A MORE COMPLETE VERSION OF A MINIMAX THEOREM

BIAGIO RICCERI

Abstract

In this paper, we present a more complete version of the minimax theorem established in [7]. As a consequence, we get, for instance, the following result: Let X be a compact, not singleton subset of a normed space $(E,\|\cdot\|)$ and let Y be a convex subset of E such that $X \subseteq \bar{Y}$. Then, for every convex set $S \subseteq Y$ dense in Y, for every upper semicontinuous bounded function $\gamma: X \rightarrow \mathbf{R}$ and for every $\lambda>\frac{4 \sup _{X}|\gamma|}{\operatorname{diam}(X)}$, there exists $y^{*} \in S$ such that the function $x \rightarrow$ $\gamma(x)+\lambda\left\|x-y^{*}\right\|$ has at least two global maxima in X.

1. Introduction

Here and in what follows, X is a topological space and Y is a convex set in a real Hausdorff topological vector space. A function $h: X \rightarrow \mathbf{R}$ is said to be inf-compact if $\left.\left.h^{-1}(]-\infty, r\right]\right)$ is compact for all $r \in \mathbf{R}$.

A function $k: Y \rightarrow \mathbf{R}$ is said to be quasi-concave (resp. quasi-convex)) $k^{-1}([r,+\infty[)$ (resp. if $\left.k^{-1}(]-\infty, r\right]$) is convex for all $r \in \mathbf{R}$.

If S is a convex subset of Y, we denote by \mathcal{A}_{S} the class of all functions f : $X \times Y \rightarrow \mathbf{R}$ such that, for each $y \in S$, the function $f(\cdot, y)$ is lower semicontinuous and inf-compact.

Moreover, we denote by \mathcal{B} the class of all functions $f: X \times Y \rightarrow \mathbf{R}$ such that either, for each $x \in X$, the function $f(x, \cdot)$ is quasi-concave and continuous, or, for each $x \in X$, the function $f(x, \cdot)$ is concave.

For any $f: X \times Y \rightarrow \mathbf{R}$, we set

$$
\alpha_{f}=\sup _{Y} \inf _{X} f
$$

and

$$
\beta_{f}=\inf _{X} \sup _{Y} f
$$

Also, we denote by \mathcal{C}_{f} the family of all sets $S \subseteq Y$ such that

$$
\inf _{X} \sup _{S} f=\inf _{X} \sup _{Y} f
$$

and by $\tilde{\mathcal{C}}_{f}$ the family of all sets $S \subseteq Y$ such that

$$
\sup _{y \in S} f(x, y)=\sup _{y \in Y} f(x, y)
$$

for all $x \in X$.

[^0]In particular, notice that $S \in \tilde{\mathcal{C}}_{f}$ provided, for each $x \in X$, there is a topology on Y for which S is dense and $f(x, \cdot)$ is lower semicontinuous.

Furthermore, we denote by τ_{f} the topology on Y generated by the family

$$
\{\{y \in Y: f(x, y)<r\}\}_{x \in X, r \in \mathbf{R}}
$$

So, τ_{f} is the weakest topology on Y for which $f(x, \cdot)$ is upper semicontinuous for all $x \in X$. In [7], we established the following minimax result:

Theorem 1.1. For every $g \in \mathcal{A}_{Y} \cap \mathcal{B}$, at least one of the following assertions holds: (j) $\sup _{Y} \inf _{X} g=\inf _{X} \sup _{Y} g$;
(jj) there exists $y^{*} \in Y$ such that the function $g\left(\cdot, y^{*}\right)$ has at least two global minima.

The relevance of Theorem 1.1 resides essentially in the fact that it is a flexible tool which can fruitfully be used to obtain meaningful results of various nature. This is clearly shown by a series of recent papers ([8]- [14]).

So, we believe that it is of interest to present a more complete form of Theorem 1.1: this is just the aim of this paper.

2. Main Results

Here is the main abstract result (with the usual rules in $\overline{\mathbf{R}}$):
Theorem 2.1. Let $f: X \times Y \rightarrow \mathbf{R}$. Assume that there is a function $\psi: Y \rightarrow \mathbf{R}$ such that $f+\psi \in \mathcal{B}$ and

$$
\alpha_{f+\psi}<\beta_{f+\psi}
$$

Then, for every convex set $S \in \mathcal{C}_{f+\psi}$, for every bounded function $\varphi: X \rightarrow \mathbf{R}$ and for every $\lambda>0$ such that $\lambda f+\varphi \in \mathcal{A}_{S}$ and

$$
\begin{equation*}
\lambda>\frac{2 \sup _{X}|\varphi|}{\beta_{f+\psi}-\alpha_{f+\psi}} \tag{2.1}
\end{equation*}
$$

there exists $y^{*} \in S$ such that the function $\lambda f\left(\cdot, y^{*}\right)+\varphi(\cdot)$ has at least two global minima.

