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Abstract

In this paper, we present an optimization model for the management of the green area in order to find the
optimal green surface to absorb CO2 emissions of industrialized cities. We obtain a minimization problem
and the related variational inequality. We study the Lagrange theory to better understand the process that
regulates the possible increase in green space. Then, we propose a computational procedure, based on the
Euler method, to find the optimal solution to the variational inequality associated with our minimization
problem and, finally, some numerical examples based on real scenarios.
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1. Introduction

Global warming, especially in recent decades, has been and continues to be one of the most worry-
ing problems to solve. According to United States Environmental Protection Agency (see United
States Environmental Protection Agency), Carbon dioxide (CO2) is the primary greenhouse gas
emitted through human activities. The progressive increase of the world population and all the re-
lated activities, such as energy consumption, transports, industrial activities, will cause an increase
in CO2 concentrations, and not only, in the atmosphere. According to IPCC, Intergovernmental
Panel on Climate Change, most of the observed increase in globally averaged temperatures since
the mid-20th century is very likely due to the observed increase in anthropogenic greenhouse gas
concentrations (see Intergovernmental Panel on Climate Change, 2014). CO2-increasing concen-
trations cause global warming followed by climate change and a progressive environmental degra-
dation. Moreover, climate change could increase environmental risks for people, assets, economies,
and ecosystems, including risks from heat stress, storms and extreme precipitation, air pollution,
melting glaciers, sea level rise, extinctions, and reduced water resources.
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The gradual increase in scientific data available on global warming has fueled a growing political
debate since the 1970s that led the major Institutions to consider as a priority also the contain-
ment of greenhouse gas emissions and the use of alternative and renewable energy sources. The
main international agreement for the control of global warming is the Kyoto Protocol, an amend-
ment of the United Nations Framework Convention on Climate Change negotiated in 1997, cov-
ering 180 countries and more than 55% of global greenhouse gas emissions (see UNFCCC, 1997).
More recently, in 2015, all United Nations countries negotiated the Paris Agreement, which aims
at containing the increase in the average global temperature below the 2◦C threshold beyond pre-
industrial levels and to limit this increase to 1.5◦C, as this would substantially reduce the risks and
effects of climate change. The content of the agreement was negotiated by representatives of 196
states at the 21st Conference of the Parties of the UNFCCC (see UNFCCC, 2015).

Urban pollution is one of the main causes of the increase in greenhouse gas concentrations in
the atmosphere. A strategy to mitigate the environmental effects of urban pollution is to increase
green areas (see, for instance, Gill et al., 2007; Gómez et al., 2011; Yoon et al., 2019).

In general, the three components of sustainable development are economy, environment, and
society. So, sustainable urban growth is related not only to the ecological aspect, but also the social
and societal ones. The development of cities has caused many consequences such as environmental
degradation, loss of natural habitat, local climate changes, the increase in the level of air, and noise
pollution. The presence of green spaces is fundamental to reduce the effects of urbanization and
improve the quality of life, by providing people with natural settings for leisure and recreation, and
by safeguarding the quality of precious resources such as air and water. Local governments involve
local communities in the decision-making process and, finally, the local community benefits most
directly from a greening project and will confirm how successful the project is.

In many cities, in order to reduce the emission of CO2, some strategies have been planned aimed
at improving air quality for the health of the population. In urban areas, administrations are en-
hancing infrastructure and transport, thereby promoting the movement through public transport
and the sharing of mobility (car sharing) and reducing the consumption of private cars. Other ef-
fective policies are to promote the purchase of zero-emission vehicles or to allow the movement
of vehicles with alternate plates. Sometimes the use of mitigation strategies after reaching critical
pollution levels may not resolve the pollution emergency. For this reason, it is preferable to pro-
ceed toward a preventive approach to emergency by promoting effective measures before reaching
critical levels of pollution. Therefore, the authorities should promote new technologies for moni-
toring air pollution such as air quality monitoring networks. With the monitoring of air quality,
if a particular pollutant has exceeded the threshold value established by law, it is necessary to act
with appropriate strategies to mitigate the problem of air pollution. That is why increasing public
space that can be used to create new parks and open spaces for both recreational and commercial
purposes is often a very good solution. Furthermore, the creation of the green barriers along the
fast roads allows to reduce the pollution levels that reach the inhabitants both in the street and in
their homes. Indeed, several studies have shown that the plant barriers, suitably located, act as real
biological filters, removing gaseous components from the air.

Of course, all this process involves costs for acquiring new spaces, for training personnel, for
converting the land in green areas, for managing pre-existent types of green areas, and our purpose
is to find the optimal amount of total green areas in every city, the optimal urban flow, and the
optimal number of personnel to be employed in the managing of green spaces, under the request

© 2021 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies



3096 P. Daniele and D. Sciacca / Intl. Trans. in Op. Res. 28 (2021) 3094–3116

that the quantity of CO2 absorbed by the total green area in every city exceeds the total emissions
of that city.

This paper is organized as follows. In Section 2, we present the model and we introduce the cost
functions associated with acquisition, transformation, management, and maintenance of a green
area. We determine optimality conditions for an external institution that has the responsibility to
manage green areas and we derive the associated variational inequality. Then, we give conditions
of existence and uniqueness of the solutions to the variational inequality. In Section 3, we study
the Lagrange theory related to the model in order to better understand the behavior of green areas
adjustment process, providing an interpretation of the Lagrange multipliers. In Section 4, we recall
the Euler method that we apply in the successive Section 5 to solve numerical examples that describe
real scenarios of application of our model. Section 6 is dedicated to the conclusions.

2. The mathematical model

The optimal green area model we are examining consists of n cities, with a typical one denoted
by i. Unlike Indrawati et al. (2014), we consider different types of green areas depending on their
location and their efficacy in absorbing CO2. Such hypothesis is justified by the fact that different
types of green areas require different maintenance and administration works as well as produce
different CO2 absorption potential (see, for example, Azaria et al., 2018).

