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In this paper, we propose and analyze a reconstruction technique which enables one 
to design high-order conservative semi-Lagrangian schemes for kinetic equations. The 
proposed reconstruction can be obtained by taking the sliding average of a given 
polynomial reconstruction of the numerical solution. A compact representation of the 
high order conservative reconstruction in one and two space dimension is provided, and 
its mathematical properties are analyzed. To demonstrate the performance of proposed 
technique, we consider implicit semi-Lagrangian schemes for kinetic-like equations such 
as the Xin-Jin model and the Broadwell model, and then solve related shock problems 
which arise in the relaxation limit. Applications to BGK and Vlasov-Poisson equations will 
be presented in the second part of the paper.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Kinetic equations and quasi-linear systems of conservation laws are strongly related. For example, the behavior of rar-
efied gas is well described by the Boltzmann transport equation (BTE) [1]. Once velocity space is discretized, BTE has the 
mathematical structure of a semi-linear hyperbolic system of balance laws. In the so-called fluid dynamic limit, the dis-
tribution function approaches the Maxwellian whose parameters satisfy the Euler equations of gas dynamics, which is a 
quasi-linear system of conservation laws. The Broadwell model of the BTE in one space dimension is a semi-linear 3 × 3
relaxation system. As the relaxation parameter vanishes, the model relaxes to a 2 × 2 quasi-linear hyperbolic system of 
conservation laws. An implicit treatment of the collision term using L-stable schemes allows the construction of asymptotic 
preserving schemes which become consistent schemes of the relaxed limit [2–4].

Quasi-linear hyperbolic systems generically develop jump discontinuities in finite time. Most schemes for their numeri-
cal solutions are based on two fundamental ingredients: conservation and non-oscillatory reconstruction. Finite volume and 
finite difference methods have been widely used for the discretization of the convective terms of kinetic models (Eulerian 
approach), which are usually treated explicitly. In this way, it is relatively easy to construct conservative schemes. Con-
servation is relevant especially in the relaxed limit: lack of conservation will prevent weak consistency of the method for 
discontinuous solutions leading, for example, to O(1) errors in the propagation of shocks.

Conservative non-oscillatory reconstruction such as the essentially non-oscillatory (ENO) or weighted essentially non-
oscillatory (WENO) methodology [5] have been widely adopted in many practical problems [6–8]. The approach has been 
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extended to a compact WENO (CWENO [9–14]) reconstruction which gives uniform accuracy in a whole cell, and it al-
lows the construction of efficient high order finite volume scheme in several space dimensions [15]. Unfortunately, explicit 
Eulerian schemes cannot avoid CFL-type time step restrictions imposed by convection-like terms in hyperbolic equations.

To treat this difficulty, semi-Lagrangian approaches recently have gained popularity because they do not suffer from such 
CFL-type time step restriction which arises in the treatment of Eulerian counterparts. Instead, since the semi-Lagrangian 
method is obtained by integrating the equations along its characteristics, this approach necessarily requires the computation 
of numerical solutions on off-grid points by a reconstruction which makes use of the numerical solutions on grid points.

If one uses piecewise Lagrange polynomial reconstruction, then conservation is guaranteed if the same stencil is used in 
each cell, because of translation invariance (we shall call this a linear reconstruction). On the other hand, such linear recon-
struction may introduce spurious oscillations or may cause loss of positivity. If one wants to prevent appearing of spurious 
oscillations, then one can use high-order non-oscillatory reconstruction, such as ENO or WENO [5,6,16]. Similarly, positivity 
of the numerical solution can be maintained by positivity-preserving reconstructions [17,18]. Unfortunately these non-linear 
reconstructions destroy the translation invariance guaranteed by linear reconstruction, causing lack of conservation [19].

Numerous approaches have been introduced to treat such difficulties, and maintain conservation even with non-linear 
reconstruction. In particular, in the context of Vlasov-Poisson system several techniques were proposed. Among them, we 
mention the Flux-form semi-Lagrangian (FFSL) schemes based on primitive polynomial reconstruction [20–23]. In [20], the 
authors developed the Positive and Flux Conservative scheme. The authors considered essentially non-oscillatory method 
(ENO) or reconstructions based on positive limiters. In [21], the authors took a similar approach in the construction of 
primitive functions using splines. A WENO approach is also proposed to construct high order conservative non-oscillatory 
schemes in [22,23]. All these methods are either one-dimensional or they provide a dimension by dimension interpolation. 
A general technique to restore conservation in semi-Lagrangian schemes was presented in [24]. The technique has been also 
applied to the BGK model [19]. Although quite general, the technique suffers from CFL-type stability restrictions.

In this paper we present a general scheme which is somehow related to FFSL scheme and allows the construction of 
high-order conservative non-oscillatory semi-Lagrangian schemes in one and several dimensions, which are not affected by 
CFL-type restriction. In the context of finite volume schemes, given cell averaged values of the solutions on uniform grids, 
the idea is to compute sliding average of a precomputed non-oscillatory piecewise polynomial reconstruction (from cell 
averages to point-wise values), thus obtaining a conservative mapping from cell averages to cell averages. In this paper we 
call the piecewise polynomial reconstruction ‘basic reconstruction’. We remark that the same technique can be adopted in 
the context of finite difference schemes to provide a conservative mapping from point-wise values to point-wise values.

The resulting reconstruction inherits the non-oscillatory properties of the precomputed polynomial and guarantees con-
servation of all discrete moments. The technique requires characteristic lines are parallel, which is the case of kinetic 
equations in which velocity space is discretized on the same velocity grid throughout space. An advantage of our method is 
that one can easily adopt previous techniques such as ENO, WENO, CWENO polynomials as our basic reconstructions.

The mathematical properties of the proposed reconstruction are analyzed. In particular, we show that if we take CWENO 
polynomials of even degree k, for example k = 2, 4 [9,13], as a basic reconstruction, our approach gives k + 2th order 
accuracy. Similar properties are also generalized to two dimensional reconstruction with CWENO polynomial in two space 
dimensions [13].

To test the quality of the proposed reconstruction, we apply it to the finite difference implicit semi-Lagrangian schemes 
for semi-linear hyperbolic system such as Xin-Jin model or Broadwell model. Applications to more general equations will be 
presented in a companion paper.

This paper is organized as follows: In section 2, we present a general framework for our conservative reconstruction in 
1D and its related properties, section 3 is devoted to the conservative reconstruction in 2D. Semi-Lagrangian methods are 
described in section 4. In section 5, several numerical tests are presented to verify the accuracy of the proposed schemes 
and its capability in treating shocks arising in the relaxation of semi-linear hyperbolic system.

2. Conservative reconstruction in 1D

Let u :R →R be a smooth function and ū :R →R be a corresponding sliding average function:

1

�x

x+�x/2∫
x−�x/2

u(y)dy = ū(x).

Given cell averages on uniform grids xi = i�x:

1

�x

∫
Ii

u(x)dx = ūi, Ii = [xi− 1
2
, xi+ 1

2
],

for each i ∈ I , our goal is to construct an approximation Q (x) of the sliding average ū(x), which is conservative in the sense 
that for any periodic function ū(x) with period L = N�x, N ∈N , we have
2
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Fig. 1. Description of one-dimensional conservative reconstruction.

N∑
i=1

Q (xi + θ) =
N∑

i=1

ū(xi), θ ∈ [0,1).

Assume we have a piecewise smooth reconstruction R(x) =∑
i Ri(x)χi(x), for i ∈ I , where χi(x) denotes the character-

istic function of cell i and each Ri(x) denotes a polynomial of degree k and has the following properties:

1. High order accuracy in the approximation of u(x):

u(x) = Ri(x) +O
(
(�x)k+1

)
, x ∈ Ii . (1)

2. Conservation in the sense of cell averages:

1

�x

x
i+ 1

2∫
x

i− 1
2

Ri(x)dx = ūi .

Consider a shifted interval [yi− 1
2
, yi+ 1

2
] whose center is xi+θ ≡ xi +θ�x, θ ∈ [0, 1), and denote by ū(xi+θ ) the sliding average 

of u at xi+θ (see Fig. 1). We see that

xi− 1
2

≤ yi− 1
2

< xi+ 1
2

≤ yi+ 1
2

< xi+ 3
2
.

Our strategy is to approximate ū(xi+θ ) by Q i+θ ≡ Q (xi+θ ), where

Q i+θ = 1

�x

y
i+ 1

2∫
y

i− 1
2

R(x)dx = 1

�x

x
i+ 1

2 +θ∫
x

i− 1
2 +θ

R(x)dx, (2)

which is equivalent to

Q i+θ = 1

�x

x
i+ 1

2∫
x

i− 1
2 +θ

Ri(x)dx + 1

�x

x
i+ 1

2 +θ∫
x

i+ 1
2

Ri+1(x)dx. (3)

From now on, we consider Ri(x) to be piecewise polynomials of degree k of the form:

Ri(x) =
k∑

�=0

R(�)
i

�! (x − xi)
�. (4)

Making use of (4) in the first term, we obtain

1

�x

x
i+ 1

2∫
x

i− 1
2 +θ

Ri(x)dx = 1

�x

k∑
�=0

R(�)
i

x
i+ 1

2∫
x

i− 1
2 +θ

1

�! (x − xi)
� dx =

k∑
�=0

(�x)�R(�)
i α�(θ)

where
3
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α�(θ) = 1 − (2θ − 1)�+1

2�+1(� + 1)! . (5)

Similarly, we can write

1

�x

x
i+ 1

2 +θ∫
x

i+ 1
2

Ri+1(x)dx :=
k∑

�=0

(�x)�R(�)
i+1β�(θ),

with

β�(θ) = (2θ − 1)�+1 − (−1)�+1

2�+1(� + 1)! . (6)

Letting Q i+θ denote the approximation of ū(xi+θ ), we obtain

Q i+θ :=
k∑

�=0

(�x)�
(
α�(θ)R(�)

i + β�(θ)R(�)
i+1

)
. (7)

Here, we note that α�(θ) and β�(θ) satisfy the following relations:

• If � = 2n, 0 ≤ n, is a even number

α�(θ) + β�(θ) = 1

(2n + 1)!
(

1

2

)2n

. (8)

• If � = 2n + 1, 0 ≤ n, is an odd number

α�(θ) + β�(θ) = 0. (9)

We list the explicit form of α�(θ) and β�(θ) for � = 0, 1, 2:

α0(θ) = 1 − θ, α1(θ) = θ(1 − θ)

2
, α2(θ) = 1 − q(θ)

24

β0(θ) = θ, β1(θ) = −θ(1 − θ)

2
, β2(θ) = q(θ)

24
,

(10)

where q(θ) = 3θ − 6θ2 + 4θ3, for θ ∈ [0, 1).