Proof. Consider the function $g: X \times Y \rightarrow \mathbf{R}$ defined by

$$
g(x, y)=\lambda(f(x, y)+\psi(y))+\varphi(x)
$$

for all $(x, y) \in X \times Y$. Since $S \in \mathcal{C}_{f+\psi}$, we have

$$
\begin{equation*}
\inf _{X} \sup _{S}(f+\psi)=\inf _{X} \sup _{Y}(f+\psi) . \tag{2.2}
\end{equation*}
$$

So, taking (2.1) and (2.2) into account, we have

$$
\begin{align*}
& \sup _{S} \inf _{X} g \leq \sup _{Y} \inf _{X} g \leq \lambda \alpha_{f+\psi}+\sup _{X}|\varphi| \\
&<\lambda \beta_{f+\psi}-\sup _{X}|\varphi|=\lambda \inf _{X} \sup _{S}(f+\psi)-\sup _{X}|\varphi| \leq \inf _{X} \sup _{S} g \tag{2.3}
\end{align*}
$$

Now, observe that $g \in \mathcal{A}_{S}$ since $\lambda f+\varphi \in \mathcal{A}_{S}$ and, at the same time, $g \in \mathcal{B}$ since $f+\psi \in \mathcal{B}$. As a consequence, we can apply Theorem 1.1 to the restriction of the
function g to $X \times S$. Therefore, in view of (2.3), there exists $y^{*} \in S$ such that the function $g\left(\cdot, y^{*}\right)$ (and hence $\left.\lambda f\left(\cdot, y^{*}\right)+\varphi(\cdot)\right)$ has at least two global minima, as claimed.

Remark 2.2. As the above proof shows, Theorem 2.1 is a direct consequence of Theorem 1.1. However, Theorem 2.1 has at least four advantages with respect to Theorem 1.1. Namely, suppose that, for a given function $g \in \mathcal{A}_{Y}$, we are interested in ensuring the validity of assertion $(j j)$. Then, if we apply Theorem 1.1 in this regard, we have to show that $g \in \mathcal{B}$ and that assertion (j) does not hold. On the contrary, if we apply Theorem 2.1 , we can ensure the validity of $(j j)$ also in cases where either $g \notin \mathcal{B}$ or (j) holds true too. In addition, Theorem 2.1 is able to ensure the validity of $(j j)$ even in a remarkably stronger way: not only extending it to suitable perturbations of g, but also offering an information on the location of y^{*}.

First, we wish to show how to obtain the very classical minimax theorems in [3] and [6] by means of Theorem 2.1.

Let V be a real vector space, $A \subseteq V, \varphi: A \rightarrow \mathbf{R}$. We say that φ is finitely lower semicontinuous if, for every finite-dimensional linear subspace $F \subseteq V$, the function $f_{\mid A \cap F}$ is lower semicontinuous in the Euclidean topology of F.

In the next result, the topology of X has no role.
Theorem 2.3. Let X be a convex set in a real vector space and let $f \in \mathcal{B}$. Assume that there is a convex set $S \in \tilde{\mathcal{C}}_{f}$ such that $f(\cdot, y)$ is finitely lower semicontinous and convex for all $y \in S$. Finally, assume that, for some $x_{0} \in X$, the function that $f\left(x_{0}, \cdot\right)$ is $\tau_{f}-$ sup-compact.

Then, one has

$$
\sup _{Y} \inf _{X} f=\inf _{X} \sup _{Y} f
$$

Proof. Arguing by contradiction, assume that

$$
\sup _{Y} \inf _{X} f<\inf _{X} \sup _{Y} f .
$$

Denote by \mathcal{D} the family of all convex polytopes in X. Since \mathcal{D} is a filtering cover of X and $f\left(x_{0}, \cdot\right)$ is τ_{f} - sup-compact, by Proposition 2.1 of [7], there exists $P \in \mathcal{D}$ such that

$$
\sup _{Y} \inf _{P} f<\inf _{P} \sup _{Y} f
$$

Let $\|\cdot\|$ be the Euclidean norm on $\operatorname{span}(P)$. So, $\|\cdot\|^{2}$ is strictly convex. Now, fix λ so that

$$
\lambda>\frac{2 \sup _{x \in P}\|x\|^{2}}{\inf _{P} \sup _{Y} f-\sup _{Y} \inf _{P} f}
$$

