
Vol:.(1234567890)

Algorithmica (2020) 82:3390–3412
https://doi.org/10.1007/s00453-020-00732-4

1 3

Efficient Online String Matching Based on Characters
Distance Text Sampling

Simone Faro1 · Francesco Pio Marino1 · Arianna Pavone2

Received: 23 April 2018 / Accepted: 3 June 2020 / Published online: 20 June 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Searching for all occurrences of a pattern in a text is a fundamental problem in
computer science with applications in many other fields, like natural language pro-
cessing, information retrieval and computational biology. Sampled string matching
is an efficient approach recently introduced in order to overcome the prohibitive
space requirements of an index construction, on the one hand, and drastically reduce
searching time for the online solutions, on the other hand. In this paper we present
a new algorithm for the sampled string matching problem, based on a characters
distance sampling approach. The main idea is to sample the distances between con-
secutive occurrences of a given pivot character and then to search online the sam-
pled data for any occurrence of the sampled pattern, before verifying the original
text. From a theoretical point of view we prove that, under suitable conditions, our
solution can achieve both linear worst-case time complexity and optimal average-
time complexity. From a practical point of view it turns out that our solution shows
a sub-linear behaviour in practice and speeds up online searching by a factor of up
to 9, using limited additional space whose amount goes from 11 to 2.8% of the text
size, with a gain up to 50% if compared with previous solutions.

Keywords String matching · Text processing · Efficient searching · Text indexing

 * Simone Faro
 faro@dmi.unict.it

 Arianna Pavone
 apavone@unime.it

1 Dipartimento di Matematica e Informatica, Università di Catania, viale A.Doria n.6,
95125 Catania, Italy

2 Dipartimento di Scienze Cognitive, Università di Messina, via Concezione n.6, 98122 Messina,
Italy

http://orcid.org/0000-0001-5937-5796
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-020-00732-4&domain=pdf

3391

1 3

Algorithmica (2020) 82:3390–3412

1 Introduction

String matching is a fundamental problem in computer science and in the wide
domain of text processing. It consists in finding all the occurrences of a given pat-
tern x, of length m, in a large text y, of length n, where both sequences are composed
by characters drawn from an alphabet Σ of size � . Although data are memorized
in different ways, textual data remains the main form to store information. This is
particularly evident in literature and in linguistics where data are in the form of huge
corpus and dictionaries. But this applies as well to computer science where large
amount of data are stored in linear files. And this is also the case, for instance, in
molecular biology where biological molecules are often approximated as sequences
of nucleotides or amino acids. Thus the need for more and more faster solutions to
text searching problems.

Applications require two kinds of solutions: online and offline string matching.
Solutions based on the first approach assume that the text is not preprocessed and
thus they need to scan the text online, when searching. Their worst case time com-
plexity is Θ(n) , and was achieved for the first time by the well known Knuth-Morris-
Pratt (KMP) algorithm [16], while the optimal average time complexity of the prob-
lem is Θ(n log� m∕m) [22], achieved for example by the Backward-Dawg-Matching
(BDM) algorithm [7]. Many string matching algorithms have been also developed
to obtain sub-linear performance in practice [8]. Among them the Boyer-Moore-
Horspool algorithm [3, 13] deserves a special mention, since it has been particularly
successful and has inspired much work.

Memory requirements of this class of algorithms are very low and generally lim-
ited to a precomputed table of size O(m�) or O(�2) [8]. However their performance
may stay poor in many practical cases, especially when used for processing huge
input texts and short patterns.1

Solutions based on the second approach tries to drastically speed up searching
by preprocessing the text and building a data structure that allows searching in time
proportional to the length of the pattern. For this reason such kind of problem is
known as indexed searching. Among the most efficient solutions to such problem
we mention those based on suffix trees [2], which find all occurrences in O(m + occ)

-worst case time, those based on suffix arrays [18], which solve the problem in
O(m + log n + occ) [18], where occ is the number of occurrences of x in y, and those
based on the FM-index [10] (Full-text index in Minute space), which is a com-
pressed full-text substring index based on the Burrows-Wheeler transform allowing
compression of the input text while still permitting fast substring queries. However,
despite their optimal time performance,2 space requirements of full-index data struc-
tures, as suffix-trees and suffix-arrays, are from 4 to 20 times the size of the text,

1 Search speed of an online string matching algorithm may depend on the length of the pattern. Typical
search speed of a fast solution, on a modern laptop computer, goes from 1 GB/s (in the case of short pat-
terns) to 5 GB/s (in the case of very long patterns) [5].
2 Search speed of a fast offline solution do not depend on the length of the text and is typically under 1
ms per query.

3392 Algorithmica (2020) 82:3390–3412

1 3

while the size of a compressed index, as the FM-Index, is typically less than the size
of the text, but its construction may require almost the same space as that required
by a full-index. Such space requirement is too large for many practical applications.

A different solution to the problem is to compress the input text and search
online directly the compressed data in order to speed-up the searching process using
reduced extra space. Such problem, known in literature as compressed string match-
ing, has been widely investigated in the last few years. Although efficient solutions
exist for searching on standard compression schemes, as Ziv-Lempel [20] and Huff-
man [4], the best practical behaviour are achieved by ad-hoc schemes designed for
allowing fast searching [11, 15, 17, 19, 21]. These latter solutions use less than 70%
of text size extra space (achieving a compression rate over 30%) and are twice as
fast in searching as standard online string matching algorithms. A drawback of such
solutions is that most of them still require significant implementation efforts and an
high time for each reported occurrence.

A more suitable solution to the problem is sampled string matching, recently
introduced by Claude et al. [6], which consists in the construction of a succint sam-
pled version of the text and in the application of any online string matching algo-
rithm directly on the sampled sequence. The drawback of this approach is that any
occurrence reported in the sampled-text may require to be verified in the original
text. However a sampled-text approach may have a lot of good features: it may be
easy to implement, may require little extra space and may allow fast searching.
Additionally it may allow fast updates of the data structure. Specifically the solu-
tion of Claude et al. is based on an alphabet reduction. Their algorithm has an extra
space requirement which is only 14% of text size and is up to 5 times faster than
standard online string matching on English text. Thus it turns out to be one of the
most effective and flexible solution for this kind of searching problems.

1.1 Our Contribution and Organization of the Paper

In this paper we present a new approach to the sampled string matching problem
based on alphabet reduction and characters distance sampling. Instead of sampling
characters of the text belonging to a restricted alphabet, we divide the text in blocks
of size k and sample positions of such characters inside the blocks. The sampled
data is then used to filter candidate occurrences of the pattern, before verifying the
whole match in the original text.

Our new approach is simple to implement and guarantees approximately the
same performance as the solution proposed by Claude et al. in practice. However it
is faster in the case of short patterns and, more interesting, may require only 5% of
additional extra space.

We prove also that if the underlying algorithm used for searching the sampled
text for the sampled pattern, achieves optimal worst-case and average-case time
complexities, then our new solution attains the same optimal complexities, at least
for patterns with a length of (at most) few hundreds of characters.

The paper is organized as follows. Firstly, we present in Sect. 2 the efficient sam-
pling solution proposed by Claude et al. Then, in Sect. 3, we introduce our new

3393

1 3

Algorithmica (2020) 82:3390–3412

sampling approach, discuss its good features and present its practical behaviour.
In Sect. 4 we compare the two approaches and present some experimental results.
Finally, in Sect. 5 we draw our conclusions and discuss some further improvements.