Remark 2.1 (Finite difference framework). Given a smooth function u, there exists a function û whose sliding average recovers 
the value of u:

u(x) = 1

�x

x+�x/2∫
x−�x/2

û(y)dy.

Since we can look for a basic reconstruction R =∑
i Ri(x)χi(x) with Ri satisfying

1

�x

xi+�x/2∫
xi−�x/2

R(y)dy = u(xi),

our reconstruction can be also used in the point-wise framework (see [5]). In view of this, we will apply it to the construc-
tion of semi-Lagrangian schemes in the finite difference framework.

2.1. General properties

In this section, we provide several properties of the reconstruction (7) such as accuracy, conservation and consistency 
with the classical interpolation by making a suitable choice of R(�)

i in the reconstruction.
Recalling the assumption (1), we have a function R(x) which approximates point values of u and our goal is to approx-

imate the sliding average function ū with our reconstruction (7). Before checking the accuracy order, we note that the cell 
average function ū(x) can be expressed in terms of derivatives of function u(x):
4
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ū(x) = 1

�x

x+�x/2∫
x−�x/2

u(y)dy = 1

�x

x+�x/2∫
x−�x/2

∞∑
�=0

u(�)(x)

�! (y − x)� dy =
∞∑

�=even

(�x)� u(�)(x)
1

(� + 1)!
(

1

2

)�

. (11)

Inserting x = xi+θ into (11), we obtain

ū(xi+θ ) =
∞∑

�=even

(�x)� u(�)(xi+θ )
1

(� + 1)!
(

1

2

)�

= u(0)(xi+θ ) + (�x)2

24
u(2)(xi+θ ) + (�x)4

1920
u(4)(xi+θ ) + · · · .

With this formula, in the following proposition, we provide a sufficient condition for a polynomial reconstruction Q i+θ

to be a (k + 2)-th order accurate approximation of ū(x + θ) for θ ∈ [0, 1).

Proposition 2.1. Let k ≥ 0 be an even integer, Ri ∈ Pk be given by (4), and u be a smooth function u : R ∈ R. Suppose we have a 
piecewise polynomial R(x) =∑

i Ri(x)χi(x), which satisfies

u(�)
i = R(�)

i +O(�xk+2−�), 0 ≤ � ≤ k, whenever � is an even integer

u(�)
i − u(�)

i+1 = R(�)
i − R(�)

i+1 +O(�xk+2−�), 0 ≤ � < k, whenever � is an odd integer.
(12)

Then, the reconstruction Q i+θ gives a (k + 2)-th order approximation of the sliding average ū(xi+θ ) for any θ ∈ [0, 1).

Proof. For detailed proof, see Appendix A. �
Remark 2.2.

1. The reconstruction Q i+θ approximates ū(xi+θ ) on the basis of cell average values {ūi}i∈I . Similarly, we can extend the 
idea of reconstruction to the framework of point values, which are used in conservative finite difference methods in 
section 4.

2. We also note that the second condition in (12) can be easily satisfied. Let k ≥ 0 be an even integer, and consider 
a function u(x) ∈ Ck+2(R), and its primitive function U (x) := ∫ x

−∞ u(y) dy ∈ Ck+3(R). We first look for a polynomial 
Pi(x) ∈Pk+1 such that

Pi(xi− 1
2 + j) = U (xi− 1

2 + j), j = −r, · · · , s + 1, r + s = k.

Then, the classical interpolation theory gives

U (x) − Pi(x) = 1

(k + 2)! U (k+2)(ξi)

s+1∏
j=−r

(x − xi− 1
2 + j), ξi ∈ (xi− 1

2 −r, xi+ 1
2 +s),

its first order derivative pi(x) ≡ P ′
i(x) ∈Pk interpolates u in the sense of cell-average:

1

�x

xi+ j+�x/2∫
xi+ j−�x/2

pi(y)dy = ūi+ j, j = −r, · · · , s,

and, for 0 ≤ � ≤ k, its (� + 1)-th derivative p(�)
i (x) ≡ P (�+1)

i (x) ∈Pk−� satisfies

u(�)(x) − p(�)
i (x) = U (�+1)(x) − P (�+1)

i (x) = 1

(k + 2)! U (k+2)(ξi)
d�+1

dx�+1

⎛
⎝ s+1∏

j=−r

(x − xi− 1
2 + j)

⎞
⎠ . (13)

Similarly, we can find polynomials pi+1(x) ∈Pk and Pi+1(x) ∈Pk+1 such that

u(�)(x + �x) − p(�)
i+1(x + �x) = U (�+1)(x + �x) − P (�+1)

i+1 (x + �x)

= 1

(k + 2)! U (k+2)(ξi+1)
d�+1

dx�+1

⎛
⎝ s+1∏

j=−r

(x + �x − xi+1− 1
2 + j)

⎞
⎠ ,

where ξi+1 ∈ (x 1 , x 3 ). Then, the relation U (k+2)(ξi) − U (k+2)(ξi+1) =O (�x), gives
i+ 2 −r i+ 2 +s

5
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(
u(�)(xi) − p(�)

i (xi)
)

−
(

u(�)(xi+1) − p(�)
i+1(xi+1)

)

= 1

(k + 2)!
(

U (k+2)(ξi) − U (k+2)(ξi+1)
)⎧⎨
⎩ d�

dx�

⎛
⎝ s+1∏

j=−r

(x − xi− 1
2 + j)

⎞
⎠
⎫⎬
⎭

x=xi

= O
(
(�x)k+2−�

)
.

3. If R(�)
i can be represented with a Lipschitz function F�:

R(�)
i = F� (ūi−r, · · · , ūi+s)

which satisfies

F� (ūi−r, · · · , ūi+s) − u(�)(xi) = O
(
(�x)k+1−�

)
,

the condition (12) is also satisfied. For more details, we refer to Appendix B.

In Proposition 2.1, we see that the choice of an even integer k ≥ 0 leads to the improvement of accuracy. In such a case, 
we show that the reconstruction Q i+θ based on linear weights coincides with the classical interpolation.

Proposition 2.2. Let k ≥ 0 be an even integer with k = 2r. For each i ∈ I , assume that we have a basic reconstruction Ri(x) ∈ Pk, 
which is a polynomial of degree k in (4) and interpolates the function u in the sense of cell averages:

1

�x

x
i+ j+ 1

2∫
x

i+ j− 1
2

Ri(x)dx = ūi+ j, −r ≤ j ≤ r, (14)

with a symmetric stencil Si := {i − r, i − r + 1, · · · , i + r}. Then, the reconstruction Q i+θ in (7) based on Ri and Ri+1 , is the Lagrange 
polynomial L(x) that interpolates ūi+ j , for −r ≤ j ≤ r + 1, where x = xi + θ�x and θ ∈ [0, 1).

The proof is based on the observation that interpolation in the sense of the cell averages is equivalent to point-wise 
interpolation of sliding averages at cell center, which in turn, is equivalent to point-wise interpolation of primitive function 
at cell edges. The proof is provided in [25].

Remark 2.3. For k = 0, the only possible choice is to set Ri(x) ≡ ūi and the resulting reconstruction Q i+θ reduces to the 
linear interpolation constructed from two points ūi and ūi+1.

In the following proposition, we show that total mass is preserved for any θ -shifted summation, θ ∈ [0, 1).

Proposition 2.3. Assume that Ri(x) of the form (4) are polynomials satisfying

1

�x

x
i+ 1

2∫
x

i− 1
2

Ri(x)dx = ūi, i ∈ I, (15)

and Q i+θ is constructed according to (7). Then, for periodic functions ū(x) with period L = N�x, N ∈N

N∑
i=1

Q i+θ =
N∑

i=1

ūi, (16)

for any θ ∈ [0, 1).

Proof. Since θ does not depend on i,

N∑
i=1

Q i+θ =
N∑

i=1

⎛
⎜⎜⎝ 1

�x

x
i+ 1

2∫
x

i− 1 +θ

Ri(x)dx + 1

�x

x
i+ 1

2 +θ∫
x

i+ 1

Ri+1(x)dx

⎞
⎟⎟⎠
2 2

6
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Table 1
Relative conservation errors (19) of the reconstruction for ū1 (17)
and ū2 (18). Numerical solutions are obtained with Nx = 40.

Reconstruction ū1 in (17) ū2 in (18)

Q-CWENO23 4.4409e-16 7.7716e-16
GWENO34 1.1102e-15 2.8523e-05

=
N∑

i=1

⎛
⎜⎜⎝ 1

�x

x
i+ 1

2∫
x

i− 1
2 +θ

Ri(x)dx + 1

�x

x
i− 1

2 +θ∫
x

i− 1
2

Ri(x)dx

⎞
⎟⎟⎠

=
N∑

i=1

1

�x

x
i+ 1

2∫
x

i− 1
2

Ri(x)dx =
N∑

i=1

ūi .

Here we used the periodicity to write the second line and (15) for the last line. �
Remark 2.4. We remark that this summation preserving property can be useful when our reconstruction is applied to the 
semi-Lagrangian treatment of a constant convection term, where characteristic curves are given by parallel lines for each 
grid point. In such cases, the proposed reconstruction attains conservation at a discrete level, hence it can be applied to the 
simulation of physical models satisfying this conservation property. Considerable examples are the BGK type models of the 
Boltzmann equation of rarefied gas dynamics. We can also apply this to the splitting method for the Vlasov-Poisson system 
in plasma physics. These problems will be considered in the second part of this paper.

In the following section, we will show that our reconstruction (7) inherits some properties of the basic reconstruction 
Ri(x) such as non-oscillatory property and positivity.

2.2. Choice of the basic reconstruction R

2.2.1. Non-oscillatory property
Most common reconstructions adopted in the derivation of high resolution shock capturing schemes are at the same 

time conservative and (essentially) non-oscillatory. The WENO methodology [5], for example, satisfies such properties and 
is widely adopted. Using it as a basic reconstruction R , the resulting sliding average Q based on (7) will be smoother than 
R , and will inherit its non-oscillatory property. Throughout this paper, our particular choice of R will be one of such WENO 
methodology called CWENO. For reader’s convenience, we illustrate CWENO23 [13] and CWENO35 [9] reconstructions in 
Appendix C.

