
Tomarchio et al.

RESEARCH

Cloud resource orchestration in the multi-cloud
landscape: a systematic review of existing
frameworks
Orazio Tomarchio*, Domenico Calcaterra and Giuseppe Di Modica

*Correspondence:

orazio.tomarchio@unict.it

Department of Electrical,

Electronic and Computer

Engineering

University of Catania, Catania,

Italy

Full list of author information is

available at the end of the article
†Equal contributor

Abstract

The number of both service providers operating in the cloud market and
customers consuming cloud-based services are increasing, proving that the cloud
computing paradigm has successfully delivered its potential. The unceasing
growth of the cloud market is though posing hard challenges on its participants.
On the provider side, the capability of orchestrating resources in order to
maximise profits without failing customers’ expectations is a matter of concern.
On the customer side, the efficient resource selection from a plethora of similar
services advertised by a multitude of providers is an open question. In such a
multi-cloud landscape, several research initiatives advocate the employment of
software frameworks (namely, cloud resource orchestration frameworks - CROFs)
capable of orchestrating the heterogeneous resources offered by a multitude of
cloud providers in a way that best suits the customer’s needs. The objective of
this paper is to provide the reader with a systematic review and comparison of
the most relevant CROFs found in the literature, as well as to highlight the
multi-cloud computing open issues that need to be addressed by the research
community in the near future.

Keywords: Cloud computing; Cloud resource orchestration; Multi-cloud; Cloud
interoperability; Interconnected clouds; Cloud brokerage

1 Introduction
Over the last few years, cloud computing has established itself as a new model of

distributed computing by offering complex hardware and software services in very

different fields. As reported in the RightScale 2019 State of the Cloud Report [1],

many companies and organisations have successfully adopted the cloud computing

paradigm worldwide, while more and more are approaching it as they see a real

opportunity to grow their business. According to that report, 94 percent of IT

professionals surveyed said their companies are using cloud computing services,

and 91 percent are using the public cloud. Organisations leverage almost 5 clouds

on average, and companies are running about 40 percent of their workloads in the

cloud. The enterprise cloud spend is growing quickly as companies plan to spend

24 percent more on public cloud in 2019 vs. 2018.

The competition between cloud providers is getting stronger in order to acquire

increasing market shares: a key point to optimise resource usage and fully exploit

the potential of cloud computing is the issue of resource orchestration [2]. Cloud

resource orchestration regards complex operations such as selection, deployment,



Tomarchio et al. Page 2 of 30

monitoring, and run-time control of resources. The overall goal of orchestration

is to guarantee full and seamless delivery of applications by meeting Quality of

service (QoS) goals of both cloud application owners and cloud resource providers.

Resource orchestration is considered to be a challenging activity because of the scale

dimension that resources have reached, and the proliferation of heterogeneous cloud

providers offering resources at different levels of the cloud stack.

Cloud Resource Orchestration Frameworks (CROFs) have emerged as systems to

manage the resource life-cycle, from the selection to the monitoring phase [2, 3, 4].

Today most of commercial cloud providers offer a cloud orchestration platform to

end-users [5]: however, these products are proprietary and, for obvious business rea-

sons, are not portable. In addition, although modern configuration management so-

lutions exist (e.g., Amazon OpsWorks, Ansible, Puppet, Chef) that provide support

for handling resource configuration over cloud services, all potential users (ranging

from professional programmers and system administrators to non-expert end-users)

are often required to understand various low-level cloud service APIs and procedural

programming constructs in order to create and maintain complex resource configu-

rations.

The advent of the multi-cloud computing further exacerbates the already chal-

lenging orchestration issues. The multi-cloud paradigm is a very recent technological

trend within the cloud computing landscape, which revolves around the opportu-

nity of taking advantage of services and resources provided by multiple clouds [6, 7].

Multi-cloud presumes there is no a priori agreement between cloud providers, and

a third party is responsible for the services. That is the case for Cloud brokerage

scenarios, where a broker intermediates between cloud providers and cloud con-

sumers [8]. In order to enable an effective multi-cloud paradigm, it is essential to

guarantee an easy portability of applications among cloud providers [9, 10]. This

new requirement calls for more powerful resource orchestration mechanisms cross-

cutting multiple cloud administrative domains, i.e., capable of dealing with the

heterogeneity of the underlying cloud resources and services.

