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A MORE COMPLETE VERSION OF A MINIMAX THEOREM

BIAGIO RICCERI

ABSTRACT. In this paper, we present a more complete version of the minimax
theorem established in [7]. As a consequence, we get, for instance, the following
result: Let X be a compact, not singleton subset of a normed space (E, || - ||)
and let Y be a convex subset of E such that X C Y. Then, for every convex set
S CY dense in Y, for every upper semicontinuous bounded function v : X — R

?LXM, there exists y* € S such that the function z —
iam(x)

~v(z) + M|z — y*|| has at least two global maxima in X.

and for every A\ >

1. INTRODUCTION
Here and in what follows, X is a topological space and Y is a convex set in a real
Hausdorff topological vector space. A function h : X — R is said to be inf-compact
if h=1(] — o0, 7]) is compact for all r € R..

A function k : Y — R is said to be quasi-concave (resp. quasi-convex)) k=1 ([r, +o0])
(resp. if k~1(] — oo, r]) is convex for all r € R.

If S is a convex subset of Y, we denote by Ag the class of all functions f :
X XY — R such that, for each y € S, the function f(-,y) is lower semicontinuous
and inf-compact.

Moreover, we denote by B the class of all functions f : X x Y — R such that
either, for each x € X, the function f(z,-) is quasi-concave and continuous, or, for
each z € X, the function f(z,-) is concave.

For any f: X xY — R, we set
= inf
oy sgp i f
and
= inf .
Br=in sgpf
Also, we denote by Cy the family of all sets S C Y such that
inf = inf
inf sgp f inf Sl}l/p f
and by C ¢ the family of all sets S C Y such that

sup f(z,y) = sup f(z,y)
yes yey

for all z € X.
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In particular, notice that S € éf provided, for each x € X, there is a topology
on Y for which S is dense and f(z,-) is lower semicontinuous.

Furthermore, we denote by 7y the topology on Y generated by the family
HyeY : f(z,y) <rlliexrer -

So, 7y is the weakest topology on Y for which f(x,-) is upper semicontinuous for
all z € X. In [7], we established the following minimax result:

Theorem 1.1. For every g € Ay NB, at least one of the following assertions holds:
(j) supy infx g = infx supy g ;

(jj) there exists y* € Y such that the function g(-,y*) has at least two global min-
1ma.

The relevance of Theorem 1.1 resides essentially in the fact that it is a flexible
tool which can fruitfully be used to obtain meaningful results of various nature.
This is clearly shown by a series of recent papers ( [8]- [14]).

So, we believe that it is of interest to present a more complete form of Theorem
1.1: this is just the aim of this paper.
2. MAIN RESULTS
Here is the main abstract result (with the usual rules in R):

Theorem 2.1. Let f: X xY — R. Assume that there is a function ¢ : Y — R
such that f +1 € B and

apry < Brey -
Then, for every convex set S € Cyiy, for every bounded function ¢ : X — R and
for every A > 0 such that A\f + ¢ € Ag and

2
2.1) N> 2supxlel
B4y — Afiy

there exists y* € S such that the function N\f(-,y*) + ¢(-) has at least two global
minima.

Proof. Consider the function g : X x Y — R defined by

9(z,y) = Af(2,y) + ¢ () + ¢(2)
for all (x,y) € X x Y. Since S € Cs1y, we have

(2.2) inf sup(f + ) = inf sup(f + ¢) .
X s X vy
So, taking (2.1) and (2.2) into account, we have
supinf g < supinf g < Aagqqy +sup |¢|
s X y X X
(2.3) < ABf4y —sup || = Ainfsup(f + 1) —sup |¢| < infsupg .
X X s X X s

Now, observe that g € Ag since \f + ¢ € Ag and, at the same time, g € B since
f+ 1 € B. As a consequence, we can apply Theorem 1.1 to the restriction of the
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function g to X x S. Therefore, in view of (2.3), there exists y* € S such that
the function g(-,y*) (and hence Af(-,y*) 4+ ¢(+)) has at least two global minima, as
claimed. ]