Now we compare the proposed conservative reconstruction (C.3) using CWENO23 [14], which we call Q-CWENO23, with 
a generalized WENO reconstruction originally introduced in [6] in the context of semi-Lagrangian method, that we call 
GWENO. Here we use GWENO34 obtained with four points, which achieves fourth order accuracy in the smooth solution. 
Both reconstructions produce non-oscillatory solutions. If a function ū is sufficiently smooth, then conservation errors in 
the GWENO reconstruction will be negligible, however, if the function changes abruptly, then GWENO may suffer from 
noticeable conservation errors. To show this, we consider two examples:

ū1(x) = 1 + 1

2
sin(4πx), −1 ≤ x < 1, (17)

ū2(x) = 2 + exp

(
−100

(
sin(πx/2)

π/2

)2
)

sin(πx) + 0.1 cos
(
πx
) − 1 ≤ x < 1. (18)

We assumed periodicity on the boundary condition for both functions. In order to clarify the difference between solutions, 
in Table 1, we report the maximal relative conservation errors between the summation of reconstructed points Q i+θ and 
that of given points ū�(xi), � = 1, 2, over θ = 0, 0.001, . . . , 0.999 using the following measure:

Err� = maxθ

∣∣∑
i Q i+θ −∑

i ū�(xi)
∣∣∑

i ū�(xi)
, � = 1,2. (19)

From the Table 1, we conclude that Q-CWENO23 recovers the reference summation of ū�(xi) for any values of θ ∈ [0, 1). 
The errors for Q-CWENO23 and GWENO34 are both within machine precision for the smooth function ū1. In this case, the 
two reconstructions almost coincides the standard Lagrangian interpolation which is conservative. When the function is not 
smooth as in ū2, Q-CWENO23 is still fully conservative within machine precision, hence it verifies Proposition 2.3. Numerical 
experiments in which conservation is relevant will be discussed in section 5.
7
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Fig. 2. Comparison of reconstructions between Q-Parabola and Q-CWENO23. Dashed lines are exact solutions g(x) and black circles are given values on grid 
points of g(x) given in (20).

2.2.2. Positivity preserving property
In several circumstances the solution one is looking for is a non-negative function. This is the case, for example, of dis-

tribution function in kinetic equations. In such cases it may be important to preserve at a discrete level the positivity of the 
solution. Standard piecewise polynomial reconstructions (linear reconstructions) do not preserve positivity, however several 
techniques exist in the literature that can be adopted to ensure positivity in the reconstruction ([17,18]). Here we remark 
that if the basic reconstruction R is positive preserving, then the sliding average of R will provide a conservative and pos-
itivity preserving reconstruction. Given a non-negative basic reconstructions Ri(x) ≥ 0, obtained from positive cell averages 
ūi > 0 ∀i, the positivity of the reconstruction (7) directly follows from (2). Here we verify this with a numerical example. 
Let us consider a basic reconstruction Ri , obtained by the Positive Flux Conservative (PFC) technique in [20]. The technique 
has been proposed to bound the numerical solution between zero and a prescribed maximum value. Hereafter we denote 
by Q-Parabola the reconstruction (7) based on this. In Fig. 2, we compare Q-Parabola with Q-CWENO23 reconstructions. For 
this, we consider a function on the periodic domain [−1, 1]:

g(x) =
{

10−5 + 0.1 (1 + sin(πx)) , −0.5 ≤ x ≤ 0.4

10−5, otherwise
. (20)

In Fig. 2a and 2b, the difference between two reconstructions appears near [−0.65, −0.55] and [0.45, 0.55]. In case of 
Q-Parabola, the use of positive limiter always guarantees positive reconstructions for any x ∈ [−1, 1], while very small 
oscillations appear near discontinuities. On the other hand, although Q-CWENO23 always prevents spurious oscillation, 
negative solutions may occur depending on the choice of ε used for non-linear weights (C.2). In this case, we took ε = 10−6, 
and Eq. (C.2) of CWENO23 returns weights very close to the linear ones on the cell [−0.6, −0.5], which gives negative values 
on the interval [−0.65, −0.55]. We remark that if CWENO23 reconstructions give linear polynomials on two consecutive 
cells, the corresponding reconstruction (7) is to be positive between the two cell centers. Consequently, the suitable choice of 
ε can enable Q-CWENO23 to avoid both negative reconstructions and spurious oscillations. Other possible ways to guarantee 
the positivity of basic reconstructions are to adopt a linear scaling approach [26–28] or use positive limiters [29,21].

Remark 2.5. We remark that both WENO and CWENO reconstructions and PFC satisfy condition (15) required in Proposi-
tion 2.3. Therefore, the Q reconstruction (7) based on such reconstructions satisfy the conservation property (16).

3. Conservative reconstruction in 2D

In this section, we introduce the conservative reconstruction technique in two space dimensions, following the one 
adopted in the previous section. Let u :R2 →R be a smooth function and ū :R2 →R be a corresponding sliding average 
function:

ū(x, y) = 1

�x�y

y+�y/2∫ x+�x/2∫
u(x, y)dx dy.
y−�y/2 x−�x/2

8
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Fig. 3. Description of two-dimensional conservative reconstruction.

Given cell averages on grid points,

1

�x�y

∫
Ii, j

u(x)dx = ūi, j, Ii, j = [xi− 1
2
, xi+ 1

2
] × [y j− 1

2
, y j+ 1

2
],

for each (i, j) ∈ I , our goal is to approximate the function ū(x, y). Assume we have a piecewise polynomial reconstruction 
R(x, y) =∑

i, j Ri, j(x, y)χi, j(x, y), for (i, j) ∈ I , where χi, j(x, y) is the characteristic function of cell Ii, j and each Ri, j(x, y)

denotes a polynomial of degree k and has the following properties:

1. It is high order accurate in the approximation of u(x, y):

u(x, y) = Ri, j(x, y) +O
(

hk+1
)

, (x, y) ∈ Ii, j, (21)

where �x, �y =O(h).
2. It is conservative in the sense of cell averages:

1

�x�y

y
j+ 1

2∫
y

j− 1
2

x
i+ 1

2∫
x

i− 1
2

Ri, j(x, y)dx dy = ūi, j.

We start from a polynomial of degree k, Ri, j(x, y):

Ri, j(x, y) =
k∑

|�|=0

R(�)
i, j

�1!�2! (x − xi)
�1(y − y j)

�2 , (22)

where we use a multi index � = (�1, �2). Consider a cell Iθ,η
i, j whose center is (xi+θ , y j+η) for some θ, η ∈ [0, 1). In 

Fig. 3, we note that (xi+θ , y j+η) lies inside one of Ii, j, Ii+1, j, Ii, j+1, Ii+1, j+1. Let us denote a cell Ii+θ, j+η := [zi− 1
2
, zi+ 1

2
] ×

[w j− 1
2
, w j+ 1

2
] and a point (xi+θ , y j+η) := (xi + θ�x, y j + η�y). Now, we approximate ū(xi+θ , y j+η) by

ū(xi+θ , y j+η) ≈ 1

�x�y

w
j+ 1

2∫
w

j− 1
2

z
i+ 1

2∫
z

i− 1
2

R(x, y)dx dy

= 1

�x�y

y
j+ 1

2∫
w

j− 1
2

x
i+ 1

2∫
z

i− 1
2

Ri, j(x, y)dx dy + 1

�x�y

y
j+ 1

2∫
w

j− 1
2

z
i+ 1

2∫
x

i+ 1
2

Ri+1, j(x, y)dx dy

+ 1

�x�y

w
j+ 1

2∫
y

j+ 1
2

x
i+ 1

2∫
z

i− 1
2

Ri, j+1(x, y)dx dy + 1

�x�y

w
j+ 1

2∫
y

j+ 1
2

z
i+ 1

2∫
x

i+ 1
2

Ri+1, j+1(x, y)dx dy.
9
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The first integral becomes

1

�x�y

y
j+ 1

2∫
w

j− 1
2

x
i+ 1

2∫
z

i− 1
2

Ri, j(x, y)dx dy = 1

�x�y

k∑
|�|=0

R(�)
i, j

y
j+ 1

2∫
y

j− 1
2 +η

x
i+ 1

2∫
x

i− 1
2 +θ

1

�1!�2! (x − xi)
�1(y − y j)

�2 dx dy

=
k∑

|�|=0

R(�)
i, j

⎛
⎜⎜⎝ 1

�x

x
i+ 1

2∫
x

i− 1
2 +θ

(x − xi)
�1

�1! dx

⎞
⎟⎟⎠
⎛
⎜⎜⎝ 1

�y

y
j+ 1

2∫
y

j− 1
2 +η

(y − y j)
�2

�2! dy

⎞
⎟⎟⎠

=
k∑

|�|=0

(�)�α�1(θ)α�2(η)R(�)
i, j

where (�)� = (�x)�1 (�y)�2 . Similarly, we obtain

1

�x�y

y
j+ 1

2∫
w

j− 1
2

z
i+ 1

2∫
x

i+ 1
2

Ri+1, j(x, y)dx dy =
k∑

|�|=0

(�)�β�1(θ)α�2(η)R(�)
i+1, j,

1

�x�y

w
j+ 1

2∫
y

j+ 1
2

x
i+ 1

2∫
z

i− 1
2

Ri, j+1(x, y)dx dy =
k∑

|�|=0

(�)�α�1(θ)β�2(η)R(�)
i, j+1,

1

�x�y

w
j+ 1

2∫
y

j+ 1
2

z
i+ 1

2∫
x

i+ 1
2

Ri+1, j+1(x, y)dx dy =
k∑

|�|=0

(�)�β�1(θ)β�2(η)R(�)
i+1, j+1.

Denoting the approximation of ū(xi+θ , y j+θ ) by Q i+θ, j+η , we write it as

Q i+θ, j+η =
k∑

|�|=0

(�)�
(
α�1(θ)α�2(η)R(�)

i, j + β�1(θ)α�2(η)R(�)
i+1, j

+ α�1(θ)β�2(η)R(�)
i, j+1 + β�1(θ)β�2(η)R(�)

i+1, j+1

)
,

(23)

where the explicit forms of α�1 (θ), α�2 (η), β�1(θ), β�2 (η) are given in (5) and (6).

