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A class of functionals possessing multiple global
minima
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To Professor Gheorghe Moroşanu, with friendship, on his 70th birthday.

Abstract. We get a new multiplicity result for gradient systems. Here is a very
particular corollary: Let Ω ⊂ Rn (n ≥ 2) be a smooth bounded domain and let
Φ : R2 → R be a C1 function, with Φ(0, 0) = 0, such that

sup
(u,v)∈R2

|Φu(u, v)|+ |Φv(u, v)|
1 + |u|p + |v|p < +∞

where p > 0, with p = 2
n−2

when n > 2.

Then, for every convex set S ⊆ L∞(Ω) × L∞(Ω) dense in L2(Ω) × L2(Ω), there
exists (α, β) ∈ S such that the problem

−∆u = (α(x) cos(Φ(u, v))− β(x) sin(Φ(u, v)))Φu(u, v) in Ω

−∆v = (α(x) cos(Φ(u, v))− β(x) sin(Φ(u, v)))Φv(u, v) in Ω

u = v = 0 on ∂Ω

has at least three weak solutions, two of which are global minima in H1
0 (Ω) ×

H1
0 (Ω) of the functional

(u, v)→ 1

2

(∫
Ω

|∇u(x)|2dx+

∫
Ω

|∇v(x)|2dx
)

−
∫

Ω

(α(x) sin(Φ(u(x), v(x))) + β(x) cos(Φ(u(x), v(x))))dx .
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1. Introduction

Let S be a topological space. A function g : S → R is said to be inf-compact if,
for each r ∈ R, the set g−1(]−∞, r]) is compact.

If Y is a real interval and f : S × Y → R is a function inf-compact and lower
semicontinuous in S, and concave in Y , the occurrence of the strict minimax inequality

sup
Y

inf
S
f < inf

S
sup
Y
f

implies that the interior of the set A of all y ∈ Y for which f(·, y) has at least two
local minima is non-empty. This fact was essentially shown in [4], giving then raise
to an enormous number of subsequent applications to the multiplicity of solutions for
nonlinear equations of variational nature (see [7] for an account up to 2010).

In [6] (see also [5]), we realized that, under the same assumptions as above, the
occurrence of the strict minimax inequality also implies the existence of ỹ ∈ Y such
that the function f(·, ỹ) has at least two global minima. It may happen that ỹ is
unique and does not belong to the closure of A (see Example 7 of [1]).

In [8] and [12], we extended the result of [6] to the case where Y is an arbitrary
convex set in a vector space. We also stress that such an extension is not possible for
the result of [4]. We then started to build a network of applications of the results of
[8] and [12] which touches several different topics: uniquely remotal sets in normed
spaces ([8]); non-expansive operators ([9]); singular points ([10]); Kirchhoff-type prob-
lems ([11]); Lagrangian systems of relativistic oscillators ([13]); integral functional of
the Calculus of Variations ([14]); non-cooperative gradient systems ([15]); variational
inequalities ([16]).

The aim of this paper is to establish a further application within that network.

2. Results

The main abstract result is as follows:

Theorem 2.1. Let X be a topological space, (Y, 〈·, ·, 〉) a real Hilbert space, T ⊆ Y a
convex set dense in Y and I : X → R, ϕ : X → Y two functions such that, for each
y ∈ T , the function x → I(x) + 〈ϕ(x), y〉 is lower semicontinuous and inf-compact.
Moreover, assume that there exists a point x0 ∈ X, with ϕ(x0) 6= 0, such that
(a) x0 is a global minimum of both functions I and ‖ϕ(·)‖ ;
(b) infx∈X〈ϕ(x), ϕ(x0)〉 < ‖ϕ(x0)‖2 .

Then, for each convex set S ⊆ T dense in Y , there exists y∗ ∈ S such that the
function x→ I(x) + 〈ϕ(x), y∗〉 has at least two global minima in X.

Proof. In view of (b), we can find x̃ ∈ X and r > 0 such that

I(x̃) +
r

‖ϕ(x0)‖
〈ϕ(x̃), ϕ(x0)〉 < I(x0) + r‖ϕ(x0)‖ . (2.1)
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Thanks to (a), we have

I(x0) + r‖ϕ(x0)‖ = inf
x∈X

(I(x) + r‖ϕ(x)‖) . (2.2)

The function y → infx∈X(I(x) + 〈ϕ(x), y〉) is weakly upper semicontinuous, and so
there exists ỹ ∈ Br such that

inf
x∈X

(I(x) + 〈ϕ(x), ỹ〉) = sup
y∈Br

inf
x∈X

(I(x) + 〈ϕ(x), y〉) , (2.3)

Br being the closed ball in X, centered at 0, of radius r. We distinguish two cases.