Notice that, for each $y \in S$, the function $x \rightarrow\|x\|^{2}+\lambda f(x, y)$ is inf-compact in P with respect to the Euclidean topology. This is due to the assumption that $f(\cdot, y)$ is finitely lower semicontinuous and to the compactness of P in the Euclidean topology. As a consequence, if we consider P equipped with the Euclidean topology, we can apply Theorem 2.1 to the restriction of f to $P \times Y$ (recall that $S \in \tilde{\mathcal{C}}_{f}$), taking $\varphi=\|\cdot\|^{2}$. Accordingly, there would exist $y^{*} \in S$ such that the function
$x \rightarrow\|x\|^{2}+\lambda f\left(x, y^{*}\right)$ has at least two global minima in P. But, this is absurd since this function is strictly convex.

Reasoning exactly as in the proof of Theorem 2.3 (even in a simplified way, since there is no need to consider the family \mathcal{D}), we also get

Theorem 2.4. Let X be a compact convex set in a topological vector space such that there exists a lower semicontinuous, strictly convex, bounded function $\varphi: X \rightarrow \mathbf{R}$. Let $f \in \mathcal{B}$. Assume that there is a convex set $S \in \mathcal{C}_{f}$ such that $f(\cdot, y)$ is lower semicontinuous and convex for all $y \in S$.

Then, one has

$$
\sup _{Y} \inf _{X} f=\inf _{X} \sup _{Y} f .
$$

We now revisit two applications of Theorem 1.1 in the light of Theorem 2.1.
The first one concerns the so called farthest points ([1]- [4]).
Theorem 2.5. Let X be a non-singleton compact subset of a metric space (E, d). Moreover, let $h: Y \rightarrow E$ be such that $X \subseteq \overline{h(Y)}$ and let the function $(x, y) \rightarrow$ $f(x, y):=-d(x, h(y))$ belong to \mathcal{B}.

Then, for every convex set $S \in \mathcal{C}_{f}$, for every upper semicontinuous bounded function $\gamma: X \rightarrow \mathbf{R}$ and for every λ satisfying

$$
\lambda>\frac{4 \sup _{X}|\gamma|}{\operatorname{diam}(X)},
$$

there exists $y^{*} \in S$ such that the function $x \rightarrow \gamma(x)+\lambda d\left(x, h\left(y^{*}\right)\right)$ has at least two global maxima in X.

Proof. Since $X \subseteq \overline{h(Y)}$, we have

$$
\begin{equation*}
\sup _{x \in X} \inf _{y \in Y} d(x, h(y))=0 \tag{2.4}
\end{equation*}
$$

Also, for each $x_{1}, x_{2} \in X, y \in Y$, we have

$$
\frac{d\left(x_{1}, x_{2}\right)}{2} \leq \max \left\{d\left(x_{1}, h(y)\right), d\left(x_{2}, h(y)\right)\right\}
$$

and so

$$
\begin{equation*}
\frac{\operatorname{diam}(X)}{2} \leq \inf _{y \in Y} \sup _{x \in X} d(x, h(y)) \tag{2.5}
\end{equation*}
$$

Hence, in view of (2.4) and (2.5), we have

$$
\sup _{Y} \inf _{X} f \leq-\frac{\operatorname{diam}(X)}{2}<0=\inf _{X} \sup _{Y} f .
$$

Now, the conclusion follows directly from Theorem 2.1 taking $\varphi=-\gamma$.
Of course, the most natural corollary of Theorem 2.5 is as follows:

Corollary 2.6. Let X be a non-singleton compact subset of a normed space $(E,\|\cdot\|)$ and let Y be a convex subset of E such that $X \subseteq \bar{Y}$.

Then, for every convex set $S \subseteq Y$ dense in \bar{Y}, for every upper semicontinuous bounded function $\gamma: X \rightarrow \mathbf{R}$ and for every $\lambda>\frac{4 \sup _{X}|\gamma|}{\operatorname{diam}(X)}$, there exists $y^{*} \in S$ such that the function $x \rightarrow \gamma(x)+\lambda\left\|x-y^{*}\right\|$ has at least two global maxima in X.