This work explores the many issues of resource orchestration in the cloud land-

scape. A review of existing works in the addressed field is conducted in order to

identify the challenges that have mostly attracted researchers in recent years, and

highlight the aspects that have not been fully covered yet. The main contribution

of our work is twofold. Firstly, by deeply analysing literature and recently appeared

CROFs, we build a comprehensive taxonomy by identifying additional features and

dimensions useful to characterise them. Then, in accordance with the identified

features, we compare several CROFs from both industry and academia. This will

help the reader not only to understand the strengths of each framework, but also

to identify the unsolved challenges that have to be addressed in the near future.

The remainder of the paper is organised as follows. In Section 2 the methodology

followed in our study is described. Section 3 presents a survey of existing works

related to our study. In Section 4 we identify the CROF capabilities which have been

used to carry out the review presented in Section 5. In Section 6 we summarise the

results of the review, emphasising current limitations and open challenges. Finally,

Section 7 concludes our work.



Tomarchio et al. Page 3 of 30

2 Research methodology
The primary motivation of this study is to shed light on the recent advances that

both industry and academia have made in facing the cloud resource orchestration’s

issues in the multi-cloud landscape.

With this aim in mind, we identified the fields relevant to our study in order

to clearly frame the research scope. Beyond the quite expected cloud resource or-

chestration topic, the following macro topics were also investigated: cloud inter-

operability, cloud brokerage, interconnected clouds. As outlined in Section 1, cloud

resource orchestration deals with the discovery, selection, allocation, and manage-

ment of cloud resources. When multiple clouds are in place, cloud brokering and

interoperability issues due to the simultaneous access to heterogeneous services of

interconnected providers cannot be neglected in the analysis of cloud resource or-

chestration.

We surveyed the literature recently produced in the mentioned fields. Specifically,

we sought for proposals, frameworks, prototypes, commercial products somehow

addressing the above discussed issues. The databases taken into consideration in

this survey are the following: Scopus[1], ACM Digital Library[2], IEEE Xplore Dig-

ital Library[3], Elsevier ScienceDirect[4], and SpringerLink[5]. We also took care of

filtering out research items that are dated earlier than the last decade.

We found out that many researchers have already published surveys that are

relevant to our object of study. Each of these surveys lists and classifies, under

different perspectives, numerous initiatives taken under the big umbrella of the

cloud resource orchestration field, be them fully-fledged CROFs or minor proposals

focusing just on a restricted set of orchestration features. The primary objective

of the study proposed in this work is to provide a new, unified analysis of the

existing initiatives, which embraces all the analysis perspectives proposed by the

past surveys and eventually identifies the missing ones.

Therefore, the first step of our study consisted in reviewing the literature surveys

with the aim of a) consolidating the list of CROFs and, in general, proposals on

which to run a qualitative comparative analysis, b) extracting the analysis dimen-

sions addressed in each survey, and c) elaborating an analysis framework in order

to provide a more comprehensive grid of features on which a new comparison step

would be run. Next, following the references found in the surveys, each CROF of the

list was further revised according to the just mentioned comparative guideline, and

the output of the analysis was eventually gathered in a synoptic table, which forms

the basis for a critical discussion on the state of the art and future expectations on

CROFs.

3 Related work
This section presents the results of a literature survey we conducted in order to

identify published studies that relate to our work to varying degrees. Specifically, we

[1]http://www.scopus.com/
[2]https://dl.acm.org/
[3]http://ieeexplore.ieee.org/
[4]https://www.sciencedirect.com/
[5]https://link.springer.com/



Tomarchio et al. Page 4 of 30

investigated the vast area of cloud computing searching for proposals and initiatives

falling under the theme cloud resource orchestration in the multi-cloud landscape.

Of particular importance in the context of the discussion were the following works:

Inter-cloud Challenges, Expectations and Issues Cluster position paper [11], and the

Manifesto for Future Generation Cloud Computing [12]. Both works acknowledged

resource provisioning and orchestration as an open challenge. In [11], Ferrer et

al. recognised it as a research area with a high business impact in the medium

term. Besides, in light of more and more heterogeneous cloud resources distributed

across diverse cloud typologies and models, both studies stressed the importance of

investigating related research areas, such as cloud interoperability and portability,

service discovery and composition (i.e., cloud brokerage), and interconnected clouds.

We remark that the study conducted in this first investigative step did not intend

to seek for actual proposals and initiatives in the focused fields. Instead, it targeted

the literature works proposing themselves surveys of the most relevant proposals.

Here, the aim is to highlight the limits of existing literature surveys and, thus, to

provide a motivation to our work. Also, by “surveying existing literature surveys”

we were able to collect the pointers to the actual research proposals, which were

the object of investigation in the next steps of our study.

