8 DE GRUYTER Adv. Nonlinear Anal. 2022; 11: 741-756

Research Article

Umberto Guarnotta, Salvatore Angelo Marano*, and Abdelkrim Moussaoui

Singular quasilinear convective elliptic
systems in R

https://doi.org/10.1515/anona-2021-0208
Received March 10, 2021; accepted September 17, 2021.

Abstract: The existence of a positive entire weak solution to a singular quasi-linear elliptic system with con-
vection terms is established, chiefly through perturbation techniques, fixed point arguments, and a priori
estimates. Some regularity results are then employed to show that the obtained solution is actually strong.
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1 Introduction and main result

In this paper, we deal with the problem

-Apu = f(x,u,v,Vu,Vv) in RN,
-Aqv = g(x,u,v,Vu,Vv) in RY, (P)

u,v>0 in RN,

where N = 3, 2 - % < p,q < N, Az := div(|Vz|"2Vz) denotes the r-Laplacian of z for 1 < r < +oo, while
f, 8 : RN x (0, +00)? x R?N — (0, +o0) are Carathéodory functions satisfying assumptions H; —Hs below.
Problem (P) exhibits three interesting features:
e The reaction terms f and g can be singular at zero.
e f, g depend on the gradient of solutions.
e Equations are set in the whole space RV,
However, they give rise to some nontrivial difficulties, such as the loss of variational structure and the lack
of compactness for Sobolev embedding. This work continues the study started in [32], whose setting was R
and convective terms did not appear, along the very recent papers [6, 23, 24, 31], which address analogous
questions, but concerning a bounded domain.
Primarily, we need an appropriate functional framework where to treat the problem, mainly because
the integrability properties of solutions and their gradients may differ at infinity, as the example in [20, p.
80] shows. Accordingly, one is led to employ the so-called Beppo Levi (or homogeneous Sobolev) spaces
D(l)”(RN ), systematically studied for the first time by Deny and Lions [15]. The monographs [20, 29, 38] provide
an exhaustive introduction on the topic.
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Let X := @é’p (RN) x Dé’q(RN ) and let ' denote the conjugate exponent of r > 1. A pair (u, v) € X such
that u, v > 0 a.e. in R is called:
1) distributional solution to (P) if for every (p1, ) € C3(RY)? one has

/ |Vu|p‘2VuV<p1dx=/ fC,u,v, Vu, Vv)p1dx,
RN RN

(1.1)
/ |Vv|q’2VvV(p2dx=/ g, u, v, Vu, Vv)p,dx;
RN RN

2) (weak) solution of (P) when (1.1) holds for all (¢4, ¢>) € X;
3) ‘strong’ solution to (P) if |[Vu[P~>Vu, |Vv|?7?Vv € W, 2(RY) and the differential equations are satisfied

a.e. in RV,

Obviously, both 2) and 3) force 1), whilst reverse implications turn out generally false; see also Remark 4.5.
Moreover, as observed at p. 48 of [38], problems in unbounded domains may admit strong solutions that are
not weak or vice-versa. So, the search for strong solutions appears of some interest in this context.

Roughly speaking, our technical approach proceeds as follows. We first solve an auxiliary problem (P?),
€ > 0, obtained by shifting variables of reactions, which avoids singularities. To do this, nonlinear regularity
theory, a priori estimates, Moser’s iteration, trapping region, and fixed point arguments are employed. Unfor-
tunately, bounds from above alone do not allow to get a solution of (P): treating singular terms additionally
requires some estimates from below. Theorem 3.1 in [14] ensures that solutions to (P?) turn out locally greater
than a positive constant regardless of €. Thus, under hypotheses H; —H3 below, we can construct a sequence
{(ue, ve)} C X such that (ue, ve) solves (P?) for all € > 0 and whose weak limit as € — 0" is a distributional
solution to (P); cf. Lemma 4.1. Next, a localization-regularization reasoning (see Lemma 4.2) shows that

(u, v) distributional solution = (u, v) weak solution.
Through a recent differentiability result [10, Theorem 2.1] one then has
(u, v) distributional solution = (u, v) strong solution;

cf. Lemma 4.3. Further, (u, v) € C;*(R") once condition H is slightly strengthened; see Remark 4.4.

Singular elliptic problems, either in bounded domains or in RY have a long history, that traces back to
[12, 28] and [8, 9, 13, 25, 27] for semi-linear equations. More recent results, involving also systems, can be
found in [17, 32, 33, 36] and the references therein. A very fruitful approach has been developed in [3, 4]; see
also [7] and [34]. Existence, regularity, and qualitative properties of the solutions have been investigated, e.g.,
in [1, 2, 11, 19, 30, 40].