In turn, from Corollary 2.6 , we clearly get
Corollary 2.7. Let X be a compact subset of a normed space $(E,\|\cdot\|)$ and let Y be a convex subset of E such that $X \subseteq \bar{Y}$. Assume that there exist a sequence $\left\{S_{n}\right\}$ of convex subsets of Y dense in Y and a sequence $\left\{\gamma_{n}\right\}$ of upper semicontinuous bounded real-valued functions on X, with $\lim _{n \rightarrow \infty} \sup _{X}\left|\gamma_{n}\right|=0$, such that, for each $n \in \mathbf{N}$ and for each $y \in S_{n}$, the function $x \rightarrow \gamma_{n}(x)+\|x-y\|$ has a unique global maximum in X.

Then, X is a singleton.
Remark 2.8. Notice that Corollary 2.7 improves Theorem 1.1 of [14] which, in turn, extended a classical result by Klee ([5]) to normed spaces. More precisely, Theorem 1.1 of [14] agrees with the particular case of Corollary 2.7 in which each S_{n} is equal to $\operatorname{conv}(X)$ and each γ_{n} is equal to 0 . The second application concerns the calculus of variations. We will use the same symbol $|\cdot|$ to denote the norm of \mathbf{R} and the norm of \mathbf{R}^{n}. Let $\Omega \subset \mathbf{R}^{n}$ be a bounded domain with smooth boundary and let $p>1$. On the Sobolev space $W^{1, p}(\Omega)$, we consider the norm

$$
\|u\|=\left(\int_{\Omega}|\nabla u(x)|^{p} d x+\int_{\Omega}|u(x)|^{p} d x\right)^{\frac{1}{p}}
$$

If $n \geq p$, we denote by \mathcal{E} the class of all continuous functions $\sigma: \mathbf{R} \rightarrow \mathbf{R}$ such that

$$
\sup _{\xi \in \mathbf{R}} \frac{|\sigma(\xi)|}{1+|\xi|^{q}}<+\infty
$$

where $0<q<\frac{p n}{n-p}$ if $p<n$ and $0<q<+\infty$ if $p=n$. While, when $n<p, \mathcal{E}$ stands for the class of all continuous functions $\sigma: \mathbf{R} \rightarrow \mathbf{R}$.

Recall that a function $h: \Omega \times \mathbf{R}^{m} \rightarrow \mathbf{R}$ is said to be a normal integrand ([15]) if it is $\mathcal{L}(\Omega) \otimes \mathcal{B}\left(\mathbf{R}^{m}\right)$-measurable and $h(x, \cdot)$ is lower semicontinuous for a.e. $x \in \Omega$. Here $\mathcal{L}(\Omega)$ and $\mathcal{B}\left(\mathbf{R}^{m}\right)$ denote the Lebesgue and the Borel σ-algebras of subsets of Ω and \mathbf{R}^{m}, respectively.

Recall that if h is a normal integrand then, for each measurable function $u: \Omega \rightarrow$ \mathbf{R}^{m}, the composite function $x \rightarrow h(x, u(x))$ is measurable ([15]).

We denote by \mathcal{F} the class of all normal integrands $h: \Omega \times \mathbf{R} \times \mathbf{R}^{n} \rightarrow \mathbf{R}$ such that $h(x, \xi, \cdot)$ is convex for all $(x, \xi) \in \Omega \times \mathbf{R}$ and there are $M \in L^{1}(\Omega), b>0$ such that

$$
M(x)-b\left(|\xi|+|\eta|^{p}\right) \leq h(x, \xi, \eta)
$$

for all $(x, \xi, \eta) \in \Omega \times \mathbf{R} \times \mathbf{R}^{n}$.
Let us also recall two results proved in [9].

Proposition 2.9. Let $\Omega \subset \mathbf{R}^{n}$ be a bounded domain with smooth boundary, let $p>1$ and let $h: \Omega \times \mathbf{R} \times \mathbf{R}^{n} \rightarrow \mathbf{R}$ be a normal integrand such that, for some $c, d>0$, one has

$$
c|\eta|^{p}-d \leq h(x, \xi, \eta)
$$

for all $(x, \xi, \eta) \in \Omega \times \mathbf{R} \times \mathbf{R}^{n}$ and

$$
\lim _{|\xi| \rightarrow+\infty} \inf _{(x, \eta) \in \Omega \times \mathbf{R}^{n}} h(x, \xi, \eta)=+\infty
$$

Then, in $W^{1, p}(\Omega)$, one has

$$
\lim _{\|u\| \rightarrow+\infty} \int_{\Omega} h(x, u(x), \nabla u(x)) d x=+\infty
$$

Proposition 2.10. Let X, Y be two non-empty sets and $I: X \rightarrow \mathbf{R}, J: X \times Y \rightarrow \mathbf{R}$ two given functions. Assume that there are two sets $A, B \subset X$ such that:
(a) $\sup _{A} I<\inf _{B} I$;
(b) $\sup _{Y} \inf _{A} J(x, y) \leq 0$;
(c) $\inf _{B} \sup _{Y} J(x, y) \geq 0$;
(d) $\inf _{X \backslash B} \sup _{Y} J(x, y)=+\infty$.