3.1. General properties

In the following proposition, as in Proposition 2.3, we show that the approximation Q i+θ, j+η is of order (k + 2) of 
accuracy for an even integer k ≥ 0. For simplicity, we assume �x, �y = h > 0.

Proposition 3.1. Let k ≥ 0 be an even integer and u be smooth enough so that a piecewise polynomial R(x, y) =∑
i, j Ri, j(x, y)χi, j(x,

y) satisfies

u(�)
i, j = R(�)

i, j +O(hk+2−|�|), � ∈ A

u(�)
i, j − u(�)

i+1, j = R(�)
i, j − R(�)

i+1, j +O(hk+2−|�|), � ∈ B

u(�)
i, j − u(�)

i, j+1 = R(�)
i, j − R(�)

i, j+1 +O(hk+2−|�|), � ∈ C

(24)

where the set A, B and C are defined

A = {� : |�| = even, 0 ≤ |�| ≤ k},
B = {� : �1 = odd, �2 = even, 0 ≤ |�| ≤ k},
C = {� : �1 = even, �2 = odd, 0 ≤ |�| ≤ k}.

(25)

Then the reconstruction Q i+θ, j+η gives a (k + 2)-th-order approximation of sliding averages ūi+θ, j+η for any θ, η ∈ [0, 1).
10
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Proof. For detailed proof, see Appendix D. �
The conservation property also holds in the 2D reconstruction (23):

Proposition 3.2. Assume that Ri, j(x, y) satisfies

1

�x�y

y
j+ 1

2∫
y

j− 1
2

x
i+ 1

2∫
x

i− 1
2

Ri, j(x, y)dx dy = ūi, j, (i, j) ∈ I.

Then, for periodic functions ū(x, y) with period (L, L) = (Nh, Nh), N ∈N∑
1≤i, j≤N

Q i+θ, j+θ =
∑

1≤i, j≤N

ūi, j,

for any θ, η ∈ [0, 1).

Proof. The proof is similar to the one-dimensional case. �
4. Semi-Lagrangian schemes for hyperbolic systems with relaxation

In this section we apply semi-Lagrangian methods based on the conservative reconstruction (7) and (23) to two semi-
linear hyperbolic relaxation systems, namely, Xin-Jin system [30] and Broadwell model [31], where a relaxation parameter 
κ makes each system stiff as κ → 0. In order to treat the stiffness, we use L-stable s-stage DIRK methods or BDF methods) 
[32]. Following conventional notation, we represent L-stable s-stage DIRK methods by Butcher’s tables:

c A
bT

where A = [ak�] is a s × s lower triangle matrix such that ak� = 0 for � > k, c = (c1, ..., cs)
T and b = (b1, ..., bs)

T are 
coefficient vectors. (For BDF based methods, we refer to Appendix E.1.) In the numerical tests for each order of accuracy, we 
will use the following high-order L-stable DIRK methods:

• second-order DIRK method (DIRK2) [33],

α α 0
1 1 − α α

1 − α α
, α = 1 −

√
2

2
. (26)

• third-order DIRK method (DIRK43) [34],

0 0 0 0 0

2γ γ γ 0 0

c c − δ − γ δ γ 0

1 1 − b2 − b3 − γ b2 b3 γ

1 − b2 − b3 − γ b2 b3 γ

(27)

with γ = 1767732205903

4055673282236
, c = 3

5
, b2 = −4482444167858

7529755066697
, b3 = 11266239266428

11593286722821
, δ = − 640167445237

6845629431997
.

4.1. Xin-Jin relaxation system

Consider a simplified Xin-Jin relaxation system [30]:

∂u

∂t
+

d∑
i=1

∂v

∂xi
= 0,

∂v

∂t
+ a2

d∑
i=1

∂u

∂xi
= 1

κ
(F (u) − v),

(28)
11
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where d denotes space dimension. When κ goes to zero, the solution in (28) converges to

∂u

∂t
+

d∑
i=1

∂ F (u)

∂xi
= 0, v = F (u), (29)

provided that the subcharacteristic condition is satisfied, i.e., maxu |F ′(u)| ≤ |a| (see [35]). For example, taking F (u) = u2/2, 
the system (29) formally becomes the Burgers equation:

∂u

∂t
+

d∑
i=1

u
∂u

∂xi
= 0, v = u2

2
. (30)

In this equation, shocks may appear in a finite time and we need to impose our scheme to be conservative to capture the 
positions of such shocks correctly. We treat this shock problem in section 5.

4.1.1. Semi-Lagrangian scheme for Xin-Jin relaxation system
Hereafter we fix a = 1. Using u − v = f and u + v = g , we rewrite (28) as

∂ f

∂t
−

d∑
i=1

∂ f

∂xi
= − 1

κ

[
F

(
g + f

2

)
− g − f

2

]

∂ g

∂t
+

d∑
i=1

∂ g

∂xi
= − 1

κ

[
g − f

2
− F

(
g + f

2

)]
.

(31)

Based on this, we consider its Lagrangian formulation:

df

dt
(X1(t), t) = − 1

κ

[
F

(
g + f

2

)
− g − f

2

]
(X1(t), t),

dX1

dt
= −1

dg

dt
(X2(t), t) = − 1

κ

[
g − f

2
− F

(
g + f

2

)]
(X2(t), t),

dX2

dt
= 1,

(32)

where 1 = (1, · · · , 1) ∈Nd and X1(tn+1) = X2(tn+1) = xi ∈Rd .
To clarify high order methods for (32), we introduce the following notation:

• The �-th stage values of f , g along the backward-characteristics which come from xi with characteristic speed −1, 1 at 
time tn + ck�t:

f̃ (k,�)
i ≈ f (xi + (ck − c�)�t, tn + c��t), g̃(k,�)

i ≈ f (xi − (ck − c�)�t, tn + c��t)

where “≈” implies the necessity of suitable reconstructions. We also denote k-th stage value of f , g on xi by

f (k)
i = f (xi, tn + ck�t), g(k)

i = g(xi, tn + ck�t)

for 1 ≤ k ≤ s where f (k)
i = u(k)

i − v(k)
i and g(k)

i = u(k)
i + v(k)

i .
• For � = 0, we set c� = 0 hence

f̃ (k,0)
i ≈ f (xi + ck�t, tn), g̃(k,0)

i ≈ g(xi − ck�t, tn). (33)

• Define a RK flux function by K1 := F (u) − v , K2 := −K1, then

K (k,�)
i, j ≈ K j(xi − λ j(ck − c�)�t, tn + c��t), j = 1,2

where λ1 = −1, λ2 = 1 and K (k)
i, j = K j(xi, tn + ck�t).

With these, we can represent a high order method compactly. Applying a L-stable s-stage DIRK method to system (32), 
we have k-stage values

f (k)
i = f̃ (k,0)

i − �t

κ

k∑
�=1

ak�K (k,�)
i,1 ,

g(k)
i = g̃(k,0)

i − �t

κ

k∑
�=1

ak�K (k,�)
i,2 ,

(34)
12
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Fig. 4. DIRK2 based SL method for Xin-Jin model. Gray circles are points where reconstruction is required.

for k = 1, . . . , s. It is worth mentioning that each k-stage value can be computed in an explicit way. After summing and 
subtracting two equations in (34), we obtain

u(k)
i = g̃(k,0)

i + f̃ (k,0)
i

2
− �t

2κ

k−1∑
�=1

ak�

(
K (k,�)

i,1 + K (k,�)
i,2

)
,

v(k)
i = g̃(k,0)

i − f̃ (k,0)
i

2
− �t

2κ

(
k−1∑
�=1

ak�

(
K (k,�)

i,2 − K (k,�)
i,1

))
+ akk�t

κ

(
F (u(k)

i ) − v(k)
i

)
.

(35)

Here we first compute u(k)
i , and use it to obtain v(k)

i . Then, we recover the values of f (k)
i and g(k)

i using the relation:

f (k)
i = u(k)

i − v(k)
i , g(k)

i = u(k)
i + v(k)

i .

Since we only consider stiffly accurate DIRK schemes, the s-stage values become the numerical solutions: f n+1
i = f (s)

i and 
gn+1

i = g(s)
i . A schematic illustration of DIRK2 based scheme is given in Fig. 4. For any term where reconstruction is required, 

we use QCWENO reconstruction (7). In a similar manner, BDF based methods can be also devised. The details are described 
in Appendix E.1.

Remark 4.1. In case of the implicit Euler method for s = 1, by taking a limit κ → 0 in (35) we obtain

un+1
i = g̃(1,0)

i + f̃ (1,0)
i

2
, vn+1

i = F (un+1
i ), (36)

for all n ≥ 0 regardless of initial data. Now, we assume �t = �x, combine (36) with (33), and use the relations u − v = f
and u + v = g to obtain

un+1
i = 1

2

(
un

i+1 + un
i−1

)− 1

2

(
F
(
un

i+1

)− F
(
un

i−1

))
.

This is the Lax–Friedrichs method of the conservation law in (29) with �t = �x.

4.2. Broadwell model

Next example is the Broadwell model of kinetic theory [31]:

∂t f + ∂x f = 1

κ
Q

∂t g − ∂x g = 1

κ
Q

∂th = − 1

κ
Q ,

(37)

where Q = h2 − f g . Introducing the fluid dynamic moment variables density ρ , momentum m, and velocity u and an 
additional variable z as follows:

ρ = f + 2h + g, m = f − g, z = f + g, (38)

the system (37) can be rewritten as

∂tρ + ∂xm = 0

∂tm + ∂xz = 0

∂t z + ∂xm = 1

2κ

(
ρ2 − 2ρz + m2

)
.

(39)
13
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Note that the original variables can be recovered by

f = z + m

2
, g = z − m

2
, h = ρ − z

2
.

As κ → 0, one can see that z goes to a local equilibrium

z → zE(ρ,m) := 1

2ρ

(
ρ2 + m2

)
= 1

2

(
ρ + ρu2

)
and the system (39) becomes the Euler equations:

∂tρ + ∂xm = 0

∂tm + ∂x

(
1

2

(
ρ + ρu2

))
= 0.

