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Featured Application: A theoretical model that allows analyzing the effects of spray pressure
on drop size distribution was devised. The model can be used to predict nozzle spray quality
parameters under ordinary working conditions.

Abstract: For spray applications, drop size is the most important feature as it affects all aspects of a
phytosanitary treatment: biological efficacy, environmental pollution, and operator safety. In turn,
drop size distribution depends on nozzle type, liquid properties, and working pressure. In this
research, three nozzles were studied under ordinary working conditions and the effect of pressure
on drop size distribution was assessed. The nozzles under test, all from Albuz (France), were an
orange hollow cone nozzle ATR 80 (European color code), an air induction flat spray nozzle AVI
11003, and an air induction hollow cone nozzle TVI 8002. The ATR 80 and the TVI 8002 nozzles
were tested at four pressure values: 0.3, 0.5, 1.0, and 1.5 MPa; the AVI 11003 nozzle was tested at 0.3
and 0.5 MPa. The drop size measurement technique was based on the liquid immersion method
by using a custom-made test bench; spray quality parameters were computed by means of suitable
functions written in R language. Results showed that an increase in working pressure caused an
increase in drop pulverization regardless of the type of nozzle, and drop pulverization was higher
for the turbulence nozzle than for the two air induction nozzles. Based on skewness and kurtosis
values, the theoretical gamma distribution was the most adapt to fit the experimental data. The
scale parameter showed a decreasing trend with the increase in the pressure, a clear index of higher
drop pulverization.

Keywords: droplet pulverization; liquid immersion method; image analysis; ImageJ; gamma distribution

1. Introduction

The application of Plant Protection Products (PPPs) is affected by many factors, among
which drop size is the most important as it affects biological efficacy [1], environmental
pollution [2,3], and operator safety [4–6]. In fact, the correct spray spectrum is capable of
ensuring the required dose on the target, minimizing drift and ground losses, and reducing
dermal and inhalation worker exposure. A research of Ferguson et al. (2016) [7] aimed at
assessing spray deposit and canopy penetration of nozzles with different spray qualities in
an oat canopy, showed that droplet number densities were inversely related to the droplet
size produced by the nozzles, yet coverage was increased more by application volume rate
than droplet size. Another study by Zwertvaegher et al. (2014) [8] showed that drop size
also affects spray retention, i.e., the overall capture of spray droplets by plants on initial or
subsequent impact, so influencing efficacy, economic losses, and environmental contam-
ination. The most known example of the environmental impact of pesticide application
related to drop size is spray drift: small droplets are more easily deflected out of the target
area by wind action [9]. The adoption of low-drift nozzles [10–12], sprayer calibration
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by means of test benches [13–15], and direct or indirect drift measurement [16–19], are
common practices to reduce spray drift.

To know the drop size distribution of nozzles under ordinary working conditions
is, therefore, of great interest to guide the most appropriate choice in relation to target
structure, liquid properties, and environmental conditions. Drop size measurement is
based on several principles, both intrusive and non-intrusive.

Intrusive measurement techniques include the image analysis of the drop stains on
water sensitive papers (WSPs) and the liquid immersion method. WSPs are semi-rigid
papers, with one side covered with a special yellow film that turns deep blue when hit by a
drop of water [20]. The analysis of stains by means of image processing software, under
some limitations, allows sizing the drop diameters [21–25]. In the liquid immersion method,
droplets are collected on Petri dishes containing lightly viscose liquids, such as Vaseline,
light mineral oil, and silicone oil, which cause drops to form spherical shapes. They are
immediately photographed or observed with a microscope, allowing drop counting and
size measurement [26,27].

Non-intrusive methods include high speed imaging (HSI) [28–30], laser diffraction
(LD) [31–33], and Phase Doppler Particle Analyzers (PDPA) [34–36]. HSI and PDPA
methods also allow measuring of drop velocity.

Each measurement technique gives results that are significantly different, depending
on measuring protocol, settings, and type of measuring equipment [35,37,38], so much so
that the international standard ISO 25358:2018 [39] recommends basing nozzle classification
on comparison with reference nozzles.