Then, one has

$$
\sup _{Y} \inf _{X}(I+J) \leq \sup _{A} I<\inf _{B} I \leq \inf _{X} \sup _{Y}(I+J)
$$

Furthermore, let us also recall the following classical fact:
Proposition 2.11. Let $A \subseteq \mathbf{R}^{n}$ be any open set and let $v \in L^{1}(A) \backslash\{0\}$.
Then, one has

$$
\sup _{\alpha \in C_{0}^{\infty}(A)} \int_{A} \alpha(x) v(x) d x=+\infty
$$

After these preliminaries, we can prove the following result:
Theorem 2.12. Let $h, k \in \mathcal{F}$ and let $\sigma \in \mathcal{E}$ be a strictly monotone function. Assume that:
(i) there are $c, d>0$ such that

$$
c|\eta|^{p}-d \leq h(x, \xi, \eta)
$$

for all $(x, \xi, \eta) \in \Omega \times \mathbf{R} \times \mathbf{R}^{n}$ and

$$
\lim _{|\xi| \rightarrow+\infty} \frac{\inf _{(x, \eta) \in \Omega \times \mathbf{R}^{n}} h(x, \xi, \eta)}{|\sigma(\xi)|+1}=+\infty
$$

(ii) for each $\xi \in \mathbf{R}$, the function $h(\cdot, \xi, 0)$ lies in $L^{1}(\Omega)$;
(iii) there are $\xi_{1}, \xi_{2}, \xi_{3} \in \mathbf{R}$, with $\xi_{1}<\xi_{2}<\xi_{3}$, such that

$$
\max \left\{\int_{\Omega} h\left(x, \xi_{1}, 0\right) d x, \int_{\Omega} h\left(x, \xi_{3}, 0\right) d x\right\}<\int_{\Omega} h\left(x, \xi_{2}, 0\right) d x
$$

Then, for every sequentially weakly closed set $V \subseteq W^{1, p}(\Omega)$, containing the constants, for every convex set $T \subseteq L^{\infty}(\Omega)$ dense in $L^{\infty}(\Omega)$, for every non-decreasing,
continuous, bounded function $\omega: U \rightarrow \mathbf{R}$, where $U:=\left\{\int_{\Omega} k(x, u(x), \nabla u(x)) d x: u \in\right.$ $\left.W^{1, p}(\Omega)\right\}$, and for every λ satisfying

$$
\begin{equation*}
\lambda>\frac{2 \sup _{U}|\omega|}{\int_{\Omega} h\left(x, \xi_{2}, 0\right) d x-\max \left\{\int_{\Omega} h\left(x, \xi_{1}, 0\right) d x, \int_{\Omega} h\left(x, \xi_{3}, 0\right) d x\right\}}, \tag{2.6}
\end{equation*}
$$

there exists $\gamma \in T$ such that the restriction to V of the functional

$$
u \rightarrow \lambda \int_{\Omega} h(x, u(x), \nabla u(x)) d x+\int_{\Omega} \gamma(x) \sigma(u(x)) d x+\omega\left(\int_{\Omega} k(x, u(x), \nabla u(x)) d x\right)
$$

has at least two global minima. The same conclusion holds also with $T=C_{0}^{\infty}(\Omega)$.
Proof. Fix V, T, ω, λ as in the conclusion. Since $\sigma \in \mathcal{E}$, in view of the RellichKondrachov theorem, for each $u \in W^{1, p}(\Omega)$, we have $\sigma \circ u \in L^{1}(\Omega)$ and, for each $\gamma \in L^{\infty}(\Omega)$, the functional $u \rightarrow \int_{\Omega} \gamma(x) \sigma(u(x)) d x$ is sequentially weakly continuous. Moreover, since $h, k \in \mathcal{F}$ the functionals $u \rightarrow \int_{\Omega} h(x, u(x), \nabla u(x) d x$ and $u \rightarrow \int_{\Omega} k(x, u(x), \nabla u(x) d x$ (possibly taking the value $+\infty$) are sequentially weakly lower semicontinuous ([2], Theorem 4.6.8). Hence, since ω is non-decreasing and continuous, the functional $u \rightarrow \omega\left(\int_{\Omega} k(x, u(x), \nabla u(x) d x)\right.$ is sequentially weakly lower semicontinuous too. Set

$$
X=\left\{u \in V: \int_{\Omega} h(x, u(x), \nabla u(x)) d x<+\infty\right\}
$$

