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Abstract: Real-time sensing of chemical warfare agents by optical sensors is today a crucial target to
prevent terroristic attacks by chemical weapons. Here the synthesis, characterization and detection
properties of a new sensor, based on covalently functionalized carbon nanoparticles, are reported.
This nanosensor exploits noncovalent interactions, in particular hydrogen bonds, to detect DMMP,
a simulant of nerve agents. The nanostructure of the sensor combined with the supramolecular
sensing approach leads to high binding constant affinity, high selectivity and the possibility to reuse
the sensor.
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1. Introduction

Chemical warfare agents (CWAs), organophosphorus compounds developed before the Second
World War, are highly toxic compounds due to their ability to irreversibly inhibit the acetylcholine
esterase enzyme [1].

Today, CWAs are classified into three classes: G-type, V-type and A-type (also called Novichok)
(Scheme 1).

Although CWAs are today prohibited in many countries, the recent attacks in the Middle East and
in Europe highlight the importance to quickly detect, in real time, the presence of these agents [2,3].

Due to the toxicity levels of G- and V-type CWAs (LC50 values of Tabun and Sarin are 2 and
1.2 ppm, respectively, while Soman and VX have LC50 of 0.9 and 0.3 ppm, respectively) [4], the ability
to detect low concentration values is of primary importance.

Research activity is usually performed by using simulants, less toxic compounds having geometries
and sizes very similar to real CWAs [5]. In particular, the dimethyl methylphosphonate (DMMP) is
today widely recognized as one of the best simulants for G-type CWAs.

Sensing of CWAs can be performed by using two different approaches: the “covalent approach” [6],
based on a covalent reaction between the sensor and the analyte that leads to a change on a specific
measurable property, or the “supramolecular approach” [7], in which the analyte is recognized by
exploiting noncovalent interactions with a synthetic receptor. The covalent approach shows some
limits: (i) low specificity, (ii) possibility of false-positive responses and (iii) impossibility to reuse the
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sensor. By contrast, the recent success of the supramolecular approach is due to the possibility to reuse
the sensor, because of the formation of noncovalent interactions with the analyte [8–16], and the high
efficiency (in terms of binding constant values) [17] and selectivity due to the possibility to recognize
the analyte by multiple interactions (multitopic approach) [18,19].Molecules 2020, 25, x 2 of 10 
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Scheme 1. Structures and names of G-type, V-type and general formula of A-type chemical warfare 
agents (CWAs). 

Sensing of CWAs can be performed by using two different approaches: the “covalent approach” 
[6], based on a covalent reaction between the sensor and the analyte that leads to a change on a 
specific measurable property, or the “supramolecular approach” [7], in which the analyte is 
recognized by exploiting noncovalent interactions with a synthetic receptor. The covalent approach 
shows some limits: (i) low specificity, (ii) possibility of false-positive responses and (iii) impossibility 
to reuse the sensor. By contrast, the recent success of the supramolecular approach is due to the 
possibility to reuse the sensor, because of the formation of noncovalent interactions with the analyte 
[8–16], and the high efficiency (in terms of binding constant values) [17] and selectivity due to the 
possibility to recognize the analyte by multiple interactions (multitopic approach) [18,19]. 

Recently, we reported on the first metal-free fluorescent sensor, Naphthyl-Di-AE, able to 
selectively and reversibly detect DMMP via the multitopic approach by exploiting multiple hydrogen 
bonds [20]. Furthermore, very recently, we reported on the first nanosensor based on carbon 
nanoparticles (CNPs), able to detect very low concentration values of DMMP both in solution and in 
the gas phase [21]. The use of CNPs [22–24] for sensing purposes shows many interesting features, 
such as the high fluorescence quantum yield [25], water solubility, low toxicity [26], low-cost 
synthesis [27] and the possibility to functionalize their external shell [28]. 

Taking into account these considerations, here we present the implementation of the Naphthyl-
Di-AE on the surface of carbon nanoparticles, leading to CNPs-Naphthyl-Di-AE (Scheme 2). The 
presence of a specific sensor for DMMP (Naphthyl-Di-AE) on the nanoparticle surface leads to the 
possibility to increase the selectivity towards the desired analyte target and to follow the recognition 
event by monitoring a specific change in the optical spectrum of the receptor. 

In particular, the ethanolamine arms, responsible for hydrogen bond formation, are in the 
perfect geometry to recognize DMMP with both arms. With respect to our recent nanoparticle-based 
sensor, having the ethanolamine arms randomly bounded onto the nanoparticle surface [21], CNPs-
Naphthyl-Di-AE show the recognition group (previously synthesized) having the optimal 
configuration to chelate and DMMP. 