In this study, a low-cost custom-made system that allows measuring of the drop size
of agricultural spray nozzles under ordinary working conditions was used. The design
of the equipment was mainly based on the ISO 5682-1 standard [40], which exploits the
liquid immersion method. Three nozzles were tested, all from Albuz (France): an orange
hollow cone nozzle ATR 80 (European color code), an air induction flat spray nozzle AVI
11003, and an air induction hollow cone nozzle TVI 8002. The ATR 80 and the TVI 8002
nozzles were tested at four pressure values: 0.3, 0.5, 1.0, and 1.5 MPa; the AVI 11003
nozzle was tested at 0.3 and 0.5 MPa. For each test condition, the usual spray parameters
were computed: the arithmetic mean diameter, the Sauter mean diameter, the volumetric
diameters Dv10, Dv50, and Dv90, and the Relative Span Factor (RSF). Finally, the theoretical
drop size distribution that best fitted the experimental data was devised and the effects of
spray pressure were analyzed.

2. Materials and Methods
2.1. The Test Bench for Drop Size Measurement

The test bench used for spray drop size measurement is fully descripted in [41,42],
here summarized for completeness. The design was based on the ISO 5682-1 standard [40],
exploiting the liquid immersion method to measure droplet size [26,27]. The hydraulic
circuit was designed to reproduce the circuit installed on commercial sprayers. A two-
diaphragm pump (AR 30, Annovi Reverberi, Reggio Emilia, Italy), driven at 56 rad/s
(540 rpm) by a 2.2 kW AC motor with a gearbox, was used to provide the required pressure
at the nozzle under test. The fluid in excess was recirculated into the 70 L main tank by
means of a manual pressure regulator. Pressure near the nozzle and liquid flow rate were
measured in real time by a pressure transmitter (Series 22 S, Keller Italy Srl, Milano, Italy)
and a flow rate meter (SF800-6, Swissflow BV, The Netherlands). The two sensor signals
were acquired by two Advantech Ethernet modules (ADAM6024 and ADAM6060). An
ASCII UDP based protocol was used for communication with host PC, where a specifically
designed user interface was running.

The nozzle under test was anchored to a mobile platform, capable of translating along
two 3 m long rails while spraying above the target plane at a distance of 0.5 m. The motion
was handled by a motor control unit (MDC1460 model, Roboteq Inc., Scottsdale, AZ, USA),
capable of controlling position, speed, and acceleration profiles.
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The software user interface, running on a Windows 10 PC, was designed to allow the
management of all the aspects of the spray trials, including data save in a text Comma
Separated Value (CSV) file. A schematic view of the whole system is reported in Figure 1.

Figure 1. Scheme of the test bench for drop size measurement.

Sprayed droplets were captured by Petri dishes containing silicone oil as immersion
liquid positioned on the target plane and then photographed in situ by a high resolu-
tion (4000 × 6000 pixel) Digital Single-Lens Reflex (DSLR) camera (Nikon D5500, Nikon
Corporation, Tokyo, Japan), equipped with a macro lens (Nikon Micro Nikkor AF-S
60 mm f/2.8 G ED, Nikon Corporation, Tokyo, Japan) and an electronic flash (Neewer
48 Macro LED Ring Flash, Shenzen, Guangdong, China). Images, saved as high-quality
JPEG files, were then analyzed by means of an image processing software, capable of
detecting and measuring the size of all the drops.

2.2. The Experimental Trials

Spraying tests were carried out using three Albuz (France) commercial nozzles: an
orange hollow cone nozzle ATR 80 (European color code), an air induction flat spray nozzle
AVI 11003, and an air induction hollow cone nozzle TVI 8002. The ATR 80 and the TVI
8002 nozzles were tested at four pressure values: 0.3, 0.5, 1.0, and 1.5 MPa; the AVI 11003
nozzle was tested only at 0.3 and 0.5 MPa to respect its working range.