By (ii), the constants belong to X. Fix $\gamma \in L^{\infty}(\Omega)$. By (i), there is $\delta>0$ such that

$$
h(x, \xi, \eta)-2\|\gamma\|_{L^{\infty}(\Omega)}|\sigma(\xi)| \geq 0
$$

for all $(x, \xi, \eta) \in \Omega \times \mathbf{R} \times \mathbf{R}^{n}$ with $|\xi|>\delta$. So, we have

$$
\frac{c}{2}|\eta|^{p}-d-\|\gamma\|_{L^{\infty}(\Omega)} \sup _{|\xi| \leq \delta}|\sigma(\xi)| \leq h(x, \xi, \eta)+\gamma(x) \sigma(\xi)
$$

for all $(x, \xi, \eta) \in \Omega \times \mathbf{R} \times \mathbf{R}^{n}$ and, of course,

$$
\lim _{|\xi| \rightarrow+\infty} \inf _{(x, \eta) \in \Omega \times \mathbf{R}^{n}}(h(x, \xi, \eta)+\gamma(x) \sigma(\xi))=+\infty .
$$

Consequently, in view of Proposition 2.9, we have, in $W^{1, p}(\Omega)$,

$$
\lim _{\|u\| \rightarrow+\infty}\left(\int_{\Omega} h(x, u(x), \nabla u(x)) d x+\int_{\Omega} \gamma(x) \sigma(u(x)) d x\right)=+\infty
$$

This implies that, for each $r \in \mathbf{R}$, the set

$$
\left\{u \in V: \int_{\Omega} h(x, u(x), \nabla u(x)) d x+\int_{\Omega} \gamma(x) \sigma(u(x)) d x \leq r\right\}
$$

is weakly compact by reflexivity and by Eberlein-Smulyan's theorem. Of course, we also have

$$
\begin{aligned}
& \left\{u \in V: \int_{\Omega} h(x, u(x), \nabla u(x)) d x+\int_{\Omega} \gamma(x) \sigma(u(x)) d x \leq r\right\} \\
= & \left\{u \in X: \int_{\Omega} h(x, u(x), \nabla u(x)) d x+\int_{\Omega} \gamma(x) \sigma(u(x)) d x \leq r\right\} .
\end{aligned}
$$

Now, observe that, if we put

$$
A=\left\{\xi_{1}, \xi_{3}\right\}
$$

and

$$
B=\left\{\xi_{2}\right\},
$$

and define $I: X \rightarrow \mathbf{R}, J: X \times L^{\infty}(\Omega) \rightarrow \mathbf{R}$ by

$$
\begin{aligned}
I(u) & =\int_{\Omega} h(x, u(x), \nabla u(x)) d x \\
J(u, \gamma) & =\int_{\Omega} \gamma(x)\left(\sigma(u(x))-\sigma\left(\xi_{2}\right)\right) d x
\end{aligned}
$$

for all $u \in X, \gamma \in L^{\infty}(\Omega)$, we clearly have

$$
\inf _{u \in B} \sup _{\gamma \in L^{\infty}(\Omega)} J(u, \gamma)=0
$$

and, by (iii),

$$
\sup _{A} I<\inf _{B} I .
$$

Since σ is strictly monotone, the numbers $\sigma\left(\xi_{1}\right)-\sigma\left(\xi_{2}\right)$ and $\sigma\left(\xi_{3}\right)-\sigma\left(\xi_{2}\right)$ have opposite signs. This clearly implies that

$$
\sup _{\gamma \in L^{\infty}(\Omega)} \inf _{u \in A} J(u, \gamma) \leq 0 .
$$