2 Sampled String Matching

The task of the sampled string matching problem is to find all occurrences of a
given pattern x, of length m, in a given text y, of length n, assuming that a fast and
succint preprocessing of the text is allowed in order to build a data-structure, which
is used to speed-up the searching phase. For its features we call such data structure a
partial-index of the text.

In order to be of any practical and theoretical interest a partial-index of the text
should:

(1) be succint: since it must be maintained together with the original text, it should
require few additional spaces to be constructed;

(2) be fast to build: it should be constructed using few computational resources, also
in terms of time. This should allow the data structure to be easily built online
when a set of queries is required;

(3) allow fast search: it should drastically increase the searching time of the underly-
ing string matching algorithm. This is one of the main features required by this
kind of solutions;

(4) allow fast update: it should be possible to easily and quickly update the data
structure if modifications have been applied on the original text. A desirable
update procedure should be at least as fast as the modification procedure on the
original text.

In this section we briefly describe the efficient text-sampling approach proposed by
Claude et al. [6]. To the best of our knowledge it is the most effective and flexible
solution known in literature for such a problem. We will refer to this solution as the
Occurrence-Text-Sampling algorithm (Ots).

2.1 The Occurrence Text Sampling Algorithm

Let y be the input text, of length n, and let x be the input pattern, of length m, both
over an alphabet Σ of size � . The main idea of their sampling approach is to select a
subset of the alphabet, Σ̂ ⊂ Σ (the sampled alphabet), and then to construct a partial-
index as the subsequence of the text (the sampled text) ŷ , of length n̂ , containing all
(and only) the characters of the sampled alphabet Σ̂ . More formally ŷ[i] ∈ Σ̂ , for all
1 ≤ i ≤ n̂.

During the searching phase of the algorithm a sampled version of the input pat-
tern, x̂ , of length m̂ , is constructed and searched in the sampled text. Since ŷ con-
tains partial information, for each candidate position i returned by the search proce-
dure on the sampled text, the algorithm has to verify the corresponding occurrence

3394 Algorithmica (2020) 82:3390–3412

1 3

of x in the original text. For this reason a table � is maintained in order to map, at
regular intervals, positions of the sampled text to their corresponding positions in
the original text. The position mapping � has size ⌊n̂∕q⌋ , where q is the interval fac-
tor, and is such that �[i] = j if character y[j] corresponds to character ŷ[q × i] . The
value of �[0] is set to 0. In their paper, on the basis of an accurate experimentation,
the authors suggest to use values of q in the set {8, 16, 32}

Then, if the candidate occurrence position j is stored in the mapping table, i.e
if �[i] = j for some 1 ≤ i ≤ ⌊n̂∕q⌋ , the algorithm directly checks the corresponding
position in y for the whole occurrence of x. Otherwise, if the sampled pattern is
found in a position r of ŷ , which is not mapped in � , the algorithm has to check the
substring of the original text which goes from position �[r∕q] + (r mod q) − � + 1
to position �[r∕q + 1] − (q − (r mod q)) − � + 1 , where � is the first position in x
such that x[𝛼] ∈ Σ̂.

Notice that, if the input pattern does not contain characters of the sampled alpha-
bet, i.e. id m̄ = 0 , the algorithm merely reduces to search for x in the original text y.

Example 1 Suppose y = “abaacabdaacabcc” is a text of length 15 over the alphabet
Σ = {a,b,c,d} . Let Σ̂ = {b,c,d} be the sampled alphabet, by omitting character “a”.
Thus the sampled text is ŷ = “bcbdcbcc”. If we map every q = 2 positions in the
sampled text, the position mapping � is ⟨5, 8, 12, 14⟩ . To search for the pattern x =
“acab” the algorithm constructs the sampled pattern x̂ = “cb” and search for it in the
sampled text, finding two occurrences at position 2 and 5, respectively. We note that
ŷ[2] is mapped and thus it suffices to verify for an occurrence starting at position 4,
finding a match. However position ŷ[5] is not mapped, thus we have to search in the
substring y[�(2) + 3 − 1⋯ �(3)] , finding no matches.

The above algorithm works well with most of the known pattern matching algo-
rithms. However, since the sampled patterns tend to be short, the authors imple-
mented the search phase using the Horspool algorithm, which has been found to be
fast in such setting.

The real challenge in their algorithm is how to choose the best alphabet subset to
sample. Based on some analytical results, supported by an experimental evaluation,
they showed that it suffices in practice to sample the least frequent characters up to
some limit.3 Under this assumption their algorithm has an extra space requirement
which is only 14% of text size and is up to 5 times faster than standard online string
matching on English texts.

For the sake of completeness it has to be noticed that in [6] the authors also con-
sider indexing the sampled text. Specifically they build a suffix array indexing the
sampled positions of the text, and get a sampled suffix array. This approach is simi-
lar to the sparse suffix array [14] as both index a subset of the suffixes, but the differ-
ent sampling properties induce rather different search algorithms and performance

3 According to their theoretical evaluation and their experimental results it turns out that, when search-
ing on an English text, the best performance are obtained when the least 13 characters are removed from
the original alphabet.

3395

1 3

Algorithmica (2020) 82:3390–3412

characteristics. More recently Grabowsky and Raniszewski [12] proposed a more
convenient indexing suffix sampling approach, with only a minimum pattern length
as a requirement.

3 A New Algorithm Based on Characters Distance Sampling

In this section we present a new efficient approach to the sampled string matching
problem, introducing a new method for the construction of the partial-index, which
turns out to require limited additional space, still maintaining the same performance
of the algorithm recently introduced by Claude et al. [6]. In the next subsections we
illustrate in details our idea and describe the algorithms for the construction of the
sampled text and for the searching phase.

3.1 Characters Distance Sampling

As above, let y be the input text, of length n, and let x be the input pattern, of length
m, both over the alphabet Σ of length � . We assume that all strings can be treated as
vectors starting at position 1. Thus we refer to x[i] as the i-th character of the string
x, for 1 ≤ i ≤ m , where m is the length of x.

We first define a sampled alphabet Σ̄ ⊂ Σ , which we call the set of pivot charac-
ters. The set Σ̄ could be very small, and in many practical cases could be reduced to
a single character. If |Σ̄| = 1 , the unique character of Σ̄ is called the pivot character.
For simplicity we will assume in what follows that |Σ̄| = 1 , which can be trivially
generalized to the case where |Σ̄| > 1.

The text sampling approach used in our solution is based on the following defini-
tion of bounded position sampling.

Definition 1 (The Bounded Position Sampling) Let y a text of length n, let
C ⊆ Σ be the set of pivot characters and let nc be the number of occurrences
of any character of C in the input text y. First we define the position function,
� ∶ {1,… , nc} → {1,… , n} , where �(i) is the position of the i-th occurrence of any
character of C in y. Formally we have

where, in (iii), we assume that �(0) = 0 and �(nc + 1) = n + 1.
Assume now that k is a given threshold constant. We define the k-bounded posi-

tion function, �k ∶ {1,… , nc} → {0,… , k − 1} , where �k(i) is the position (modulus
k) of the i-th occurrence of any character of c in y. Formally we have

The k-bounded-position sampled version of y, indicated by ẏ , is a numeric sequence,
of length nc defined as

(i) 1 ≤ 𝛿(i) < 𝛿(i + 1) ≤ n for each 1 ≤ i ≤ nc − 1

(i) y[𝛿(i)] ∈ C for each 1 ≤ i ≤ nc
(i) y[𝛿(i) + 1… 𝛿(i + 1) − 1] ∈ C for each 0 ≤ i ≤ nc

�k(i) = [�(i) mod k], for each i = 1,… , nc

3396 Algorithmica (2020) 82:3390–3412

1 3

Plainly we have 0 ≤ ẏ[i] < k , for each 1 ≤ i ≤ nc.

