
Applied Analysis and Optimization Yokohama Publishers

Copyright 2021C
ISSN 2189-1664 Online Journal  
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In particular, notice that S ∈ C̃f provided, for each x ∈ X, there is a topology
on Y for which S is dense and f(x, ·) is lower semicontinuous.

Furthermore, we denote by τf the topology on Y generated by the family

{{y ∈ Y : f(x, y) < r}}x∈X,r∈R .

So, τf is the weakest topology on Y for which f(x, ·) is upper semicontinuous for
all x ∈ X. In [7], we established the following minimax result:

Theorem 1.1. For every g ∈ AY ∩B, at least one of the following assertions holds:
(j) supY infX g = infX supY g ;
(jj) there exists y∗ ∈ Y such that the function g(·, y∗) has at least two global min-
ima.

The relevance of Theorem 1.1 resides essentially in the fact that it is a flexible
tool which can fruitfully be used to obtain meaningful results of various nature.
This is clearly shown by a series of recent papers ( [8]- [14]).

So, we believe that it is of interest to present a more complete form of Theorem
1.1: this is just the aim of this paper.

2. Main results

Here is the main abstract result (with the usual rules in R):

Theorem 2.1. Let f : X × Y → R. Assume that there is a function ψ : Y → R
such that f + ψ ∈ B and

αf+ψ < βf+ψ .

Then, for every convex set S ∈ Cf+ψ, for every bounded function φ : X → R and
for every λ > 0 such that λf + φ ∈ AS and

(2.1) λ >
2 supX |φ|

βf+ψ − αf+ψ
,

there exists y∗ ∈ S such that the function λf(·, y∗) + φ(·) has at least two global
minima.

Proof. Consider the function g : X × Y → R defined by

g(x, y) = λ(f(x, y) + ψ(y)) + φ(x)

for all (x, y) ∈ X × Y . Since S ∈ Cf+ψ, we have

(2.2) inf
X

sup
S

(f + ψ) = inf
X

sup
Y

(f + ψ) .

So, taking (2.1) and (2.2) into account, we have

sup
S

inf
X
g ≤ sup

Y
inf
X
g ≤ λαf+ψ + sup

X
|φ|

(2.3) < λβf+ψ − sup
X

|φ| = λ inf
X

sup
S

(f + ψ)− sup
X

|φ| ≤ inf
X

sup
S
g .

Now, observe that g ∈ AS since λf + φ ∈ AS and, at the same time, g ∈ B since
f + ψ ∈ B. As a consequence, we can apply Theorem 1.1 to the restriction of the
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function g to X × S. Therefore, in view of (2.3), there exists y∗ ∈ S such that
the function g(·, y∗) (and hence λf(·, y∗) + φ(·)) has at least two global minima, as
claimed. □

Remark 2.2. As the above proof shows, Theorem 2.1 is a direct consequence of
Theorem 1.1. However, Theorem 2.1 has at least four advantages with respect to
Theorem 1.1. Namely, suppose that, for a given function g ∈ AY , we are interested
in ensuring the validity of assertion (jj). Then, if we apply Theorem 1.1 in this
regard, we have to show that g ∈ B and that assertion (j) does not hold. On the
contrary, if we apply Theorem 2.1, we can ensure the validity of (jj) also in cases
where either g ̸∈ B or (j) holds true too. In addition, Theorem 2.1 is able to ensure
the validity of (jj) even in a remarkably stronger way: not only extending it to
suitable perturbations of g, but also offering an information on the location of y∗.

First, we wish to show how to obtain the very classical minimax theorems in [3]
and [6] by means of Theorem 2.1.

Let V be a real vector space, A ⊆ V , φ : A→ R. We say that φ is finitely lower
semicontinuous if, for every finite-dimensional linear subspace F ⊆ V , the function
f|A∩F is lower semicontinuous in the Euclidean topology of F .

In the next result, the topology of X has no role.

Theorem 2.3. Let X be a convex set in a real vector space and let f ∈ B. Assume
that there is a convex set S ∈ C̃f such that f(·, y) is finitely lower semicontinous
and convex for all y ∈ S. Finally, assume that, for some x0 ∈ X, the function that
f(x0, ·) is τf − sup-compact.

Then, one has

sup
Y

inf
X
f = inf

X
sup
Y
f .

Proof. Arguing by contradiction, assume that

sup
Y

inf
X
f < inf

X
sup
Y
f .