(40)

4.2.1. Semi-Lagrangian scheme for the Broadwell model
Here, we consider again DIRK methods based on Tables (26)-(27). The schemes are also explicitly solvable with algebraic 

computations. (For BDF based methods, see Appendix E.2.)
Let us denote k-th stage values by f (k)

i , g(k)
i , h(k)

i , 1 ≤ k ≤ s, and introduce the following notation:

Q (k)
i = (h(k)

i )2 − f (k)
i g(k)

i ,

Q (k,�)
i,1 ≈ Q (xi − (ck − c�)�t, tn + c��t), Q (k,�)

i,2 ≈ Q (xi + (ck − c�)�t, tn + c��t),

f (k,�)
i ≈ f (xi − (ck − c�)�t, tn + c��t), g(k,�)

i ≈ g(xi − (ck − c�)�t, tn + c��t).

Here we also use the QCWENO reconstruction (7) for interpolation. Applying a s-stage DIRK method to (37), we can write 
k-th stage values in a compact form:

f (k)
i = F (k)

i + akk�t

κ
Q (k)

i , F (k)
i := f (k,0)

i + �t

κ

k−1∑
�=1

ak� Q (k,�)
i,1

g(k)
i = G(k)

i + akk�t

κ
Q (k)

i , G(k)
i := g(k,0)

i + �t

κ

k−1∑
�=1

ak� Q (k,�)
i,2

h(k)
i = H (k)

i − akk�t

κ
Q (k)

i , H (k)
i := hn

i − �t

κ

k−1∑
�=1

ak� Q (�)
i ,

(41)

for k = 1, 2, . . . , s. For explicit computation, we first need to compute F (k)
i , G(k)

i and H (k)
i using (41). Then, we can update 

h(k)
i , f (k)

i and g(k)
i as follows:

h(k)
i = akk�t(H (k)

i + F (k)
i )(H (k)

i + G(k)
i ) + κ H (k)

i

akk�t
(

G(k)
i + 2H (k)

i + F (k)
i

)
+ κ

,

f (k)
i = H (k)

i + F (k)
i − h(k)

i , g(k)
i = H (k)

i + G(k)
i − h(k)

i .

(42)

Here the SA property also implies f n+1
i = f (s)

i , gn+1
i = g(s)

i and hn+1
i = h(s)

i .

Remark 4.2. In case s = 1 for implicit Euler method, under the assumption �t = �x, the relaxation limit κ → 0 in (42)
gives

hn+1
i = (hn

i + f n
i−1)(h

n
i + gn

i+1)

gn
i+1 + 2hn

i + f n
i−1

,

f n+1
i = hn

i + f (1,0)
i − hn+1

i , gn+1
i = hn

i + g(1,0)
i − hn+1

i .

(43)

This limiting scheme coincides with the relaxation scheme in [36] applied to the Broadwell model. Also, using the relation 
(38), we can rewrite it as follows:
14
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ρn+1
i = ρn

i − 1

2

(
mn

i+1 − mn
i−1

)+ 1

2

(
zn

i−1 − 2zn
i + zn

i−1

)
,

mn+1
i = 1

2

(
mn

i+1 + mn
i−1

)− 1

2

(
zn

i+1 − zn
i−1

)
,

zn+1
i = (ρn+1

i )2 + (mn+1
i )2

2ρn+1
i

.

We note that the scheme projects numerical solutions to equilibrium after one time step.

5. Numerical tests

Our main interest is to confirm the performance of the proposed reconstruction in one and two dimensions. For nu-
merical experiments, we consider the reconstruction (7) and (23) based on CWENO reconstructions. This section is divided 
into three parts: 1D Xin-Jin model (28), 1D Broadwell model (37) and 2D Xin-Jin model (28). For each system, we check 
the accuracy of the corresponding semi-Lagrangian schemes and consider the related shock problems which arise in the 
relaxation limit κ → 0. Considering that the maximum characteristic speed of Broadwell model (37) and 1D Xin-Jin model 
(28) with d = 1 is given by 1, we set CFL= �t/�x using uniform grid points based on �x and �t . For 2D Xin-Jin model 
(28) with d = 2, we use CFL= √

2�t/�x = √
2�t/�y.

5.1. 1D case for Xin-Jin model

Here tests are based on the numerical method in subsection 4.1.1. Note that we adopt F (u) = u2/2.

5.1.1. Accuracy test
We take well-prepared initial data up to first order in κ [37]:

u0(x) = 0.7 + 0.2 sin(πx), v0(x) = u2
0(x)

2
+ κ

(
u2

0(x) − 1
)

∂xu0(x), (44)

where periodic boundary conditions are imposed on x ∈ [−1, 1]. In the limit κ → 0 with F (u) = u2/2, system (28) becomes 

the Burgers equation where shock appears after the positive minimum time: Tb := inf
u′

0<0

{
− 1

u′
0(x)

}
. In view of this, we take 

a final time as T f = 1 which is less than the breaking time Tb = 5/π ≈ 1.5915. In this test, we use several values of 
CFL=�t/�x < 1. We remark that the subcharacteristic condition maxu |F ′(u)| < 1 is always satisfied. In Table 2, we verify 
that a DIRK2 based method attains its desired accuracy between 2 and 3. In Fig. 5, DIRK43 based methods attain the desired 
accuracy between 3 and 5, while some order reduction appears in the intermediate regimes. We remark that the spatial 
errors are dominant for small CFL numbers, which make it easy to observe the order of spatial reconstructions. On the 
other hand, for large CFL numbers time errors become dominant, thus determining the numerical order of accuracy of the 
method.

5.1.2. Shock tests
To confirm the conservation property of the proposed reconstruction in shock problems, we here compare numerical 

solutions obtained by conservative semi-Lagrangian schemes with non-conservative ones.
• Smooth initial data. We first take a smooth initial data

u0(x) = 0.7 + 0.2 sin(πx), v0(x) = u2
0(x)

2
, (45)

where periodic boundary condition is imposed on x ∈ [−1, 1]. We use grid points of Nx = 160 up to final time T f = 4. Each 
time step is taken by �t = CFL�x. For each time t = tn , we compute the relative conservation error as

En
con :=

∣∣∑
i un

i −∑
i u0

i

∣∣∣∣∑
i u0

i

∣∣ .

In Fig. 6, we compare the numerical solutions obtained from our reconstruction, linear interpolation (first order scheme), 
GWENO34 and GWENO46 [6] with the reference solution in [38]. We observe that the use of our reconstruction and linear 
interpolation leads to correct shock position. Also, the corresponding conservation errors show very small change as time 
flows. In contrast, conservation errors become bigger when we adopt GWENO34 and GWENO46 reconstructions after time 
t = 1, which give wrong shock positions. (See Fig. 6.)
15
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Table 2
Accuracy test for 1D Xin-Jin model. Initial data is associated to (44). The errors and convergence rates are reported for DIRK2-QCWENO23.

Nx-2Nx κ = 10−8 κ = 10−6 κ = 10−4 κ = 10−2 κ = 10−0

error rate error rate error rate error rate error rate
�t
�x = 0.1 160-320 1.41e-05 2.99 1.41e-05 2.99 1.40e-05 2.99 7.40e-06 3.01 4.16e-06 3.00

320-640 1.78e-06 1.78e-06 1.76e-06 9.22e-07 5.22e-07
�t
�x = 0.3 160-320 1.27e-05 2.62 1.27e-05 2.62 1.22e-05 2.71 6.38e-06 2.77 3.44e-06 2.99

320-640 2.07e-06 2.07e-06 1.86e-06 9.33e-07 4.34e-07
�t
�x = 0.5 160-320 2.02e-05 1.99 2.02e-05 1.99 1.89e-05 2.09 7.79e-06 2.15 2.55e-06 2.96

320-640 5.07e-06 5.06e-06 4.45e-06 1.75e-06 3.27e-07
�t
�x = 0.7 160-320 4.02e-05 1.98 4.02e-05 1.98 3.82e-05 2.04 1.44e-05 2.04 1.62e-06 2.86

320-640 1.02e-05 1.02e-05 9.28e-06 3.50e-06 2.24e-07
�t
�x = 0.9 160-320 6.80e-05 1.99 6.80e-05 1.99 6.53e-05 2.04 2.48e-05 2.06 8.59e-07 2.35

320-640 1.71e-05 1.71e-05 1.59e-05 5.94e-06 1.69e-07

Fig. 5. Accuracy tests for 1D Xin-Jin model. Initial data is associated to (44). x-axis is for the relaxation parameter κ and y-axis is for order of accuracy 
based on Nx = 160, 320, 640.

• Discontinuous initial data. In this test, we again solve the system (28) with initial data

u0(x) =
{

0.9, x ≤ 0

0, x > 0
, v0(x) = u2

0(x)

2
(46)

under freeflow boundary condition on x ∈ [−1, 1] with grid points Nx = 160 up to final time T f = 1. In this test, we 
compute the conservation error using

En
con :=

∣∣∑
i un

i �x − 0.9 ∗ (1 + stn)
∣∣

0.9
,

where s is the speed of shock, which is given by s = 0.45.
We show our reconstruction can be more effective in capturing shock position. In Fig. 6, we again compare the numerical 

solutions for different reconstructions. As in the previous shock test, our reconstruction and linear interpolation show better 
performance in capturing shock position compared to GWENO34 and GWENO46 reconstructions.

Remark 5.1. In the section 5.1, we confirmed that for Xin-Jin model high-order DIRK based SL schemes work for all ranges of 
relaxation parameters. We also observed that, in the limit κ → 0, oscillations appear near discontinuities for all high-order 
RK and BDF based SL schemes. To understand these phenomena, as a simple case, let us consider F (u) = bu for |b| < 1. We 
will show that oscillation appears even after one step t = t1 for arbitrary second order DIRK based SL schemes with linear 
interpolation (see Fig. 7). We use the Butcher’s table given by

α1 α1 0
1 1 − α2 α2

1 − α2 α2

, α2 =
1
2 − α1

1 − α1
.

16
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Fig. 6. Shock tests for 1D Xin-Jin model. Left: initial data (45) with CFL= 0.5 Right: initial data (46) with CFL= 0.3. The results are obtained by DIRK43 
based SL methods for κ = 10−8 with various reconstructions.