Example 2 Suppose y = “abaacbcabdada” is a text of length 13, over the alphabet
Σ = {a,b,c,d} . Let C = {“a”, “c”} be the set of pivot characters and let k = 5 be the
threshold value. Thus the position sampled version of y is ẏ = ⟨1, 3, 4, 0, 2, 3, 1, 3⟩ .
Specifically the first occurrence of a character in C is at position 1 (y[1] = a), its sec-
ond occurrence is at position 3 (y[3] = a). However its 5-th occurrence is at position
7, thus ẏ[5] = [𝛿(7) mod 5] = [7 mod 5] = 2.

Example 3 Suppose y = “abaacbcabdada” is a text of length 13, over the alphabet
Σ = {a,b,c,d} . Let “a” be the pivot character and let k = 5 be the threshold value. Thus
the position sampled version of y is ẏ = ⟨1, 3, 4, 3, 1, 3⟩ . Specifically the first occur-
rence of character “a” is at position 1, its second occurrence is at position 3. How-
ever its 4-th occurrence is at position 8, thus ẏ[4] = [𝛿(4) mod 5] = [8 mod 5] = 3

.

Definition 2 (The Characters Distance Sampling) Let c ∈ Σ be the pivot char-
acter, let nc ≤ n be the number of occurrences of the pivot character in the text y
and let � be the position function of y. We define the characters distance function
Δ(i) = �(i + 1) − �(i) , for 1 ≤ i ≤ nc − 1 , as the distance between two consecutive
occurrences of the character c in y.

The characters-distance sampled version of the text y is a numeric sequence,
indicated by ȳ , of length nc − 1 defined as

Plainly we have

Example 4 As in Example 3, let y = “abaacbcabdada” be a text of length 13, over the
alphabet Σ = {a,b,c,d} . Let “a” be the pivot character. Thus the character distance sampled
version of y is ȳ = ⟨2, 1, 4, 3, 2⟩ . Specifically ȳ[1] = Δ(1) = 𝛿(1) − 𝛿(0) = 3 − 1 = 2 ,
while ȳ[3] = Δ(4) = 𝛿(4) − 𝛿(3) = 8 − 4 = 4 , and so on.

In order to be able to retrieve the original i-th position �(i) , of the pivot character,
from the i-th element of the k-bounded position sampled text ẏ , we also maintain
a block-mapping table � which stores the indexes of the last positions of the pivot
character in each k-block of the original text, for a given input block size k.

Specifically, we assume that the text y is divided in ⌈n∕k⌉ blocks of length k, with
the last block containing (n mod k) characters. Then �[i] = j if the j-th occurrence

(1)ẏ = ⟨𝛿k(1), 𝛿k(2),… , 𝛿k(nc)⟩.

(2)ȳ = ⟨Δ(1),Δ(2),… ,Δ(nc − 1)⟩.

nc−1∑

i=1

Δ(i) ≤ n − 1.

3397

1 3

Algorithmica (2020) 82:3390–3412

of the pivot character in y is also its last occurrence in the i-th block. If the i-th block
of y does not contain any occurrence of the pivot character than �[i] is set to be equal
to the last position of the pivot character in one of the previous blocks.

More formally we have, for 1 ≤ i ≤ ⌈n∕k⌉

Thus it is trivial to prove that �[i] = j if and only if �(j) ≤ (ik) and 𝛿(j + 1) > (ik) .
In addition the values in the block mapping � are stored in a non decreasing order.
Formally

Example 5 Let y = “caacbddcbcabbacdcadcab” be a text of length 22, over the
alphabet Σ = {a,b,c,d} . Let “a” be the pivot character and let k = 5 be the block
size. The k-bounded position sampled version of y is ẏ = ⟨2, 3, 1, 4, 3, 1⟩ . The text is
divided in ⌈22∕5⌉ = 5 blocks, where the last block contains only 2 characters. Thus
the mapping table � contains exactly 5 entries, and specifically �[1] = 2 , since the
last occurrence of the pivot character in the first block corresponds to its second
occurrence in y. Similarly, �[3] = 4 , �[4] = 5 and �[5] = 6 . Observe however that,
since the second block does not contain any occurrence of the pivot character we
have �[2] = �[1] = 2.

The following Lemma 1 defines how to compute the index of the block in which
the j-th occurrence of the pivot character is located.

Lemma 1 Let y be a text of length n, let c ∈ Σ be the pivot characters and assume c
occurs nc times in y. In addition let ẏ be the k-bounded-position sampled versions of
y, and let � be corresponding mapping table. Then the j-th occurrence of the pivot
character in y occurs in the i-th block of y if �[i] ≥ j and 𝜏[i − 1] < j.

Proof Assume that the j-th occurrence of the pivot character in y occurs in the i-th
block and let �(h1) be the position of the last occurrence of the pivot character in the
(i − 1)-th block. Since the character of position �(j) occurs in the i-th block we have
j > h1 . By definition we have 𝜏[i − 1] = h1 < j.

Moreover let �(h2) be the position of last occurrence of the pivot character int the
i-th block. We plainly have �(h2) ≥ �(j) , j < ik and h2 < ik . Thus by equation (3) we
have �[i] ≥ j . Proving the lemma. ◻

The following Corollary 1 defines the relation for computing the original position
�(j) from ẏ[j] and the mapping table � . It trivially follows from Lemma 1 and equa-
tion (4).

Corollary 1 Let y be a text of length n, let c ∈ Σ be the pivot character and assume c
occurs nc times in y. In addition let ẏ be the k-bounded-position sampled versions of
y, and let � be corresponding mapping table. Let b = min{i ∶ �[i] ≥ j} , then we have

(3)�[i] = max ({j ∶ �(j) ≤ ik} ∪ {0})

(4)�[i] ≤ �[i + 1], ∀ 0 ≤ i ≤ ⌈n∕k⌉

3398 Algorithmica (2020) 82:3390–3412

1 3

 ◻

Based on the relation defined by Corollary 1 the pseudocode shown in Fig. 1 (on
the left) describes a procedure for computing the correct position �(i) in y, from the
i-th element of the k-bounded position sampled text ẏ . In the pseudocode of Get-
POsitiOn(� , b, ẏ , i) we assume that the parameter b is less or equal the actual block
of the i-th occurrence of the pivot character, i.e. bk ≤ �(i) . It returns a couple (p, b),
where p = �(i) and b is such that (b − 1)k < 𝛿(i) ≤ bk.

The following lemma introduces an efficient way for computing ȳ from ẏ and �.