Denote by D the family of all convex polytopes in X. Since D is a filtering cover
of X and f(x0, ·) is τf − sup-compact, by Proposition 2.1 of [7], there exists P ∈ D
such that

sup
Y

inf
P
f < inf

P
sup
Y
f .

Let ∥ · ∥ be the Euclidean norm on span(P ). So, ∥ · ∥2 is strictly convex. Now, fix
λ so that

λ >
2 supx∈P ∥x∥2

infP supY f − supY infP f
.

Notice that, for each y ∈ S, the function x → ∥x∥2 + λf(x, y) is inf-compact
in P with respect to the Euclidean topology. This is due to the assumption that
f(·, y) is finitely lower semicontinuous and to the compactness of P in the Euclidean
topology. As a consequence, if we consider P equipped with the Euclidean topology,
we can apply Theorem 2.1 to the restriction of f to P × Y (recall that S ∈ C̃f ),
taking φ = ∥ · ∥2. Accordingly, there would exist y∗ ∈ S such that the function
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x→ ∥x∥2+λf(x, y∗) has at least two global minima in P . But, this is absurd since
this function is strictly convex. □

Reasoning exactly as in the proof of Theorem 2.3 (even in a simplified way, since
there is no need to consider the family D), we also get

Theorem 2.4. Let X be a compact convex set in a topological vector space such that
there exists a lower semicontinuous, strictly convex, bounded function φ : X → R.
Let f ∈ B. Assume that there is a convex set S ∈ Cf such that f(·, y) is lower
semicontinuous and convex for all y ∈ S.

Then, one has

sup
Y

inf
X
f = inf

X
sup
Y
f .

We now revisit two applications of Theorem 1.1 in the light of Theorem 2.1.

The first one concerns the so called farthest points ( [1]- [4]).

Theorem 2.5. Let X be a non-singleton compact subset of a metric space (E, d).

Moreover, let h : Y → E be such that X ⊆ h(Y ) and let the function (x, y) →
f(x, y) := −d(x, h(y)) belong to B.

Then, for every convex set S ∈ Cf , for every upper semicontinuous bounded
function γ : X → R and for every λ satisfying

λ >
4 supX |γ|
diam(X)

,

there exists y∗ ∈ S such that the function x → γ(x) + λd(x, h(y∗)) has at least two
global maxima in X.

Proof. Since X ⊆ h(Y ), we have

(2.4) sup
x∈X

inf
y∈Y

d(x, h(y)) = 0 .

Also, for each x1, x2 ∈ X, y ∈ Y , we have

d(x1, x2)

2
≤ max{d(x1, h(y)), d(x2, h(y))}

and so

(2.5)
diam(X)

2
≤ inf

y∈Y
sup
x∈X

d(x, h(y)) .

Hence, in view of (2.4) and (2.5), we have

sup
Y

inf
X
f ≤ −diam(X)

2
< 0 = inf

X
sup
Y
f .

Now, the conclusion follows directly from Theorem 2.1 taking φ = −γ. □

Of course, the most natural corollary of Theorem 2.5 is as follows:
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Corollary 2.6. Let X be a non-singleton compact subset of a normed space (E, ∥·∥)
and let Y be a convex subset of E such that X ⊆ Y .

Then, for every convex set S ⊆ Y dense in Y , for every upper semicontinuous

bounded function γ : X → R and for every λ > 4 supX |γ|
diam(X)

, there exists y∗ ∈ S such

that the function x→ γ(x) + λ∥x− y∗∥ has at least two global maxima in X.

In turn, from Corollary 2.6, we clearly get

Corollary 2.7. Let X be a compact subset of a normed space (E, ∥ · ∥) and let Y
be a convex subset of E such that X ⊆ Y . Assume that there exist a sequence {Sn}
of convex subsets of Y dense in Y and a sequence {γn} of upper semicontinuous
bounded real-valued functions on X, with limn→∞ supX |γn| = 0, such that, for each
n ∈ N and for each y ∈ Sn, the function x → γn(x) + ∥x − y∥ has a unique global
maximum in X.

Then, X is a singleton.

