal distribution with mean 0 and standard deviation 10.

Since each OD pair is connected by 21 paths, the arc-path incidence matrix
� has not full column rank. Hence, the path cost operator is monotone but not
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Table 7. The convergence of the approximated mean values of performance and cost at equilib-
rium in Example 5.3 for δ ∼ U(−100, 100).

Avg cost at equilibrium

N εN Avg performance (1,18) (13,30) (19,36)

40 6.25e−04 6.0606 22.8241 26.6419 26.5954
50 4.00e−04 6.0599 22.8399 26.6358 26.5968
60 2.78e−04 6.0597 22.8478 26.6342 26.5980
70 2.04e−04 6.0596 22.8516 26.6341 26.5993
80 1.56e−04 6.0595 22.8544 26.6337 26.5998
90 1.23e−04 6.0594 22.8563 26.6335 26.6003
100 1.00e−04 6.0594 22.8575 26.6334 26.6006

Table 8. The convergence of the approximated mean values of performance and cost at equilib-
rium in Example 5.3 for δ ∼ N (0, 10) on [−100, 100].

Avg cost at equilibrium

N εN Avg performance (1,18) (13,30) (19,36)

40 6.25e−04 7.3299 19.1499 21.2067 21.1678
50 4.00e−04 7.3293 19.1672 21.2007 21.1693
60 2.78e−04 7.3290 19.1744 21.1986 21.1712
70 2.04e−04 7.3288 19.1779 21.1974 21.1723
80 1.56e−04 7.3287 19.1802 21.1968 21.1733
90 1.23e−04 7.3287 19.1819 21.1964 21.1740
100 1.00e−04 7.3286 19.1831 21.1961 21.1746

strongly monotone and the discretization procedure, along with the regulariza-
tion scheme with p = 5, solves problems as (32). The interval [−100, 100] has
been uniformly partitioned intoN subintervals and the regularization parameter
εN = 1/N2.

Tables 7 and 8 show the convergence of the mean values of the approximate
performance and cost at equilibrium for different values of N when δ varies in
the interval [−100, 100] with uniform distribution and with truncated normal
distribution with mean 0 and standard deviation 10, respectively.

5.3. The impact of a non-uniform discretization

In this section, we show the effect of uniform and non-uniform discretizations
on the convergence rate of the network efficiency indices.We consider the exper-
imental setting described in Example 5.1, i.e. the grid network shown in Figure 1
with five OD pairs whose traffic demands are Dj = 150 + δ for any i = 1, . . . , 5,
where δ is a randomvariable which varies in the interval [−50, 50] with truncated
normal distribution with mean 0 and standard deviation 5. Since the probability
density function of δ is concentrated around the mean value, it is reasonable to
choose a non-uniform discretization of the interval [−50, 50] in N subintervals
for the approximation procedure of the network efficiency indices. To this end,
we consider three non-uniform discretizations of [−50, 50] defined as follows:
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Figure 3. The impact of the discretization of the interval [−50, 50] on the convergence of the
average network performance (on the left) and of the average cost at equilibrium for OD pair
(1,12) (on the right).

(1) 50%of theN subintervals are uniformly distributed in the interval [−10, 10],
25% are uniformly distributed in [−50,−10] and 25% are uniformly dis-
tributed in [10, 50];

(2) 70%of theN subintervals are uniformly distributed in the interval [−10, 10],
15% are uniformly distributed in [−50,−10] and 15% are uniformly dis-
tributed in [10, 50];

(3) 90%of theN subintervals are uniformly distributed in the interval [−10, 10],
5% are uniformly distributed in [−50,−10] and 5% are uniformly dis-
tributed in [10, 50].

We run the approximation procedure with the uniform discretization and the
three non-uniform discretizations mentioned above to compare the convergence
rates of the efficiency indices. Figure 3 shows the approximated mean values of
the network performance (on the left) and the cost at equilibrium for OD pair
(1,12) (on the right) for each of the four considered discretizations.

The results show that non-uniformdiscretizations speedup the convergence of
both indices. In particular, Table 9 reports the relative errors of the approximated
average performance and cost at equilibrium for (1,12) found by non-uniform
discretizations by using a small number of subintervals (from 10 to 30) with
respect to the values found by the uniform discretization with 100 subintervals.
The results show that non-uniform discretizations (especially the last one) need
very few subintervals to get values close to those of the uniform discretization
with 100 subintervals.