Lemma 2 Let y be a text of length n, let c ∈ Σ be the pivot character and assume
c occurs nc times in y. In addition let ẏ and ȳ be the k-bounded-position and char-
acter-distance sampled versions of y, respectively. If b = min{j ∶ �[j] ≥ i + 1} and
a = min{j ∶ �[j] ≥ i} , then the following relation holds

Proof Le b = min{j ∶ �[j] ≥ i + 1} and a = min{j ∶ �[j] ≥ i} . By corollary 1 we
have

proving the Lemma. ◻

Based on the formula introduced by Lemma 2 the pseudocode shown in Fig. 1
(on the right) describes a procedure for computing on the flight from ẏ the character
distance sampled version of the text y. It is easy to prove that the time complexity of
this procedure is given by O(nc + n∕k) , where a time O(nc) is required for scanning
the sequence ẏ , while a time O(n/k) is required for scanning the mapping table � . If

𝛿(j) = (𝜏[b] − 1)k + ẏ[j].

(5)ȳ[i] = ẏ[i + 1] + (𝜏[a] − 𝜏[b])k − ẏ[i]

Get-Position(τ , b, ẏ, i)
1. while τ [b] < i do
2. b ← b+ 1
3. p ← (b− 1)× k + ẏ[i]
4. return (p, b)

Compute-Character-Distance-Sampling(ẏ, τ)
1. ȳ
2. nc ← len(ẏ)
3. b ← 1
4. (δ1, b) ← Get-Position(τ , b, ẏ, 1)
5. for i ← 2 to nc do
6. (δi, b) ← Get-Position(τ , b, ẏ, i)
7. ȳ[i− 1] ← δ(i) − δ(i − 1)
8. return ȳ

Fig. 1 (On the left) The pseudocode of procedure Get-POsitiOn which computes the index of the block
corresponding the i-th occurrence of the pivot character in y. (On the right) The pseudocode of procedure
COmPute-CharaCter-DistanCe-samPlinG which computes, on the flight from ẏ , the Characters Distance
sampled version of y

3399

1 3

Algorithmica (2020) 82:3390–3412

we suppose equiprobability and independence of characters, the number of expected
occurrences of the pivot character is �(nc) = n∕� . Thus under the assumption4 that
k ≥ � the overall average time complexity of this procedure is O(nc) . Its worst-case
time complexity is plainly O(n).

Under the specific assumption that Δ(i) < k , for each 1 ≤ i ≤ nc − 1 , the sequence
ȳ can be computed in a more efficient way. It is defined by the following Corollary 2
which trivially follows from Lemma 2.

Corollary 2 Let y be a text of length n, let c ∈ Σ be the pivot character and assume c
occurs nc times in y. In addition let ẏ and ȳ be the k-bounded-position and character-
distance sampled versions of y, respectively. Then, if we assume that Δ(i) < k , for
each 1 ≤ i < nc , the following relation holds

Proof Assume that the i-th occurrence of the pivot character is in the j-th block.
Since Δ(j) < k by definition, the (i + 1)-th occurrence of the pivot character is in
block j or (at most) in block (j + 1).

Plainly, if ẏ[i + 1] ≤ ẏ[i] , the two pivot characters occurs into different (consecu-
tive) blocks. Thus Δ(i) = ẏ[i + 1] + k − ẏ[i].

Conversely, assume now that ẏ[i + 1] > ẏ[i] . The (i + 1)-th occurrence of the
pivot character cannot be in block j + 1 , because is such a case we should have
Δ(i) = ẏ[i + 1] + k − ẏ[i] > k . Thus the (i + 1)-th occurrence of the pivot character
is in block j and Δ(i) = ẏ[i + 1] − ẏ[i] > k . ◻

We are now ready to describe the preprocessing and the searching phase of our
new proposed algorithm.

3.2 The Preprocessing Phase

In this section we describe the preprocessing phase of the algorithm. Figure 2 shows
the presudocode for computing the two sampled versions of the text. Assuming that
the maximum distance between two consecutive occurrences of the pivot character is
bounded by k, by Definition 1 and by Definition 2, the sequences ẏ and ȳ both require
(nc) log(k) bits to be maintained. In practical cases we can chose k = 256 using a sin-
gle byte to store each value of the sampled sequences and maintaining the assumption
Δ(i) < k more feasible. This will allow us to store the sampled text using only nc bytes.

Figure 3 reports the maximum and average distances between two consecutive
occurrences, computed for the most frequent characters in a natural language text.
Observe that the first 6 most frequent characters follow the constraint on the maxi-
mum distance.

(6)ȳ[i] =

{
ẏ[i + 1] − ẏ[i] if ẏ[i + 1] > ẏ[i]

ẏ[i + 1] + k − ẏ[i] otherwise

4 In practical cases we can implement our solution with a block size k = 256 , which allows to represent
the elements of the sequence ẏ using a single byte. In such a case the assumption k ≥ � is plausible for
any practical application.

3400 Algorithmica (2020) 82:3390–3412

1 3

As a consequence the choice of the pivot character directly influences the addi-
tional memory used for storing the sampled text (the larger is the rank of the pivot
character the shorter is the resulting sampled text) and the performance of the
searching phase, as we will see later in Sect. 4.

Let y be an input text of length n over the alphabet Σ , of size � , and let r be a con-
stant input parameter. Specifically r is the rank of the pivot character to be selected
for building the sampled text. The rank r must be chosen in order to have Δ(i) < k ,
for each 1 ≤ i ≤ nc.

The first step of the preprocessing phase of the algorithm consists in counting the
frequencies of each character c ∈ Σ and in computing their corresponding ranks.

Subsequently the algorithm builds and store the k-bounded position sampled text
ẏ . This step requires O(r log(n) + n)-time (since only the first r characters need to be
ordered) and O(nc)-space, where nc is the number of occurrences of the pivot char-
acter in y.

Compute-Distance-Sampling(y, n, Σ̄)
1. ȳ
2. j ← 0
3. p ← 0
4. for i ← 1 to n do
5. if y[i] ∈ Σ̄ then
6. j ← j + 1
7. ȳ[j] ← i− p
8. p ← i
9. return (ȳ, j)

Compute-Position-Sampling(y, n, Σ̄, k)
1. ẏ
2. τ ← a table of n/k entries
3. for i ← 1 to n/k do τ [i] ← 0
4. j ← 0
5. for i ← 1 to n do
6. if τ [i/k] = 0 then
7. τ [i/k] ← τ [i/k 1]
8. if y[i] ∈ Σ̄ then
9. j ← j + 1
10. ẏ[j] ← i mod k
11. τ [i/k] ← j
12. return (ẏ,j,τ)

Fig. 2 (On the left) The pseudocode of procedure COmPute-DistanCe-samPlinG for the construction of
the character distance sampling version of a text y. (On the right) The pseudocode of procedure COm-
Pute-POsitiOn-samPlinG for the construction of the character position sampling version of a text y

0 2 4 6 8 10 12 14 16 18 20
0

1,000

2,000

rank of pivot char

di
st
an

ce

Maximum and average character distances

max char dist
avg char dist
bound

Fig. 3 Maximum and average distances between two consecutive occurrences, computed for the most
frequent characters in a natural language text. On the x axis characters are ordered on the base of their
rank value, in a non decreasing order. The red line represents the bound k = 256

3401

1 3

Algorithmica (2020) 82:3390–3412

Each element of the mapping table � can be stored using log(n) bit. Therefore the
overall space complexity of the algorithm is O(nc + n log(n)∕k).

