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A B S T R A C T   

Thin layers of MoOx have been deposited by thermal evaporation followed by post-deposition annealing. The 
density of states distributions of the MoOx films were extracted deconvoluting the absorption spectra, measured 
by a photothermal deflection spectroscopy setup, including the small polaron contribution. Results revealed a 
sub-band defect distribution centered 1.1 eV below the conduction band; the amplitude of this distribution was 
found to increase with post-deposition annealing temperature and film thickness.   

1. Introduction 

Silicon-based heterojunction technology (HJT) is one of the most 
promising candidates for high performance and low-cost solar cells with 
world-record efficiency close to 27% in interdigitated back contact ar
chitecture [1]. The HJT exploits the excellent passivation properties of 
hydrogenated amorphous silicon (a-Si:H), although the use of doped a- 
Si:H has drawbacks such as parasitic absorption and low-thermal budget 
to cope with back-end metallization. 

Replacing the p-type a-Si:H with a doping-free transition metal oxide 
(TMO) such as molybdenum oxide (MoOx), is a viable alternative 
allowing conversion efficiency up to 23.5% [2] rivaling the traditional 
contact despite its lower level of optimization. Moreover, the hole 
selectivity capability of the MoOx is exploited for other classes of elec
tronic devices such as organic light-emitting diodes [3], organic 
photovoltaic cells [4], thin-film solar cells [5]. Thus, the optimization of 
this hole-selective layer has been investigated over the past years, 
highlighting the role of the defect density of states (DOS) [6–8]. None
theless, information on the DOS, linked to oxygen vacancies [9], lacks 
for TMOs. 

We aim to fill this gap by providing insights into the MoOx defect 

density needed for accurate simulation and optimization of HJT solar 
cells with this TMO as a hole-selective contact. Therefore, chemical, 
morphological and optical characterizations were conducted on thin 
films of MoOx. Finally, the DOS of MoOx samples were extracted from 
the deconvolution of the absorption spectra [10,11], including the ab
sorption related to excitation of electrons from small polaron states filled 
by electron transfer from the oxygen vacancies. A systematic study of the 
effects of both layers thickness and post-deposition annealing (PDA) 
treatments on the extracted DOS is furthermore presented. 

2. Experimental 

Thin films of molybdenum oxide were deposited by thermal evapo
ration on quartz substrates with desired thicknesses of 20, 50 and 100 
nm. After deposition, the layers were annealed at different temperatures 
(TPDA from 100 to 250 ◦C) for 30 min in ambient air. The desired 
thickness of the samples was confirmed by ex-situ ellipsometry and 
Rutherford backscattering spectrometry (RBS) which did not show, as 
displayed in Fig. 1, any significant variation between as-deposited and 
annealed samples. 

The structure and morphology of the samples were investigated 
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through Raman spectroscopy and Scanning Electron Microscopy, 
respectively. The measurements show that all the samples were amor
phous, independently on the PDA and the thickness, with no significant 
surface morphology variation. The chemical composition was studied by 
X-ray photoelectron spectroscopy (XPS). The optical properties were 
analyzed through ellipsometry and photothermal deflection spectros
copy (PDS). 

3. Results 

The Mo 3d binding region is presented in Fig. 2. From XPS mea
surement, the presence of a doublet structure with a spin–orbit separa
tion of 3.0 eV is highlighted. The Mo 3d level is deconvoluted with two 
doublet components, a dominating one associated with the presence of 
Mo6+ [12] and a weak doublet shifted 2 eV to lower energy indicating 
the presence of Mo5+ (linked to the oxygen vacancies) [12]. 

The absorption spectra, presented in Fig. 3, decay exponentially from 
lower wavelength to a valley at about 490 nm and then rises to a peak 
around 900 nm. There are no significant differences between the curves 
in the wavelength range of 350–400 nm; while the peak observed in the 
Vis-NIR range tendentially grows as the annealing temperature rises. 
This increase in the absorption is referred to MoOx reduction in the 
annealed samples. Interestingly, for the 20 nm thick MoOx films 
(Fig. 3a), the spectra of the samples annealed at 200 ◦C and 250 ◦C have 
a comparable magnitude, whilst, for the higher thicknesses, such 
behavior is less evident. Furthermore, for the 50 nm thick samples 
(Fig. 3b), the spectrum of the sample annealed at 100 ◦C is similar to the 
as-deposited one; for the 100 nm case (Fig. 3c), such behavior is more 
evident since the as-deposited sample presents a spectrum higher than 
the sample annealed at 100 ◦C. 