5.4. Scalability of the proposed approach

In this section, we show how the proposed approximation method scales for
medium-large size networks. We generated a set of grid networks of dimension
6 × Q (see Figure 4), where Q varies from 6 (as in the network considered in
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Table 9. Relative error of the approximated average performance and cost at equilibrium for
(1,12) found by non-uniform discretizations of the interval [−50, 50] with respect to the values
found by the uniform discretization with 100 intervals.

Avg performance Avg cost at equilibrium for (1,12)

N 50% 70% 90% 50% 70% 90%

10 4.736e−04 2.265e−04 1.352e−04 4.936e−04 2.347e−04 1.392e−04
15 1.700e−04 1.101e−04 6.052e−05 1.757e−04 1.128e−04 6.094e−05
20 8.739e−05 6.700e−05 3.841e−05 8.951e−05 6.787e−05 3.779e−05
25 6.580e−05 3.983e−05 3.198e−05 6.752e−05 3.943e−05 3.106e−05
30 3.773e−05 2.905e−05 2.579e−05 3.837e−05 2.842e−05 2.458e−05

Figure 4. Grid networks considered in the scalability analysis.

Example 5.1) to 100. The arc cost functions are of the BPR form (25) with β = 4
for all the links, while t0i = 1 and ui = 25 for any horizontal arc, and t0i = 5 and
ui = 50 for any vertical arc. For any generated networkwe consider fiveODpairs:
(1, 2Q), (Q + 1, 3Q), (2Q + 1, 4Q), (3Q + 1, 5Q), (4Q + 1, 6Q). We assume that
the traffic demand is Dj = 150 + δ, for any j = 1, . . . , 5, where δ is a random
variable which varies in the interval [−50, 50] with uniform distribution.

Table 10 shows the CPU times needed for solving the generated instances.
In particular, columns 1–3 report the number of nodes, arcs and paths of each
instance, respectively; columns 4–6 report the CPU times (in seconds) of the
numerical approximation procedure, where the interval [−50, 50] is uniformly
divided into 50, 100 or 200 subintervals, respectively. The results show that the
approximation method finds the network efficiency indices with good accuracy
within satisfactory times and the CPU times increase linearly with respect to
the number of nodes of the network. Finally, we remark that the approximation
procedure has been implemented using a sequential algorithm (i.e. the determin-
istic variational inequalities are solved one at a time), hence the running times
could be significantly improved by implementing suitable parallel computing
techniques.
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Table 10. Scalability of the approximation procedure.

Instances CPU times (seconds)

Nodes Arcs Paths N = 50 N = 100 N = 200

36 60 30 2.22 4.38 7.81
60 104 50 4.03 7.71 15.16
120 214 100 9.15 18.66 37.28
180 324 150 15.61 32.04 65.78
240 434 200 22.58 45.58 91.66
300 544 250 31.92 64.56 124.27
360 654 300 37.85 77.87 154.35
420 764 350 53.53 109.69 220.57
480 874 400 57.11 114.61 242.87
540 984 450 61.28 123.25 253.20
600 1094 500 83.92 170.63 351.91

6. Conclusions and further research perspectives

In this paper, we developed the approach proposed in [8] to analyse the per-
formance and the vulnerability of traffic networks operating under the user
equilibrium regime and random perturbations of data.We extended the previous
analysis, which was restricted to linear cost functions, to the case of nonlinear
monotone functions, and also included a regularization procedure when strict
monotonicity does not hold in the path-flowvariables. From the application point
of view we considered here medium-size networks instead of the elementary,
though paradigmatic, Braess network investigated previously.We also performed
numerical experiments to show the impact of non-uniformdiscretization and got
the encouraging evidence that a carefully chosen discretization procedure allows
to reduce the number of intervals used without significantly deteriorating the
accuracy of the approximation. Moreover, by using the class of grid networks
we investigated the scalability of our approach and found that the CPU time
increases linearly with respect to the number of nodes.