Therefore, we consider m different types of green areas, with a typical one denoted by j. Let xi j ∈
R+ be the decision variable indicating the surface of green area of type j in city i (expressed in km2),
with i = 1, . . . , n and j = 1, . . . , m. For a given city i, i = 1, . . . , n, we group the different types of
green area into the vector xi ∈ R

m
+ and we group all such vectors into the vector x ∈ R

nm. Moreover,
we denote by xi j ∈ R+ the parameter representing the pre-existent surface of green area of type j in
city i (expressed in km2), j = 1, . . . , m and i = 1, . . . , n. We suppose that the management of green
area in every city is a responsibility of an external institution, for example, a region and a province.

Indonesian law (see Indrawati et al., 2014) requires that green area of Jakarta be at least 30%
of the city’s total area. Hence, it is plausible to assume that the optimal space of green area is not
less than a quantity imposed by law and, if in a country such a constraint does not exist, then
the minimum quantity of green area imposed by law corresponds to the pre-existing one. Anyway,
we can assume that the optimal space of green area is not less than the maximum between the
above two quantities. For a given city i, i = 1, . . . , m, li denotes the parameter that represents the
minimum surface of green area imposed by the law and that mi denotes the quantity:

mi := max

⎧⎨
⎩li,

m∑
j=1

xi j

⎫⎬
⎭, ∀i = 1, . . . , n. (1)

Therefore, the following condition has to be satisfied:

m∑
j=1

xi j +
m∑

j=1

xi j ≥ mi, ∀i = 1, . . . , n. (2)
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Moreover, we impose that the total surface of green area in every city i is less than a fixed parameter
ui related to the total area of the city i , i = 1, . . . , n, that is,

m∑
j=1

xi j +
m∑

j=1

xi j ≤ ui, ∀i = 1, . . . , n. (3)

We can rewrite inequality constraints (2) and (3) as follows:

mi ≤
m∑

j=1

xi j +
m∑

j=1

xi j ≤ ui, ∀i = 1, . . . , n.

The continuous increase in the population and the presence of industrial plants are the main causes
of the increase in the concentration of CO2 in the atmosphere. So, it is often necessary to enlarge the
urban green areas in order to compensate for the massive emission of greenhouse gases produced
by industrial plants and urban circulation. For a given city i, i = 1, . . . , n, fi ∈ R+ indicates the
decision variable indicating the flow of urban circulation in that city. We group these quantities
into the n-dimensional vector f ∈ R

n
+.

Let ca
i j be the transaction cost associated with the expansion of green area of type j in city i and

we assume ca
i j as a function of xi j :

ca
i j = ca

i j (xi j ), ∀i = 1, . . . , n, ∀ j = 1, . . . , m. (4)

If the existing flow exceeds the optimal one, the local authorities would be forced to take contain-
ment measures, such as, for example, the movement of vehicles with alternate plates, the promotion
for the purchase of zero emission vehicles, and the intensification of the public infrastructure.

Hence, we denote by cc
i the costs related to the additional containment measures that must be

incurred in the city i, i = 1, . . . , N, and we suppose that

cc
i := cc

i ( fi ), ∀i = 1, . . . , n. (5)

Let gi be the quantity of employees to train for the management and maintenance of public green
spaces and we group these quantities into the vector g ∈ R

n
+. We suppose that gi ≥ g

i
, i = 1, . . . , n,

where g
i

represents a parameter that indicates the amount of employees needed to maintain the
pre-existing green area.

Let cT
i be the training cost for such personnel and we assume cT

i as a function of gi:

cT
i = cT

i (gi), ∀i = 1, . . . , n. (6)

Let ct
i j be the transformation cost that is required to convert the land in green area of type j in city

i and we assume ct
i j as a function of xi j :

ct
i j = ct

i j (xi j ), ∀i = 1, . . . , n, ∀ j = 1, . . . , m. (7)

Such costs include planning, design, and construction material costs.
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Let γ m
i j be the management cost of green area of type j in city i. Such costs include also personnel

remuneration costs. We assume γ m
i j as a function of xi j and gi:

γ m
i j = γ m

i j (xi j, gi), ∀i = 1, . . . , n, ∀ j = 1, . . . , m. (8)

It is also necessary to consider, for a given city i, i = 1, . . . , n, the management cost of pre-existent
types of green areas, namely γ m

i j
, for all i = 1, . . . , n and j = 1, . . . , m. We suppose that such costs

depend on the green area xi j of type j that is set up in city i, j = 1, . . . , m, i = 1, . . . , n as well as on
a constant term that depends on the parameters xi j and g

i
. We define the total management costs

of green area of type j in city i, denoted by cm
i j , as the sum of these two costs, that is,

cm
i j = γ m

i j
(xi j ) + γ m

i j (xi j, gi), ∀i = 1, . . . , n, ∀ j = 1, . . . , m. (9)

From Equation (8), we can consider cm
i j as a function of xi j :

cm
i j = cm

i j (xi j, gi), ∀i = 1, . . . , n, ∀ j = 1, . . . , m. (10)

Let ei( fi ) be the total amount of CO2 emissions of city i, i = 1, . . . , n, and we suppose that this
quantity is the sum of three different contributes, namely ei1, ei2, and ei3 that are the amount of
CO2 emissions due to population in city i, the amount of CO2 due to industrial activities in city i,
and the amount of CO2 emissions due to vehicles in city i, i = 1, . . . , n, respectively. We suppose
that ei3 depends on the flow of urban circulation in the city i, that is,

ei3 = ei3( fi), ∀ i = 1, . . . , n. (11)

We assume that the following conservation law is satisfied:

ei( fi ) =
2∑

k=1

eik + ei3( fi), ∀ i = 1, . . . , n. (12)