4. Model and discussion 

The density of states of the MoOx was described as the superposition 
of different distributions, assuming parabolic distribution for the 
valence and conduction bands (NVB, NCB), exponential distribution for 
the valence and conduction band tails (NVBT, NCBT), and Gaussian dis
tribution for the defects states in the bandgap (ND) [11]: 
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with E energy (the zero-energy reference was considered at the edge of 
the conduction band), E0V and E0C valence and conduction band tails, EG 
energy gap; for Gaussian defect distribution: AD area, ED mean position 
and W the FWHM. The densities of states of the valence (NV) and con
duction (NC) band were 7.92 × 1017 cm− 3 eV− 3/2 and 6.78 × 1018 cm–3 

eV− 3/2, respectively [11]. 
The peaks in the absorption spectra are attributed to the small 

polaron [13,14], a quasi-particle describing the interaction of a trapped 
electron with the surrounding atoms [14,15]. Furthermore, small 
polaron is a typical feature of TMOs [13,16–19]. 

Therefore, to achieve the best fit of the absorption spectra, we 
introduce an additive term in the set of equations (1) to consider the 
polaron contribution. The polaron absorption, αp function of the photon 
energy (hν), is modeled with a weakly asymmetric Gaussian peak 
[11,13,18]: 

αp(hν) = Ap

hν exp

(

−

(
hν − 2Ep

)2

8EpEop

)

(2)  

with Ap polaron pre-exponential factor, Ep polaron binding energy, and 

Fig. 1. RBS spectrum of the 20 nm MoOx samples as-deposited and after 
annealing at 250 ◦C for 30 min. 

Fig. 2. XPS spectrum of the Mo 3d binding region.  
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Eop longitudinal-optical phonon energy. The values of the DOS distri
butions were extracted through the absorption spectra α fitting through 
the one-electron approximation and including the polaron absorption αp 
[11]: 

α(hν) = C
hν

∫

Ni(E)F(E)Nf (E + hν)[1 − F(E + hν) ]dE + αp(hν) (3)  

where Ni and Nf are the initial and final states, F is the Fermi-Dirac 
function. The constant C was calibrated at 4 eV resulting 4.13 ×

10–31 cm5 eV2 [11]. The obtained DOS lays about 1.1 eV below the 
conduction band edge with an amplitude rising with both TPDA and film 
thickness (Fig. 4a). Interestingly, the defect distribution amplitude rises 
as the thickness is reduced and for increasing TPDA. A similar trend was 
found for the AP (Fig. 4b), whilst the other parameters of the small 
polaron remained fixed. 

The resulting coefficients are summarized in Table 1 and are limited 
for brevity to the 100 nm thick samples. 

Fig. 3. Absorption spectrum of a) 20 nm, b) 50 nm, c) 100 nm thick MoOx films as deposited and after different PDA.  

Fig. 4. Defects area (a) and polaron pre-exponential factor (b) against annealing temperature for different MoOx films thicknesses.  

Table 1 
Defect distributions and small polaron coefficients at different TPDA for the 100 nm thick samples.  

TPDA 

(◦C) 
Thickness 
(nm) 

E0V 

(meV) 
E0C 

(meV) 
AD 

(ev− 1 cm− 3) 
ED 

(eV) 
W 
(eV) 

AP 

(ev− 1 cm− 3) 
EP 

(eV) 
Eop 

(meV) 

As. dep. 100 100 141 3.41 × 1014  1.14  0.05 2.46 × 103  0.80  52.5 
100 100 117 191 3.61 × 1014  1.16  0.05 2.10 × 103  0.78  43.9 
130 100 115 269 5.07 × 1014  1.18  0.05 4.39 × 103  0.81  52.2 
150 100 118 243 8.89 × 1014  1.18  0.05 7.67 × 103  0.80  52.5 
200 100 128 182 3.21 × 1015  1.15  0.05 2.01 × 104  0.79  55.8 
250 100 83 101 5.07 × 1015  1.11  0.05 2.82 × 104  0.77  54.6  
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5. Conclusion 

Thin films of MoOx were synthesized by thermal evaporation, sub
sequentely annealed, and then characterized to provide an insight into 
the DOS. The deconvolution of the absorption spectra resulted in a 
defect DOS distribution centered 1.1 eV below the conduction band edge 
with its amplitude increasing against both TPDA and film thickness. The 
small polaron parameters, extrapolated from the optical measurements, 
revealed that both binding and longitudinal-optical phonon energy are 
independent of the thickness and the TPDA, whilst the pre-exponential 
factor exhibits a similar trend to the amplitude of the defect distribu
tion. The DOS characterization here employed for MoOx films has shown 
to be a valuable method to determine the DOS and could be easily 
extended to other TMOs currently exploited as carrier selective contacts 
in solar cells. 
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