First, assume that ỹ 6= rϕ(x0)
‖ϕ(x0‖ . As a consequence, taking into account that r‖ϕ(x0)‖

is the maximum of the restriction to Br of the continuous linear functional 〈ϕ(x0), ·〉
(attained at the point rϕ(x0)

‖ϕ(x0)‖ only), we have

inf
x∈X

(I(x) + 〈ϕ(x), ỹ〉) ≤ I(x0) + 〈ϕ(x0), ỹ〉 < I(x0) + r‖ϕ(x0)‖ . (2.4)

Now, assume that ỹ = rϕ(x0)
‖ϕ(x0‖ . In this case, due to (2.1), we have

inf
x∈X

(I(x) + 〈ϕ(x), ỹ〉) ≤ I(x̃) + 〈ϕ(x̃), ỹ〉 = I(x̃) +
r

‖ϕ(x0)‖
〈ϕ(x̃), ϕ(x0)〉

< I(x0) + r‖ϕ(x0)‖ . (2.5)

Therefore, from (2.2), (2.3), (2.4) and (2.5), it follows that

sup
y∈Br

inf
x∈X

(I(x) + 〈ϕ(x), y〉) < inf
x∈X

sup
y∈Br

(I(x) + 〈ϕ(x), y〉) . (2.6)

Now, let S ⊆ T be a convex set dense in Y . By continuity, we clearly have

sup
y∈Br∩S

〈ϕ(x), y〉 = sup
y∈Br

〈ϕ(x), y〉

for all x ∈ X. Therefore, in view of (2.6), we have

sup
y∈Br∩S

inf
x∈X

(I(x) + 〈ϕ(x), y〉) ≤ sup
y∈Br

inf
x∈X

(I(x) + 〈ϕ(x), y〉)

< inf
x∈X

sup
y∈Br

(I(x) + 〈ϕ(x), y〉) = inf
x∈X

sup
y∈Br∩S

(I(x) + 〈ϕ(x), y〉) .

At this point, the conclusion follows directly applying Theorem 1.1 of [12] to the
restriction of the function (x, y)→ I(x) + 〈ϕ(x), y〉 to X × (Br ∩ S). �

We now present an application of Theorem 2.1 to elliptic systems.

In the sequel, Ω ⊆ Rn (n ≥ 2) is a bounded domain with smooth boundary.

We denote by A the class of all functions H : Ω×R2 → R which are measurable
in Ω, C1 in R2 and satisfy

sup
(x,u,v)∈Ω×R2

|Hu(x, u, v)|+ |Hv(x, u, v)|
1 + |u|p + |v|p

< +∞

where p > 0, with p < n+2
n−2 when n > 2.
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Given H ∈ A, we are interested in the problem

−∆u = Hu(x, u, v) in Ω

−∆v = Hv(x, u, v) in Ω

u = v = 0 on ∂Ω ,

Hu (resp. Hv) denoting the derivative of H with respect to u (resp. v).

As usual, a weak solution of this problem is any (u, v) ∈ H1
0 (Ω)×H1

0 (Ω) such that∫
Ω

∇u(x)∇ϕ(x)dx =

∫
Ω

Hu(x, u(x), v(x))ϕ(x)dx ,∫
Ω

∇v(x)∇ψ(x)dx =

∫
Ω

Hv(x, u(x), v(x))ψ(x)dx

for all ϕ,ψ ∈ H1
0 (Ω).

Define the functional IH : H1
0 (Ω)×H1

0 (Ω)→ R by

IH(u, v) =
1

2

(∫
Ω

|∇u(x)|2dx+

∫
Ω

|∇v(x)|2dx
)
−
∫

Ω

H(x, u(x), v(x))dx

for all (u, v) ∈ H1
0 (Ω)×H1

0 (Ω).