Let ea
i be the quantity of CO2 absorbed by the overall green area in city i, i = 1, . . . , n. The quantity

of CO2 absorbed by a type j of green area is proportional to this type of green surface, j = 1, . . . , m.
Hence, we have

ea
i =

m∑
j=1

αi jxi j, ∀i = 1, . . . , n, (13)

where αi j ∈ R+ is a fixed coefficient that expresses the capacity of the green area of type j to absorb
CO2 in city i, i = 1, . . . , n, j = 1, . . . , m. Thereby, the parameter αi j captures both the city and the
type of the green area. Indeed, it is plausible to suppose that the absorption depends on the city as
well that inherently captures the population and arrangement of it.
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In this model, our aim is to minimize the total costs incurred by the external institution to adapt
the green area surface in each city to its real needs. So the optimality conditions are as follows:

min

⎧⎨
⎩

n∑
i=1

m∑
j=1

ca
i j (xi j ) +

n∑
i=1

cT
i (gi) +

n∑
i=1

m∑
j=1

ct
i j (xi j ) +

n∑
i=1

m∑
j=1

cm
i j (xi j, gi) +

n∑
i=1

cc
i ( fi )

⎫⎬
⎭ (14)

subject to the constraints:

xi j ≥ xi j, ∀i = 1, . . . , n, ∀ j = 1, . . . , m; (15)

gi ≥ g
i
, ∀i = 1, . . . , n; (16)

fi ≥ f
i
, ∀i = 1, . . . , n; (17)

mi ≤
m∑

j=1

xi j +
m∑

j=1

xi j ≤ ui, ∀i = 1, . . . , n; (18)

m∑
j=1

αi jxi j ≥
2∑

k=1

eik + ei3( fi) −
m∑

j=1

αi jxi j, ∀i = 1, . . . , n; (19)

gi ≤
m∑

j=1

γ jxi j, ∀i = 1, . . . , n. (20)

Constraint (15) ensures that the amount of every type of green space is not less than the amount of
pre-existing green space of the same type.

Constraints (16) ensures that the amount of employees is no less than the pre-existing staff for
the maintenance of green areas.

Constraints (17) ensure that the flow of urban circulation in every city is no less than the pos-
itive parameter f

i
that is strictly connected to the population, the number of registered vehicles,

and people’s travel behavior in that city as well as on the possibility of using alternative means of
transport to private cars.

Constraint (18), as already seen, is given by the combination of constraints (2) and (3).
Constraint (19) ensures that the quantity of CO2 absorbed by the total green area in every city,

which is given by the pre-existent green area and the new one, is not less than the total emissions of
city i, i = 1, . . . , n.

Constraint (20) ensures that the number of workers to train for the management and mainte-
nance of public green spaces in every city is not greater than the quantity

∑m
j=1 γ jxi j , where γ j ∈ R+

represents a parameter indicating the maximum number of employees that are needed for the main-
tenance of a unit of green area of type j, j = 1, . . . , m.

Problem (14) can be characterized by the following variational inequality:
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Determine (x∗, g∗, f ∗) ∈ K such that:

n∑
i=1

m∑
j=1

[
∂ca

i j (x
∗
i j )

∂xi j
+ ∂ct

i j (x
∗
i j )

∂xi j
+ ∂cm

i j (x
∗
i j, g∗

i )

∂xi j

]
× [xi j − x∗

i j ]

+
n∑

i=1

⎡
⎣∂cT

i (g∗
i )

∂gi
+

m∑
j=1

∂cm
i j (x

∗
i j, g∗

i )

∂gi

⎤
⎦ × [gi − g∗

i ]

+
n∑

i=1

[
∂cc

i ( f ∗
i )

∂ fi

]
× [ fi − f ∗

i ] ≥ 0, ∀(x, g, f ) ∈ K,

(21)

where:

K =
{

(x, g, f ) ∈ R
nm+2n
+ :

xi j ≥ xi j, fi ≥ f
i
, gi ≥ g

i
, ∀i = 1, . . . , n, ∀ j = 1, . . . , m,

mi ≤
m∑

j=1

xi j +
m∑

j=1

xi j ≤ ui, ∀ i = 1, . . . , n,

m∑
j=1

αi jxi j ≥
2∑

k=1

eik + ei3( fi) −
m∑

j=1

αi jxi j, ∀ i = 1, . . . , n

gi ≤
m∑

j=1

γ jxi j, ∀ i = 1, . . . , n

}
.

(22)

We make the following fundamental assumption:

Hp 2.1. Let all the involved functions be continuously differentiable and strictly convex with respect
to all variables.

We now put variational inequality (21) into standard form, that is, determine X ∗ ∈ K ⊂ R
N such

that

〈F (X ∗), X − X ∗〉 ≥ 0, ∀X ∈ K, (23)

where 〈·, ·〉 denotes the inner product in the nm + 2n-dimensional Euclidean space, F is a
given function from K to R

N , and K is a closed and convex set. We define the (nm + 2n)-
dimensional column vector X = (x, g, f ) and the (nm + 2n)-dimensional column vector F (X ) =
(F1(X ), F2(x), F3(X )), where the (i, j)-th component, F 1

i j , of F 1(X ) is given by

F 1
i j (X ) ≡ ∂ca

i j (xi j )

∂xi j
+ ∂ct

i j (xi j )

∂xi j
+ ∂cm

i j (xi j, gi)

∂xi j
,
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the ith component, F 2
i (X ), of F 2(X ) is given by

F 2
i (X ) ≡ ∂cT

i (gi)
∂gi

+
m∑

j=1

∂cm
i j (xi j, gi)

∂gi
,

the ith component, F 3
i (X ), of F 3(X ) is given by

F 3
i (X ) ≡ ∂cc

i ( fi)

∂ fi
,

and the feasible set K is defined as K.
Following Kinderlehrer and Stampacchia (1980), the existence of a solution to (23), as the feasi-

ble set K is closed, convex, and bounded, is guaranteed by the next theorem:

Theorem 2.1 (Existence). Let us assume that Assumption 2.1 is satisfied. Then, there exists at least
one solution to variational inequality (23).

We want now to demonstrate the following theorem:

Theorem 2.2 (Strictly Monotonicity). The function F defining variational inequality (23) is strictly
monotone on K, that is

〈(F (X 1) − F (X 2))T , X 1 − X 2〉 > 0, ∀X 1, X 2 ∈ K, X 1 �= X 2.