Remark 2.2. As the above proof shows, Theorem 2.1 is a direct consequence of
Theorem 1.1. However, Theorem 2.1 has at least four advantages with respect to
Theorem 1.1. Namely, suppose that, for a given function g € Ay, we are interested
in ensuring the validity of assertion (jj). Then, if we apply Theorem 1.1 in this
regard, we have to show that g € B and that assertion (j) does not hold. On the
contrary, if we apply Theorem 2.1, we can ensure the validity of (jj) also in cases
where either g & B or (j) holds true too. In addition, Theorem 2.1 is able to ensure
the validity of (jj) even in a remarkably stronger way: not only extending it to
suitable perturbations of g, but also offering an information on the location of y*.

First, we wish to show how to obtain the very classical minimax theorems in [3]
and [6] by means of Theorem 2.1.

Let V be a real vector space, A CV, ¢: A — R. We say that ¢ is finitely lower
semicontinuous if, for every finite-dimensional linear subspace F' C V', the function
JlanF is lower semicontinuous in the Euclidean topology of F.

In the next result, the topology of X has no role.

Theorem 2.3. Let X be a convex set in a real vector space and let f € B. Assume
that there is a conver set S € C~f such that f(-,y) is finitely lower semicontinous
and convex for all y € S. Finally, assume that, for some xg € X, the function that
f(xo,-) is Ty — sup-compact.
Then, one has
sgp 1£1(ff = 1£1(f Sl;p f-

Proof. Arguing by contradiction, assume that
supinf f < infsup f .
up ity f<inl Ypf

Denote by D the family of all convex polytopes in X. Since D is a filtering cover
of X and f(xo,-) is 74 — sup-compact, by Proposition 2.1 of [7], there exists P € D
such that

Sl}l/p 1%f < 1rlgf sgp f-
Let || - || be the Euclidean norm on span(P). So, || - ||? is strictly convex. Now, fix
A so that

2sup,ep [z

inf p supy f — supy infp f
Notice that, for each y € S, the function = — ||z||? + Af(x,y) is inf-compact
in P with respect to the Euclidean topology. This is due to the assumption that
f(,y) is finitely lower semicontinuous and to the compactness of P in the Euclidean
topology. As a consequence, if we consider P equipped with the Euclidean topology,
we can apply Theorem 2.1 to the restriction of f to P x Y (recall that S € C )5
taking ¢ = | - ||?>. Accordingly, there would exist y* € S such that the function
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r — ||z||2 + Af(z,y*) has at least two global minima in P. But, this is absurd since
this function is strictly convex. O

Reasoning exactly as in the proof of Theorem 2.3 (even in a simplified way, since
there is no need to consider the family D), we also get

Theorem 2.4. Let X be a compact convex set in a topological vector space such that
there exists a lower semicontinuous, strictly convex, bounded function ¢ : X — R.
Let f € B. Assume that there is a conver set S € Cy such that f(-,y) is lower
semicontinuous and convez for all y € S.

Then, one has

inf f = inf .
Sgngf 1&8&#

We now revisit two applications of Theorem 1.1 in the light of Theorem 2.1.

The first one concerns the so called farthest points ( [1]- [4]).

Theorem 2.5. Let X be a non-singleton compact subset of a metric space (E,d).
Moreover, let h : Y — E be such that X C h(Y) and let the function (x,y) —
f(z,y) == —d(z, h(y)) belong to B.

Then, for every conver set S € Cy, for every upper semicontinuous bounded
function v : X — R and for every A\ satisfying

4supy ||
diam(X) ’

there exists y* € S such that the function x — vy(x) + Ad(x, h(y*)) has at least two
global mazima in X.

Proof. Since X C h(Y'), we have

(2.4) sup inf d(z,h(y)) =0 .
rEX YEY

Also, for each 1,22 € X, y € Y, we have

Aw1,2) _ otd(zr b)), (e, h(y))}
and so

diam(X)

(2.5) < inf sup d(zx, h(y)) .