Henceforth, the assumptions below will be posited. If 1 < r < N then, by definition, r" := .
Hy (f)There exist a; € (-1,0], B1, 81 € [0, g-1), v € [0, p-1), my, iy > 0,and ay € L;?.(RY), withsp > p'N,

such that

mlal(x)s‘i“sg1 < f(x, 51, S2, t1, t) < Mya;(x) (s‘{‘lsg1 + [t + |t2|51)

in RN x (0, +o00)2 x R2N, Moreover, es%inf a, >0forallp > 0.
)

Hj (g)There exist B, € (-1,0], a2, 72 € [0, p-1), 8, € [0, g—1), mz, 7, > 0,and a5 € L? (RN), withsg > ¢'N,
such that

mzaz(x)s‘f

ngz < g(x, 51,82, t1,t) < Myax(x) (s‘i‘zs'g2 + [t + |t2|52)
inRY x (0, +00)? x RN, Moreover, es%inf a, >0forallp > 0.
)

H; (a)There exist {1, {> € (N, +oo] such that a; € LY(RY) n L%(RYN), i = 1, 2, where

1

p 1 q
1o1-P g, L1 4y,
G ! g’

G

with

01:=max{%’ﬂ’ﬁ}<1_£*’ 02:=max{a7%’72s67}<1_i*-
9 P 9 p p p 4 q
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H, Ifny := max{B, 6:} and n, := max{a,, .} then
M2 <@P-1-7)@g-1-6).
Hs One has

i+max{ﬂ,ﬁ}s1, i+max{12,&}sl.
Sp b q 2 S b q 2

Example 1.1. H;(a) is fulfilled once a;, a, € L*(RY) n L>°(RY) and
maX{ﬁ—i,ﬂ,ﬁ}d—%, maX{a—f,lz,@}d—i*-
q9 b 4 b b p q q

In fact, it suffices to choose {; := {5 := +oo.

Remark 1.2. By interpolation (see, e.g., [32, Proposition 2.1]), condition H; (a) entails a; € L% (RY),i=1, 2,
where:

i PP S . ;

@ o01;: ) =1,2,3,4, with

t1=a1t1+ﬁ%, t2=i*+ﬁ%, t3=i*+l1, t4=i*+ﬁ;
p q P g prp P g
(ii) 0y := 1%t]_,j= 1, 2,3, 4, with
R - A N
g p g p  p T q

The aim of this paper is to prove the following

Theorem 1.3. Under hypotheses H,—Hjs, problem (P) admits a weak and strong solution (u, v) € X.

2 Preliminaries

Let Z be a Hausdorff topological space and let T : Z — Z be continuous. Following [22, p. 2], the operator T is
called compact when T(Z) turns out a compact subset of Z. If Z is a normed space, {zn} € Z,and z € Z then
zn — zin Z means that the sequence {z,} strongly converges to z, while z, — z stands for weak convergence.
As usual, Z* denotes the topological dual of Z and 72 =7 xZ.

Hereafter, N = 3 is a fixed integer, B(x, p) indicates the open ball in RY of radius p > Ocentered at x € RN
and B, := B(0, p), while |E| stands for the Lebesgue measure of E.

Let Z := Z(Q) be a real-valued function space on a nonempty measurable set Q@ C R, If z;,z, € Zand
z1(X) < z(x) a.e. in Q then we simply write z; < z,. The meaning of z; < z,, etc. is analogous. Put

Zy:={zeZ:z>0}.

Given {zn} C Z and z € Z, the symbol z, 1 z signifies that {z,} is monotone increasing and zx(x) — z(x) for
almost every x € Q. Moreover,

z* := max{+z,0}, suppz:={xcQ:z(x) #0}.

When Q := RN, we write z € Zj,.(R") if for every nonempty compact subset K of RN the restriction z|k
belongs to Z(K). Similarly, a sequence {zn} C Zjo¢ (R") is called bounded in Zj,.(R") once the same holds for
{zn|k} in Z(K), with any K as above.

Let1 <r< Nandletz: RN — R be a measurable function. Throughout the paper, r' := ;7;, r" := .,

1/r
1z]|r 2= (/ |z(x)|rdx) » |1Zlles := esssup |z(x)] .
RN XERN
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We now recall the notion and some relevant properties of Beppo Levi’s space D})” (RY), addressing the reader
to [20, Chapter II] for a complete treatment. Put

PLT = {z e Ll ®RY):|Vz| € L’(RN)}

and denote by R the equivalence relation that identifies two elements in D" whose difference is a constant.
The quotient set D', endowed with the norm

1/r
2l = ( / |Vz(x)\’dx) ,
RN

turns out complete. Write ’Dé”(RN ) for the subspace of D" defined as the closure of Cy(RN) under | - |1,
namely

D(l)’r(RN) = CSQ(RN)HHII.
DL (RN), usually called Beppo Levi space, is reflexive and continuously embeds in L' (RV), i.e.,
DL(RY) < L7 (RY), @1

Consequently, if z € Dj’"(RY) then z vanishes at infinity, meaning that the set {x € R" : |z(x)| > €} has finite
measure for any € > 0. In fact, by Chebichev’s inequality and (2.1), one has

. . ) .
Hx e RN : |z(0)| 2 e} <& ||z|% < (cez]|1,y)| < +oo,

where ¢ > 0 is the best constant related to (2.1); see the seminal paper [39].