Proof. Let X 1, X 2 ∈ K be two elements such that X 1 �= X 2. We have

〈F (X 1) − F (X 2), X 1 − X 2〉

=
n∑

i=1

m∑
j=1

[
∂ca

i j (x
1
i j )

∂xi j
− ∂ca

i j (x
2
i j )

∂xi j

]
× [x1

i j − x2
i j ]

+
n∑

i=1

m∑
j=1

[
∂ct

i j (x
1
i j )

∂xi j
− ∂ct

i j (x
2
i j )

∂xi j

]
× [x1

i j − x2
i j ]

+
n∑

i=1

m∑
j=1

[
∂cm

i j (x
1
i j, g1

i )

∂xi j
− ∂cm

i j (x
2
i j, g2

i )

∂xi j

]
× [x1

i j − x2
i j ]
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+
n∑

i=1

[
∂cT

i (g1
i )

∂gi
− ∂cT

i (g2
i )

∂xi j

]
× [g1

i − g2
i ]

+
n∑

i=1

⎡
⎣ m∑

j=1

(
∂cm

i j (x
1
i j, g1

i )

∂gi
− ∂cm

i j (x
2
i j, g2

i )

∂gi

)⎤
⎦ × [g1

i − g2
i ]

+
n∑

i=1

[
∂cc

i ( f 1
i )

∂ fi
− ∂cc

i ( f 2
i )

∂ fi

]
× [ f 1

i − f 2
i ].

(24)

In virtue of Assumption 2.1, we know that each of the three terms in (24) is strictly greater than
zero if X 1 �= X 2. Hence, we have established that F (X ) is strictly monotone. �

We now provide a uniqueness result.

Theorem 2.3 (Uniqueness). Under the assumptions of Theorem 2.1 and Theorem 2.2, as the function
F (X ) in (23) is strictly monotone on K, variational inequality (21) admits a unique solution.

3. Lagrange theory

In this section, we explore the Lagrange theory associated with variational inequality (21) in order
to better understand the behavior of green areas adjustment process (see also Daniele, 2001, 2004,
2006; Daniele et al., 2007; Barbagallo et al., 2012; Toyasaki et al., 2014; Daniele and Giuffrè, 2015;
Giuffrè et al., 2015; Daniele et al., 2017; Nagurney and Shukla, 2017; Caruso and Daniele, 2018 for
an application of the Lagrange theory to various network models). Our aim is to find an alterna-
tive formulation of variational inequality (23) governing the minimization problem for the optimal
green area model by means of the Lagrange multipliers associated with the constraints defining the
feasible set K. To this aim, we set:

ai = mi −
m∑

j=1

xi j −
m∑

j=1

xi j ≤ 0, ∀i = 1, . . . , n;

bi =
m∑

j=1

xi j +
m∑

j=1

xi j − ui ≤ 0, ∀i = 1, . . . , n;

qi =
2∑

k=1

eik + ei3( fi) −
m∑

j=1

αi jxi j −
m∑

j=1

αi jxi j ≤ 0, ∀i = 1, . . . , n;

ki = gi −
m∑

j=1

γ jxi j ≤ 0, ∀i = 1, . . . , n; (25)

ei j = −xi j + xi j ≤ 0, ∀i = 1, . . . , n, ∀ j = 1, . . . , m;
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ni = −gi + g
i
≤ 0, ∀i = 1, . . . , n;

hi = − fi + f
i
≤ 0, ∀i = 1, . . . , n;

and

�(X ) = (ai, bi, qi, ki, ei j, ni, hi)i=1,...,n, j=1,...,m.

So, the constraints set K can be rewritten as K = {X ∈ R
2nm+2n
+ : �(X ) ≤ 0}.

Now, let us set

V (x, g, f ) =
n∑

i=1

m∑
j=1

[
∂ca

i j (x
∗
i j )

∂xi j
+ ∂ct

i j (x
∗
i j )

∂xi j
+ ∂cm

i j (x
∗
i j, g∗

i )

∂xi j

]
× [xi j − x∗

i j ]

+
n∑

i=1

⎡
⎣∂cT

i (g∗
i )

∂gi
+

m∑
j=1

∂cm
i j (x

∗
i j, g∗

i )

∂gi

⎤
⎦ × [gi − g∗

i ]

+
n∑

i=1

[
∂cc

i ( f ∗
i )

∂ fi

]
× [ fi − f ∗

i ].

We consider the following Lagrange function:

L(X, ω, ϕ, ϑ, λ, ψ, μ, ε) =V (x, g, f ) +
n∑

i=1

ωiai +
n∑

i=1

ϕibi +
n∑

i=1

ϑiqi +
n∑

i=1

λiki

+
n∑

i=1

m∑
j=1

ψi jei j +
n∑

i=1

μini +
n∑

i=1

εihi,

(26)

∀X ∈ R
nm+2n
+ , ∀ω ∈ R

n
+, ∀ϕ ∈ R

n
+, ∀ϑ ∈ R

n
+,

∀λ ∈ R
n
+, ∀ψ ∈ R

nm
+ , ∀μ ∈ R

n
+, ∀ε ∈ R

n
+.

Variational inequality (23) can be written as

min
X ∈K

V (x, g, f ) = 0. (27)

This equivalence is justified because we have

V (x, g, f ) ≥ 0 in K and min
X ∈K

V (x, g, f ) = V (x∗, g∗, f ∗) = 0. (28)

Its dual problem is

max
�∈Rnm+6n

inf
X ∈Rnm+2n

L(X, �), (29)
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where � = (ω, ϕ, ϑ, λ, ψ, μ, ε). We recall that the problem of the strong duality between (27) and
(29) is to find

min
X ∈K

〈F (X ∗), X − X ∗〉 = max
�∈Rnm+6n

inf
X ∈Rnm+2n

L(X, �). (30)

We have the following result.

Theorem 3.1. Problem (27) satisfies the Karush–Kuhn–Tucker conditions.

Proof. Following Jahn (1996), we recall that KKT conditions for the existence of Lagrange multi-
pliers can be rewritten as follows. Let X ∗ be the solution to variational inequality (27) and let us set

Iai (X
∗) = {i ∈ {1, . . . , n} : ai = 0};

Ibi (X
∗) = {i ∈ {1, . . . , n} : bi = 0};

Iqi (X
∗) = {i ∈ {1, . . . , n} : qi = 0};

Iki (X
∗) = {i ∈ {1, . . . , n} : ki = 0}.