Then, with the initial conditions (46), the following calculation verifies our remark. • Assume CFL= �t
�x ≤ 1, and 

(u0
i−2, u

0
i−1, u

0
i , u

0
i+1, u

0
i+2) = (0.9, 0.9, 0.9, 0.9, 0). Then, in the limit κ → 0, we have

u1
i =

(
1 − �t

)
u0

i + �t
(u0

i−1 + u0
i+1) + b�t

(u0
i−1 − u0

i+1) + (b2 − 1)(�t)2

2
(u0

i−2 − 2u0
i + u0

i+2)
�x 2�x 2�x 8(�x)

17
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Fig. 7. Shock test associated to Remark 5.1. For κ = 10−8, DIRK2 based SL scheme is implemented with linear interpolation. Note that oscillation appears at 
T f = �t = 0.00625.

= 0.9

(
1 + (1 − b2)(�t)2

8(�x)2

)
> 0.9,

for any α1 = 0, 1. In [39] the authors show that implicit RK and multistep schemes of order higher than one cannot be a 
TVD when applied to Burgers equation.

5.2. 1D Broadwell model

Now, we move on to the semi-Lagrangian schemes for 1D Broadwell model (37).

5.2.1. Accuracy test
To check the accuracy of the proposed schemes, we consider well-prepared data [3]:

ρ0(x) = 1 + aρ sin
2π

L
x, u0(x) = 1

2
+ au sin

2π

L
x,

z0(x) = zE(ρ0(x), u0(x)) + κz1(ρ0(x), u0(x))
(47)

where aρ = 0.3, au = 0.1, L = 20, T f = 30, and

zE(ρ0,m0) = 1

2ρ0

(
ρ2

0 + m2
0

)
, z1(ρ0,m0) = − H(ρ0,m0)

ρ0
,

H(ρ0,m0) =
(

1 − ∂ρ zE + (∂mzE)2
)

∂xm0 + (∂ρ zE∂mzE)∂xρ0.

The periodic condition is imposed on [−20, 20] upto final time T f = 30. We take different CFL numbers less than 1. The 
order of convergence is based on the grid points Nx = 160, 320, 640. Here the desired accuracy for DIRK2 is between 2 and 
3, while for DIRK43, it is between 3 and 5.

In Fig. 8, one can see that the DIRK2 based method attains the desired accuracy for all ranges of κ . On the other hand, in 
the limit κ → 0, the DIRK43 based method shows order reduction, which could be prevented by adopting the BDF3 based 
method. For small CFL numbers, space errors dominate so the order of accuracy comes from spatial reconstruction, while 
for large CFL time discretization errors dominate so the order of accuracy comes from time integration.

5.3. Shock tests

We consider a test in [2] with the following initial data:

(ρ, m, z) =
{

(2,1,1) x < 0.2

(1,0.13962,1) x > 0.2
, x ∈ [−1,1]. (48)

In Fig. 9, we depict numerical solutions at final time T f = 0.5 using Nx = 200. For comparison, we also plot the reference 
solutions obtained by solving (39) with an Eulerian approach based on finite difference scheme using RK4 and WENO35. 
To compute the reference solutions, we take a sufficiently small time step �t = 0.7�x with �x = 0.5 × 10−3 for κ = 10−q , 
18
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Fig. 8. Accuracy tests for 1D Broadwell model. Initial data is associated to (47). x-axis is for the relaxation parameter κ and y-axis is for order of accuracy 
based on Nx = 160, 320, 640.

q = 0, 1, 2, 3. Note that the proposed schemes allow large CFL > 1 with the choice of relatively large relaxation parameters 
κ = 10−q , q = 0, 1, 2, still showing good agreement to the reference solution. In case of κ = 10−3, since we observe some 
oscillations appearing near the discontinuity for CFL > 0.8, we plot solutions for CFL ≤ 0.8. With κ = 10−3, our solution 
captures the same shock position of reference solution, and the mismatch around x = 0 becomes negligible as we take 
smaller time steps.
19
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Fig. 9. Shock tests for 1D Broadwell model. Macroscopic variables ρ (red - top), m (blue - bottom) and z (black - middle). We use the initial data in (48).

5.4. 2D simplified Xin-Jin model

For 2D tests, we here consider the DIRK2 based method.

5.4.1. Accuracy test
Here, we use well-prepared initial data:

u0(x, y) = 0.8 sin2(πx) sin2(π y), v0(x, y) = u2
0(x, y)

2
+ κ

(
u2

0(x, y) − 1
)

(∂xu0(x, y) + ∂yu0(x, y)). (49)

The computation is performed in (x, y) ∈ [0, 1]2 with the periodic boundary condition with Nx = N y . In this problem, the 

breaking time is Tb = 1

0.6π
√

3
≈ 0.3063, we take a final time as T f = 0.15. Since |u0| < 1, the subcharacteristic condition 

is satisfied. We restrict the ratio to satisfy 
√

2
�t

�x
= √

2
�t

�y
≤ 1. In Fig. 10, we confirm that SL schemes based on DIRK2 and 

BDF2 attains desired accuracy between 2 and 3 for all ranges of the relaxation parameter κ .

5.4.2. Shock tests
Now, we move on to 2D shock tests for (28).

• Smooth initial data. Here, we solve the relaxation system (28) to capture the profile of the shock in Burgers equation. For 
this, we consider the following initial data:

u0(x, y) = 0.8 sin2(πx) sin2(π y), v0(x, y) = u2
0(x, y)

2
, (50)
20



S.Y. Cho, S. Boscarino, G. Russo et al. Journal of Computational Physics 432 (2021) 110159
Fig. 10. Accuracy tests for 2D Xin-Jin model. Initial data is associated to (49). x-axis is for the relaxation parameter κ and y-axis is for order of accuracy 
based on N2

x = N2
y = 1602, 3202, 6402.

Fig. 11. Shock test for 2D Xin-Jin model. Initial data is associated to (50). Numerical solutions are obtained by DIRK2 based SL scheme for κ = 10−4. Mesh 
plot (left) and contour plot (right) of the solution u with Nx = N y = 200, 400.

on the periodic domain (x, y) ∈ [0, 1]2 with grid points Nx = N y = 200, 400 and mesh ratio 
√

2
�t

�x
= √

2
�t

�y
= 0.25. In 

Fig. 11, results are reported for t = 2. Here, we only present result using 2D SL methods based on DIRK2 and Q-CWENO23.
• Discontinuous initial data. This test has been solved by solving a viscous Burgers equation in [40]. Here, we instead 

solve the relaxation system (28) to capture the correct shock position of Burgers equation. Initial data is given by
21
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Fig. 12. Shock test for 2D Xin-Jin model. Initial data is associated to (51). Numerical solutions are obtained by DIRK2 based SL scheme for κ = 10−4. Mesh 
plot (left) and contour plot (right) of the solution u with Nx = N y = 200, 400.

u0(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−0.5, x > 0, y > 0

0.25, x ≤ 0, y > 0

0.25, x > 0, y ≤ 0

0.5, x ≤ 0, y ≤ 0

, v0(x, y) = u2
0(x, y)

2
(51)

with freeflow boundary condition (x, y) ∈ [−1, 1].2 with grid points Nx = N y = 200, 400 and mesh ratio 
√

2
�t

�x
= √

2
�t

�y
=

0.25. In Fig. 12, we plot the results for t = 2. We only present result using 2D SL methods based on DIRK2 and Q-CWENO23.

6. Conclusions

We propose a simple technique to restore conservation in semi-Lagrangian schemes when non-linear reconstructions 
are adopted to avoid spurious oscillation or to preserve the positivity of the solution. The reconstruction is obtained by 
taking the sliding average of a basic non-oscillatory (positive-preserving) cell-average to point-wise reconstruction R , thus 
it inherits the non-oscillatory (positivity-preserving) property of R . A detailed analysis is performed of the proposed recon-
struction, proving its accuracy and conservation properties, and its consistency with Lagrange interpolation in the case of 
linear basic reconstruction. A two-dimensional extension is also considered and analyzed. The technique is then tested on 
the Xin-Jin relaxation system in one and two space dimensions, and on the 1D Broadwell model. Applications to BGK model 
and Vlasov-Poisson system will be presented in the second part of the paper.
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Appendix A. Proof of Proposition 2.1

Proof. We first write (7) as

Q i+θ =
k∑

�=even

(�x)�
(
α�(θ)R(�)

i +
(

1

(� + 1)!
(

1

2

)�

− α�(θ)

)
R(�)

i+1

)
+

k∑
�=odd

(�x)�α�(θ)
(

R(�)
i − R(�)

i+1

)
. (A.1)

This, together with the assumption (12), gives

Q i+θ =
k∑

�=even

(�x)�
(
α�(θ)u(�)

i +
(

1

(� + 1)!
(

1

2

)�

− α�(θ)

)
u(�)

i+1

)
+

k∑
�=odd

(�x)�α�(θ)
(

u(�)
i − u(�)

i+1

)
+ (�x)k+2

=
k∑

�=0

(�x)�
(
α�(θ)u(�)

i + β�(θ)u(�)
i+1

)
+ (�x)k+2.

Using Taylor’s expansion u(�)
i+1 = u(�)

i + u(�+1)
i �x + 1

2 u(�+2)
i (�x)2 + 1

6 u(�+3)
i (�x)3 + · · · , we obtain

Q i+θ =
k∑

�=0

(�x)�
(
α�(θ)u(�)

i + β�(θ)

k+1−�∑
m=0

u(�+m)
i

m! (�x)m

)
+O

(
(�x)k+2

)

=
k∑

�=0

(�x)�α�(θ)u(�)
i +

k∑
�=0

k−�∑
m=0

(�x)�+mβ�(θ)
u(�+m)

i

m! +
k∑

�=0

(�x)k+1β�(θ)
u(k+1)

i

(k + 1 − �)! +O
(
(�x)k+2

)

=:
k∑

�=0

(�x)�λ�(θ)u(�)
i +

k∑
�=0

(�x)k+1β�(θ)
u(k+1)

i

(k + 1 − �)! +O
(
(�x)k+2

)
,

where λ�(θ) = α�(θ) +
�∑

m=0

βm(θ)
1

(� − m)! . Note that

k∑
�=0

β�(θ)
1

(k + 1 − �)! = αk+1(θ) +
k+1∑
m=0

βm(θ)
1

(k + 1 − m)! = λk+1(θ).