Since H ∈ A, the functional IH is C1 in H1
0 (Ω)×H1

0 (Ω) and its critical points are
precisely the weak solutions of the problem. Moreover, due to the Sobolev embedding
theorem, the functional (u, v)→

∫
Ω
H(x, u(x), v(x)) has a compact derivative and, as

a consequence, it is sequentially weakly continuous in H1
0 (Ω)×H1

0 (Ω).

Also, we denote by λ1 the first eigenvalue of the Dirichlet problem

−∆u = λu in Ω

u = 0 on ∂Ω .

Our result is as follows:

Theorem 2.2. Let F,G ∈ A, with p = 2
n−2 when n > 2, and let K ∈ A, with

K(x, 0, 0) = 0 for all x ∈ Ω, satisfy the following conditions:
(a1) one has

lim
s2+t2→+∞

supx∈Ω(|F (x, s, t)|+ |G(x, s, t)|)
s2 + t2

= 0 ;

(a2) there is η ∈
]
0, λ1

2

[
such that

K(x, s, t) ≤ η(s2 + t2)

for all x ∈ Ω, s, t ∈ R ;
(a3) one has

meas({x ∈ Ω : 0 < |F (x, 0, 0)|2 + |G(x, 0, 0)|2}) > 0 (2.7)

and

|F (x, 0, 0)|2 + |G(x, 0, 0)|2 ≤ |F (x, s, t)|2 + |G(x, s, t)|2 (2.8)

for all x ∈ Ω, s, t ∈ R ;



A class of functionals possessing multiple global minima 79

(a4) one has

meas({x ∈ Ω : inf
(s,t)∈R2

(F (x, 0, 0)F (x, s, t) +G(x, 0, 0)G(x, s, t))

< |F (x, 0, 0)|2 + |G(x, 0, 0)|2}) > 0 .

Then, for every convex set S ⊆ L∞(Ω)×L∞(Ω) dense in L2(Ω)×L2(Ω), there exists
(α, β) ∈ S such that the problem

−∆u = α(x)Fu(x, u, v) + β(x)Gu(x, u, v) +Ku(x, u, v) in Ω

−∆v = α(x)Fv(x, u, v) + β(x)Gv(x, u, v) +Kv(x, u, v) in Ω

u = v = 0 on ∂Ω

has at least three weak solutions, two of which are global minima in H1
0 (Ω) ×H1

0 (Ω)
of the functional

(u, v)→ 1

2

(∫
Ω

|∇u(x)|2dx+

∫
Ω

|∇v(x)|2dx
)

−
∫

Ω

(α(x)F (x, u(x), v(x)) + β(x)G(x, u(x), v(x)) +K(x, u(x), v(x)))dx .

Proof. We are going to apply Theorem 2.1, with the following choices: X is the space
H1

0 (Ω)×H1
0 (Ω) endowed with the weak topology induced by the scalar product

〈(u, v), (w,ω)〉X =

∫
Ω

(∇u(x)∇w(x) +∇v(x)∇ω(x))dx ;

Y is the space L2(Ω)× L2(Ω) with the scalar product

〈(f, g), (h, k)〉Y =

∫
Ω

(f(x)h(x) + g(x)k(x))dx ;

T is L∞(Ω)× L∞(Ω); I is the function defined by

I(u, v) =
1

2

(∫
Ω

|∇u(x)|2dx+

∫
Ω

|∇v(x)|2dx
)
−
∫

Ω

K(x, u(x), v(x))dx

for all (u, v) ∈ X; ϕ is the function defined by

ϕ(u, v) = (F (·, u(·), v(·)), G(·, u(·), v(·)))
for all (u, v) ∈ X; x0 is the zero of X. Let us show that the assumptions of Theorem
2.1 are satisfied. First, from (2.7) and (2.8) it clearly follows, respectively, that

‖ϕ(0, 0)‖2Y =

∫
Ω

(|F (x, 0, 0)|2 + |G(x, 0, 0|2)dx > 0

and that

‖ϕ(0, 0)‖2Y ≤ ‖ϕ(u, v)‖2Y
for all (u, v) ∈ X. Moreover, from (a2), thanks to the Poincaré inequality, we get∫

Ω

K(x, u(x), v(x))dx ≤ η
∫

Ω

(|u(x)|2 + |v(x)|2)dx ≤ η

λ1

∫
Ω

(|∇u(x)|2 + |∇v(x)|2)dx

(2.9)



80 Biagio Ricceri

for all (u, v) ∈ X. In particular, since K(x, 0, 0) = 0 in Ω and η
λ1
< 1

2 , from (2.9) we

infer that (0, 0) is a global minimum of I in X. So, condition (a) is satisfied. Now, let
us verify condition (b). To this end, set

P (x, s, t) = F (x, 0, 0)F (x, s, t) +G(x, 0, 0)G(x, s, t)− |F (x, 0, 0)|2 − |G(x, 0, 0)|2

for all (x, s, t) ∈ Ω×R2 and

D =

{
x ∈ Ω : inf

(s,t)∈R2
P (x, s, t) < 0

}
.