Remark 2.8. Notice that Corollary 2.7 improves Theorem 1.1 of [14] which, in
turn, extended a classical result by Klee ( [5]) to normed spaces. More precisely,
Theorem 1.1 of [14] agrees with the particular case of Corollary 2.7 in which each
Sn is equal to conv(X) and each γn is equal to 0. The second application concerns

the calculus of variations. We will use the same symbol | · | to denote the norm of
R and the norm of Rn. Let Ω ⊂ Rn be a bounded domain with smooth boundary

and let p > 1. On the Sobolev space W 1,p(Ω), we consider the norm

∥u∥ =

(∫
Ω
|∇u(x)|pdx+

∫
Ω
|u(x)|pdx

) 1
p

.

If n ≥ p, we denote by E the class of all continuous functions σ : R → R such that

sup
ξ∈R

|σ(ξ)|
1 + |ξ|q

< +∞ ,

where 0 < q < pn
n−p if p < n and 0 < q < +∞ if p = n. While, when n < p, E stands

for the class of all continuous functions σ : R → R.

Recall that a function h : Ω×Rm → R is said to be a normal integrand ([15]) if
it is L(Ω) ⊗ B(Rm)-measurable and h(x, ·) is lower semicontinuous for a.e. x ∈ Ω.
Here L(Ω) and B(Rm) denote the Lebesgue and the Borel σ-algebras of subsets of
Ω and Rm, respectively.

Recall that if h is a normal integrand then, for each measurable function u : Ω →
Rm, the composite function x→ h(x, u(x)) is measurable ( [15]).

We denote by F the class of all normal integrands h : Ω×R×Rn → R such that
h(x, ξ, ·) is convex for all (x, ξ) ∈ Ω×R and there are M ∈ L1(Ω), b > 0 such that

M(x)− b(|ξ|+ |η|p) ≤ h(x, ξ, η)

for all (x, ξ, η) ∈ Ω×R×Rn.

Let us also recall two results proved in [9].
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Proposition 2.9. Let Ω ⊂ Rn be a bounded domain with smooth boundary, let
p > 1 and let h : Ω × R × Rn → R be a normal integrand such that, for some
c, d > 0, one has

c|η|p − d ≤ h(x, ξ, η)

for all (x, ξ, η) ∈ Ω×R×Rn and

lim
|ξ|→+∞

inf
(x,η)∈Ω×Rn

h(x, ξ, η) = +∞ .

Then, in W 1,p(Ω), one has

lim
∥u∥→+∞

∫
Ω
h(x, u(x),∇u(x))dx = +∞ .

Proposition 2.10. Let X,Y be two non-empty sets and I : X → R, J : X×Y → R
two given functions. Assume that there are two sets A,B ⊂ X such that:
(a) supA I < infB I ;
(b) supY infA J(x, y) ≤ 0 ;
(c) infB supY J(x, y) ≥ 0 ;
(d) infX\B supY J(x, y) = +∞ .

Then, one has

sup
Y

inf
X
(I + J) ≤ sup

A
I < inf

B
I ≤ inf

X
sup
Y

(I + J) .

Furthermore, let us also recall the following classical fact:

Proposition 2.11. Let A ⊆ Rn be any open set and let v ∈ L1(A) \ {0}.
Then, one has

sup
α∈C∞

0 (A)

∫
A
α(x)v(x)dx = +∞ .

After these preliminaries, we can prove the following result:

Theorem 2.12. Let h, k ∈ F and let σ ∈ E be a strictly monotone function.
Assume that:
(i) there are c, d > 0 such that

c|η|p − d ≤ h(x, ξ, η)

for all (x, ξ, η) ∈ Ω×R×Rn and

lim
|ξ|→+∞

inf(x,η)∈Ω×Rn h(x, ξ, η)

|σ(ξ)|+ 1
= +∞ ;

(ii) for each ξ ∈ R, the function h(·, ξ, 0) lies in L1(Ω) ;
(iii) there are ξ1, ξ2, ξ3 ∈ R, with ξ1 < ξ2 < ξ3, such that

max

{∫
Ω
h(x, ξ1, 0)dx,

∫
Ω
h(x, ξ3, 0)dx

}
<

∫
Ω
h(x, ξ2, 0)dx .