Scheme 1. Structures and names of G-type, V-type and general formula of A-type chemical warfare
agents (CWAs).

Recently, we reported on the first metal-free fluorescent sensor, Naphthyl-Di-AE, able to selectively
and reversibly detect DMMP via the multitopic approach by exploiting multiple hydrogen bonds [20].
Furthermore, very recently, we reported on the first nanosensor based on carbon nanoparticles (CNPs),
able to detect very low concentration values of DMMP both in solution and in the gas phase [21].
The use of CNPs [22–24] for sensing purposes shows many interesting features, such as the high
fluorescence quantum yield [25], water solubility, low toxicity [26], low-cost synthesis [27] and the
possibility to functionalize their external shell [28].

Taking into account these considerations, here we present the implementation of the
Naphthyl-Di-AE on the surface of carbon nanoparticles, leading to CNPs-Naphthyl-Di-AE (Scheme 2).
The presence of a specific sensor for DMMP (Naphthyl-Di-AE) on the nanoparticle surface leads to the
possibility to increase the selectivity towards the desired analyte target and to follow the recognition
event by monitoring a specific change in the optical spectrum of the receptor.

In particular, the ethanolamine arms, responsible for hydrogen bond formation, are in the
perfect geometry to recognize DMMP with both arms. With respect to our recent nanoparticle-based
sensor, having the ethanolamine arms randomly bounded onto the nanoparticle surface [21],
CNPs-Naphthyl-Di-AE show the recognition group (previously synthesized) having the optimal
configuration to chelate and DMMP.
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2. Results and Discussion 

CNPs-Naphthyl-BrNO2 were obtained by reacting the anhydride 1 [29] in refluxing ethanol 
with amino-terminal CNPs, and they were purified by centrifugation and filtration. Reaction of 
CNPs-Naphthyl-BrNO2 with a large excess of ethanolamine in solvolysis leads to the CNPs-
Naphthyl-Di-AE, which have been purified by centrifugation and dialysis. The 1H-NMR spectrum 
suggests the covalent functionalization with the ethanolamine groups, due to the presence of 
aromatic signals characteristic of the naphthalic core and, in the aliphatic region, of the typical pattern 
of ethanolamine (see Supplementary Material). 

The electronic structure of the carbon nanoparticles (CNPs) functionalized with the naphthalic 
probe, CNPs-Naphthyl-Di-AE, was also investigated by X-ray photoelectron spectroscopy (XPS), 
thus providing information on the chemical environment. XPS also gave information on the covalent 
anchoring of the naphthalic sensor on the CNPs surface, appropriately functionalized with –NH2 
groups. Finally, the surface elemental composition was estimated, once the relevant atomic 
sensitivity factors had been taken into account [30–34]. 

Figure 1 shows the high-resolution XPS spectrum of the CNPs-Naphthyl-Di-AE in the C 1s 
binding energy region. An accurate fitting of this spectrum revealed the presence of four components 
at 285.0, 286.0, 286.4 and 287.7 eV, respectively. The first component (285.0 eV) is due to both aliphatic 
and aromatic backbones [35,36]. The peaks at 286.0 eV and 286.4 eV are due to the C–N and C–OH 
groups, respectively [37,38]. The peak at 287.7 eV is assigned to the carbon of the amide group (–OC–
NH–) [39], and the presence of this signal confirms the covalent functionalization of the CNPs with 
the naphthalic anhydride. Moreover, the intensity ratio between these three bands at 286.0, 286.4 and 
287.7 eV is 5:2:2, and this result is in agreement with the chemical structure of the CNPs-Naphthyl-
Di-AE, reported in Scheme 2. Finally, the peak at 293.2 eV is ascribed to π–π* shake-up satellites 
characteristic of the aromatic and conjugate systems. 

Scheme 2. Synthesis of CNPs-Naphthyl-Di-AE.

2. Results and Discussion

CNPs-Naphthyl-BrNO2 were obtained by reacting the anhydride 1 [29] in refluxing ethanol
with amino-terminal CNPs, and they were purified by centrifugation and filtration. Reaction
of CNPs-Naphthyl-BrNO2 with a large excess of ethanolamine in solvolysis leads to the
CNPs-Naphthyl-Di-AE, which have been purified by centrifugation and dialysis. The 1H-NMR
spectrum suggests the covalent functionalization with the ethanolamine groups, due to the presence of
aromatic signals characteristic of the naphthalic core and, in the aliphatic region, of the typical pattern
of ethanolamine (see Supplementary Material).