The first equality follows from αk+1(θ) + βk+1(θ) = 0, which holds due to (9) for an even integer k. To sum up,

Q i+θ =
k+1∑
�=0

(�x)�λ�(θ)u(�)
i +O

(
(�x)k+2

)
,

and this can be written explicitly as follows:
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Q i+θ = u(0)
i + θu(1)

i �x +
(

θ2

2
+ 1

24

)
u(2)

i (�x)2 +
(

θ3

6
+ θ

24

)
u(3)

i (�x)3 +
(

θ4

24
+ θ2

48
+ 1

1920

)
u(4)

i (�x)4

+
(

θ5

120
+ θ3

144
+ θ

1920

)
u(5)

i (�x)5 +
(

θ6

720
+ θ4

576
+ θ2

3840
+ 1

322560

)
u(6)

i (�x)6 + · · · +O
(
(�x)k+2

)

=
k+1∑
�=0

θ�

�! u(�)
i (�x)� + (�x)2

24

k−1∑
�=0

θ�

�! u(�+2)
i (�x)� + (�x)4

1920

k−3∑
�=0

θ�

�! u(�+4)
i (�x)�

+ (�x)6

322560

k−5∑
�=0

θ�

�! u(�+4)
i (�x)� + · · · +O

(
(�x)k+2

)
.

Consequently, we can derive

Q i+θ = u(xi+θ ) + (�x)2

24
u(2)(xi+θ ) + (�x)4

1920
u(4)(xi+θ ) + · · · +O

(
(�x)k+2

)

=
k∑

�=even

(�x)� u(�)(xi+θ )
1

(� + 1)!
(

1

2

)�

+O
(
(�x)k+2

)

= ū(xi+θ ) +O
(
(�x)k+2

)
. �

Appendix B. Proof of Remark 2.2

Consider any polynomial reconstruction Ri(x), Ri+1(x) ∈Pk of the form (4) such that

u(�)(xi) − R(�)
i = O

(
(�x)k+1−�

)
, u(�)(xi+1) − R(�)

i+1 = O
(
(�x)k+1−�

)
.

From the assumption that R(�)
i is represented by Lipschitz functions F� of {ūi−r, · · · , ̄ui+s}, we can write it as

R(�)
i = u(�)(xi) + F� (ūi−r, · · · , ūi+s) − u(�)(xi),

where F� (ūi−r, · · · , ūi+s)− u(�)(xi) =O
(
(�x)k+1−�

)
. Also, in (13), one can see that the function p(�)

i ∈Pk−� is written with 
a Lipschitz function G� of {ūi−r, · · · , ̄ui+s} such that

p(�)
i = u(�)(xi) + G� (ūi−r, · · · , ūi+s) − u(�)(xi), G� (ūi−r, · · · , ūi+s) − u(�)(xi) = O

(
(�x)k+1−�

)
.

Now, let us define H� ({ūi−r, · · · , ūi+s}) by

H� (ūi−r, · · · , ūi+s) := G� (ūi−r, · · · , ūi+s) − F� (ūi−r, · · · , ūi+s) ,

then it is Lipschitz continuous w.r.t. {ūi−r , · · · , ̄ui+s} and H� (ūi−r, · · · , ūi+s) =O
(
(�x)k+1−�

)
. Consequently,

u(�)(xi) − R(�)
i −

(
u(�)(xi+1) − R(�)

i+1

)
=
{

u(�)(xi) − p(�)
i −

(
u(�)(xi+1) − p(�)

i+1

)}
+
(

p(�)
i − R(�)

i

)
−
(

p(�)
i+1 − R(�)

i+1

)
= O

(
(�x)k+2−�

)
+ H� ({ūi−r, · · · , ūi+s}) − H� ({ūi+1−r, · · · , ūi+1+s})

= O
(
(�x)k+2−�

)
.

Appendix C. Reviews on CWENO reconstructions

C.1. CWENO23 reconstruction

Here, we review the CWENO23 scheme described in [13]. We start from a polynomial of degree two P i
O P T (x) which 

interpolates ūi−1, ̄ui, ̄ui+1 in the sense of cell averages:

1

�x

x
i+l+ 1

2∫
x

i+l− 1
2

P i
O P T (x)dx = ūi+l, l = −1,0,1.

Then, this polynomial can be written as P i (x) = ũi + ũ′(x − xi) + 1 ũ′′(x − xi)
2 with
O P T i 2 i
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ũi = ūi − 1

24
(ūi+1 − 2ūi + ūi−1), ũ′

i = ūi+1 − ūi−1

2�x
, ũ′′

i = ūi+1 − 2ūi + ūi−1

(�x)2
,

and it gives a third order accurate reconstruction of u in Ii :

P i
O P T (x) = u(x) +O(�x)3, ∀x ∈ Ii .

In the CWENO23 reconstruction, to avoid oscillations, we use the following convex combination:

Ri(x) =
∑

k

ωi
k P i

k(x),
∑

k

ωi
k = 1, ωi

k ≥ 0, k ∈ {L, C, R} (C.1)

where P i
L and P i

R are first order polynomials such that

x
i+l+ 1

2∫
x

i+l− 1
2

P i
L(x)dx = ūi+l, l = −1,0,

x
i+l+ 1

2∫
x

i+l− 1
2

P i
R(x)dx = ūi+l, l = 0,1,

which gives

P i
L(x) = ūi + ūi − ūi−1

�x
(x − xi), P i

R(x) = ūi + ūi+1 − ūi

�x
(x − xi).

The second order polynomial P i
C (x) is obtained from

P i
C (x) := 1

CC

(
P i

O P T (x) − CL P i
L(x) − C R P i

R(x)
)

,

with a choice of positive coefficients such that

CL, C R , CC ≥ 0, CL = C R , CL + CC + C R = 1.

A common choice is to set CL = C R = 1/4, CC = 1/2. The non-linear weights ωi
k in (C.1) are chosen as follows:

ωi
k = αi

k∑
� αi

�

, αi
k = Ci

(ε + β i
k)

p
, k, � ∈ {L, C, R} (C.2)

where the constant ε is used to avoid the denominator vanishing and the constant p weights the smoothness indicator. We 
use ε = (�x)2 or 10−6 and p = 2 in the numerical tests. An explicit expression of smoothness indicators is the following:

β i
L = (ūi − ūi−1)

2, β i
R = (ūi+1 − ūi)

2,

β i
C = 13

3
(ūi+1 − 2ūi + ūi−1)

2 + 1

4
(ūi+1 − ūi−1)

2.

We refer to [12] for details on CWENO reconstruction. As a consequence, the reconstruction (C.1) is third order accurate 
in smooth region and automatically becomes second order accurate in the presence of discontinuity. The final form of the 
CWENO23 reconstruction Ri(x) is given by

Ri(x) = R(0)
i + R(1)

i (x − xi) + 1

2
R(2)

i (x − xi)
2, (C.3)

where

R(0)
i = ūi − 1

12
ωi

C (ūi+1 − 2ūi + ūi−1)

R(1)
i = ωi

L
ūi − ūi−1

�x
+ ωi

R
ūi+1 − ūi

�x
+ ωi

C
ūi+1 − ūi−1

2�x

R(2)
i = 2ωi

C
ūi+1 − 2ūi + ūi−1

(�x)2
.

The CWENO23Z reconstruction also takes the form (C.3), but its non-linear weights are calculated as follows:

ωi
k = αi

k∑
� αi

�

, αi
k = Ci

(
1 + τ

ε + β i
k

)p

, k, � ∈ {L, C, R} (C.4)

where p ≥ 1 and τ = ∣∣β i − β i
∣∣.
R L

25



S.Y. Cho, S. Boscarino, G. Russo et al. Journal of Computational Physics 432 (2021) 110159
Below, we prove that the condition (12) in Proposition 2.1 is satisfied both for CWENO23 and CWENO23Z if a given 
function u is smooth enough. This shows that the corresponding reconstruction (C.3) becomes a fourth order accurate 
reconstruction for smooth solutions. We first check if the condition (12) is satisfied by (C.3). For this, we assume that u is 
smooth enough so that ωi

C = 1
2 + ei

C for ei
C = O ((�x)2). We refer to [41] for the assumption. Then, we have

R(0)
i = ūi − 1

12

(
CC + ei

C

)
(ūi+1 − 2ūi + ūi−1)

= ūi − 1

12

(
1

2
+O((�x)2)

)(
(�x)2ū′′

i +O((�x)4)
)

= ūi − 1

24

(
(�x)2ū′′

i

)
+O((�x)4)

= ui +O((�x)4).

(C.5)

Similarly, we write ωi
L = 1

4 + ei
L and ωi

R = 1
4 + ei

R with ei
L, e

i
R =O((�x)2). Then,

R(1)
i = ωi

L
ūi − ūi−1

�x
+ ωi

R
ūi+1 − ūi

�x
+ ωi

C
ūi+1 − ūi−1

2�x

=
(

1

4
+ ei

L

)[
ū′

i − �x

2
ū′′

i + (�x)2

6
ū′′′

i

]
+
(

1

4
+ ei

R

)[
ū′

i + �x

2
ū′′

i + (�x)2

6
ū′′′

i

]

+
(

1

2
+ ei

C

)[
ū′

i + 1

6
(�x)2ū′′′

i

]
+O((�x)3)

= ū′
i + (�x)2

6
ū′′′

i +O((�x)3).

In the last equality, we used 
∑

k ωi
k = 1. Hence, we can obtain

R(1)
i − R(1)

i+1 = ū′
i − ū′

i+1 + (�x)2

6
(ū′′′

i − ū′′′
i+1) +O((�x)3)

= ū′
i − ū′

i+1 − (�x)2

24
(ū′′′

i − ū′′′
i+1) +O((�x)3)

=
(

ū′
i − (�x)2

24
ū′′′

i

)
−
(

ū′
i+1 − (�x)2

24
ū′′′

i+1

)
+O((�x)3) = u′

i − u′
i+1 +O((�x)3).

(C.6)

It is straightforward to show that

R(2)
i = 2ωi

C
ūi+1 − 2ūi + ūi−1

(�x)2
= 2

(
1

2
+ ei

C

)[
ūi+1 − 2ūi + ūi−1

(�x)2

]

=
(

1 +O((�x)2)

)[
ū′′

i + (�x)2

12
ū(4)

i

]
= u′′

i +O((�x))2.

(C.7)

From (C.5), (C.6) and (C.7), we confirm that (C.3) satisfies the condition (15) with k = 2.
Consequently, the condition (12) in Proposition 2.1 is satisfied by both CWENO23 and CWENO23Z.