Hereafter, c, c¢, and c¢(-) will denote generic positive constants, which may change explicit value from
line to line. Subscripts and/or arguments emphasize their dependence on a given variable.

To avoid cumbersome expressions, define

X = DgP®Y) x DgIRY), |, VIl i= [ull,p + Vg VW, V) €X,
Cl=X:NCLH@®Y)?, eb* =X nCHi®Y)%.

€} and C1* will be endowed with the topology induced by that of X.
The following a priori estimate will play a basic role in the sequel.

Lemma2.l. Let2 - % <r<+oo,let{ > N,andlet h € L*(RN) N L*RN). If z € DF"(RN) N CL (RN) is a weak
solution to -Ayz = h(x) in RN then there exists ¢ > 0, independent of z, such that

IVz||2t < cinf (RVE ||h||, + R 7 ||Vz| L) .
R>0 ¢

Proof. Pick any x € RY and R > 0. Via [26, Theorem 1.1], when r > 2, or [18, Theorem 1.1, if 2 - % <r<2,
with Q := B(x, R) and y := hdx, as well as Holder’s inequality, we easily get

R r-1
|Vz(x)|"t<c {/ <p‘N/ |h| dy) dp + <R’N/ |Vz|dy> }
0 B(x,p) B(x,R)

R _N _r-1 _
sc(nhu/o p cdp+R 7 N||vzl|y 1)

<c(RVE Rl + R 7 vz,

where ¢ > 0 does not depend on z, h, x, and R; see [18, Remark 1.3]. Taking the infimum in R > 0 on the right
and the supremum in x € R" on the left yields the conclusion. O
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3 The regularized system

3.1 ‘Freezing’ the right-hand side
Fix w := (wq, w3) € €L, £ > 0 and define

fw,e :=f(, w1 +&, w2, VW), 8w, :=8(, Wi, wa +&, VW),
where Vw := (Vwy, Vw,). We first focus on the auxiliary problem

{ ~Aput = fw,e(x) in RV, %)

—Aqv = gwyg(x) in RN.
Lemma 3.1. IfH; holds then (P%,) admits a unique solution (u, v) € @14, for a suitable a € (0, 1).

Proof. Hypothesis H; and (2.1) guarantee that (fu,s, gw,) € X . Hence, by Minty-Browder’s Theorem [5, The-
orem 5.16], problem (P%,) possesses a unique solution (u, v) € X. Thanks to H; again one has

(fw,e, Sw,e) € L (RN) x [ (RN).

loc loc

Thus, standard results from nonlinear regularity theory [16, p. 830] entail (u, v) € Cllo’g‘ (RN)?2. Testing the first
equation in (P§,) with u~ we next obtain

—||VM7H5 = / fw,eu dx = 0,
RN

because f is non-negative, which forces u > 0. Likewise, v > 0. The strong maximum principle [35, Theorem
1.1.1] finally yields (u, v) € X-. O

Throughout this sub-section, (u, v) will denote the solution to (P},) given by Lemma 3.1.
Lemma 3.2. Let H; be satisfied. Then there exists Le > 0 such that

[Vullh™ < Le(1 + Vw13 + Vw2 [[3),

IVVIE < Le(1 + [ Vwa |32 + ([ Vwal|g),

where 111 := max{fi, 61} and n; := max{ay, v, }.
Proof. Test the first equation in (P%,) with u and exploit Hy (f), H; (a), besides (2.1), to achieve
I9ulf = [ Fws s, wa, T, waud
< /RN a[(wy + g)”“wg1 + | Vwy |+ |VW2\61]udx

< r?zl/ ay max{1, e‘“}(wg1 +|Vwi | + |Vwa[®)udx (3.1)
RN

)
< Cellul\p*(HWzHgf +[IVwallpt +[[Vwallg)
)
< ce| Vulp([Vwallf + ([ Vw3 + ([T wal|)

< Le || Vullp(1 + | Vwilp" + [[Vw2llg),

because
Vw2 l[BF + Vw15 < 2(1 + [Vw, |1). (3.2)

This shows the first inequality. The other is verified similarly. O



746 —— U.Guarnotta et al., Singular quasilinear convective elliptic systems in RV DE GRUYTER

Lemma 3.3. Under H, there exists M := Me(||[Vw1||p, |[VW2|q) > O such that
max{||ulleo, [[V[|eo} < Me(|[VW1l|p, [VW2[lq).