3.3 The Searching Phase

Let x be an input pattern of length m and let c ∈ Σ be the pivot character. Let mc
be the number of occurrences of the pivot character in x. The searching phase can
be then divided in three different subroutines, depending on the value of mc . All
searching procedures work using a filtering approach. They takes advantage of the
partial-index precomputed during the preprocessing phase in order to quickly locate
any candidate substring of the text which may include an occurrence of the pattern.

If such candidate substring has length m the algorithm simply performs a charac-
ter-by-character comparison between the pattern and the substring. Figure 4 shows
the pseudocode of two procedures which can be used by the algorithm for testing the
occurrence of a pattern x, of length m, in a text y, of length n, starting at position s:

• procedure Verify (on the left) plainly compares the substring of the text
y[s⋯ s + m − 1] and the pattern x, character by character, proceeding from left
to right until a mismatch if found or the two strings turn out to be equal. In this
case the procedure reports an occurrence at position s of the text. Its complexity
is plainly O(m) in the worst case.

• procedure restOrinGVerify (on the right) is designed to remember those posi-
tions of the text which have been already processed during a previous verifica-
tion. Specifically it makes use on the string matching automaton [1] (SMA for
short) D(x) for a given pattern x of length m. Specifically the SMA D(x) is a
quintuple D(x) = {Q, q0,F,Σ, �} where Q = {q0, q1,… , qm} is the set of states;
q

0
 is the initial state; F = {qm} is the set of accepting states and � ∶ Q × Σ → Q is

the transition function defined as

 for 0 ⩽ i ⩽ m and c ∈ Σ . The language recognized by D(x) is L(D(x)) = Σ∗x .
The procedure simply scans the text character by character, from left to right,

�(qi, c) =

{
qi+1 if c = x[i + 1]

q|k|, where k is the longest border of x[0⋯ i − 1]c otherwise

Verify(x, m, y, s)
1. i ← 0
2. while i ≤ m and x[i] = y[s+ i] do
3. i ← i+ 1
4. if i = m then
5. report occurrence at s

RestoringVerify(x, m, y, s, k, D(x), q0)
1. q ← q0
2. c ← 0
3. for i ← s to s+ k − 1 do
4. q ← δ(q, y[i])
5. if (q = m) then
6. report occurrence at i−m+ 1

Fig. 4 The pseudocode of procedure Verify (on the left) for testing the occurrence of a pattern x, of
length m, in a text y, of length n, starting at position s; and the pseudocode of procedure restOrinGVer-
ify (on the right) based on the string matching automaton of x and used to remember those positions of
the text which have been already processed during a previous verification

3402 Algorithmica (2020) 82:3390–3412

1 3

performing transitions on the automaton D(x) . If the final state is reached after
the character y[i] is read, then a match is reported at position (i − m + 1).

When the candidate substring has length greater than m, then a searching procedure
is called, based on any exact online string matching algorithm. As we will discuss
later, if we suppose that the underlying algorithm has a linear worst case time com-
plexity, as in the case of the KMP algorithm [16] or the Automaton Matcher [1],
then our solution achieves the same complexity in the worst case. Similarly if we
suppose to implement the searching procedure using an optimal average string
matching algorithm, like the BDM algorithm [13], the resulting solution achieves an
optimal O(n log� m∕m) average time complexity.

In what follows we describe in details the three different searching procedures
which are applied when mc = 0 , mc = 1 and mc > 1 , respectively.

3.3.1 Case 1: m
c
= 0

Consider firstly the case where the pattern does not contain any occurrence of the
pivot character c, so that mc is equal to zero. Under this assumption the algorithm
searches for the pattern x in all substrings of the original text which do not contain
the pivot character. Specifically such substrings are identified in the original text by
the intervals [�(i) + 1⋯ �(i + 1) − 1] , for each 0 ≤ i ≤ nc , assuming �(0) = 0 and
�(nc + 1) = n + 1.

Figure 5 shows the pseudocode of the algorithm which searches for all occur-
rences of a pattern x, when the pivot character c does not occur in it. Specifically,
for each 1 ≤ i ≤ nc + 1 , the algorithm checks if the interval �(i) − �(i − 1) is greater
than m (lines 5-7). In such a case the algorithm searches for x in the substring of
the text y[�(i − 1) + 1⋯ �(i) − 1] (line 8) using any standard string matching algo-
rithm. Otherwise the substring is skipped, since no occurrence of the pattern could
be found at such position.

The following theorem proves that procedure searCh-0 achieves optimal worst-
case and average-case time complexity.

Theorem 1 Le x and y be two strings of size m and n, respectively, over an alpha-
bet Σ of size 𝜎 > 1 . Let c ∈ Σ be the pivot character and let ẏ be the k-bounded

Fig. 5 The pseudocode of pro-
cedure searCh-0 for the sampled
string matching problem, when
the pivot character does not
occur in the input pattern x

Search-0(x, ẏ, y)
∆ We assume c does not occur in x
1. m ← len(x)
2. nc ← len(ẏ)
3. b ← 1
4. δ0 ← 0
5. for i ≤ 2 to nc do
6. (δi, b) ← Get-Position(τ, b, ẏ, i)
7. if (δi − δi−1 > m) then
8. search for x in y[δi−1 + 1..δi − 1]
9. if (n+ 1− δnc > m) then
10. search for x in y[δnc + 1..n]

3403

1 3

Algorithmica (2020) 82:3390–3412

position sampled version of the text y. Under the assumption of equiprobability and
independence of characters in Σ , the worst-case and average time complexity of the
Search-0 algorithm are O(n) and O(n log� m∕m) , respectively.

Proof In order to evaluate the worst-case time complexity of procedure searCh-0,
we can notice that each substring of the text is scanned at least once in line 10, with
no overlap. Thus if we use a linear algorithm to perform the standard search then it
is trivial to prove that the whole searching procedure requires

Assuming that the underlying algorithm has an O(n logm∕m)) average time com-
plexity, on a text of length n and a pattern of length m, we can express the expected
average time complexity as

for enough great values k ≥ m∕ log� m and k ≥ � . ◻

Observe that, in the case of a natural language text, where generally � ≥ 100 , a
block size k = 256 is enough to reach the optimal average time complexity for any
(short enough) pattern of length m < 256.

3.3.2 Case 2: m
c
= 1

Suppose now the case where the pattern x contains a single occurrence of the
pivot character c, so that the length of the sampled version of the pattern is
still equal to zero. The algorithm efficiently takes advantage of the information
precomputed in ẏ using the positions of the pivot character c in y as an anchor to
locate all candidate occurrences of x.

Figure 6 shows the pseudocode of the algorithm which searches for all occur-
rences of a pattern x, when the pivot character c occurs only once in it. Specifi-
cally, let � be the unique position in x which contains the pivot character (line
3), i.e. we assume that x[�] = c and x[1⋯ � − 1] does not contain c. Then, for
each 0 ≤ i ≤ nc − 1 , the algorithm checks if the interval �(i − 1) − �(i − 2) is
greater than � − 1 and if the interval �(i) − �(i − 1) is greater than m − � (lines
7-9). In such a case the algorithm merely checks if the substring of the text
y[�(i) − � + 1⋯ �(i) + m − �] is equal to the pattern (line 10). Otherwise the sub-
string is skipped. As before we assume that �(0) = 0 (line 5) and �(nc + 1) = n + 1
(line 11). The last alignment of the pattern in the text is verified separately at the
end of the main cycle (lines 11-12).