YEY zex
Hence, in view of (2.4) and (2.5), we have

diam(X)
2

inf f < — <0 =inf .
%me_ @sgﬁ

Now, the conclusion follows directly from Theorem 2.1 taking ¢ = —~. (|

Of course, the most natural corollary of Theorem 2.5 is as follows:
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Corollary 2.6. Let X be a non-singleton compact subset of a normed space (E, ||-]|)
and let Y be a convex subset of E such that X CY.
Then, for every convex set S C'Y dense in'Y, for every upper semicontinuous

bounded function v : X — R and for every A > ?hS;pTX(l;g

that the function © — vy(x) + M|z — y*|| has at least two global mazima in X.

, there exists y* € S such

In turn, from Corollary 2.6, we clearly get

Corollary 2.7. Let X be a compact subset of a normed space (E,|| -||) and let Y
be a convex subset of E such that X CY. Assume that there exist a sequence {Sy,}
of convex subsets of Y dense in'Y and a sequence {vy,} of upper semicontinuous
bounded real-valued functions on X, with lim,_,o supx |vn| = 0, such that, for each
n € N and for each y € Sy, the function © — v,(x) + ||z — y|| has a unique global
maximum in X .

Then, X is a singleton.

Remark 2.8. Notice that Corollary 2.7 improves Theorem 1.1 of [14] which, in
turn, extended a classical result by Klee ( [5]) to normed spaces. More precisely,
Theorem 1.1 of [14] agrees with the particular case of Corollary 2.7 in which each
Sy, is equal to conv(X) and each ~, is equal to 0. The second application concerns

the calculus of variations. We will use the same symbol | - | to denote the norm of
R and the norm of R”. Let  C R" be a bounded domain with smooth boundary

and let p > 1. On the Sobolev space W'P(€2), we consider the norm

[lull = (/Q!Vlt(x)lpdwr/ﬂ!u(x)!deI); :

If n > p, we denote by £ the class of all continuous functions ¢ : R — R such that

lo(§)]
cen 1+ €

where 0 < ¢ < np—_"p if p<nand0 < g < +oc0if p=n. While, when n < p, £ stands
for the class of all continuous functions ¢ : R — R.

< 400,

Recall that a function h : Q@ x R™ — R is said to be a normal integrand ([15]) if
it is £(2) ® B(R™)-measurable and h(z,-) is lower semicontinuous for a.e. = € €.
Here £(€2) and B(R™) denote the Lebesgue and the Borel o-algebras of subsets of
Q and R™, respectively.

Recall that if h is a normal integrand then, for each measurable function u : 2 —
R™, the composite function z — h(z,u(z)) is measurable ( [15]).

We denote by F the class of all normal integrands h : 2 x R x R™ — R such that
h(z,€,-) is convex for all (z,€&) € Q x R and there are M € L'(£2), b > 0 such that

M () = b([€] + [nl”) < h(z, & n)
for all (z,£,n7) € 2 x R x R™.

Let us also recall two results proved in [9].
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Proposition 2.9. Let Q C R" be a bounded domain with smooth boundary, let
p>1andleth: QxR xR"—= R be a normal integrand such that, for some
c,d >0, one has

clnlP —d < h(z, €& n)
for all (z,&,m) € 2 x R x R™ and

lim inf h(x,&,n) =40 .
|€]—=+o0 (z,n)EQXR™ ( *577)

Then, in WHP(2), one has
lim h(z,u(x), Vu(x))dx = +oo .
l[ull=+o0 /o

Proposition 2.10. Let X, Y be two non-empty setsand I : X - R, J: XxY - R
two given functions. Assume that there are two sets A, B C X such that:
(a) supy I <infgl ;
(b) supy infa J(z,y) <0 ;
(¢) infpsupy J(z,y) >0 ;
(d) infx\psupy J(z,y) = +o0 .
Then, one has

supinf(I + J) <supl < inf I <infsup(I +.J) .
y X A B X vy
Furthermore, let us also recall the following classical fact:

Proposition 2.11. Let A C R" be any open set and let v € L'(A) \ {0}.
Then, one has

sup / a(x)v(z)dr = 400 .
acCse(A) JA

After these preliminaries, we can prove the following result:
Theorem 2.12. Let h,k € F and let o € &£ be a strictly monotone function.