Proof. The proof can be made by adapting the one of Lemma 3.3 in [32]. So, we will briefly focus the key-points

only. Fix any &; € [1, ’i) such that
1 1
— <1-—- -0, 3.3
o 5 O (3.3)

where {; and 6; come from H; (a). Set ug := min{u, K}, K > 1, and test (P%) with ¢ := quf”, k = 0. Fatou’s
Lemma, Holder’s inequality joined to H;(a), Sobolev’s embedding (2.1), and (3.2) produce

kp+1
(k+1)p

kevp _ kp+1 . . (k+1)p
(sDp* = ( + 1)P 1?312.”'”" k)

[[ul
< cmax{1, e“l}/RN al(w/zg1 + Vw7 + |Vw, [P)ukP tdx
< cell[Vwalff + Vw3 + T w0 ull2L
< ce(1+ ([ Vwallpt + IV wa I Ul 5

cf. [32, pp. 1587-1588], but replacing &7 with &;. Moreover,

(k+1)p">(kp+1)& Vk=0
as & < %. Hence, Moser’s iteration can start, and we obtain ||u||. < M, where

Me := ce(1+ [ Vwa|lp" + Vw2 lg)"

for some 7 > 0; details can be read in [32, pp. 1588-1590], replacing &; with £; as above. A similar argument
applies to v. O

Lemma 3.4. IfH; holds and max{||W;||e, ||[VW;jl|lec} < +o0,i =1, 2, then

IVUllE" < Ne(|Vwillp, [VWallgs [IW2lle)(1 + [ Vwa]|Z + [[Vw2[[2),
IVVIET < Ne(I VW lp, [[7Wallq, [1Wa loe)(L + Vw12 + Vw2 122)

with suitable constants Ne(||[ Vw1 ||p, |[VWa2llg, [|[Wille) > 0,1 =1, 2.

Proof. Lemma 3.1 ensures that u € Dy?(RY) n CL(RY), while H; entails fu,e € L*(RY) N L (RY). By Lemma
2.1, besides H; again, we thus have

- -1
IVulE" < clfwellg, + 11Vl ™)
< clmax{1, & Hlax g, ([wa 2 + Vw2 + [Twa |2) + | Vulfy ]

< ce(|lwa |8 + [[Fw1 L + [Vwal|% + [|Tulp™).
Now, using Lemma 3.2 yields

- &
IVulE™" < cewall + [[Twa L + [Fwal|Z + [Twa |3 + |[Fwal|§ +1)

< Ne(| Vw1, [[VWallgs [IW2lle)(1 + [ Vw1 ]|Z + Vw2 [[2),

where
Ne([ VW1 lp, VW2 g, [Waloe) = ce(1 + [[wa |2 + IVwa [t + Vw2 || 3.

This shows the first inequality. The other is analogous. O
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3.2 Regularizing the right-hand side

Let H; be satisfied. Given € > 0, define

Re := {(W1,w2) € L : [Vwi[p < A1, [[Vwalq < A,
[Willeo < Bis [[VWilleo < Cj, 1= 1,2},

with A4;, B;, C; > 0,1 =1, 2, such that

APTL 2 L1+ AT+ ATY,

AT 2 L1+ AT+ AY),

Bi,By >M(A1,A,), (3.4)
CP' 2 Ne(A1, Ay, By)(1+CY + €O,

CI' 2 Ne(A1, Ay, B)(1+CP +C52),

and L¢, M¢(-, -), Ne(-, -, -) stemming from Lemmas 3.2-3.4. Apropos, system (3.4) admits solutions. In fact, by
H;, we can pick

p-1D@g-1)
ninaz )

IfA; :=K 7z and A, := K 1 then the first two inequalities of (3.4) become

1<o0¢< (3.5)

- o ab
K% > Le(1+Kb +K#1), K> Ls(1+K+Ke),
which, due to (3.5), are true for any sufficiently large K > 0. Next, choose
Bi:= B, := Me(K , K71).
With A;, B; as above, set C1 := H 7 and C, := H77. The last two inequalities in (3.4) rewrite as
p-1 71 981
Hmn >N (A1,A;,B))(1+H7" + Het),
o6
H > Ne(A1, Ay, By)(1+ His + HiY).

Thanks to (3.5) again, they hold for every H > 0 big enough.
On the trapping region R, we will consider the topology induced by that of X. Let us now investigate the
regularized problem
-Apu=f(x,u+¢e,v,Vu,Vvv) in RN,

~Aqv =g(x,u,v+e,Vu,vv) in RV, (P?)
u,v>0 in ]RN,

where € > 0. Evidently, (P?) reduces to (P) once € = 0.
Lemma 3.5. Under Hy, for every € > 0 problem (P?) possesses a solution (ue, ve) € CL4.