Then, for every sequentially weakly closed set V ⊆ W 1,p(Ω), containing the con-
stants, for every convex set T ⊆ L∞(Ω) dense in L∞(Ω), for every non-decreasing,
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continuous, bounded function ω : U → R, where U := {
∫
Ω k(x, u(x),∇u(x))dx : u ∈

W 1,p(Ω)}, and for every λ satisfying

(2.6) λ >
2 supU |ω|∫

Ω h(x, ξ2, 0)dx−max
{∫

Ω h(x, ξ1, 0)dx,
∫
Ω h(x, ξ3, 0)dx

} ,

there exists γ ∈ T such that the restriction to V of the functional

u→ λ

∫
Ω
h(x, u(x),∇u(x))dx+

∫
Ω
γ(x)σ(u(x))dx+ ω

(∫
Ω
k(x, u(x),∇u(x))dx

)
has at least two global minima. The same conclusion holds also with T = C∞

0 (Ω).

Proof. Fix V, T, ω, λ as in the conclusion. Since σ ∈ E , in view of the Rellich-
Kondrachov theorem, for each u ∈ W 1,p(Ω), we have σ ◦ u ∈ L1(Ω) and, for each
γ ∈ L∞(Ω), the functional u →

∫
Ω γ(x)σ(u(x))dx is sequentially weakly contin-

uous. Moreover, since h, k ∈ F the functionals u →
∫
Ω h(x, u(x),∇u(x)dx and

u→
∫
Ω k(x, u(x),∇u(x)dx (possibly taking the value +∞) are sequentially weakly

lower semicontinuous ([2], Theorem 4.6.8). Hence, since ω is non-decreasing and
continuous, the functional u → ω

(∫
Ω k(x, u(x),∇u(x)dx

)
is sequentially weakly

lower semicontinuous too. Set

X =

{
u ∈ V :

∫
Ω
h(x, u(x),∇u(x))dx < +∞

}
.

By (ii), the constants belong to X. Fix γ ∈ L∞(Ω). By (i), there is δ > 0 such that

h(x, ξ, η)− 2∥γ∥L∞(Ω)|σ(ξ)| ≥ 0

for all (x, ξ, η) ∈ Ω×R×Rn with |ξ| > δ. So, we have
c

2
|η|p − d− ∥γ∥L∞(Ω) sup

|ξ|≤δ
|σ(ξ)| ≤ h(x, ξ, η) + γ(x)σ(ξ)

for all (x, ξ, η) ∈ Ω×R×Rn and, of course,

lim
|ξ|→+∞

inf
(x,η)∈Ω×Rn

(h(x, ξ, η) + γ(x)σ(ξ)) = +∞ .

Consequently, in view of Proposition 2.9, we have, in W 1,p(Ω),

lim
∥u∥→+∞

(∫
Ω
h(x, u(x),∇u(x))dx+

∫
Ω
γ(x)σ(u(x))dx

)
= +∞ .

This implies that, for each r ∈ R, the set{
u ∈ V :

∫
Ω
h(x, u(x),∇u(x))dx+

∫
Ω
γ(x)σ(u(x))dx ≤ r

}
is weakly compact by reflexivity and by Eberlein-Smulyan’s theorem. Of course, we
also have {

u ∈ V :

∫
Ω
h(x, u(x),∇u(x))dx+

∫
Ω
γ(x)σ(u(x))dx ≤ r

}
=

{
u ∈ X :

∫
Ω
h(x, u(x),∇u(x))dx+

∫
Ω
γ(x)σ(u(x))dx ≤ r

}
.

Now, observe that, if we put
A = {ξ1, ξ3}
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and

B = {ξ2} ,
and define I : X → R, J : X × L∞(Ω) → R by

I(u) =

∫
Ω
h(x, u(x),∇u(x))dx ,

J(u, γ) =

∫
Ω
γ(x)(σ(u(x))− σ(ξ2))dx

for all u ∈ X, γ ∈ L∞(Ω), we clearly have

inf
u∈B

sup
γ∈L∞(Ω)

J(u, γ) = 0

and, by (iii),

sup
A
I < inf

B
I .

Since σ is strictly monotone, the numbers σ(ξ1) − σ(ξ2) and σ(ξ3) − σ(ξ2) have
opposite signs. This clearly implies that

sup
γ∈L∞(Ω)

inf
u∈A

J(u, γ) ≤ 0 .

Furthermore, if u ∈ X \ {ξ2}, again by strict monotonicity, σ ◦u ̸= σ(ξ2), and so we
have

sup
γ∈L∞(Ω)

J(u, γ) = +∞ .