Assume that:
(7) there are ¢,d > 0 such that

cnlP —d < h(z, & n)
for all (z,&,n) € A x R x R™ and

lim inf(a:,n)GQXR” h(.ﬁU, 57 "7)
€| —+o0 lo(§)] +1

(ii) for each & € R, the function h(-,£,0) lies in LY(Q) ;
(7i1) there are &1,&2,&3 € R, with & < & < &3, such that

max{/ h(a:,&,O)da:,/ h(x,§3,0)dx} </h(x,§2,0)dx.
Q Q Q

Then, for every sequentially weakly closed set V. C WP(Q), containing the con-
stants, for every convex set T C L>(§2) dense in L>(2), for every non-decreasing,
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continuous, bounded function w : U — R, where U := { [, k(z, u(x), Vu(z))dz : u €
WP(Q)}, and for every X\ satisfying
2 SupU jw]
fQ x,&2,0)dz —max{fQ x,&1,0)dz, [, h(a:,gg,o)da:} ’
there exists v € T such that the restriction to V' of the functional

u— )\/Qh(:r,u(:c),Vu(x))dx + /Q'y(:r)a(u(x))dx +w </Q k(x,u(w),Vu(ac))dac)

has at least two global minima. The same conclusion holds also with T' = C§°(2).

(2.6)

Proof. Fix V,T,w, A as in the conclusion. Since ¢ € &, in view of the Rellich-
Kondrachov theorem, for each u € WP(Q2), we have o ou € L'(Q2) and, for each
vy € L>®(Q), the functional v — [,~v(x)o(u(x))dx is sequentially weakly contin-
uous. Moreover, since h,k € F the functionals u — [, h(z,u(z), Vu(z)dz and
u— [o k(z,u(x), Vu(z)dr (possibly taking the value +o00) are sequentially weakly
lower semicontinuous ([2], Theorem 4.6.8). Hence, since w is non-decreasing and
continuous, the functional v — w ([o k(z, u(z), Vu(z)dz) is sequentially weakly
lower semicontinuous too. Set

X = {u eV: / h(z,u(x), Vu(x))dx < —1—00} .
Q
By (#4), the constants belong to X. Fix v € L*°(Q). By (i), there is 6 > 0 such that
h(z, &) = 2[|7][ L)l ()] = 0
for all (z,£,n) € @ x R x R™ with |£| > 4. So, we have

3P = d= Pl $up [o()] < (. &1) +1(2)o(6)

for all (z,£,n) € Q x R x R™ and, of course,

li inf h(z, &)+ = +00 .
Jm e () + y(2)a () = oo

Consequently, in view of Proposition 2.9, we have, in W1P(Q),

i ( /Q W@, u(z), Vu(z))dz + /Q ’y(x)a(u(a:))dm) — 4o
This implies that, for each r € R, the set
{u ev: /Qh(;v,u(:r), Vu(z))dr + /Q'y(:z?)a(u(x))dx < r}

is weakly compact by reflexivity and by Eberlein-Smulyan’s theorem. Of course, we
also have

{u ev: /Qh(x,u(x),vu(x))dx + /Q’y(:c)a(u(as))dx < r}
- {u € X | he,ue), ule))de + /Qv(x)a(u(x))dx < 7“} .