Furthermore, if $u \in X \backslash\left\{\xi_{2}\right\}$, again by strict monotonicity, $\sigma \circ u \neq \sigma\left(\xi_{2}\right)$, and so we have

$$
\sup _{\gamma \in L^{\infty}(\Omega)} J(u, \gamma)=+\infty .
$$

Therefore, the sets A, B and the functions I, J satisfy the assumptions of Proposition 2.10 and hence we have

$$
\begin{align*}
\sup _{L^{\infty}(\Omega)} \inf _{X}(I+J) & \leq \max \left\{\int_{\Omega} h\left(x, \xi_{1}, 0\right) d x, \int_{\Omega} h\left(x, \xi_{3}, 0\right) d x\right\} \tag{2.7}\\
& <\int_{\Omega} h\left(x, \xi_{2}, 0\right) d x=\inf _{X} \sup _{L^{\infty}(\Omega)}(I+J) .
\end{align*}
$$

Now, we can apply Theorem 2.1 considering X equipped with the weak topology and taking

$$
\begin{gathered}
Y=L^{\infty}(\Omega), \\
f=I+J, \\
\psi=0, \\
S=\frac{1}{\lambda} T
\end{gathered}
$$

and

$$
\varphi(u)=\omega\left(\int_{\Omega} k(x, u(x), \nabla u(x)) d x\right) .
$$

Notice that, in view of (2.7), inequality (2.1) holds thanks to (2.6), and the conclusion follows. When $T=C_{0}^{\infty}(\Omega)$ the same proof as above holds in view of Proposition 2.11.

Remark 2.13. Notice that condition (iii) holds if and only if the function $\int_{\Omega} h(x, \cdot, 0)$ is not quasi-convex.

Remark 2.14. For $\omega=0$, Theorem 2.12 reduces to Theorem 1.2 of [9].

We conclude presenting an application of Theorem 2.12 to the Neumann problem for a Kirchhoff-type equation.

Given $K:[0,+\infty[\rightarrow \mathbf{R}$ and a Carathéodory function $\psi: \Omega \times \mathbf{R} \rightarrow \mathbf{R}$, consider the following Neumann problem

$$
\begin{cases}-K\left(\int_{\Omega}|\nabla u(x)|^{p} d x\right) \operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=\psi(x, u) & \text { in } \Omega \\ \frac{\partial u}{\partial \nu}=0 & \text { on } \partial \Omega\end{cases}
$$

where ν is the outward unit normal to $\partial \Omega$.
Let us recall that a weak solution of this problem is any $u \in W^{1, p}(\Omega)$ such that, for every $v \in W^{1, p}(\Omega)$, one has $\psi(\cdot, u(\cdot)) v(\cdot) \in L^{1}(\Omega)$ and

$$
K\left(\int_{\Omega}|\nabla u(x)|^{p} d x\right) \int_{\Omega}|\nabla u(x)|^{p-2} \nabla u(x) \nabla v(x) d x-\int_{\Omega} \psi(x, u(x)) v(x) d x=0
$$

Theorem 2.15. Let $f, g: \mathbf{R} \rightarrow \mathbf{R}$ be two C^{1} functions lying in \mathcal{E} and satisfying the following conditions:
$\left(a_{1}\right)$ the function g^{\prime} has a constant sign and $\operatorname{int}\left(\left(g^{\prime}\right)^{-1}(0)\right)=\emptyset$;
$\left(a_{2}\right) \lim _{|\xi| \rightarrow+\infty} \frac{f(\xi)}{|g(\xi)|+1}=+\infty$;
$\left(a_{3}\right)$ there are $\xi_{1}, \xi_{2}, \xi_{3} \in \mathbf{R}$, with $\xi_{1}<\xi_{2}<\xi_{3}$, such that

$$
\max \left\{f\left(\xi_{1}\right), f\left(\xi_{3}\right)\right\}<f\left(\xi_{2}\right)
$$

Then, for every $a>0$, for every $\beta \in L^{\infty}(\Omega)$, with $\inf _{\Omega} \beta>0$, for every convex set $T \subseteq L^{\infty}(\Omega)$ dense in $L^{\infty}(\Omega)$, for every C^{1}, non-decreasing, bounded function $\chi:[0,+\infty[\rightarrow \mathbf{R}$, and for every λ satisfying

$$
\lambda>\frac{2 \sup _{[0,+\infty}|\chi|}{p\left(f\left(\xi_{2}\right)-\max \left\{f\left(\xi_{1}\right), f\left(\xi_{3}\right)\right\}\right) \int_{\Omega} \beta(x) d x}
$$

there exists $\gamma \in T$ such that the problem
$(P) \begin{cases}-\left(a+\chi^{\prime}\left(\int_{\Omega}|\nabla u(x)|^{p} d x\right)\right) \operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=\gamma(x) g^{\prime}(u)-\lambda \beta(x) f^{\prime}(u) & \text { in } \Omega \\ \frac{\partial u}{\partial \nu}=0 & \text { on } \partial \Omega\end{cases}$ has at least two weak solutions.