The electronic structure of the carbon nanoparticles (CNPs) functionalized with the naphthalic
probe, CNPs-Naphthyl-Di-AE, was also investigated by X-ray photoelectron spectroscopy (XPS),
thus providing information on the chemical environment. XPS also gave information on the covalent
anchoring of the naphthalic sensor on the CNPs surface, appropriately functionalized with –NH2

groups. Finally, the surface elemental composition was estimated, once the relevant atomic sensitivity
factors had been taken into account [30–34].

Figure 1 shows the high-resolution XPS spectrum of the CNPs-Naphthyl-Di-AE in the C 1s
binding energy region. An accurate fitting of this spectrum revealed the presence of four components at
285.0, 286.0, 286.4 and 287.7 eV, respectively. The first component (285.0 eV) is due to both aliphatic and
aromatic backbones [35,36]. The peaks at 286.0 eV and 286.4 eV are due to the C–N and C–OH groups,
respectively [37,38]. The peak at 287.7 eV is assigned to the carbon of the amide group (–OC–NH–) [39],
and the presence of this signal confirms the covalent functionalization of the CNPs with the naphthalic
anhydride. Moreover, the intensity ratio between these three bands at 286.0, 286.4 and 287.7 eV is 5:2:2,
and this result is in agreement with the chemical structure of the CNPs-Naphthyl-Di-AE, reported
in Scheme 2. Finally, the peak at 293.2 eV is ascribed to π–π* shake-up satellites characteristic of the
aromatic and conjugate systems.
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Figure 1. Al-Kα excited XPS of the CNPs–naphthalic anhydride sample in the C 1s binding energy 
region. The blue, cyan, magenta and dark yellow lines refer to the 285.0, 286.0, 286.4 and 287.7 
components; the green line refers to the background, and the red line superimposed to the 
experimental black profile refers to the sum of all Gaussian components. 

Figure 2 shows the XPS of CNPs-Naphthyl-Di-AE in the N 1s binding energy region. The N 1s 
spectral profile was fitted using two Gaussian components at 400.1 and 401.7 eV. The first component 
(400.1 eV) is due to the nitrogen of amine groups (–NH–) [39]. The peak at 401.7 eV is due to the 
nitrogen of the imide group (O=C–N–C=O) [40]. The presence of O=C–N–C=O group confirms the 
covalent functionalization of the CNPs with the naphthalic core. The intensity ratio between the two 
bands at 400.1/401.7 eV is 2:1, and this result is in agreement with the chemical structure of the 
naphthalic anhydride molecule. 
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and cyan lines refer to the 400.1 and 401.7 eV components; the green line refers to the background, 
and the red line superimposed to the experimental black profile refers to the sum of all Gaussian 
components. 

Finally, Figure 3 shows the O 1s peak of the CNPs–naphthalic anhydride system. The O 1s 
spectral profile was fitted using four Gaussian components at 532.3, 532.9, 534.4 and 537.3 eV. The 
lower energy peak, located at 532.3 eV, is assigned to the –OH groups of both CNPs and naphthalic 
core [41]. The second peak at 532.9 eV is assigned to the imide (O=C–N–C=O) group [40,41] and 
further confirms the covalent functionalization of the CNPs with the naphthalic anhydride molecule. 
Once more, the intensity ratios of the first two peaks (2:2) presently observed are strongly in 
agreement with the expected intensity trend, on the basis of the structure of CNPs-Naphthyl-Di-AE. 
The higher energy peak located at 534.4 eV is attributed to the H2O molecules present in the air-

Figure 1. Al-Kα excited XPS of the CNPs–naphthalic anhydride sample in the C 1s binding energy region.
The blue, cyan, magenta and dark yellow lines refer to the 285.0, 286.0, 286.4 and 287.7 components;
the green line refers to the background, and the red line superimposed to the experimental black profile
refers to the sum of all Gaussian components.

Figure 2 shows the XPS of CNPs-Naphthyl-Di-AE in the N 1s binding energy region. The N 1s
spectral profile was fitted using two Gaussian components at 400.1 and 401.7 eV. The first component
(400.1 eV) is due to the nitrogen of amine groups (–NH–) [39]. The peak at 401.7 eV is due to the
nitrogen of the imide group (O=C–N–C=O) [40]. The presence of O=C–N–C=O group confirms the
covalent functionalization of the CNPs with the naphthalic core. The intensity ratio between the
two bands at 400.1/401.7 eV is 2:1, and this result is in agreement with the chemical structure of the
naphthalic anhydride molecule.
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Figure 2. Al-Kα excited XPS of CNPs-Naphthyl-Di-AE in the N 1s binding energy region. The blue and
cyan lines refer to the 400.1 and 401.7 eV components; the green line refers to the background, and the
red line superimposed to the experimental black profile refers to the sum of all Gaussian components.