All tests were carried out at the same velocity of the mobile platform: 1.5 m/s. Spray
droplets were captured by means of three Petri dishes, with diameter of 55 mm, aligned
with the movement direction of the nozzle, spaced 195 mm apart. Each Petri dish con-
tained 5 mL of silicone oil (AR200, Sigma-Aldrich, Milan, Italy) with dynamic viscosity of
200 mPa·s and volumetric mass of 1050 kg/m3. A water solution containing 2 g/L of the
coloring agent red Ponceau (Novema Srl, Turin, Italy) was sprayed as test liquid; the red
color of the solution facilitated the subsequent image segmentation process to identify the
droplets with respect to the background (Figure 2). In these first trials, the surface tension
of liquid was not measured.
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Figure 2. Example of image with droplets.

Photos were taken without moving the Petri dishes and immediately after each
spraying test. To this end, the camera was applied to a metallic frame, which in turn was
manually hung to the rails in fixed positions with respect to the Petri dishes (Figure 3).
The camera was remotely controlled via the qDslrDashboard Version 3.5.3 application
(http://dslrdashboard.info, accessed on 26 April 2018) running on an Android tablet. Three
repetitions were carried out for each test condition (nozzle type × spraying pressure), for a
total of 90 photos.

Figure 3. The camera applied to the rails above a Petri dish.

In addition, some photos of a 10 × 10 mm grid pattern engraved on a glass disc,
placed in correspondence with the three Petri dish positions, as far from the camera focal
plane as the drops, were used to calibrate the measurement system and to calculate the
calibration factor C f expressed in µm/pixel.

http://dslrdashboard.info


Appl. Sci. 2021, 11, 9283 5 of 17

2.3. Spray Parameters Calculation

The images with the droplets were processed with the ImageJ analysis software, ver.
1.52a [43]. They were first converted in 8-bit gray scale images and then segmented to
detect the droplets with respect to the background. After segmentation, the watershed
binary filter was applied to separate some touching particles. Particles up to 4 contiguous
pixels were considered as noise and then ignored.

Among the numerous characteristic parameters provided by the software for the i-th
identified particle, only the area A′i (pixel) was considered. Assuming that the droplet
was a sphere and that it was not deformed by the silicone oil, its diameter D′i (pixel) was
calculated according to Equation (1)

D′i =

√
4A′i
π

(1)

The distance in pixel provided by Equation (1) was then converted in real world
distance by applying the measured calibration factor C f (µm/pixel)

Di(µm) = C f (µm/pixel) · D′i(pixel) (2)

Knowing the diameter of all the N droplets detected in each repetition, the following
mean diameters were calculated:

Arithmetic mean diameter

D10 =
∑N

i=1 Di

N
(3)

Surface mean diameter

D20 =

√
∑N

i=1 D2
i

N
(4)

Volume mean diameter

D30 =
3

√
∑N

i=1 D3
i

N
(5)

Sauter mean diameter (SMD)

D32 =
∑N

i=1 D3
i

∑N
i=1 D2

i
(6)

Other diameters, usually adopted to classify agricultural nozzles in terms of spray
quality, were computed with reference to the volume of liquid carried by the droplets.
Given a droplet with diameter Di (µm), its volume Vi (µm3) was calculated according to
Equation (7)

Vi =
π

6
D3

i (7)

Sorting the droplets in increasing order by their diameter, the cumulative volume
CVDh (%) corresponding to the diameter Dh was calculated according to Equation (8)

CVDh =
∑h

i=1 Vi

VT
× 100 (8)

VT being the total volume carried by all the N droplets. Knowing the cumulative volume,
the following volumetric diameters were computed:

Dv10: the diameter such that CVDv10 = 10%;
Dv50: the diameter such that CVDv50 = 50%, also known as Volumetric Median

Diameter (VMD);
Dv90: the diameter such that CVDv90 = 90%.
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In general, the volumetric diameter Dvα is the diameter such that the α% of the total
volume is carried by droplets with diameter lower than Dvα. These diameters, especially
the VMD, are used to classify the nozzles in terms of drop pulverization. An index of
uniformity of the spray is provided by the Relative Span Factor (RSF, %)

RSF =
Dv90 − Dv10

Dv50
× 100 (9)

All diameters were calculated for each repetition, considering the three Petri dishes
together in such a way to have a significant drop sample (at least 2000 droplets), and mean
values were reported. The calculations were carried out by means of custom functions
written in R language, ver. 3.6.3 [44].