Further numerical work could be done to include parallel computing tech-
niques in our procedure, thus increasing the number of independent random
variables in the model. Another interesting research avenue is the performance
and vulnerability analysis of stochastic traffic networks regulated by a central
authority, as in the case of train or metro networks.
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Appendix. Numerical approximation procedure

In this appendix, we provide some technical details about our approximation procedure
of (12). We start with a discretization of the space X := Lp(Rd,P,Rk). We then introduce
a sequence {πn} of partitions of the support

ϒ := [0,∞[×[s, s[×R
m
+

of the probability measure P induced by the random elements R, S, and D. For this, we set

πn = (πR
n ,π

S
n ,π

D
n ),

where

πR
n := (r0n, . . . , r

NR
n

n ), πS
n := (s0n, . . . , s

NS
n

n ), πDi
n := (t0n,i, . . . , t

NDi
n

n,i ),

0 = r0n < r1n < · · · rNR
n

n = n,

s = s0n < s1n < · · · sNS
n

n = s,

0 = t0n,i < t1n,i < · · · tN
Di
n

n,i = n (i = 1, . . . ,m),

|πR
n | := max{rjn − rj−1

n : j = 1, . . . ,NR
n } → 0 (n → ∞),

|πS
n | := max{skn − sk−1

n : k = 1, . . . ,NS
n} → 0 (n → ∞),

|πDi
n | := max{thin,i − thi−1

n,i : hi = 1, . . . ,NDi
n } → 0 (i = 1, . . . ,m; n → ∞).

These partitions give rise to an exhausting sequence {ϒn} of subsets of ϒ , where each ϒn is
given by the finite disjoint union of the intervals:

Injkh := [rj−1
n , rjn[×[sk−1

n , skn[×Inh ,

where we use the multi-index h = (h1, . . . , hm) and

Inh :=
m∏
i=1

[thi−1
n,i , thin,i[.

For each n ∈ N, we consider the space of the Rk-valued step functions on ϒn, extended by 0
outside of ϒn:

Xk
n :=

⎧⎨
⎩vn : vn(r, s, t) =

∑
j

∑
k

∑
h

vnjkh1Injkh(r, s, t), v
n
jkh ∈ R

k

⎫⎬
⎭ ,

where 1I denotes the {0, 1}-valued characteristic function of a subset I. To approximate
an arbitrary function w ∈ Lp(Rd,P,R), we employ the mean value truncation operator μn

0
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associated to the partition πn given by

μn
0w :=

NR
n∑

j=1

NS
n∑

k=1

∑
h

(μn
jkhw) 1Injkh , (A1)

where

μn
jkhw :=

⎧⎨
⎩

1
P(Ijkh)

∫
Injkh

w(y) dP(y), if P(Injkh) > 0,

0, otherwise.

Analogously, for a Lp vector function v = (v1, . . . , vk), we define

μn
0v := (μn

0v1, . . . ,μ
n
0vk),

for which one can prove that μn
0v converges to v in Lp(Rd,P,Rk).

To construct approximations for the set

MP = {v ∈ Lp(Rd,P,Rk) : Gv(r, s, t) ≤ t, P − a.s.},
we introduce the orthogonal projector q : (r, s, t) ∈ Rd 
→ t ∈ Rm and define, for each ele-
mentary cell Injkh, the quantities

qnjkh = (μn
jkhq) ∈ R

m and (μn
0q) =

∑
jkh

qnjkh1Injkh ∈ Xm
n .

This leads to the following sequence of polyhedra:

Mn
P
:= {v ∈ Xk

n : Gvnjkh ≤ qnjkh, ∀j, k, h}.
Since our objective is to approximate the random variables R and S, we introduce

ρn =
NR
n∑

j=1
rj−1
n 1[rj−1

n ,rjn[
∈ Xn and σn =

NS
n∑

k=1

sk−1
n 1[sk−1

n ,skn[
∈ Xn.

Note that

σn(r, s, t) → σ(r, s, t) = s in L∞(Rd,P), ρn(r, s, t) → ρ(r, s, t) = r in Lp(Rd,P).

Combining the above ingredients, for any n ∈ N we consider the variational inequality (13)
of Section 3, which we rewrite below for the reader convenience: find ûn := ûn(y) ∈ Mn

P
such

that, for every vn ∈ Mn
P
, we have∫ ∞

0

∫ s

s

∫
R
m+
(σn(y)A[ûn(y)] + B[ûn(y)])�(vn(y) − ûn(y)) dP(y)

≥
∫ ∞

0

∫ s

s

∫
R
m+
(b + ρn(y) c)�(vn(y) − ûn(y)) dP(y).

We also assume that the probability measures PR, PS and PDi have the probability densities
ϕR, ϕS and ϕDi , with i = 1, . . . ,m, respectively. Therefore, for i = 1, . . . ,m, we have

dPR(r) = ϕR(r) dr, dPS(s) = ϕS(s) ds, dPDi(ti) = ϕDi(ti) dti.