Proof. Fix € > 0 and define, provided w € R,
Te(w) := (u,v), with (u, v) being the unique solution to (P3,);

cf. Lemma 3.1. From Lemmas 3.2-3.4, besides (3.4), it follows T:(R¢) C Re.
Claim 1. T¢(R;) is relatively compact in X.
To see this, pick {wn} C R, put

Wn = (Wi, Won)s  (Un, Vi) := Te(wn), neN,

and understand any convergence up to sub-sequences. Since {T¢(wn)} C Re while X is reflexive, {(un, vn)}
weakly converges to a point (u, v) € X. Taking any p > O, if Y, := LP(Bp) x L9(Bp), then one has

X < WHP(B,) x WH9(By) — Y. (3.6)
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Actually, the first embedding in (3.6) is continuous by (2.1) and the continuity of the restriction map L"(R") —
L"(Bp), while the other one is compact due to Rellich-Kondrakov’s theorem [5, Theorem 9.16]. Thus, X < Y,
compactly, which yields (un, va) — (4, v) in Y,. Let us next verify that

(un(@), va(x)) — (u(x), v(x)) for almost every x € RYN. 3.7
In fact, (un, va) — (u, v) in Y7 yields a sub-sequence {(ug,l), vg,l))} of {(un, vn)} such that
(ug})(x), vgll)(x)) — (u(x), v(x)) foralmostall x € By .
since (U, v{) — (u, v) in Y5, we can extract a sub-sequence {(u?, v{?)} from {(u{", v} fulfilling
(uﬁ,z)(x), vng) (x)) — (u(x), v(x)) for almostevery x € B;.
By induction, to each k > 2 there corresponds a sub-sequence {(ug‘), vﬂ‘))} of {(uﬂ"l), vﬂ"l))} such that

@), v®(x)) = u(x), v(x)) for almostall x € By.

Now, Cantor’s diagonal procedure leads to (ug,"), vg,")) — (u,v) a.e. in RY, because Uiy Bk = RY, and 3.7)
follows.
Through H; (f), besides the inclusion {wn} C R¢, we get

/ IV un [P VunV (un - u)dx
RN

= f('a WintE& Won, VWn)(un - u)dx
N
R (3.8)
< | fG,Win+& Won, VWn)lun - uldx
RN

scg/ a|un—uldx vneN,
RN

with ¢ := rﬁl(e"‘lBgl +C' + Cgl). Using T:(R¢) C R¢ and (3.7) one has
ailun - ul < 2Bia; € L'®RY), neN.

So, by (3.7)-(3.8), Lebesgue’s Theorem entails

n—oo

limsup/ VP2V unV(un - u)dx < ce lim / ay|un —uldx =0.
RN n—oo JpN

Now, recall (cf., e.g., [32, Proposition 2.2]) that the operator (-4, Dé’p (RYN)) is of type (S): to achieve u, — u
in DyP(RY). A similar reasoning applies to {vn}.

Claim 2. T¢ : R¢ — R¢ is continuous.
Let {wn} C Re and w € R¢ satisfy w, — w in X. Thanks to (2.1), Theorem 4.9 of [5] provides

wn(x) = w(x) and Vwn(x) — Vw(x) for almost every x € RV, (3.9)

Morevet, if (un, vn) := Te(wn), n € N, then there exists a point (u, v) € X such that (un, vn) — (4, v) in X; see
the proof of Claim 1. Arguing as before, we obtain

un(x) — u(x) and Vun(x) — Vu(x) for almost every x € RYN. (3.10)

Since ||Vunl||p < A1 whatever n, the sequence {|Vun [P >Vun} C L” (RY) turns out bounded. Due to (3.10)
and [5, Exercise 4.16], this yields

lim |Vun P2V, Vodx =/ IVulP2vuvedx, ¢ e DyPRY). (3.11)
RN

n—oo RN
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On the other hand,
im [ Wi+ & W VWn)gdx = / FCowr + £, w2, VW) dx G12)
n—oo RN ]RN
by Lebesgue’s Theorem jointly with (3.9) and the inequality
FC, Wi+ & W0, VWo)|@| < cear|p| € L'RY) Vn e N,
which easily arises from H; (f) besides the choice of R.. Finally,
/ |Vun|p_2VunV<pdx = / fG,wyn+& Wan, VWn)edx, neN, (3.13)
RN RY
because (un, vn) solves (P, ). Gathering (3.11)-(3.13) together we have

/N \Vu|p"2VuV(p dx = /Nf(-, w1+ €&, Wy, VW) dx Vo € Dé’p(RN).
R R

The same is evidently true for v. So, (u, v) turns out a solution to (P},). Uniqueness forces (u, v) = Te(w),
whence Te(wn) — Te(w).