The following theorem proves that procedure searCh-1 achieves optimal worst-
case and average-case time complexity.

T0
���

(n) = O(m) +

nc−1∑

i=1

O(Δ(i)) + O
(
n

k

)
= O(n).

T0
���

(n) =

nc−1∑

i=1

O

(
Δ(i) log� m

m

)
+ O

(
n

k

)
= O

(
n log� m

m

)
.

3404 Algorithmica (2020) 82:3390–3412

1 3

Theorem 2 Le x and y be two strings of size m and n, respectively, over an alpha-
bet Σ of size 𝜎 > 1 . Let c ∈ Σ be the pivot character and let ẏ be the k-bounded
position sampled version of the text y. Under the assumption of equiprobability and
independence of characters in Σ , the worst-case and average time complexity of the
Search-1 algorithm are O(n) and O(n log� m∕m) , respectively.

Proof In order to evaluate the worst-case time complexity of the algorithm notice
that each character could be involved in, at most, two consecutive checks in line
10. Specifically any text position in the interval [�(i − 1) + 1⋯ �(i) − 1] could be
involved in the verification of the substrings y[�(i − 1) − � + 1⋯ �(i − 1) + m − �]
and y[�(i) − � + 1⋯ �(i) + m − �] . Thus the overall worst case time complexity of
the searching phase is T1

���
(n) = O(n).

In order to evaluate the average-case time complexity of the algorithm notice
that the expected number of occurrences in y of the pivot character is given by
�(nc) = n∕� . Moreover, for any candidate occurrence of x in y, the number �(insp)
of expected character inspections performed by procedure Verify, when called on a
pattern of length m, is given by

Thus the average time complexity of the algorithm ican be expressed by

�(insp) = 1 +

m−1∑

i=1

(
1

�

)i

≤
�

� − 1

T1
���

(n) =�(nc) ⋅ �(insp) =

O
(
n

�

)
⋅ O

(
�

� − 1

)
=

O
(

n

� − 1

)

Search-1(x, ẏ, y)
∆ We assume c occurs once in x
1. m ← len(x)
2. nc ← len(ẏ)
3. α ← min{i : x[i] = c}
4. b ← 1
5. δ0 ← 0
6. (δ1, b) ← Get-Position(τ, b, ẏ, 1)
7. for i ≤ 2 to nc do
8. (δi, b) ← Get-Position(τ, b, ẏ, i)
9. if (δi−1 − δi−2 > α− 1 and δi − δi−1 > m− α) then
10. Verify(x, m, y, δi−1 − α+ 1)
11. if (δnc − δnc−1 > α− 1 and n+ 1− δnc > m− α) then
12. Verify(x, m, y, δnc − α+ 1)

Fig. 6 The pseudocode of procedure searCh-1 for the sampled string matching problem, when the pivot
character occurs once in the input pattern x

3405

1 3

Algorithmica (2020) 82:3390–3412

obtaining the optimal average time complexity O(n log� m∕m)) for great enough
alphabets of size 𝜎 > (m∕ log𝜎 m) + 1 , and for k ≥ � . ◻

3.3.3 Case 3: m
c
≥ 2

If the number of occurrences of the pivot character in x are more than 2 (i.e. if
mc ≥ 2 and m̄ ≥ 1) then the algorithm uses the sampled text ȳ to compute on the fly
the character-distance sampled version of y and use it to searching for any occur-
rence of x̄ . This is used as a filtering phase for locating in y any candidate occur-
rence of x.

Figure 7 shows the pseudocode of the algorithm which searches for all occur-
rences of a pattern x, when the pivot character c occurs more than once in it. First
the character distance sampled version of the pattern x̄ is computed (line 5). Then
the algorithm searches for x̄ in the ȳ using any exact online string matching algo-
rithm (line 6). Notice that ȳ can be efficiently retrieved online from the sampled text
ẏ , using relation given in (6).

For each occurrence position j of x̄ in ȳ an additional procedure must be run
to check if such occurrence corresponds to a match of the whole pattern x in
y (lines 7-9). For this purpose the algorithm checks if the substring of the text
y[�(j) − �⋯ �(j) − � + m − 1] is equal to x, where � , as before, is the first position
in x where the pivot character occurs. Notice that the value of �(j) can be obtained in
constant time from ẏ[j] (line 8).

The following theorem proves that procedure searCh-2 achieves optimal worst-
case and average-case time complexity.

Theorem 3 Le x and y be two strings of size m and n, respectively, over an alpha-
bet Σ of size 𝜎 > 1 . Let c ∈ Σ be the pivot character and let ẏ be the k-bounded
position sampled version of the text y. Under the assumption of equiprobability and
independence of characters in Σ , the worst-case and average time complexity of the
Search-2 algorithm are O(n) and O(n log� m∕m) , respectively.

Search-2+(x, ẏ, y)
∆ We assume c occurs more than once in x
1. m ← len(x)
2. ṅ ← len(ẏ)
3. α ← min{i : x[i] = c}
4. b ← 1
5. (x̄, m̄) ← Compute-Distance-Sampling(x,m, {c})
6. search for x̄ in ȳ :
7. for each i such that x̄ = ȳ[i..i+ m̄− 1] do
8. (δi, b) ← Get-Position(τ, b, i)
9. Verify(x, m, y, δi α)

Fig. 7 The pseudocode of procedure searCh-2 for the sampled string matching problem, when the pivot
character occurs more than once in the input pattern x

3406 Algorithmica (2020) 82:3390–3412

1 3

Proof In order to evaluate the worst-case time complexity of the algorithm in this
last case notice that, if we use a linear algorithm to search ȳ for x̄ , the overall time
complexity of the searching phase is O(nc + nxm + n∕k) , where nx is the number
of occurrences of x̄ in ȳ . In the worst case it translates in O(ncm) worst case time
complexity.

However we can implement the algorithm by substituting procedure Verify with
procedure restOrinGVerify (Fig. 4) in order to allow the algorithm to remember all
positions of the text which have been already processed. In this case it is required to
maintain, at the end of each iteration of the fOr loop of line 7, the position r of the
last character which has been processed and the last state qr reached by the automa-
ton during the current verification. Thus, if a next verification is required, starting at
position �i − � , the algorithm performs a call to

assuming s = max(�i − �, r + 1) and where we remember that D(x) is the string
matching automaton of the pattern x which can be constructed during the pre-
processing phase of the algorithm. This allows the algorithm to run in overall
T

2+

���
(n) = O(n) worst-case time complexity.