For actual implementation it is important to notice that (13) can be split in a finite number
of finite dimensional variational inequalities: for every n ∈ N, and for every j, k, h, find ûnjkh ∈
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Mn
jkh such that

[T̃n
k (ûnjkh)]

�[vnjkh − ûnjkh] ≥ [c̃nj ]
�[vnjkh − ûnjkh], for every vnjkh ∈ Mn

jkh, (A2)

where

Mn
jkh := {vnjkh ∈ R

k : Gvnjkh ≤ qnjkh},
T̃n
k := sk−1

n A + B

c̃nj := b + rj−1
n c.

We can then reconstruct the step-function solution as follows:

ûn =
∑
j

∑
k

∑
h

ûnjkh1Injkh ∈ Xk
n.

The following convergence result was proved in [11].

Theorem A.1: Assume that the growth condition (10) holds and T(ω, ·) is strongly monotone,
uniformly with respect to ω ∈ �, that is there exists τ > 0 such that

(T(ω, x) − T(ω, y))�(x − y) ≥ τ‖x − y‖2 ∀ x, y, a.e. ω ∈ �.

Then the sequence {ûn}, where ûn is the unique solution of (13), converges strongly in
Lp(Rd,P,Rk) to the unique solution û of (12).

In the absence of strict monotonicity, the solution of (11) and (12) is not unique. In this
case (which often occurs in our application) the previous approximation procedure must be
coupled with a regularization scheme as follows. We choose a sequence {εn} of regulariza-
tion parameters and choose the regularizationmap to be the duality map J : Lp(Rd,P,Rk) →
Lq(Rd,P,Rk).We assume that εn > 0 for everyn ∈ N and that εn ↓ 0 asn → ∞.We can then
consider, for any n ∈ N, the regularized stochastic variational inequality (14) of Section 3: find
wn = wεn

n (y) ∈ Mn
P
such that, for every vn ∈ Mn

P
, we have∫ ∞

0

∫ s

s

∫
R
m+

(
σn(y)A[wn(y)] + B[wn(y)] + εnJ(wn(y))

)�
(vn(y) − wn(y)) dP(y)

≥
∫ ∞

0

∫ s

s

∫
R
m+
(b + ρn(y)c)�(vn(y) − wn(y)) dP(y).

As usual, the solution wn will be referred to as the regularized solution. Weak and strong
convergence of {wn} to the minimal-norm solution of (12) can be proved under suitable
hypotheses (see below). We also recall (see e.g. [22]) that in Lp we have

J(u)(y) = ‖u‖2−p
Lp ‖u(y)‖p−2

2 u(y), (A3)

thus, in the case p = 2 the duality map is the Riesz isometry I : L2(Rd,P,Rk) →
L2(Rd,P,Rk).

The following results (see [12]) highlight some of the features of the regularized solutions.

Theorem A.2: The following statements hold.

(1) For every n ∈ N, the regularized stochastic variational inequality (14) has the unique
solution wn.

(2) Any weak limit of the sequence of regularized solutions {wn} is a solution of (12).
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(3) The sequence of regularized solutions {wn} is bounded provided that the following coercivity
condition holds: there exists a bounded sequence {δn}, with δn ∈ Mn

P
, such that∫ ∞

0
∫ s
s
∫

R
m+
[σn(y)A(un(y)) + B(un(y))]�(un(y) − δn(y)) dP(y)

‖un‖ → ∞

as ‖un‖ → ∞.

To obtain strong convergence, we need to use the concept of fast Mosco convergence [23],
as given by the following definition.

Definition A.3: LetX be a normed space, let {Kn} be a sequence of closed and convex subsets
ofX and letK ⊂ X be closed and convex. Let {εn} be a sequence of positive real numbers such
that εn → 0. The sequence {Kn} is said to converge to K in the fast Mosco sense, related to
εn, if

(1) For each x ∈ K, ∃{xn} ∈ Kn such that ε−1
n ‖xn − x‖ → 0;

(2) For {xm} ⊂ X, if {xm} weakly converges to x ∈ K, then ∃{zm} ∈ K such that ε−1
m (zm −

xm) weakly converges to 0.

Theorem A.4: Assume that Mn
P
converges to MP in the fast Mosco sense related to εn. More-

over, assume that ε−1
n ‖σn − σ‖ → 0 and ε−1

n ‖ρn − ρ‖ → 0 as n → ∞. Then the sequence
of regularized solutions {wn} converges strongly to the minimal-norm solution of the stochastic
variational inequality (12), provided that {wn} is bounded.

In the case p> 2, a thorough analysis of the implementation of (14) has been carried out
in the forthcoming paper [24].
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