2.4. Drop Size Distribution Modelling

Drop size can be described by means of a suitable probability density function (PDF)
of the number or the volume of the drops in function of the diameter. In a spray consisting
of NT drops, denoting the PDF of the drop number with f0(D), the quantity NT f0(D)dD
represents the number of drops whose diameter is between D and (D + dD). Several PDFs
have been proposed in the spray literature to describe the drop size distribution, among
which the normal, the log-normal, the Rosin-Rammler, the Weibull, and the gamma [45–47].
In this study, the experimental data were analyzed, and the theoretical distribution, from
those mentioned above, that best described them was devised, adjusting its parameters
according to the operating conditions. The theoretical study of the atomization process as a
function of nozzle characteristics, liquid properties, and test conditions is outside the scope
of the research.

Based on skewness and kurtosis values of measured drop diameters, the theoretical dis-
tribution most suitable for fitting experimental data was the gamma distribution. The prob-
ability density function of the gamma distribution has the general form of Equation (10)

f (x) =
1

βαΓ(α)
xα−1e−x/β (10)

defined for x ≥ 0, α > 0, and β > 0; α is the shape parameter, β is the scale parameter, and
Γ(z) is the gamma function, defined as

Γ(z) =
∫ ∞

0
tz−1e−tdt (11)

Both shape and scale parameters affect the probability density and the cumulative
distribution function (CDF) as shown in Figures 4 and 5.

In this study, the shape and scale parameters were estimated for each nozzle and
working pressure by using the R package fitdistrplus ver 1.1-5 [48] and applying the Max-
imum Likelihood Estimation (MLE) method. In addition, their confidence interval was
computed based on the bootstrap method. Goodness of fit was assessed by means of the
Anderson–Darling (AD) test.
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Figure 4. Effect of the scale and shape parameter on the gamma probability density function.

Figure 5. Effect of the scale and shape parameter on the gamma cumulative distribution function.

3. Results
3.1. General Results

Table 1 summarizes the nozzle flow rate values measured during the tests as affected
by spraying pressure.
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Table 1. Nozzle flow rate values in function of spraying pressure.

Nozzle Type Measured
Pressure, MPa

Measured
Flow Rate, L/min

Reference
Pressure, MPa

Reference
Flow Rate, L/min

ATR 80
orange

0.311 0.78 0.3
0.517 0.98 0.5 0.99
0.988 1.37 1.0 1.39
1.445 1.64 1.5 1.69

TVI 8002

0.306 0.80 0.3
0.518 1.05 0.5 1.03
1.031 1.47 1.0 1.46
1.484 1.76 1.5 1.79

AVI 11003
0.296 1.18 0.3 1.20
0.500 1.53 0.5 1.55

According to the nozzle manufacturer information, the relative deviations with respect
to the nominal flow rates are always lower than the relative tolerance of ±5% admitted by
the ISO 10625 reference [49].

The average resolution value of the image analysis system was 188.3 pixel/mm,
ranging from 185.7 to 191.2 pixel/mm. The corresponding average calibration factor C f was
5.31 µm/pixel, ranging from 5.23 to 5.39 µm/pixel. On average, to neglect particles lower
than 5 contiguous pixels means neglecting drops with a diameter lower than 12 µm, and
this can be considered an acceptable approximation with the used measurement system.

3.2. Drop Size Parameters

Table 2 summarizes the characteristic diameters of the sprays as affected by nozzle
type and working pressure.

Table 2. Average characteristic diameters of the sprays (diameters in µm, RSF in percent).

Pressure, MPa D10 D20 D30 D32 Dv10 Dv50 Dv90 RSF

ATR 80 orange

0.3 81 97 112 150 94 174 263 97
0.5 70 83 95 126 79 147 236 107
1.0 57 69 82 115 70 138 227 114
1.5 54 67 79 112 66 136 220 113

TVI 8002

0.3 195 293 391 695 440 861 1345 105
0.5 166 229 295 489 286 624 995 114
1.0 148 194 240 368 212 457 736 115
1.5 130 173 216 334 195 415 662 113