Finally, Figure 3 shows the O 1s peak of the CNPs–naphthalic anhydride system. The O 1s spectral
profile was fitted using four Gaussian components at 532.3, 532.9, 534.4 and 537.3 eV. The lower
energy peak, located at 532.3 eV, is assigned to the –OH groups of both CNPs and naphthalic core [41].
The second peak at 532.9 eV is assigned to the imide (O=C–N–C=O) group [40,41] and further confirms
the covalent functionalization of the CNPs with the naphthalic anhydride molecule. Once more,
the intensity ratios of the first two peaks (2:2) presently observed are strongly in agreement with the
expected intensity trend, on the basis of the structure of CNPs-Naphthyl-Di-AE. The higher energy
peak located at 534.4 eV is attributed to the H2O molecules present in the air-exposed CNPs–naphthalic
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anhydride system. Besides, the 537.3 eV peak is attributed to the molecular O2 adsorbed on the surface
of the air-exposed sample [41].
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Figure 3. Al-Kα excited XPS of the CNPs-Naphthyl-Di-AE sample in the O 1s energy region. The black
line refers to the experimental profile; the green line refers to the background; the Gaussian at
532.3 (blue line), 532.9 (cyan line), 534.4 (magenta line) and 537.3 eV (dark yellow line) represent the
four O 1s components; the red line, superimposed to the experimental profile, refers to the sum of the
Gaussian components.

Sensing properties were evaluated by UV-Vis spectroscopy. A solution of 0.05 mg/mL of
CNPs-Naphthyl-Di-AE in toluene shows a broad absorption band, characteristic of the carbon
nanoparticles extending all over the visible and near UV region. In addition, the band relative to
the Naphthyl-Di-AE sensor can be detected at 430 nm. This band was monitored during the sensing
of DMMP. In particular, the progressive addition of DMMP (0–100 µL of a 1 × 10−4 M solution in
toluene) leads to a decrease of the absorbance intensity (Figure 4), in agreement with the behavior
observed by using the molecular sensor in solution [20]. The nonlinear curve fit of this data indicates a
binding constant affinity of log 5.55 ± 0.30, more than one order of magnitude higher with respect
to that of the Naphthyl-Di-AE in solution (log 4.02), thus demonstrating the higher performance
of the nanosensor with respect to the molecular sensor. Notably, the calculated detection limit is
0.16 ppm (see Section 3), lower than the LC50 values of the most common CWAs used (fluorescence
measurements are precluded due to the stronger emission of the carbon nanoparticle core that overlaps
the emission of the naphthalic core).

Selectivity is a crucial parameter for a sensor. For this reason, we tested the UV-Vis response of
CNPs-Naphthyl-Di-AE to different organic analytes, in order to test the efficiency of the multitopic
approach. Figure 5 shows the normalized absorbance values of CNPs-Naphthyl-Di-AE observed
upon the addition of 50 ppm of different analytes. We note that carbonyl compounds do not interact
with our sensor. Organic phosphorous compounds, such as triethylphosphite, triphenylphosphine
and phosphocholine cause a slight increase of the optical response. The presence of air (containing
24,000 ppm of water, 400 ppm CO2, 5 ppm NO and 10 ppm CO), bubbled for 30 min, does not
interfere with the nanosensor. On the contrary, the addition of 1 ppm of DMMP leads to a strong
optical response.
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Figure 5. Normalized UV-Vis responses of CNPs-Naphthyl-Di-AE (0.05 mg/mL in toluene) to
various competitive guests: 50 ppm of acetone, acetic acid, triethylphosphite (P(OCH2CH3)3),
triphenylphosphine (PPh3) and phosphocholine; air (bubbled for 30 min); and DMMP (1 ppm).
Bars represent the initial over the final absorbance values at 430 nm.