Iei j (X
∗) = {(i, j) ∈ {1, . . . , n} × { j, . . . , m} : ei j = 0};

Ini (X
∗) = {i ∈ {1, . . . , n} : ni = 0};

Ihi (X
∗) = {i ∈ {1, . . . , n} : hi = 0}.

Then the existence of the Lagrange multipliers is guaranteed if there exists a vector X ∈ R
nm+2n
+

such that the KKT conditions are verified, that is

mi −
m∑

j=1

xi j −
m∑

j=1

xi j < 0, ∀i ∈ Iai (X
∗);

m∑
j=1

xi j +
m∑

j=1

xi j − ui < 0, ∀i ∈ Ibi (X
∗);

2∑
k=1

eik + ei3( fi ) −
m∑

j=1

αi jxi j −
m∑

j=1

αi jxi j < 0, ∀i ∈ Iqi (X
∗);

gi −
m∑

j=1

γ jxi j < 0, ∀i ∈ Iki (X
∗);

−xi j + xi j < 0, ∀i ∈ Iei j (X
∗);

−gi + g
i
< 0, ∀i ∈ Ini (X

∗);
− fi + f

i
< 0, ∀i ∈ Ihi (X

∗).

(31)

It is easy to verify that system (31) admits a solution (see Colajanni et al., 2018). �
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As a consequence, we get the following result.

Theorem 3.2. Let X ∗ be the solution to variational inequality (23), then the Lagrange multipliers,
ω∗ ∈ R

n
+, ϕ∗ ∈ R

n
+, ϑ∗ ∈ R

n
+, λ∗ ∈ R

n
+, ψ∗ ∈ R

nm
+ , μ∗ ∈ R

n
+, and ε∗ ∈ R

n
+ associated with the con-

straints system (25) do exist.

Moreover, as the KKT conditions imply that Assumption S (see Daniele et al., 2007; Giuffrè
et al., 2015) is verified and (x∗, g∗, f ∗) is a minimal solution to problem (28), assuming that As-
sumptions 2.1 are satisfied, by virtue of well-known theorems (see Jahn, 1996) we can state that the
vector (X ∗, ω∗, ϕ∗, ϑ∗, λ∗, ψ∗, μ∗, ε∗) is a saddle point of the Lagrange function (26), namely:

L(X ∗, ω, ϕ, ϑ, λ, ψ, μ, ε, λ) ≤ L(X ∗, ω∗, ϕ∗, ϑ∗, λ∗, ψ,∗ μ∗, ε∗)

≤ L(X, ω∗, ϕ∗, ϑ∗, λ∗, ψ,∗ μ∗, ε∗)
(32)

∀X ∈ R
nm+2n
+ , ∀ω ∈ R

n
+, ∀ϕ ∈ R

n
+, ∀ϑ ∈ R

n
+,

∀λ ∈ R
n
+, ∀ψ ∈ R

nm
+ , ∀μ ∈ R

n
+, ∀ε ∈ R

n
+,

and

ω∗
i a∗

i = 0, ϕ∗
i b∗

i = 0, ϑ∗
i q∗

i = 0, ∀i;
λ∗

i h∗
i = 0, μ∗

i n∗
i = 0, ε∗

i h∗
i = 0, ∀i;

ψ∗
i jx

∗
i j = 0, ∀i, ∀ j.

(33)

By virtue of these considerations, we can calculate the Lagrange multipliers ω∗ ∈ R
n
+, ϕ∗ ∈ R

n
+, ϑ∗ ∈

R
n
+, λ∗ ∈ R

n
+, ψ∗ ∈ R

nm
+ , μ∗ ∈ R

n
+, and ε∗ ∈ R

n
+ associated with the constraints and the solution X ∗

to variational inequality (23).
From the right-hand side of (32), it follows that X ∗ ∈ R

nm+2n
+ is a minimal point of

L(X ∗, ω∗, ϕ∗, ϑ∗, λ∗, ψ∗, μ∗, ε∗) in the whole space R
nm+2n and hence, for all i = 1, . . . n and

j = 1, . . . , m, we get

∂L(X ∗, ω∗, ϕ∗, ϑ∗, λ∗, ψ∗, μ∗, ε∗)
∂xi j

= ∂ca
i j (x

∗
i j )

∂xi j
+ ∂ct

i j (x
∗
i j )

∂xi j
+ ∂cm

i j (x
∗
i j, g∗

i )

∂xi j

−ω∗
i + ϕ∗

i − α jϑ
∗
i − γ jλ

∗
i − ψ∗

i j = 0, (34)

∂L(X ∗, ω∗, ϕ∗, ϑ∗, λ∗, ψ∗, μ∗, ε∗)
∂gi

= ∂cT
i (g∗

i )
∂gi

+
m∑

j=1

∂cm
i j (x

∗
i j, g∗

i )

∂gi

+λ∗
i − μ∗

i = 0, (35)

∂L(X ∗, ω∗, ϕ∗, ϑ∗, λ∗, ψ∗, μ∗, ε∗)
∂ fi

= ∂cc
i ( f ∗

i )

∂ fi
+ ϑ∗

i
∂ei3( f ∗

i )
∂ fi

− ε∗
i = 0, (36)

together with conditions (33).
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It is easy to verify that conditions (33)–(36) are equivalent to variational inequality (21).
The importance of the Lagrange function consists in the fact that constraints are included in

such a function and it allows us, when the strong duality holds, to express the solution to vari-
ational inequality by means of the system of equations derived from the KKT conditions. The
existence and uniqueness of the solution to variational inequality is guaranteed by Theorems 2.1
and 2.3, respectively.

We now can interpret the meaning of some Lagrange multipliers. Let us consider, first, the case
when a∗

i < 0 and b∗
i < 0, that is,

mi <

m∑
j=1

x∗
i j +

m∑
j=1

xi j < ui.