AVI 11003

0.3 147 201 254 407 239 506 807 112
0.5 101 145 193 343 194 449 731 120

Results were consistent with expectations: in fact, drop pulverization was higher for
the turbulence nozzle than for the two air induction nozzles. As an example, at the pressure
of 0.5 MPa, VMD was 147 µm for the ATR 80 orange, 624 µm for the TVI 8002, and 449 µm
for the AVI 11003 nozzle. In addition, all diameters were affected by pressure: an increase
in the spraying pressure caused an increase in the drop pulverization, regardless of the
type of nozzle. When the pressure increased from 0.3 to 1.5 MPa, VMD decreased by 21.8%
for the ATR 80 (from 174 to 136 µm) and by 51.8% for the TVI 8002 (from 861 to 415 µm).
The reduction in VMD for AVI 11003 was 11.3% (from 506 to 449 µm) when the pressure
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increased from 0.3 to 0.5 MPa. Relative Span Factor values generally increased when the
pressure increased for all nozzles, a sign of a lower uniformity in drop size distribution.

The effects of spray pressure on cumulative volumetric curves are shown in Figure 6
in function of drop diameters and nozzle types. The graph was obtained by considering
all the drops of all repetitions. The effect of pressure on the hollow cone ATR 80 noz-
zle was more evident when the pressure increased from 0.3 to 0.5 MPa (VMD decreased
from 174 to 147 µm), whereas above 0.5 MPa the cumulative volumetric curves were
almost superimposed (VMD decreasing from 147 to 136 µm only). Instead, the cumula-
tive volumetric curves were clearly distinct for the air induction nozzles, as well as the
volumetric diameters.

Figure 6. Cumulative volumetric droplet size distribution as affected by nozzle type and working
pressure (data of all repetitions).

3.3. Drop Size Distribution Modelling

Table 3 reports the shape and scale parameters together with the 95% confidence
interval for their median values and the results of the Anderson–Darling goodness of fit
test in function of spray pressure and for each nozzle type.

Table 3. Shape and scale parameters of gamma distribution.

Pressure,
MPa

Shape Parameter and
95% Confidence Interval

of the Median

Scale Parameter and
95% Confidence Interval

of the Median
AD Test

α 2.5% 97.5% β 2.5% 97.5% p-value

ATR 80 orange

0.3 2.3319 2.3101 2.3609 34.3492 33.9444 34.7725 0.2060
0.5 2.5450 2.5248 2.5720 27.4295 27.1150 27.7032 0.2043
1.0 2.4367 2.4205 2.4486 23.1820 23.0522 23.3008 0.0006
1.5 2.4511 2.4394 2.4626 22.1915 22.0771 22.3346 0.0006

TVI 8002

0.3 1.1703 1.1344 1.2068 166.3876 160.1959 173.6039 0.0506
0.5 1.4243 1.3825 1.4638 116.5647 112.6313 120.4293 0.2788
1.0 1.5321 1.4890 1.5704 96.5119 93.5747 99.5777 0.4038
1.5 1.5101 1.4829 1.5482 86.3048 84.2055 87.8912 0.2655

AVI 11003

0.3 1.3864 1.3524 1.4267 104.8953 101.6836 108.2892 0.2418
0.5 1.4305 1.4029 1.4475 70.3632 69.0494 71.9837 0.0114
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For each nozzle type, the shape parameter was almost constant in function of the
spray pressure. The 95% confidence interval for the median ranged from 2.310 to 2.572 for
the ATR 80 orange nozzle, from 1.134 to 1.570 for the TVI 8002, and from 1.352 to 1.447
for the AVI 11003. On the contrary, the scale parameter was clearly decreasing when the
pressure increased: from 34.349 (0.3 MPa) to 22.077 (1.5 MPa) for the ATR 80 orange nozzle,
from 166.388 (0.3 MPa) to 86.305 (1.5 MPa) for the TVI 8002, and from 104.895 (0.3 MPa) to
70.363 (0.5 MPa) for the AVI 11003. The decreasing trend of the scale parameter with the
increase in the pressure is an index of the higher drop pulverization (more drops of a lower
diameter, Figures 4 and 5).

The comparison between the three nozzles in terms of probability density functions
and cumulative distribution functions when varying the spray pressure is shown in
Figures 7–9. According to the results of the AD test (Table 3), the best fitting was ob-
tained for the nozzle TVI 8002 at every pressure, for the ATR 80 up to 0.5 MPa, and for the
AVI 11003 at 0.3 MPa. As a general result, the gamma distribution tends to underestimate
the number of drops smaller than 100 µm.