3. Materials and Methods

3.1. General Experimental Methods

The NMR experiments were carried out at 27 ◦C on a Varian UNITY Inova 500 MHz spectrometer
(1H at 499.88 MHz, 13C-NMR at 125.7 MHz, Varian-Agilent, Santa Clara, CA, USA) equipped with
a pulse-field gradient module (Z axis) and a tunable 5 mm Varian inverse detection probe (ID-PFG).
UV-Vis measurements were carried out using a JASCO V-630 spectrophotometer (Mettler Toledo,
Novate Milanese, Italy) at room temperature. All chemicals were reagent grade (Signa Aldrich,
Buchs, Switzerland) and used without further purification. X-ray photoelectron spectra (XPS) were
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measured at a 45◦ take-off angle relative to the surface normal with a PHI 5600 Multi Technique
System (Physical Electronics GmbH, Feldkirchen, Germany, base pressure of the main chamber
3 × 10−8 Pa) [35,36]. Samples were excited with the Al-Kα X-ray radiation using a pass energy of
5.85 eV. Structures due to the Kα satellite radiations were subtracted from the spectra prior to data
processing. Spectra calibration was achieved by fixing the Ag 3d5/2 peak of a clean sample at 368.3 eV;
this method turned the C 1s main peak at 285.0 eV [35,36,42]. The instrumental energy resolution was
≤ 0.5 eV. The XPS peak intensities were obtained after Shirley background removal [35,36]. The atomic
concentration analysis was performed by taking into account the relevant atomic sensitivity factors.
The fittings of the C 1s, N 1s and O 1s XP spectra were carried out using Gaussian envelopes after
subtraction of the background until there was the highest possible correlation between the experimental
spectrum and the theoretical profile. The residual or agreement factor R, defined by R = [Σ(Fobs

− Fcalc)2/Σ(Fobs)2]1/2, after minimization of the function Σ(Fobs − Fcalc)2, converged to the value of
0.03. The fitting was performed using the XPSPEAK4.1 software (free, fully featured, software for the
analysis of XPS spectra written by Raymund Kwok). Samples for XPS measurement were deposited
on silicon substrates.

3.2. Synthesis of CNPs-Naphthyl-BrNO2

One hundred milligrams of amino-terminal CNPs [43] was dissolved in 15 mL of absolute ethanol,
and 70 mg (0.217 mmol) of 1 was added. The mixture was stirred at reflux for 24 h under nitrogen
atmosphere. Solvent was removed by rotavapor, and the CNPs-Naphthyl-BrNO2 were purified by
centrifugation and filtration in hot ethanol.

3.3. Synthesis of CNPs-Naphthyl-Di-AE

Twenty milligrams of CNPs-Naphthyl-BrNO2 was dissolved in 10 mL of ethanolamine, and the
mixture was refluxed under nitrogen atmosphere for 48 h. The excess of ethanolamine was removed
under reduced pressure, and the CNPs-Naphthyl-Di-AE were purified by centrifugation and dialysis.

3.4. Procedure for UV-Vis Titrations

From a guest stock solution (1.0 × 10−4 M) in toluene, different volumes (0, 2, 4, 6, 8, 10, 20, 30, 50,
75, 100 µL) were added to the host (0.05 mg/mL in toluene), and the UV-Vis spectra were recorded
at 25 ◦C. The apparent binding affinities of CNPs-Naphthyl-Di-AE with DMMP were estimated by
using HypSpec (version 1.1.33) [44–46], a software designed to extract equilibrium constants from
potentiometric and/or spectrophotometric titration data. HypSpec starts with an assumed complex
formation scheme and uses a least-squares approach to derive the spectra of the complexes and the
stability constants. χ2 test (chi-square) was applied, where the residuals followed a normal distribution
(for a distribution approximately normal, the χ2 test value is around 12 or less). In all of the cases,
χ2
≤ 10 was found, as obtained by 3 independent measurement sets. Limit of detection was calculated

by the method of the calibration curve using the formula DL = 3s/K, where s is the standard deviation
of the blank and K is the slope of the calibration curve.

4. Conclusions

In the present study, we report the covalent functionalization of carbon nanoparticles by a selective
sensor of Chemical Warfare Agents. The presence of a specific sensor for DMMP (Naphthyl-Di-AE) on
the carbon nanoparticle surface leads to the possibility to increase the selectivity towards the given
analyte target and to follow the recognition event by monitoring a specific change of the optic spectrum
of the receptor. The new nanosensor shows high binding affinity towards DMMP, high selectivity and
a sub-ppm detection limit. The possibility to tune the molecular structure of the external shell of the
carbon nanoparticles leads to a wide range of applications, including sensing applications. Studies are
ongoing to obtain functionalized fluorescent carbon nanoparticles suitable for real prototypes to be
commonly used.
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