In order to evaluate the average-case time complexity of the algorithm notice that
time required for searching x̄ in ȳ is O(nc logmc∕mc) + n∕k) . Moreover, observe that
the number of verification is bounded by the expected number of occurrences of the
pivot character in y, thus, following the same line of Theorem 2, the overall average
time complexity of the verifications phase is O(n∕(� − 1)) . Thus the average time
complexity of the algorithm can be expressed by

obtaining the optimal average time complexity O(n log� m∕m) for great enough val-
ues of k and � , such that k ≥ � ≥ (m∕ log� m) + 1 . ◻

4 Experimental Results

In this section we report the results of an extensive evaluation of the new presented
algorithm in comparison with the Ots algorithm by Claude et al. [6] for the sam-
pled string matching problem. The algorithms have been implemented in C, and
have been tested using a variant of the smart tool [9], properly tuned for testing
string matching algorithms based on a text-sampling approach, and executed locally
on a MacBook Pro with 4 Cores, a 2 GHz Intel Core i7 processor, 16 GB RAM
1600 MHz DDR3, 256 KB of L2 Cache and 6 MB of Cache L3.5 Although all the

RESTORINGVERIFY(x,m, y, s, �i − � + m − s,D(x), qr)

T
2+

���
(n) = O

(
nc logmc

mc

)
+ O

(
n

k

)
+ O

(
n

� − 1

)

5 The smart tool is available online for download at http://www.dmi.unict .it/~faro/smart / or at https ://
githu b.com/smart -tool/smart .

http://www.dmi.unict.it/%7efaro/smart/
https://github.com/smart-tool/smart
https://github.com/smart-tool/smart

3407

1 3

Algorithmica (2020) 82:3390–3412

evaluated algorithms could be implemented in conjunction with any online string
matching algorithm, for the underlying searching procedure, for a fair comparison
in our tests we realise implementations in conjunction with the Horspool algorithm,
following the same line of the experimental evaluation conducted in [6].

Comparisons have been performed in terms of preprocessing times, searching
times and space consumption. For our tests, we used the English text of size 5MB
provided by the research tool smart, available online for download.6

In the experimental evaluation, patterns of length m were randomly extracted
from the text (thus the number of reported occurrences is always greater than 0),
with m ranging over the set of values {2i ∣ 2 ≤ i ≤ 8} . In all cases, the mean over the
running times (expressed in ms) of 1000 runs has been reported.

4.1 Space Requirements

In the context of text-sampling string-matching space requirement is one of the
most significant parameter to take into account. It indicates how much additional
space, with regard to the size of the text, is required by a given solution to solve the
problem.

Conversely to other kind of algorithms, like compressed-matching algorithms,
which are allowed to maintain the input strings in a compressed form (with a detri-
ment in processing time), algorithms in text-sampling matching require to store the
whole text together with the additional sampled-text which is used to speed-up the
searching phase. In this context they are much more similar to online string-match-
ing solutions and, although they have the additional good property to allow a direct
access to the input text, to be of any practical interest they should require as little
extra space as possible.

Figure 8 shows the space consumption of the text-sampling algorithms described
in this paper. Specifically, memory space required by the new algorithm is plotted
on variations of the pivot character, while memory space required by the Ots algo-
rithm is plotted on variations of the size of the set of removed characters. Both val-
ues range from 2 to 20.

Space consumption of the Ots algorithm ranges from 4 MB (80% of text size),
when only 2 characters are removed and q = 8 , to 740 KB (14.8% of text size), in
the case of 20 removed characters and q = 32 . As expected, the function which
describes memory requirements follows a decreasing trend while the value of �∗
increases.

A similar trend can be observed for our new algorithm, whose space consump-
tion decreases while the rank of the pivot character increases. However, in this
case, space requirement ranges from 557 KB (11% of text size), if we select the
most frequent character as a pivot, to 142 KB (2.8% of text size), when the pivot
is the character with rank position 20. Thus the benefit in space consumption

6 Specifically, the text buffer is the concatenation of two different texts: The King James version of the
bible (3.9 MB) and The CIA world fact book (2.4 MB). The first 5MB of the resulting text buffer have
been used in our experimental results.

3408 Algorithmica (2020) 82:3390–3412

1 3

obtained by the new algorithm ranges (at least) from 24 to 80%, even with the
best performance of the Ots algorithm.

Observe also that in the case of short texts (with a size of few Mega Bytes),
the space consumption of our algorithm is easily comparable with space require-
ments of a standard online string matching algorithm. For instance, if we suppose
to search for a pattern of 30 characters on a text of 3 MB, the Boyer-Moore-
Horspool algorithm [7] requires only 256 Bytes (less than 0.1% of the text size),
the BDM algorithm [13] requires approximately 8 KB (0.2% of text size), while
more efficient solutions as the Berry-Ravidran and the WFR algorithms [5]
require approximately 65 KB (2.1% of text size). However, the space require-
ments of an online string matching algorithm does not depend on the size of the
text, thus when the value of n increases the gap may become considerable.

4.2 Preprocessing and Searching Times

In this section we compare the two approach for the text-sampling string match-
ing problem, in terms of preprocessing and searching times. With the term pre-
processing time we refer to the time needed to construct the sampled text which
will be used during the searching phase. We do not take into account in this
measurements the preprocessing time needed by the online exact string match-
ing algorithm used during the searching phase. We will refer to searching time as
the time needed to perform searching of the pattern on both sampled and original
texts, including any preprocessing of the underlying searching algorithm.

0 2 4 6 8 10 12 14 16 18 20

0

2,000

4,000

Rank of the pivot character

K
B
yt
es

0 2 4 6 8 10 12 14 16 18 20

0

2,000

4,000

Number of removed characters

K
B
yt
es

q = 8
q = 16
q = 32

Fig. 8 Space consumption of the text sampled algorithms. All values are in KB. On the top: memory
space required by the new algorithm, for different pivot characters with rank ranging from 1 to 20. On the
bottom: memory space required by the Ots algorithm, for different sets of removed characters, with size
ranging from 2 to 20, and for different values of the parameter q

3409

1 3

Algorithmica (2020) 82:3390–3412

Fugure 9 shows the preprocessing times of our algorithm together with those of
the Ots algorithms (in the latter case we show preprocessing time for the three dif-
ferent values of q ∈ {8, 16, 32}). It turns out that the new algorithm has always a
faster preprocessing time, with a speed-up which goes from 50, to 15%, depending
on the pivot element and on the number of removed characters. This is mainly corre-
lated with size of the data structure constructed during the preprocessing phase and
discussed in the previous section.

Figures 10 and 11 show the searching times of the text sampling algorithms in the
case of short patterns (2 ≤ m ≤ 16) and long patterns (32 ≤ m ≤ 256), respectively.
The dashed red line represents the running time of the original Horspool algorithm.
Running times (in the y axis) are represented in thousands of seconds. The x axis
represents the rank of the pivot character in the case of the new algorithm, while
represents the number of removed characters in the case of the Ots algorithms.

In the case of short patterns best results are obtained by the new sampled
approach selecting a small-rank pivot character. If compared with the original
Horspool algorithm, the speed up obtained by the new approach goes from 32% (for
m = 2) to 64% (for m = 16), while the gain obtained in comparison with the Ots
algorithm decreases as the length of the pattern increases and going from 13%, for
m = 2 , to 7.7%, in the case of m = 16.

In the case of long patterns the difference between the running times of the two
algorithms is negligible. However, if compared with the original Horspool algo-
rithm, the speed up is much more evident and goes from 66% (for m = 32) to 91%
(for m = 256).