By (a4), D has a positive measure. In view of the Scorza-Dragoni theorem, there
exists a compact set C ⊂ D, with positive measure, such that the restriction of P to
C ×R2 is continuous. Fix a point x̃ ∈ C such that the intersection of C and any ball
centered at x̃ has a positive measure. Choose s̃, t̃ ∈ R \ {0} so that P (x̃, s̃, t̃) < 0. By
continuity, there is r > 0 such that

P (x, s̃, t̃) < 0

for all x ∈ C ∩B(x̃, r). Set

γ = sup
(x,s,t)∈Ω×[−|s̃|,|s̃|]×[−|t̃|,|t̃|]

|P (x, t, s)| .

Since F,G ∈ A, γ is finite. Now, choose an open set A such that

C ∩B(x̃, r) ⊂ A ⊂ Ω

and

meas(A \ (C ∩B(x̃, r))) < −

∫
C∩B(x̃,r)

P (x, s̃, t̃)dx

γ
. (2.10)

Finally, choose two functions ũ, ṽ ∈ H1
0 (Ω) such that

ũ(x) = s̃ , ṽ(x) = t̃

for all x ∈ C ∩B(x̃, r) ,

ũ(x) = ṽ(x) = 0

for all x ∈ Ω \A and

|ũ(x)| ≤ |s̃| , |ṽ(x)| ≤ |t̃|
for all x ∈ Ω. Then, taking (2.10) into account, we have

〈ϕ(ũ, ṽ), ϕ(0, 0)〉Y − ‖ϕ(0, 0)‖2Y =

∫
Ω

P (x, ũ(x), ṽ(x))dx

=

∫
C∩B(x̃,r)

P (x, s̃, t̃)dx+

∫
A\(C∩B(x̃,r))

P (x, ũ(x), ṽ(x))dx

<

∫
C∩B(x̃,r)

P (x, s̃, t̃)dx+ γmeas(A \ (C ∩B(x̃, r)) < 0 .

This shows that (b) is satisfied. Finally, fix α, β ∈ L∞(Ω). Clearly, the function

(x, s, t)→ α(x)F (x, s, t) + β(x)F (x, s, t) +K(x, s, t)



A class of functionals possessing multiple global minima 81

belongs to A, and so the functional

(u, v)→ I(u, v) + 〈ϕ(u, v), (α, β)〉Y
is sequentially weakly lower semicontinuous in X. Let us show that it is coercive. Set

θ = max
{
‖α‖L∞(Ω), ‖β‖L∞(Ω)

}
and fix ε > 0 so that

ε <
1

θ

(
λ1

2
− η
)
. (2.11)

By (a1), there is cε > 0 such that

|F (x, s, t)|+ |G(x, s, t)| ≤ ε(|s|2 + |t|2) + cε

for all (x, s, t) ∈ Ω×R2. Then, for each u, v ∈ H1
0 (Ω), recalling (2.9), we have

I(u, v) + 〈ϕ(u, v), (α, β)〉Y

≥
(

1

2
− η

λ1

)∫
Ω

(|∇u(x)|2 + |∇v(x)|2)dx

−
∫

Ω

|α(x)F (x, u(x), v(x)) + β(x)G(x, u(x), v(x))|dx

≥
(

1

2
− η

λ1

)∫
Ω

(|∇u(x)|2 + |∇v(x)|2)dx− θε
∫

Ω

(|u(x)|2 + |v(x)|2)dx− θcεmeas(Ω)

≥
(

1

2
− η

λ1
− θε

λ1

)∫
Ω

(|∇u(x)|2 + |∇v(x)|2)dx− θcεmeas(Ω) .