Now, Theorem 3.2 in [22, p. 119] can be applied, and T, admits a fixed point (us, ve) € Re. By definition of T,
the pair (ug, ve) solves problem (P¢), while Lemma 3.1 gives (ue, ve) € G4, O

Lemma 3.6. If H;—H, hold then there exists a constant L > 0, independent of € = 0, such that ||(u, v)|| < L for
every solution (u, v) € X, to (P%).

Proof. Pick € > 0 and suppose (u, v) € X, solves (P¢). Via H; and (2.1) one has
Vullp = / f(,u+e,v,Vu, Vv)udx
]RN
< r?zl/ ai[(u+e)™vh + |Vu|" + |Vv|51]udx
RN

< ﬁll/ a1 (WA v+ Vv Ptu)dx
RN

(3.14)
< artly B gy I VAL X
< ¢ (Jully VIl + IVullp[ullp + 11Vvilg[ull
1 1 5
sc (IIVuHZ“ IOVIG + I Tully ™t + ||VVHq1||VU||p)
< cmax{1, |[Vu|[}' "'} max{1, | Vv|}'}.
Likewise,
IVV]|4 < cmax{1, V| 5!} max{1, | Vul*}. (3.15)

It should be noted that the constant ¢ does not depend on (u, v) and €. If either || Vv||q < 1 or || Vul|p < 1 then
(3.14)-(3.15) directly lead to the conclusion, because v; + 1 < p and §, + 1 < g; see H;. Hence, we may assume
min{||Vullp, [|Vv|q} > 1. Dividing (3.14)-(3.15) by ||Vul[}*** and \|Vv||22*1, respectively, yields

-1 -8,-1
[Vullp " <V, IVvIE T < o vulf
This clearly entails
1 '1}’121 g 52-1 pﬂ}yﬂzl
o 2 5, L
IVullp ™ <c|Vulg",  ([Vvig scl[Vvlg ™.
The conclusion now follows from H,. O

Lemma3.7. Let H;—H, be satisfied. Then there exists M > 0, independent of € = 0, such that
max{||ufles, [[V[eo} < M

for every solution (u, v) € X. to (P%).
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Proof. The proof is similar to that one of Lemma 3.3. With the same notation, fix € > 0, suppose (u, v) € X:
solves (P?), and define Q; := {x € RV : u(x) = 1}. Moreover, given z € L"(R"), r > 1, write |z|| in place of
|zl 1r(q,) when no confusion can arise. Exploiting H; (f) one has

\Vu|p_2VuV(p dx < rﬁl/ a (VP + [vu + |Vv|51)(p dx
fol} o

forall ¢ € D(l)’p (RM); cf. [32, Lemma 3.2). If ¢ := ulkg’ *1 k > 0, then Fatou’s Lemma, Holder’s inequality
combined with H;(a), Sobolev’s embedding (2.1), and Lemma 3.6 produce

kp+1
(k+1)p

kep _ kp+1 oo . (k+1)p
tertlp = (e 1yp il Ikl

< c/ a1 (VP + [ vu™ + Vv S)uRPdx
0

[[ull

8 kp+1
< c(IVVIg + 19Ul + 19V ulliErty,,

kp+1

< Cllullgepaye, »

where & € [1, %) fulfills (3.3) while ¢ does not depend on (u, v) and €. We now proceed exactly as in the
proof of Lemma 3.3, getting ||u|| < M. The other inequality is analogous. O

Lemma 3.8. Assume H;—-H,. Then to every p > O there corresponds o, > O such that

min {ess inf u, ess inf v} 2 0p (3.16)

By By

for all (u, v) € X, distributional solution of (Pf), with0 < € < 1.
Proof. Fix p > 0. Conditions H; (f)-H; (g), besides Lemma 3.7, entail

fG,u+e,v,vVu,vv) 2 my (es%infal) M + 1)”‘1vﬁ1,

D

g, u,v+e,vVu,vv) 2 m, (es%infaz) (M + 1)ﬁzuzxz

P

a.e. in Bp. From [14, Theorem 3.1] it thus follows

p-1 c B
(ess inf u) > P [ vPdx =, (es§a inf v) ,

By ‘BP| B, P
q-1 c a2
(ess inf v) > —p/ u®dx = ¢, (ess inf u) ,
By ‘BP| B, B,
which easily give
(r-1)(g-1) (p-1)(g-1)
. . a2b1 . . QP
essinfu < cp | essinfu , essinfvscy (essinfv
B, B, B, B,
Now, (3.16) is a simple consequence of Hy, because a1 < (p - 1)(g - 1). O

4 Proof of the main result

Lemma 4.1. Under H,—-Hs, problem (P) possesses a distributional solution (u, v) € X;.