Proof. Fix a, β, T, χ and λ as in the conclusion. We are going to apply Theorem 2.12, defining h, k, σ by

$$
\begin{gathered}
h(x, \xi, \eta)=\frac{a}{p \lambda}|\eta|^{p}+\beta(x) f(\xi), \\
k(\eta)=|\eta|^{p}, \\
\sigma(\xi)=-g(\xi)
\end{gathered}
$$

for all $(x, \xi, \eta) \in \Omega \times \mathbf{R} \times \mathbf{R}^{n}$. It is immediate to realize that, by $\left(a_{1}\right)-\left(a_{3}\right)$, the above h, k, σ satisfy the assumptions of Theorem 2.12. Then, applying Theorem
2.12 with $\omega=\frac{1}{p} \chi$, we get the existence of $\gamma \in T$ such that the functional

$$
\begin{aligned}
u \rightarrow & \lambda\left(\frac{a}{p \lambda} \int_{\Omega}|\nabla u(x)|^{p} d x+\int_{\Omega} \beta(x) f(u(x)) d x\right) \\
& -\int_{\Omega} \gamma(x) g(u(x)) d x+\frac{1}{p} \chi\left(\left.\int_{\Omega} \nabla u(x)\right|^{p} d x\right)
\end{aligned}
$$

has at least two global minima in $W^{1, p}(\Omega)$. But, by classical results (recall that $f, g \in \mathcal{E}$), such a functional is C^{1} and its critical points (and so, in particular, its global minima) are weak solutions of problem (P). The proof is complete.

A challenging problem is as follows:
PROBLEM 1. - Does the conclusion of Theorem 2.15 hold with three instead of two?

Acknowledgement

The author has been supported by the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

References

[1] S. Cobzaş, Geometric properties of Banach spaces and the existence of nearest and farthest points, Abstr. Appl. Anal. 2005 (2005): 259-285.
[2] Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Applications, Kluwer Academic Publishers, 2003.
[3] K. Fan, Minimax theorems, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 42-47.
[4] J.-B. Hiriart-Urruty, La conjecture des points les plus éloignés revisitée, Ann. Sci. Math. Québec 29 (2005), 197-214.
[5] V. L. Klee, Convexity of Chebyshev sets, Math. Ann. 142 (1960/1961), 292-304.
[6] H. Kneser, Sur un théorème fondamental de la théorie des jeux, C. R. Acad. Sci. Paris 234 (1952), 2418-2420.
[7] B. Ricceri, On a minimax theorem: an improvement, a new proof and an overview of its applications, Minimax Theory Appl. 2 (2017), 99-152.
[8] B. Ricceri, Another multiplicity result for the periodic solutions of certain systems, Linear Nonlinear Anal. 5 (2019), 371-378.
[9] B. Ricceri, Miscellaneous applications of certain minimax theorems II, Acta Math. Vietnam. 45 (2020), 515-524.
[10] B. Ricceri, A class of equations with three solutions, Mathematics 8 (2020): 478.
[11] B. Ricceri, An invitation to the study of a uniqueness problem, in: Nonlinear Analysis and Global Optimization, Th. M. Rassias and P. M. Pardalos eds., Springer, 2021, pp. 445-448.
[12] B. Ricceri, A class of functionals possessing multiple global minima, Stud. Univ. Babeş-Bolyai Math. 66 (2021), 75-84.
[13] B. Ricceri, An alternative theorem for gradient systems, Pure Appl. Funct. Anal. 6 (2021), 373-381.
[14] B. Ricceri, On the applications of a minimax theorem, Optimization, to appear.
[15] R. T. Rockafellar, Integral functionals, normal integrands and measurable selections, Lecture Notes in Math., vol. 543, Springer, Berlin, 1976, pp. 157-207.
B. Ricceri

Department of Mathematics and Informatics, University of Catania, Italy E-mail address: ricceri@dmi.unict.it

[^0]: 2020 Mathematics Subject Classification. 49J35, 49K35, 90C47, 35J92.
 Key words and phrases. Strict minimax inequality, global extremum, multiplicity, farthest point, integral functional, Kirchhhoff-type equation, Neumann problem.