Therefore, the sets A,B and the functions I, J satisfy the assumptions of Proposition
2.10 and hence we have

(2.7)
supL∞(Ω) infX(I + J) ≤ max

{∫
Ω h(x, ξ1, 0)dx,

∫
Ω h(x, ξ3, 0)dx

}
<

∫
Ω h(x, ξ2, 0)dx = infX supL∞(Ω)(I + J) .

Now, we can apply Theorem 2.1 considering X equipped with the weak topology
and taking

Y = L∞(Ω) ,

f = I + J ,

ψ = 0 ,

S =
1

λ
T

and

φ(u) = ω

(∫
Ω
k(x, u(x),∇u(x))dx

)
.

Notice that, in view of (2.7), inequality (2.1) holds thanks to (2.6), and the conclu-
sion follows. When T = C∞

0 (Ω) the same proof as above holds in view of Proposition
2.11. □

Remark 2.13. Notice that condition (iii) holds if and only if the function
∫
Ω h(x, ·, 0)

is not quasi-convex.

Remark 2.14. For ω = 0, Theorem 2.12 reduces to Theorem 1.2 of [9].
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We conclude presenting an application of Theorem 2.12 to the Neumann problem
for a Kirchhoff-type equation.

Given K : [0,+∞[→ R and a Carathéodory function ψ : Ω ×R → R, consider
the following Neumann problem{ −K

(∫
Ω |∇u(x)|pdx

)
div(|∇u|p−2∇u) = ψ(x, u) in Ω

∂u

∂ν
= 0 on ∂Ω

where ν is the outward unit normal to ∂Ω.
Let us recall that a weak solution of this problem is any u ∈W 1,p(Ω) such that,

for every v ∈W 1,p(Ω), one has ψ(·, u(·))v(·) ∈ L1(Ω) and

K

(∫
Ω
|∇u(x)|pdx

)∫
Ω
|∇u(x)|p−2∇u(x)∇v(x)dx−

∫
Ω
ψ(x, u(x))v(x)dx = 0 .

Theorem 2.15. Let f, g : R → R be two C1 functions lying in E and satisfying
the following conditions:
(a1) the function g′ has a constant sign and int((g′)−1(0)) = ∅ ;

(a2) lim|ξ|→+∞
f(ξ)

|g(ξ)|+1 = +∞ ;

(a3) there are ξ1, ξ2, ξ3 ∈ R, with ξ1 < ξ2 < ξ3, such that

max{f(ξ1), f(ξ3)} < f(ξ2) .

Then, for every a > 0, for every β ∈ L∞(Ω), with infΩ β > 0, for every convex
set T ⊆ L∞(Ω) dense in L∞(Ω), for every C1, non-decreasing, bounded function
χ : [0,+∞[→ R, and for every λ satisfying

λ >
2 sup[0,+∞[ |χ|

p(f(ξ2)−max{f(ξ1), f(ξ3)})
∫
Ω β(x)dx

there exists γ ∈ T such that the problem

(P )

{ −
(
a+ χ′ (∫

Ω |∇u(x)|pdx
))

div(|∇u|p−2∇u) = γ(x)g′(u)− λβ(x)f ′(u) in Ω
∂u

∂ν
= 0 on ∂Ω

has at least two weak solutions.

Proof. Fix a, β, T , χ and λ as in the conclusion. We are going to apply Theorem
2.12, defining h, k, σ by

h(x, ξ, η) =
a

pλ
|η|p + β(x)f(ξ) ,

k(η) = |η|p ,

σ(ξ) = −g(ξ)
for all (x, ξ, η) ∈ Ω ×R ×Rn. It is immediate to realize that, by (a1) − (a3), the
above h, k, σ satisfy the assumptions of Theorem 2.12. Then, applying Theorem
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2.12 with ω = 1
pχ, we get the existence of γ ∈ T such that the functional

u → λ

(
a

pλ

∫
Ω
|∇u(x)|pdx+

∫
Ω
β(x)f(u(x))dx

)
−
∫
Ω
γ(x)g(u(x))dx+

1

p
χ

(∫
Ω
∇u(x)|pdx

)
has at least two global minima in W 1,p(Ω). But, by classical results (recall that
f, g ∈ E), such a functional is C1 and its critical points (and so, in particular, its
global minima) are weak solutions of problem (P ). The proof is complete. □

A challenging problem is as follows:

PROBLEM 1. - Does the conclusion of Theorem 2.15 hold with three instead of
two?
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atica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di
Alta Matematica (INdAM).

References
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