Proof. Leten := %, n e N. Lemma 3.5 furnishes a sequence {(un, va)} C C! such that (un, vn) solves (P*")
for all n € N. Since X is reflexive, by Lemma 3.6 one has (un, va) — (u, v) in X, where a sub-sequence is
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considered when necessary. As before (cf. the proof of Lemma 3.5), this forces (3.7). Moreover, (u,v) € X
because, thanks to Lemma 3.8, to each p > 0 there corresponds o, > O satisfying

min {igfun, i}glfvn} 20p VYneN. (4.)

p P

Claim. For every p > 0, and along a sub-sequence if necessary, one has
(un, vn) = (u,v) in WHP(Bp) x WH4(B,). (4.2)
Likewise the proof of (3.9), this will force
(Vun, Vva) — (Vu, Vv) a.e.in RV, (4.3)
Let p > 0. Hypothesis Hy, (4.1), Lemma 3.7, and H; yield
fG,un+1/n,vn, Vun, Vvn)
< iy [(un+ 1/n A + [V + 19l | iy, (44)

< iy (oglgMﬁl + | Vun| ™ + IVVn\61> ay € L*(By)

whatever n. So, [10, Theorem 2.1] combined with Lemma 3.6 ensures that {|Vun|P~2Vun} turns out bounded
in W?(Bp). Since p > 2 - %, by Rellich-Kondrakov’s theorem [5, Theorem 9.16], the embedding W*(B,) —
14 (Bp) is compact. Thus, up to sub-sequences,

IVun’2Vun — U in L (B,). (4.5)
Next, observe that the linear operator
z e DyPRY) = Vz|p,e LF(By)
turns out well-defined and continuous in the strong topologies. Therefore,
Vun — Vu in LP(Bp); (4.6)

cf. [5, Theorem 3.10]. Gathering [5, Proposition 3.5] and (4.5)-(4.6) together gives

lim / |Vun P2V V(un - u)dx = 0.
By

n—oo

Since (-Ap, WP(Bp)) enjoys the (S).-property, we easily achieve un, — u in W?(B),). A similar conclusion
holds for {vi}, which shows (4.2).

Now, to verify that (u, v) is a distributional solution of (P), pick any (¢4, ¢>) € CS"(RN )? and choosep > 0
fulfilling

supp ¢1 Usupp ¢, C Bp.
By (4.2), [5, Theorem 4.9] furnishes (h, k) € LP(Bp) x LY(B,) such that

[Vun| <h, |Vvn|<k a.e.inBpandforallneN,

whence
fCoun+1/n,vn, Vun, Vvi)|@1] < cp(1+ ™ + I<61)a1|<p1| c L'(RY), neN,

through (4.4). So, thanks to (3.7) and (4.3), Lebesgue’s Theorem entails

n—oo

lim f(,un+1/n,vn, Vun, Vvr)@idx = / f(,u,v, Vu, Vv)p,dx.
RN RN
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On account of (4.5) and (4.3), we then get

n—roo

lim |Vun|p"2Vuan01dx=/ |VulP2vuve,dx.
RN RN
Recalling that each (un, vn) weakly solves (P*") produces
/ |Vu|p"2VuV<p1dx=/ fCou, v, Vu, Vv)pidx.
RN RN

Likewise,
/ \Vv|p’2VvV<p2dx=/ g(-, u, v, Vu, Vv)p,dx,
RN RN

and the assertion follows. O

Lemma 4.2. Let H;—H, be satisfied and let (u, v) € X, be a distributional solution to problem (P). Then (u, v)
weakly solves (P).

Proof. We evidently have, for any ¢ € Dé’p (RM),
p=9" -9 (4.7)

Due to the nature of ¢*, a localization-regularization procedure will be necessary. With this aim, fix 6 €
C>([0, +o0)) such that

1 ifO0<t<1, . ..
o(t) = { 0 when t=2, 0 is decreasingin (1, 2) (4.8)

and a sequence {p;} C C8°(]RN ) of standard mollifiers [5, p. 108]. Define, for every n, k € N,
On(-) :=0(|-|/n) € CTRY), @n:=0np" € DFPRY),

Yin =P * Pn € CSO(RN)-

Using (4.8) we easily get ¢, 1 ¢*. Moreover, klim Yin=@nin ‘Dé’p (RM), which entails
—>00

lim |Vu|p"2VuV1/)k,,,dx=/ IVulP?vuvendx, neN. (4.9)
RN RN

k—oco

If, to shorten notation, f := f(-, u, v, Vu, Vv) then the linear functional

e DYPRY) fdx

Bonsa

turns out continuous. In fact, Lemmas 3.7-3.8, Holder’s inequality combined with H; (a), and (2.1) produce
/B au® VP ldx < 0%k o MP | an | ey (9110 < cnll VPlp-
2n+2

Now, the assertion follows from H; (f), because convection terms can be estimated as already made in (3.14).
Observe next that

supp Yy, C SUPP Pk +SUPP Pn € B1 + Bon C Bonso Vi, ke N;

see [5, Proposition 4.18]. Hence,

lim / Fbeadx=1im [ Fiby pdx
RN ’ k ’

k— o0 —eo /B, )

A A (4.10)
[ Fondx- /R Fondx.