Then, from (33), we get ω∗
i = ϕ∗

i = 0. Also, let us assume that x∗
i j > xi j , which implies, from (33),

that ψ∗
i j = 0. Hence (34) becomes

∂ca
i j (x

∗
i j )

∂xi j
+ ∂ct

i j (x
∗
i j )

∂xi j
+ ∂cm

i j (x
∗
i j, g∗

i )

∂xi j
= α jϑ

∗
i + γ jλ

∗
i . (37)

If λ∗
i > 0 and ϑ∗

i > 0, from (33), we get

2∑
k=1

eik + ei3( f ∗
i ) −

m∑
j=1

αi jx∗
i j −

m∑
j=1

αi jxi j = 0;

g∗
i −

m∑
j=1

γ jx∗
i j = 0,

which means that CO2 emissions in city i is completely absorbed by the optimal green area and
the number of employees reaches the maximum allowed number. Hence, from (37), summing up
with respect to j, it follows that the total marginal cost associated with the expansion of green
area increases. In this case, each additional unit of green area or employees is unnecessary. Similar
considerations hold even if only one between λ∗

i and ϑ∗
i is positive.

On the contrary, if both λ∗
i = 0 and ϑ∗

i = 0, then, from (33), we get

2∑
k=1

eik + ei3( f ∗
i ) −

m∑
j=1

αi jx∗
i j −

m∑
j=1

αi jxi j < 0;

g∗
i −

m∑
j=1

γ jx∗
i j < 0.

© 2021 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies



P. Daniele and D. Sciacca / Intl. Trans. in Op. Res. 28 (2021) 3094–3116 3107

In this case, from (37), summing up with respect to j, it follows that, given g∗
i and f ∗

i , the total cost
associated with the expansion of green area, that is,

m∑
j=1

(
ca

i j (xi j ) + ct
i j (xi j ) + cm

i j (xi j, gi)
)
,

reaches its minimum value in x∗
i j .

Finally, if ϕ∗
i > 0, from (33), we get

m∑
j=1

x∗
i j +

m∑
j=1

xi j = ui.

In this case, the optimal green area added to the pre-existing one reaches the maximum percentage
of city i to be allocated to green areas. Moreover, it is clear that ω∗

i = 0. If ψ∗
i j = 0, (34) becomes

∂ca
i j (x

∗
i j )

∂xi j
+ ∂ct

i j (x
∗
i j )

∂xi j
+ ∂cm

i j (x
∗
i j, g∗

i )

∂xi j
= −ϕ∗

i + α jϑ
∗
i + γ jλ

∗
i . (38)

If λ∗
i = 0 and ϑ∗

i = 0, then, like above, we get

2∑
k=1

eik + ei3( f ∗
i ) −

m∑
j=1

αi jx∗
i j −

m∑
j=1

αi jxi j < 0;

g∗
i −

m∑
j=1

γ jx∗
i j < 0.

Hence (38) becomes

∂ca
i j (x

∗
i j )

∂xi j
+ ∂ct

i j (x
∗
i j )

∂xi j
+ ∂cm

i j (x
∗
i j, g∗

i )

∂xi j
= −ϕ∗

i < 0.

Summing with respect to j, we obtain that the total marginal costs associated with the expansion of
green area decrease, which means that it is necessary to increase the green area. This is also evident
if we note that the total emissions of city i are not completely absorbed by the optimal green area.
However, the presence of constraint

∑m
j=1 xi j + ∑m

j=1 xi j ≤ ui does not allow us for this increase.
In this case, the total emissions cannot be completely absorbed by the green area of the city and
therefore actions should be taken in this sense.

Analogously, from (33), we get

ϑ∗
i

⎛
⎝ 2∑

k=1

eik + ei3( f ∗
i ) −

m∑
j=1

αi jx∗
i j −

m∑
j=1

αi jxi j

⎞
⎠ = 0 and ε∗

i (− f ∗
i + f

i
) = 0.
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If we assume that the flow is positive, that is f ∗
i > f

i
, then ε∗

i = 0. Hence (36) becomes

∂cc
i ( f ∗

i )

∂ fi
= −ϑ∗

i
∂ei3( f ∗

i )
∂ fi

.

If ϑ∗
i > 0, then the total CO2 emissions of city i is completely absorbed by optimal green areas. As

a consequence, −ϑ∗
i

∂ei3( fi )
∂ fi

represents the marginal cost associated to the imposing additional con-
tainment measures in the city i due to excessive flow fi. On the contrary, if the total CO2 emissions
of city i are not completely absorbed by optimal green areas, then ϑ∗

i = 0. In this case, (35) becomes

∂cc
i ( f ∗

i )

∂ fi
= 0,

which means that the total cost function cc
i attains its minimum value in f ∗

i .
Analogous considerations hold for (35).

4. Computational procedure

We now recall the Euler method (see Dupuis and Nagurney, 1993). Variational inequality (23) is
solvable as follows. For every iteration τ , we calculate

X τ+1 = PK(X τ − aτ F (X τ )), (39)

where PK is the projection on the feasible set K defined as

PK = argminz∈K‖ξ − z‖
and F is the function entering variational inequality (23). In order to get the convergence of the
iterative scheme, we need the sequence {aτ } to be such that

∞∑
τ=0

aτ = ∞, aτ > 0, aτ → 0, as τ → ∞. (40)

Now we describe the method.

Step 0: Initialization
Set X 0 ∈ K. Let τ denote an iteration counter and set τ = 1. Set the sequence
aτ such that condition (40) is satisfied.

Step 1: Computation
Calculate X τ ∈ K solving the following variational inequality subproblem:

〈X τ + aτ F (X τ−1) − X τ−1, X − X τ 〉 ≥ 0, ∀X ∈ K.

Step 2: Convergence
Fix a tolerance ε > 0 and check whether |X τ − X τ+1| ≤ ε, then stop; otherwise,
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Table 1
Types of green area considered in our model, for all city i

Type of green area Level of maintenance Capacity of a km2 to absorb CO2: αi j

j = 1: Urban green area High αi1 = 545, 000 kg/yr
j = 2: Natural green area Medium αi2 = 569, 070 kg/yr

set τ := τ + 1, and go to Step 1.
The explicit formulas for the Euler method used in this model are as follows:

X τ = max{0, X τ−1 − aτ−1F (X τ−1)}.