5 Conclusions and Future Works

We presented a new approach to the sampled string matching problem based on
alphabet reduction and characters distance sampling. In our solution we divide the
text in blocks of size k and sample positions of such characters inside the blocks.
During the searching phase the sampled data is used to filter candidate occurrences

2 4 6 8 10 12 14 16 18 20
0

20

40

rank of pivot char / number of removed chars

th
ou

sa
nd

s
of

se
co
nd

s

Preprocessing times

new
q = 8
q = 16
q = 32

Fig. 9 Preprocessing times of the text sampled algorithms. Running times are expressed in thousands of
sec. The x axis represents the rank of the pivot character in the case of the new algorithm, while repre-
sents the number of removed characters in the case of previous algorithms

3410 Algorithmica (2020) 82:3390–3412

1 3

of the pattern. All the occurrences which are found during this first step are then
verified for a whole match in the original text.

Our algorithm is faster than previous solutions in the case of short patterns and
may require only 5% of additional extra space. Despite this good performance we
also proved that, when the underlying algorithm used for searching the sampled text
for the sampled pattern achieves optimal worst-case and average-case time complex-
ities, then also our algorithm attains the same optimal complexities, at least for pat-
terns with a length of (at most) few hundreds of characters.

We applied our solution only to the case of a natural language text with a rather
wide alphabet since the current approach doesn’t work efficiently for small alpha-
bets. It turns out indeed that the number of false positives located during the filter-
ing phase increases as the size of the alphabet decreases. Thus it should be interest-
ing to find a non-trivial strategy to extend this kind of solution also to the case of
sequences over a small alphabet, like genome or protein sequences. We also wonder
whether indexed solutions, as those based on the suffix tree, the suffix array and the

2 4 6 8 10 12 14 16 18 20

14

16

18

20

22

m = 2

2 4 6 8 10 12 14 16 18 20

8

10

12

m = 4

2 4 6 8 10 12 14 16 18 20

4

5

6

7

8
m = 8

2 4 6 8 10 12 14 16 18 20

3

4

5

6
m = 16

new
q = 8
q = 16
q = 32
hor

Fig. 10 Running times of the text sampling algorithms in the case of small patterns (2 ≤ m ≤ 16). The
dashed red line represent the running time of the original Horspool algorithm. Running times (in the y
axis) are represented in thousands of seconds. The x axis represents the rank of the pivot character in the
case of the new algorithm, while represents the number of removed characters in the case of previous
algorithms

3411

1 3

Algorithmica (2020) 82:3390–3412

FM-index of the text, should take advantage of the new text sampling approach. We
intend to go in such directions in our future works.

References

 1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addi-
son-Wesley, London (1974)

 2. Apostolico, A.: The myriad virtues of suffix trees. In: Apostolico, A., Galil, Z. (eds.) Combinatorial
Algorithms on Words. NATO Advanced Science Institutes, Series F, vol. 12, pp. 85–96. Springer,
Berlin (1985)

 3. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Commun. ACM 20(10), 762–772 (1977)
 4. Cantone, D., Faro, S., Giaquinta, E.: Adapting Boyer-Moore-like algorithms for searching Huffman

encoded texts. Int. J. Found. Comput. Sci. 23(2), 343–356 (2012)
 5. Cantone, D., Faro, S., Pavone, A.: Speeding up string matching by weak factor recognition. Strin-

gology 2017, 42–50 (2017)

2 4 6 8 10 12 14 16 18 20
1

2

3

4

m = 32

2 4 6 8 10 12 14 16 18 20

1

2

3

4

m = 64

2 4 6 8 10 12 14 16 18 20

1

2

3

4
m = 128

2 4 6 8 10 12 14 16 18 20
0

1

2

3

m = 256

new
q = 8
q = 16
q = 32
hor

Fig. 11 Running times of the text sampling algorithms in the case of long patterns (32 ≤ m ≤ 256). The
dashed red line represent the running time of the original Horspool algorithm. Running times (in the y
axis) are represented in thousands of seconds. The x axis represents the rank of the pivot character in
the case of the new algorithm, while represents the number of removed characters in the case of the Ots
algorithms

3412 Algorithmica (2020) 82:3390–3412

1 3

 6. Claude, F., Navarro, G., Peltola, H., Salmela, L., Tarhio, J.: String matching with alphabet sampling.
J. Discrete Algorithms 11, 37–50 (2012)

 7. Crochemore, M., Czumaj, A., Gasieniec, L., Jarominek, S., Lecroq, T., Plandowski, W., Rytter, W.:
Speeding up two string-matching algorithms. Algorithmica 12(4), 247–267 (1994)

 8. Faro, S., Lecroq, T.: The exact online string matching problem: a review of the most recent results.
ACM Comput. Surv. 45(2), 13 (2013)

 9. Faro, S., Lecroq, T., Borzì, S., Di Mauro, S., Maggio, A.: The String Matching Algorithms Research
Tool. In Procedings of Stringology, pp. 99–111, (2016)

 10. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52(4), 552–581 (2005)
 11. Fredriksson, K., Grabowski, S.: A general compression algorithm that supports fast searching. Inf.

Process. Lett. 100(6), 226–232 (2006)
 12. Grabowski, S., Raniszewski, M.: Sampling the suffix array with minimizers. In: Porceedings of

String Processing and Information Retrieval (SPIRE 2015), Lecture Notes in Computer Science, vol
9309, Springer, pp. 287–298 (2015)

 13. Horspool, R.N.: Practical fast searching in strings. Softw. Pract. Exp. 10(6), 501–506 (1980)
 14. Karkkainen, J., Ukkonen, E.: Sparse suffix trees. In: Proceedings of 2nd Annual International Con-

ference on Computing and Combinatorics (COCOON), LNCS 1090, pp. 219–230 (1996)
 15. Klein, S.T., Shapira, D.: A new compression method for compressed matching. In: Data Compres-

sion Conference, IEEE. pp. 400–409 (2000)
 16. Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM J. Comput. 6(2), 323–

350 (1977)
 17. Manber: A text compression scheme that allows fast searching directly in the compressed file. ACM

Trans. Inf. Syst. 15(2), 124–136 (1997)
 18. Manber, U., Myers, G.: Suffix arrays: a new method for online string searches. SIAM J. Comput.

22(5), 935–948 (1993)
 19. Moura, E., Navarro, G., Ziviani, N., Baeza-Yates, R.: Fast and flexible word searching on com-

pressed text. ACM Trans. Inf. Syst. 18(2), 113–139 (2000)
 20. Navarro, G., Tarhio, J.: LZgrep: a Boyer-Moore string matching tool for Ziv-Lempel compressed

text. Softw. Pract. Exp. 35, 1107–1130 (2005)
 21. Shibata, Y., Kida, T., Fukamachi, S., Takeda, M., Shinohara, A., Shinohara, T., Arikawa, S.: Speed-

ing Up Pattern Matching by Text Compression. In: CIAC 306–315 (2000)
 22. Yao, A.C.: The complexity of pattern matching for a random string. SIAM J. Comput. 8(3), 368–

387 (1979)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Efficient Online String Matching Based on Characters Distance Text Sampling
	Abstract
	1 Introduction
	1.1 Our Contribution and Organization of the Paper

	2 Sampled String Matching
	2.1 The Occurrence Text Sampling Algorithm

	3 A New Algorithm Based on Characters Distance Sampling
	3.1 Characters Distance Sampling
	3.2 The Preprocessing Phase
	3.3 The Searching Phase
	3.3.1 Case 1:
	3.3.2 Case 2:
	3.3.3 Case 3:

	4 Experimental Results
	4.1 Space Requirements
	4.2 Preprocessing and Searching Times

	5 Conclusions and Future Works
	References