Notice that, in view of (2.11), we have 1
2 −

η
λ1
− θε

λ1
> 0, and so

lim
‖(u,v)‖X→+∞

(I(u, v) + 〈ϕ(u, v), (α, β)〉Y ) = +∞ ,

as claimed.
In particular, this also implies that the functional (u, v)→ I(u, v) + 〈ϕ(u, v), (α, β)〉Y
is weakly lower semicontinuous, by the Eberlein-Smulyan theorem. Thus, the assump-
tions of Theorem 2.1 are satisfied. Therefore, for each convex set S ⊆ L∞(Ω)×L∞(Ω)
dense in H1

0 (Ω)×H1
0 (Ω), there exists (α, β) ∈ S, such that the functional

(u, v)→ 1

2

(∫
Ω

|∇u(x)|2dx+

∫
Ω

|∇v(x)|2dx
)

−
∫

Ω

(α(x)F (x, u(x), v(x)) + β(x)G(x, u(x), v(x)) +K(x, u(x), v(x)))dx

has at least two global minima in H1
0 (Ω)×H1

0 (Ω). Finally, by Example 38.25 of [17],
the same functional satisfies the Palais-Smale condition, and so it admits at least
three critical points, in view of Corollary 1 of [3]. The proof is complete. �

Remark 2.3. We are not aware of known results close enough to Theorem 2.2 in order
to do a proper comparison. This sentence also applies to the case of single equations,
that is to say when F,G,K depend on x and s only. For an account on elliptic systems,
we refer to [2].
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Among the various corollaries of Theorem 2.2, we wish to stress the following ones:

Corollary 2.4. Let K ∈ A, with K(x, 0, 0) = 0 for all x ∈ Ω, satisfy condition (a2).
Moreover, let Φ : R2 → R be a non-constant C1 function, with Φ(0, 0) = 0, belonging
to A, with p = 2

n−2 when n > 2.

Then, for every convex set S ⊆ L∞(Ω)× L∞(Ω) dense in L2(Ω)× L2(Ω), there
exists (α, β) ∈ S such that the problem

−∆u = (α(x) cos(Φ(u, v))− β(x) sin(Φ(u, v)))Φu(u, v) +Ku(x, u, v) in Ω

−∆v = (α(x) cos(Φ(u, v))− β(x) sin(Φ(u, v)))Φv(u, v) +Kv(x, u, v) in Ω

u = v = 0 on ∂Ω

has at least three weak solutions, two of which are global minima in H1
0 (Ω) ×H1

0 (Ω)
of the functional

(u, v)→ 1

2

(∫
Ω

|∇u(x)|2dx+

∫
Ω

|∇v(x)|2dx
)

−
∫

Ω

(α(x) sin(Φ(u(x), v(x))) + β(x) cos(Φ(u(x), v(x))) +K(x, u(x), v(x)))dx .

Proof. It suffices to apply Theorem 2.2 to the functions F,G : R2 → R defined by

F (s, t) = sin(Φ(s, t)) ,

G(s, t) = cos(Φ(s, t))

for all (s, t) ∈ R2. �

Corollary 2.5. Let F,G : R → R belong to A, with p = 2
n−2 when n > 2. Moreover,

assume that F,G are twice differentiable at 0 and that

lim
|s|→+∞

|F (s)|+ |G(s)|
s2

= 0 ,

0 < |F (0)|2 + |G(0)|2 = inf
s∈R

(|F (s)|2 + |G(s)|2) ,

F ′′(0)F (0) +G′′(0)G(0) < 0 . (2.12)

Then, for every convex set S ⊆ L∞(Ω)×L∞(Ω) dense in L2(Ω)×L2(Ω), there exists
(α, β) ∈ S such that the problem

−∆u = α(x)F ′(u) + β(x)G′(u) in Ω

u = 0 on ∂Ω

has at least three weak solutions, two of which are global minima in H1
0 (Ω) of the

functional

u→ 1

2

∫
Ω

|∇u(x)|2dx−
∫

Ω

(α(x)F (u(x)) + β(x)G(u(x)))dx .
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Proof. We apply Theorem 2.2 taking K = 0. Since 0 is a global minimum of the
function |F (·)|2 + |G(·)|2, we have

F ′(0)F (0) +G′(0)G(0) = 0

and so, in view of (2.12), 0 is a strict local maximum for the function

F (·)F (0) +G(·)G(0).

Hence, (a4) is satisfied and Theorem 2.2 gives the conclusion. �
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