5. Numerical examples

In this section, we present some numerical examples using the model described in Section 2.
For the computation of the optimal solutions, we have applied the Euler method described in the

previous section. The calculations were performed using the MATLAB program. The algorithm
was implemented on a laptop with 1.8 GHz Intel Core i5 dual-core and 8 GB RAM, 1600 MHz
DDR3. For the convergence of the method, a tolerance of ε = 10−4 was fixed. The method has
been implemented with a constant step α = 0.1.

We now present different scenarios consisting in considering different number of cities. Following
Ministero dell’ambiente e della tutela del territorio e del mare, in every scenario we suppose that
there are two types of different green areas: urban and natural green areas. We suppose that the
coefficient that expresses the capacity of the green area of type j to absorb CO2 in city i are the
same in all cities and that they differ only in the type of green area. Their features are showed in
Table 1.

Urban green areas require a high and ongoing level of maintenance and their allocation is in ar-
eas densely populated and with schools or sports areas. It includes botanical gardens, urban furni-
ture areas, outdoor sports areas, school gardens, urban parks, equipped greenery, and uncultivated
greenery. As its composition is varied, we can assume that urban green areas have a medium-high
capacity to absorb CO2.

Natural green areas require a medium level of maintenance and their allocation is in marginal ar-
eas furthest from inhabited zones with very limited and specific uses. Its composition provides areas
dominated by the shrubby and arboreal component, refuge for biodiversity where the vegetation
develops spontaneously. For this type of green areas, the capacity to absorb CO2 is high.

In the following examples, the costs are in thousands of euros, the space of green area in units of
km2, and CO2 emissions are expressed in kg/yr.

5.1. Example 1. Metropolitan city of Catania

The metropolitan city of Catania is a metropolitan city of 1,108,040 inhabitants and includes the
58 municipalities of the former regional province of Catania. It extends for 3570 km2 and it is the
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Fig 1. Metropolitan city of Catania in Sicily.

seventh metropolitan city in Italy by population. Its geographical position in Sicily can be seen in
Fig. 1.

Italian law requires that every citizen has 9 m2 of green area available. Considering that the
population of Catania municipality is around 1,108,040 inhabitants, by law in this city at least 9.97
km2 of green area are needed. Hence, we put l1 = 9.97 km2. Moreover, the existing green area of
Catania is 636.11 km2 (data obtained by ISPRA), that is, x11 + x12 = 636.11 km2. So,

m1 = max
{
l1, x11 + x12

} = 636.11 km2
.

Specifically, x11 = 536.05 km2 and x12 = 100.06 km2.
According to ISPRA, CO2 emissions due to population are e11 = 637, 635, 890 kg/yr. CO2 emis-

sions due to industrial activities are e12 = 728, 210, 000 kg/yr (data obtained by European Envi-
ronment Agency). Finally, the amount of CO2 emissions due to vehicles is proportional to urban
circulation, that is,

e14( fi ) = α fi, (41)

where α represents the average emission of CO2 in one year of a car, which we can estimate around
1,232 kg/yr and f1 represents the average number of vehicles circulating in the territory in one year.
According to ISPRA, the number of vehicles that circulate in Catania is 790,878. So we use this
data as the existing flow. We set f

1
= 0.85 × 790, 878. Thereby, we are assuming at least 15% of the

vehicles in circulation can be replaced through the use of public transport or through sustainable
mobility (cycle paths, car sharing services, or electric scooters, …).

Moreover, we suppose that γ1 = 120 and γ2 = 100.
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We assume the following cost functions are given:

ca
11(x11) = 0.20x2

11 − 0.15x11 + 13

ca
12(x12) = 0.30x2

12 − 0.25x12 + 13

cT
1 (g1) = 0.8g2

1 − 0.6g1 + 8

ct
11(x11) = 1.20x2

11 − 1.10x11 + 8

ct
12(x12) = 1.20x2

12 − 1.15x12 + 8

cm
11(x11, g1) = 0.80x2

11 − 0.70x11 + 0.8g2
1 − 0.6g1 + 27

cm
12(x12, g1) = 0.50x2

12 − 0.50x12 + 0.8g2
1 − 0.6g1 + 22.

cc
1( f1) = 0.6 f 2

1 − 0.5 f1 + 16.

Solving the associated variational inequality, we get the following optimal solution:

x∗
11 = 587.27 km2

, x∗
12 = 703.47 km2

,

g∗
1 = 140, 000, f ∗

1 = 672, 246.

We can observe that the pre-existing green space is not sufficient to counteract the huge emissions
deriving from industrial activities, anthropogenic activities, and transport. In fact, the optimal so-
lution establishes that the optimal green space amounts to 36.15% of the total territory of the
metropolitan city, a value that differs greatly from the existing green area, which amounts to only
19.96% of the total territory. Moreover, we observe that the existing flow exceeds the optimal one.
Therefore, the local authorities would be forced to take containment measures, such as the move-
ment of vehicles with alternate plates, the promotion for the purchase of zero emission vehicles, and
the intensification of the public infrastructure.

5.2. Example 2. Eastern Sicily: Catania, Messina, Syracuse, and Ragusa

In this example, we consider Eastern Sicily. It is defined as that part of the Sicilian territory over-
looking the Ionian coast of Sicily. It is composed by the metropolitan cities of Catania (i = 1) and
Messina (i = 2) and the free consortia of Syracuse (i = 3) and Ragusa (i = 4). Eastern Sicily is
shown in Fig. 2.

The data for this example, taken by ISPRA, are shown in Table 2.
According to ISPRA, the average flows of vehicles in Messina, Syracuse, and Ragusa are 411,283,

81,393, and 51,619, respectively. So we use that parameters as initial values. Moreover, we set f2 =
0.9 × 411, 283, f3 = 0.87 × 81, 393, and f4 = 0.9 × 51, 619.

We assume the following cost functions are given:

ca
11(x11) = 0.20x2

11 − 0.15x11 + 13

ca
12(x12) = 0.30x2

12 − 0.25x12 + 13
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Fig 2. Eastern Sicily.