Now, observe that, if we put

A= {61753}
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and

B={&},
and define I : X - R, J: X x L*°(2) — R by

I(u) = /Qh(ac,u(m),Vu(:E))d:U,

J(u,y) = /Q () (o (u()) — o(€2))de
for all w € X, v € L*>®(Q2), we clearly have

inf sup J(u,v)=0
ueB YEL>® () ( )
and, by (i),
supl <infIl .
A B

Since o is strictly monotone, the numbers o(§;) — (&) and o(€3) — o(&2) have
opposite signs. This clearly implies that
sup inf J(u,v) <0.
yeL>®(Q) uEA
Furthermore, if u € X \ {£2}, again by strict monotonicity, o ou # o(§2), and so we
have
sup  J(u,7y) =400 .
YEL>(Q)
Therefore, the sets A, B and the functions I, J satisfy the assumptions of Proposition
2.10 and hence we have

SUppe () infx(f +J) < max { [ h(z, &1, 0)dz, [, h(z,&3,0)da}

< Jo M, &2,0)dz = infx sup o) (I + J) .
Now, we can apply Theorem 2.1 considering X equipped with the weak topology
and taking

2.7)

Y =L*(Q),
f=I+7,
lb:Oa
s-1r

A
and

@(u):w< /Q k:(;v,u(:n),Vu(m))dx) .

Notice that, in view of (2.7), inequality (2.1) holds thanks to (2.6), and the conclu-
sion follows. When 7' = C§°(2) the same proof as above holds in view of Proposition
2.11. O

Remark 2.13. Notice that condition (i) holds if and only if the function [, h(z,-,0)
is not quasi-convex.

Remark 2.14. For w = 0, Theorem 2.12 reduces to Theorem 1.2 of [9].
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We conclude presenting an application of Theorem 2.12 to the Neumann problem
for a Kirchhoff-type equation.

Given K : [0,+o0o[— R and a Carathéodory function ¥ : 2 x R — R, consider
the following Neumann problem
{ —K (o |Vu(z)[Pdz) div(|VulP~2Vu) = ¢(z,u) in
u

520 on 0N

where v is the outward unit normal to 02.
Let us recall that a weak solution of this problem is any u € W1P(2) such that,
for every v € WHP(Q), one has (-, u(-))v(-) € L}(Q) and

K< /Q |Vu(x)pdm> /Q V(o) P2 V() Vo()ds — /Q (@, u(z))o(@)ds = 0

Theorem 2.15. Let f,g : R — R be two C' functions lying in € and satisfying
the following conditions:

(a1) the function g’ has a constant sign and int((¢")~1(0)) =0 ;

: f&)  _ .
(CZQ) hmIE\—H-OO Ig(ﬁ()Izrl = 400 5

(a3) there are &1,&2,&3 € R, with & < & < &3, such that
max{f (&), f(&)} < f(&) -

Then, for every a > 0, for every 5 € L*>(S), with infq S > 0, for every convex
set T C L>®(Q) dense in L>=(Q), for every C!, non-decreasing, bounded function
X : [0, +00[— R, and for every \ satisfying

28UPg, 4 oof |X]
p(f(&2) — max{f(&1), f(&3)}) [ B(x)dx

there exists v € T' such that the problem
» { —(at+ X (fy [Vu(@)Pde)) div([Vul"2Vu) = y(2)g'(u) — A8(@) f'(w) in
P 0

A >

U
-0 (9]
ov on
has at least two weak solutions.

Proof. Fix a,8, T, x and A as in the conclusion. We are going to apply Theorem
2.12, defining h, k, o by

h(z, &) = ]%In!p +B(x)f () ,

k(n) = nl*,

a(§) = —g(§)

for all (z,&,m) € 2 x R x R™. It is immediate to realize that, by (a1) — (as3), the
above h, k,o satisfy the assumptions of Theorem 2.12. Then, applying Theorem
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2.12 with w = %X, we get the existence of v € T such that the functional

u - /\(pa)\ /Q V() Pde + /Q B(x) f(u(a:))da:)

— [ @g@)de + 2x ( [ Vu@)pds
Q P QO

has at least two global minima in W1P(). But, by classical results (recall that
f,g € €), such a functional is C' and its critical points (and so, in particular, its
global minima) are weak solutions of problem (P). The proof is complete. O

A challenging problem is as follows:

PROBLEM 1. - Does the conclusion of Theorem 2.15 hold with three instead of
two?
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