Bonsz
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On the other hand, the hypothesis (u, v) € X, distributional solution to (P) evidently forces

/ VulP2VUVipy qdx = / Fndx, koneN.
RN RN

Letting k — +oo and exploiting (4.9)-(4.10) we thus achieve
/ |VuP2Vuve,dx = / fondx VneN.
RN RN

Claim. on — ¢@* in DyP (RV).
In fact, for every n € N one has

/ |Von - Ve |Pdx = / " VOn + 0,V — Vo' Pdx
RN RN
<c ( / (1 - 6|V Pdlx + / |v9n|P(¢+)de)
RN BZn\Bn

< c/ (1-6n)P|Ve*Pdx
RN

. 1-L5 . £
+c (/ |V9n|;%vdx) ! </ (™) dx)p
Bz,,\B,l BZn\Bn
£
= (:/ (1 - 6a)P|V* [Pdx + || V|7 </ (9" dx) o
RN BZn Bn
Recall that ¢* € @é’p (RY). By (4.8), Lebesgue’s Theorem yields
n—oo

lim [ (1-60.)P|Ve'Pdx=0
RN

while, on account of (2.1),
lim ((p+)p'dx =0.

n—reo BZn\Bn
Since, due to (4.8) again,

/ \ven\Ndx=iN/ % (m>
]RN n ]RN n

gathering (4.12)-(4.14) together shows the claim.
Consequently,

N
dx - / 16/(x)|Vdx < 400 VR €N,
RN

lim |Vu|p’2VuV(pndx=/ [VulP~?vuve*dx.
RN RN

n—oo

From ¢, 1 ¢* and f > 0 it then follows

n—oo

lim | fondx = / fotdx
RN RN
by Beppo Levi’s Theorem. Through (4.11), (4.15)—(4.16) we thus arrive at
/ |VulP?vuve*dx = / fotdx.
RN RN
Likewise, one has
/ Va2 Vuvedx = / Fomdx,
RN RN
whence (cf. (4.7))

p-2 _ . 1,pmN
/RN [Vu| Vquodx—/RNf(,u,v,Vu,Vv)fpdx Vo e DyP(RY).

An analogous argument applies to the second equation in (P).

(4.12)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)
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Lemma 4.3. Let Hi—H; be satisfied and let (u, v) € X, be a distributional solution of (P). Then (u, v) strongly
solves (P).

Proof. Reasoning as before (see (4.4)) provides f(-, u, v, Vu, Vv) € leoc(]RN ). Thanks to [10, Theorem 2.1], this
implies [Vul[P2Vu € W2(RY). Moreover,

—Apu(x) = f(x, u(x), v(x), Vu(x), Vv(x)) a.e.in RY
because of [5, Corollary 4.24]. Similarly about v and the other equation. O

Proof of Theorem 1.3.
Lemmas 4.1-4.3 directly give the conclusion.

Remark 4.4. If Hs is replaced by the stronger condition

gg One has
1 7 51} 1 1 {’Yz 52} 1
— +max<{ =&, =} < , — +max{ =, =} <
Sp {p q p'N Sq b q q'N

then any distributional solution (u, v) € X, to (P) actually lies in €}*, with a € (0, 1). To show this, pick
Sp, 8¢ > O such that

"8 PN’ sq
As in the proof of (4.4), for every p > 0 one has

fG,u, v, Vu, Vv) < cpar (1 + |Vu|™ + |Vv\51) € Lgp(Bp),
g, u, v, Vu, Vv) < cpax(1 + |Vu|™ + |vv|%) e L§”(Bp).

Hence, known nonlinear regularity results [16, p. 830] entail (u, v) € €12,

Remark 4.5. Unfortunately, we were not able to find in the literature a definition of strong solution for elliptic
equations driven by non-linear operators in divergence form. The one adopted here represents a quite natural
extension of the semi-linear case p = 2, where it is asked that the solution u € leocz (RM) and satisfies the

differential equation a.e. in R¥; cf. [21, p. 219] and [38, pp. 7-8]. We cannot expect u € leo’f(RN ) for some
g > 1, as the example of [10, Remark 2.7] shows. Nevertheless, if (u, v) € Gl is a distributional solution to
(P) then u, v € leocz (RM) once 1 < p,q < 3; see [37, p. 2]. On the other hand, each strong solution turns
out distributional. So, our notion of strong solution should be read as a distributional solution with an extra

differentiability property on the fields |[Vu[P~2Vu and |Vv|7 2 Vv.
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