C.2. CWENO35 reconstruction

We can take CWENO35 reconstruction [9] as a basic reconstruction R . Here we represent it as the following explicit form 
of Ri(x):

Ri(x) =
4∑

�=0

R(�)
i

�! (x − xi)
(�), (C.8)

with
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R(0)
i = ωC

(
577

480
ūi − 29

240
ūi−1 + 19

960
ūi−2 − 29

240
ūi+1 + 19

960
ūi+2

)

− ω2

(
ūi−1 − 26ūi + ūi+1

24

)
+ ω1

(
23

24
ūi + 1

12
ūi−1 − 1

24
ūi−2

)
+ ω3

(
23

24
ūi + 1

12
ūi+1 − 1

24
ūi+2

)

R(1)
i = −ωC

8ūi−1 − ūi−2 − 8ūi+1 + ūi+2

12�x
+ ω1

3ūi − 4ūi−1 + ūi−2

2�x
− ω3

3ūi − 4ūi+1 + ūi+2

2�x
− ω2

ūi−1 − ūi+1

2�x

R(2)
i = 2

(
ω1

ūi − 2ūi−1 + ūi−2

2(�x)2
+ ω2

ūi−1 − 2ūi + ūi+1

2(�x)2
+ ω3

ūi − 2ūi+1 + ūi+2

2(�x)2

)

− 2ωC

(
10ūi − 6ūi−1 + ūi−2 − 6ūi+1 + ūi+2

4(�x)2

)

R(3)
i = 6ωC

(
ūi−1 − ūi+1

3(�x)3
− ūi−2 − ūi+2

6(�x)3

)
, R(4)

i = 24ωC

(
ūi−2 + 6ūi + ūi+2

12(�x)4
− ūi−1 + ūi+1

3(�x)4

)
,

(C.9)

where the non-linear weights ωi
k are computed as in (C.2). (See also [9].)

The CWENOZ5 reconstruction also can be directly obtained from [11] with the following non-linear weights:

ωi
k = αi

k∑
� αi

�

, αi
k = Ci

(
1 + τ

ε + β i
k

)t

, k, � ∈ {1, 2, 3, C}, (C.10)

where t ≥ 1 and τ = |β i
3 − β i

1|.

Appendix D. Proof of Proposition 3.1

Proof. Recall the index set in (25). For each index set, apply corresponding approximations in (24) to (23). Then,

Q i+θ, j+η =
k∑

|�|=0

(�)�
(
α�1(θ)α�2(η)u(�)

i, j + β�1(θ)α�2(η)u(�)
i+1, j

+ α�1(θ)β�2(η)u(�)
i, j+1 + β�1(θ)β�2(η)u(�)

i+1, j+1

)
+O(hk+2).

(D.1)

Now, we consider Taylor’s expansion of u(�)
i+1, j, u

(�)
i, j+1, u

(�)
i+1, j+1:

u(�)
i+1, j =

k−|�|∑
m1=0

u(�1+m1,�2)
i, j

m1! (�x)m1 + u(�1+k−|�|+s,�2)

i, j

(k − |�| + s)! (�x)k−|�|+s

u(�)
i, j+1 =

k−|�|∑
m2=0

u(�1,�2+m2)
i, j

m2! (�y)m2 + u(�1,�2+k−|�|+s)
i, j

(k − |�| + s)! (�x)k−|�|+s

u(�)
i+1, j+1 =

k−|�|∑
|m|=0

u(�+m)
i, j

m1!m2! (�)m +
∑

|m|=k−|�|+s

u(�+m)
i, j

m1!m2! (�)m,

where m = (m1, m2) is an multi index. Inserting this into (D.1), we obtain

Q i+θ, j+η =:
k∑

|�|=0

(�)���(θ,η)u(�)
i, j + �(θ,η) +O

(
hk+2

)
, (D.2)

where ��(θ, η) and �(θ, η) are given by

��(θ,η) = α�1(θ)α�2(η) + α�2(η)

�1∑
m1=0

βm1(θ)
1

(�1 − m1)!

+ α�1(θ)

�2∑
βm2(η)

1

(�2 − m2)! +
|�|∑

βm1(θ)βm2(η)
1

(�1 − m1)!(�2 − m2)!
m2=0 |m|=0
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�(θ,η) =
k∑

|�|=0

β�1(θ)α�2(η)
u(�1+k−|�|+s,�2)

i, j

(k − |�| + s)! (�x)k−|�|+s(�)�

+
k∑

|�|=0

α�1(θ)β�2(η)
u(�1,�2+k−|�|+s)

i, j

(k − |�| + s)! (�y)k−|�|+s(�)� +
k∑

|�|=0

β�1(θ)β�2(η)
∑

|m|=k−|�|+s

u(�+m)
i, j

m1!m2! (�)m+�.

Now, we add 0 to �(θ, η) using the following identity:

0 =
∑

|�|=k+1

(
α�1(θ) + β�1(θ)

) (
α�2(η) + β�2(η)

)
u(�)

i, j (�)�

=
∑

|�|=k+1

α�1(θ)α�2(η)u(�)
i, j (�)� +

∑
|�|=k+1

β�1(θ)α�2(η)u(�)
i, j (�)�

+
∑

|�|=k+1

α�1(θ)β�2(η)u(�)
i, j (�)� +

∑
|�|=k+1

β�1(θ)β�2(η)u(�)
i, j (�)�,

(D.3)

then

�(θ,η) + 0 =
∑

|�|=k+1

α�1(θ)α�2(η)u(�)
i, j (�)� +

k+1∑
|�|=0

β�1(θ)α�2(η)
u(�1+k−|�|+s,�2)

i, j

(k − |�| + s)! (�x)k−|�|+s(�)�

+
k+1∑
|�|=0

α�1(θ)β�2(η)
u(�1,�2+k−|�|+s)

i, j

(k − |�| + s)! (�y)k−|�|+s(�)� +
k+1∑
|�|=0

β�1(θ)β�2(η)
∑

|m|=k−|�|+s

u(�+m)
i, j

m1!m2! (�)m+�.

This reduces to

�(θ,η) =
∑

|�|=k+1

(�)���(θ,η)u(�)
i, j .

Based on this formula, we rearrange all terms in (D.2) as follows:

Q i+θ, j+η = ui, j + θ�xu′
i, j + η�yu�

i, j +
(

θ2

2
+ 1

24

)
(�x)2u′′

i, j +
(

η2

2
+ 1

24

)
(�y)2u��

i, j + ηθ�x�yu′ �
i, j

+
(

θ3

6
+ θ

24

)
(�x)3u′′′

i, j +
(

ηθ2

2
+ η

24

)
(�x)2�yu′′ �

i, j

+
(

θη2

2
+ θ

24

)
�x(�y)2u′ ��

i, j +
(

η3

6
+ η

24

)
(�y)3u���

i, j

+ · · · +O(hk+2)

= ui+θ, j+η + (�x)2

24
u′′

i+θ, j+η + (�y)2

24
u��

i+θ, j+η + · · · +O(hk+2)

= ūi+θ, j+η +O(hk+2),

which completes the proof. �
Appendix E. Semi-Lagrangian schemes for hyperbolic system with BDF methods

The BDF methods [32] for an ordinary system y′(t) = f (y) can be represented by

yn+1 =
s∑

k=1

ak yn+1−s + βs f n+1,

where αk and βs are coefficients corresponding to s-order BDF methods. Here, we consider two cases s = 2, 3:

BDF2: yn+1 = 4

3
yn − 1

3
yn−1 + 2

3
f n+1

BDF3: yn+1 = 18
yn − 9

yn−1 + 2
yn−1 + 6

f n+1.

11 11 11 11
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E.1. BDF methods for Xin-Jin model

Applying BDF method based SL methods to (32), we obtain:

f n+1
i =

s∑
k=1

αk f̃ n,k + βs
�t

κ
K n+1

i,1

gn+1
i =

s∑
k=1

αk g̃n,k + βs
�t

κ
K n+1

i,2 .

(E.1)

Here we use the following notation:

• For k = 1, . . . , s, the (n + 1 − k)th stage values of f , g along the backward-characteristics which come from xi with 
characteristic speed −1, 1 at time tn+1:

f̃ n,k
i ≈ f (xi + k�t, tn+1−k), g̃n,k

i ≈ g(xi − k�t, tn+1−k).

• Fluxes at time tn+1:

K n+1
i,1 ≈ F (un+1

i ) − vn+1
i , K n+1

i,2 ≈ −K n+1
i,1 .

The procedure for BDF based methods are simpler than DIRK based methods. At first, for k = 1, 2, . . . , s we interpolate 
f̃ n,k

i and g̃n,k
i on xi + k�t and xi − k�t from { f n+1−k

i } and {gn+1−k
i }, respectively. Then, by summing and subtracting two 

equations in (E.1), we compute:

un+1
i =

∑s
k=1 αk

(
g̃n,k

i + f̃ n,k
i

)
2

vn+1
i =

κ
∑s

k=1 αk

(
g̃n,k

i − f̃ n,k
i

)
/2 + βk�t F

(
un+1

i

)
κ + βs�t

.

Then, we recover

f n+1
i = un+1

i − vn+1
i , gn+1

i = un+1
i + vn+1

i .

E.2. BDF methods for Broadwell model

Now, we extend this to high order s-order BDF methods. The solutions are obtained by

f n+1
i = F n

i + βs�t

κ
Q n+1

i , F n
i :=

s∑
�=1

αk f n,k
i ,

gn+1
i = Gn

i + βs�t

κ
Q n+1

i , Gn
i :=

s∑
�=1

αk gn,k
i ,

hn+1
i = Hn

i − βs�t

κ
Q n+1

i , Hn
i :=

s∑
�=1

αkhn+1−k
i ,

(E.2)

where

Q n+1
i = (hn+1

i )2 − f n+1
i gn+1

i , f n,k
i ≈ f (xi − k�t, tn+1−k), gn,k

i ≈ g(xi + k�t, tn+1−k).

Then, we can update solutions by solving (E.2) as follows:

hn+1
i = βs�t(Hn

i + F n
i )(Hn

i + Gn
i ) + κ Hn

i

βs�t
(
Gn

i + 2Hn
i + F n

i

)+ κ
,

f n+1 = Hn + F n − hn+1, gn+1 = Hn + Gn − hn+1.
i i i i i i i i
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