Figure 7. Comparison between measured and theoretical distribution for the ATR 80 orange nozzle. (a) Histograms and
theoretical densities; (b) Empirical and theoretical cumulative distribution functions.
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Figure 8. Comparison between measured and theoretical distribution for the TVI 8002 nozzle. (a) Histograms and theoretical
densities; (b) Empirical and theoretical cumulative distribution functions.
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Figure 9. Comparison between measured and theoretical distribution for the AVI 11003 nozzle. (a) Histograms and
theoretical densities; (b) Empirical and theoretical cumulative distribution functions.

4. Discussion
4.1. Drop Diameters

Measuring drop diameters in a spray is a very complex task that has been addressed in
different ways and exploiting different techniques and physical principles. Unfortunately,
each measurement technique may produce different results. As an example, a study
aimed at comparing four different methods for measuring droplet size distributions (image
analysis, custom-made stroboscopic imaging, PDPA, and laser diffraction), reported that
the larger the droplets, the bigger the differences are between the results [38]. Another
study [35] focused on 17 bibliographic references about the results obtained by testing
reference nozzles, pre-screened for laboratory purposes, reported a wide range of absolute
measurements: when median values of Dv50 increased from about 140 to about 395 µm,
the interquartile range was on average 24% of the median values (from 20 to 33%). Despite
this wide range of results, nozzle classification in terms of spray quality was identical
in 73% of the cases, and this quite uniform classification confirms the usefulness of the
reference nozzles.

The results obtained in this study by applying the liquid immersion method al-
most always agree with manufacturer information (Albuz catalog 2016) about spray
quality based on VMD. In fact, ATR 80 orange nozzles are classified as Very Fine
(VMD < 159 µm) at pressures greater or equal than 0.5 MPa (the measured VMD was
147 µm at 0.5 MPa and lower for higher pressures); TVI 8002 nozzles are classified as Ultra
Coarse at 0.5–0.7 MPa (VMD > 553 µm, measured VMD = 624 µm at 0.5 MPa), Extremely
Coarse at 1.0 MPa (484 µm < VMD < 553 µm, measured VMD = 457 µm) and Very Coarse
at 1.5 MPa (386 µm < VMD < 484 µm, measured VMD = 415 µm); finally, AVI 11003 noz-
zles are classified as Extremely Coarse at 0.3 MPa (measured VMD = 506 µm) and Coarse
at 0.5 MPa (326 µm < VMD < 386 µm, measured VMD = 449 µm). These results will be
further investigated in future researches by also measuring the drop size distributions
produced by the reference nozzles used to define the boundary regions, as recommended
by the standard ISO 25358:2018 [39].

No other measurement techniques were used to compare the results. However,
Nuyttens et al. (2007) [35], using a PDPA system, reported for the ATR 80 orange nozzle
at 0.3 MPa diameter values on average 15% greater than the actual ones (VMD = 191 µm
vs. 174 µm), whereas Grella et al. (2017) [17] reported, for the same nozzle at 1.0 MPa,
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a VMD value of 95 µm measured with a laser diffraction system compared with 138 µm
obtained in this research. In both cases, despite the discrepancies in absolute results, the
nozzle classification remained unchanged. In the same paper [17], a VMD of 606 µm was
reported for the TVI 8002 nozzle at 1.0 MPa (vs. 457 µm obtained in this research), outside
of the bounds of classification of the nozzle as Extremely Coarse. These results confirm the
need to use the reference nozzles for classification purposes.

4.2. Drop Size Distribution

Modeling drop size distribution has been addressed via both empirical and analytical
approaches. According to the first approach, suitable curves are fitted to measured data for
a wide range of nozzles and operating conditions. This has led to the proposal of various
theoretical distribution functions, such as Weibull, log-normal, Nukiyama–Tanasawa,
gamma, able to fit experimental data more or less well and describe, as accurately as
possible, the spray drop characteristics in terms of size and velocity [45,47,50].