Table 2
Data for Example 2

City Surface Inhabitants Emissions Pre-existing green area

Catania 3570 km2 1,108,040 e11=637,635,890 kg/yr x11 = 536 km2

e12=728,210,000 kg/yr x12 = 100 km2

Messina 3266.12 km2 627,251 e21=360,959,667 kg/yr x21 = 48.99 km2

e22=1,113,000,000 kg/yr x22 = 2.29 km2

Syracuse 2124.13 km2 397,341 e31=228,654,421 kg/yr x31 = 8.5 km2

e32=1,020,000,000 kg/yr x32 = 120.9 km2

Ragusa 1623.89 km2 320,893 e41=184,661,545 kg/yr x41 = 6.5 km2

e42=619,330,000 kg/yr x42 = 105.55 km2

ca
21(x21) = 0.20x2

21 − 0.15x21 + 13

ca
22(x22) = 0.30x2

22 − 0.25x22 + 13

ca
31(x31) = 0.20x2

31 − 0.15x31 + 13

ca
32(x32) = 0.30x2

32 − 0.25x32 + 13

ca
41(x41) = 0.20x2

41 − 0.15x41 + 13

ca
42(x42) = 0.30x2

42 − 0.25x42 + 13

cT
1 (g1) = 0.8g2

1 − 0.6g1 + 8

cT
2 (g2) = 0.8g2

2 − 0.6g2 + 8
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cT
3 (g3) = 0.8g2

3 − 0.6g3 + 8

cT
4 (g4) = 0.8g2

4 − 0.6g4 + 8

ct
11(x11) = 1.20x2

11 − 1.10x11 + 8

ct
12(x12) = 1.20x2

12 − 1.15x12 + 8

ct
21(x21) = 1.20x2

21 − 1.10x21 + 8

ct
22(x22) = 1.20x2

22 − 1.15x22 + 8

ct
31(x31) = 1.20x2

31 − 1.10x31 + 8

ct
32(x32) = 1.20x2

32 − 1.15x32 + 8

ct
41(x41) = 1.20x2

41 − 1.10x41 + 8

ct
42(x42) = 1.20x2

42 − 1.15x42 + 8

cm
11(x11, g1) = 0.80x2

11 − 0.70x11 + 0.8g2
1 − 0.6g1 + 27

cm
12(x12, g1) = 0.50x2

12 − 0.50x12 + 0.8g2
1 − 0.6g1 + 22

cm
21(x21, g1) = 0.80x2

21 − 0.70x21 + 0.8g2
2 − 0.6g2 + 27

cm
22(x22, g1) = 0.50x2

22 − 0.50x22 + 0.8g2
2 − 0.6g2 + 22

cm
31(x31, g1) = 0.80x2

31 − 0.70x31 + 0.8g2
3 − 0.6g3 + 27

cm
32(x32, g1) = 0.50x2

32 − 0.50x32 + 0.8g2
3 − 0.6g3 + 22

cm
41(x41, g1) = 0.80x2

41 − 0.70x41 + 0.8g2
4 − 0.6g4 + 27

cm
42(x42, g1) = 0.50x2

42 − 0.50x42 + 0.8g2
4 − 0.6g4 + 22

cc
1( f1) = 0.6 f 2

1 − 0.5 f1 + 16

cc
2( f2) = 0.6 f 2

2 − 0.5 f2 + 16

cc
3( f3) = 0.6 f 2

3 − 0.5 f3 + 16

cc
4( f4) = 0.6 f 2

4 − 0.5 f4 + 16.

These costs were built symmetrically with respect to each city.
Solving the associated variational inequality, we obtain the following optimal solution:

x∗
11 = 587.27 km2

, x∗
12 = 703.47 km2

, g∗
1 = 140, 000, f ∗

1 = 672, 246;
x21

∗ = 248.99 km2
, x∗

22 = 2.31 km2
, g∗

2 = 257, 600, f ∗
2 = 370, 154;

x31
∗ = 408.5 km2

, x∗
32 = 1536 km2

, g∗
3 = 194, 620, f ∗

3 = 70, 811;
x41

∗ = 93.5 km2
, x∗

42 = 225.98 km2
, g∗

4 = 320, 790, f ∗
4 = 46, 457.
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As we can see from the optimal solution, in each of the four cities it is necessary to increase the
percentage of green area to counteract the CO2 emissions taken into consideration. In the case of
Syracuse, the new green area should be 91% of the total area of the city, which is improbable. This
result is due to the fact that Syracuse is a highly industrialized city, because of the presence of the
petrochemical complex of Priolo Gargallo, Augusta, and Melilli, an establishment often at the cen-
ter of controversies for the choice of the place, the huge emissions, the numerous accidents, and the
increase in the number of tumor diseases. This result makes us understand how the CO2 emissions
are disproportionate compared to the quantity absorbed by the existing green area. In each city,
moreover, the optimal flow is less than the initial flow, which means that local authorities would
be forced to take containment measures, as discussed earlier, in order to reduce CO2 emissions due
to transport.

6. Conclusion

In this paper, we proposed an optimization model for the management of green areas in order
to find the optimal green space to absorb CO2 emissions of industrialized cities. We obtained a
minimization problem and the related variational inequality. Furthermore, we studied the Lagrange
theory to better understand the process that regulates the possible increase in green space. Also, we
presented a computational procedure, based on the Euler method, to find the optimal variables of
the model. Some concrete examples, set in Southern Italy, were presented and solved. The optimal
solution showed the effectiveness of the model and the need for many local governments to improve
the living conditions of the inhabitants, increasing, for instance, the green areas, especially in those
zones with an intense industrial activity.

The studied model could be further extended and improved, by introducing also budget con-
straints to the local organizations or increasing the awareness of inhabitants and of the industries
with respect to environment and life, encouraging, for instance, sustainable manufacturing by in-
dustries (see, for instance Liu et al., 2020) and requiring that every year a part of their revenue has
to be destined to the improvement and maintenance of green areas.

The results in this paper add to the growing literature of operations research for green area man-
aging.
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