The empirical approach was also adopted in this study: experimental data on drop
diameters were analyzed and the theoretical gamma distribution was devised as the method
that best described them. The scale and shape parameters were computed by means of the
Maximum Likelihood Estimation method for each operating condition (nozzle type and
spraying pressure). According to Villermaux et al. [51], the atomization process involves
the fragmentation of ligaments into droplets, and the size distribution that reasonably fits
the data is precisely the gamma probability distribution function.

The major drawback of this approach is the difficulty or the impossibility of covering
conditions different from those observed. The analytical approach tries to predict the
drop size distribution from an atomizer based on statistical/stochastic models such as the
maximum entropy method [52,53] or general laws of conservation (mass, energy, momen-
tum) [54,55]. In [54,55] the authors propose a closed-form equation capable of predicting
the D32 diameter in function of liquid properties and droplet velocities, especially useful
for the study of injectors used in combustion processes. Other formulae for estimating the
D32 diameter in combustion studies are discussed in [56], including both empirical and
physical principles.

Theoretical atomization models for agricultural spray nozzles used for pesticide
applications are rare in the literature. Many studies are aimed at the measurement of
drop diameters, at the tracing of the cumulative volumetric curves (Figure 6), and at the
calculation of VMD, used for nozzle classification in terms of spray quality. In [57] the
authors analyzed the influence of the spray parameters (spray angle, pressure, equivalent
orifice diameter of nozzles) on drop size and velocity in the flow field. Suitable models
were devised and successfully validated. Another work [58], using dimensional analysis,
proposed a model to predict the volume median diameter of flat fan sprays in terms of
common end-user parameters, namely nozzle size and operating pressure. However, in all
cases, the models contain constants that must be estimated from experimental data.

5. Conclusions and Future Developments

The experimental activity allowed assessing the effect of spray pressure on drop
pulverization in three Albuz nozzle types (ATR 80 orange, AVI 11003, TVI 8002). The
research, aimed at describing the experimental data and not the theoretical atomization
process, as is common practice in the studies of nozzles for pesticide applications, produced
results, especially in terms of volume median diameter, consistent with the expectations,
with the nozzle manufacturer information, and with similar data found in the literature.
Drop pulverization was higher for the turbulence nozzle than for the two air induction
nozzles at every pressure, and an increase in the spraying pressure caused an increase in
the drop pulverization, regardless of the type of nozzle. Thus, even if further experiments
are necessary, the results validated the functionality of the proposed measurement system.

As regards the drop size distribution, the number probability distribution function that
best described the experimental data was the gamma, whose scale and shape parameters
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were adjusted in the function of nozzle type and spray pressure. The shape parameter
was almost constant for each nozzle, while the scale parameter showed a clear decreasing
trend with the increase in pressure, an index of higher drop pulverization. This aspect will
be further investigated in future research considering other nozzle types, including the
reference nozzles, and other pressures, in such a way as to extend the present results to
a model able to reasonably estimate the drop size distribution and the most significant
diameters in function of the operating conditions.
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Abbreviations

Symbols
A′ i particle area (pixel)
D′ i particle diameter (pixel)
Di particle diameter (µm)
C f calibration factor (µm/pixel)
D10 arithmetic mean diameter (µm)
D20 surface mean diameter (µm)
D30 volume mean diameter (µm)
D32 Sauter mean diameter (µm)
Vi droplet volume (µm3)
CVDh cumulative volume corresponding to the diameter Dh (%)
Dv10 the diameter such that CVDv10 = 10%
Dv50 the diameter such that CVDv50 = 50%
Dv90 the diameter such that CVDv90 = 90%
f0(D) probability distribution function of the drop number
Γ(z) gamma function
α > 0 shape parameter
β > 0 scale parameter
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Acronyms
AD Anderson–Darling test
CDF Cumulative Distribution Function
CSV Comma Separated Value
DSLR Digital Single-Lens Reflex
HSI High Speed Imaging
LD Laser Diffraction
MLE Maximum Likelihood Estimation method
PDF Probability Density Function
PDPA Phase Doppler Particle Analyzer
PPP Plant Protection Product
RSF Relative Span Factor
SMD Sauter Mean Diameter
VMD Volumetric Median Diameter
WSP Water Sensitive Paper
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