Below we discuss some of the most representative literature surveys broken down

into the four above mentioned cloud sub-topics. In each of the following sections

the sub-topic is briefly introduced, and the aspects relevant to the multi-cloud

orchestration topic are pointed out.

3.1 Cloud Interoperability

The cloud-computing community typically uses the term interoperability to refer to

the ability of easily moving workloads and data from one cloud provider to another

or between private and public clouds [13]. Ten years ago, the standardisation bodies

NIST[14], OMG[15], and DMTF[16] developed, among others, several use cases

related to cloud interoperability. All the bodies, independently of each other, defined

a common umbrella of interoperability use cases covering the topics such as user

authentication, workload migration, data migration and workload management.

In [17], the authors performed a comprehensive survey on cloud interoperabil-

ity, with a focus on interoperability among different IaaS cloud platforms. They

investigated the existing efforts on taxonomies and standardization of cloud inter-

operability, and identified some open issues to advance the research topic as well.

Nevertheless, the presented solutions and concepts are mainly focused on IaaS in-

teroperability.

In [18], the authors did their survey on service interoperability and portability

on cloud systems with respect to cloud computing service discovery. Still, other

interoperability approaches such as the Model Driven Engineering (MDE), and

open solutions were not extensively explored.

In [19], the authors described the main challenges regarding cloud federation and

interoperability, as well as showcased and reviewed the potential standards to tackle

these issues. But, similar to [17], their work is restricted to IaaS interoperability,

with no other service or deployment models being covered.



Tomarchio et al. Page 5 of 30

3.2 Cloud Brokerage

According to the Gartner definition [20], “Cloud services brokerage is an IT role and

business model in which a company or other entity adds value to one or more (public

or private) cloud services on behalf of one or more consumers of that service via three

primary roles including aggregation, integration and customization brokerage”. As

defined by NIST [21], a cloud service broker “... is an entity that manages the use,

performance and delivery of cloud services and negotiates relationships between

cloud providers and cloud consumers.” From these definitions, it is clear that any

business player which intends to act as a broker between the cloud consumers and

the cloud providers must cope with the diversity of providers and the heterogeneity

of the multitude of services the latter offer.

In [6], the authors proposed taxonomies for inter-cloud architectures and appli-

cation brokering. They presented a detailed survey of both academic and industry

developments for inter-cloud, cataloguing many projects and fitting them onto the

introduced taxonomies. They also analysed the existing works and identified open

challenges in the area of Inter-cloud application brokering. Their efforts are nonethe-

less limited to broker-based strategies.

In [22], a systematic literature survey was conducted to compile studies related to

cloud brokerage. The authors presented an understanding of the state of the art and

a novel taxonomy to characterise cloud brokers, identifying the main limitations of

current solutions and highlighting areas for future research. However, just like [6],

their whole analysis only covers broker-based approaches.

3.3 Interconnected Clouds

Interconnected clouds, also called Inter-cloud, can be viewed as a natural evolution

of cloud computing. Inter-cloud has been introduced by Cisco [23] as an intercon-

nected global “cloud of clouds” that mimics the term Inter-net, “network of net-

works”. Basically, the Inter-cloud refers to a mesh of clouds that are unified based

on open standard protocols to provide a cloud interoperability.

A more sophisticated definition of Inter-cloud is given by the Global Inter-cloud

Technology Forum (GICTF) [24]: “Inter-cloud is a cloud model that, for the pur-

pose of guaranteeing service quality, such as the performance and availability of

each service, allows on-demand reassignment of resources and transfer of workload

through an interworking of cloud systems of different cloud providers based on co-

ordination of each consumer’s requirements for service quality with each provider’s

SLA and use of standard interfaces”.

In [25, 9, 8], the author investigated the consumption of resources and services

from multiple clouds, as well as proposed a list of requirements for interoperabil-

ity solutions, highlighting the technological barriers and some well-known solutions

for multi-cloud environments. The author did not present the origin of these re-

quirements, nor did she identify the degree of fulfillment of the requirements by

theoretical approaches and technical solutions.

In [26], the authors discussed all the relevant aspects motivating cloud interop-

erability, categorising and identifying cloud interoperability scenarios and archi-

tectures. They provided a taxonomy of the main challenges and obstacles for the

Inter-cloud realisation. A comprehensive review of the state of the art, including



Tomarchio et al. Page 6 of 30

standardization initiatives, ongoing projects and studies in the area, was also con-

ducted.

In [27], the authors analysed the existing literature to identify how interoperability

in cloud computing has been addressed. They investigated requirements and usage

scenarios for interoperable applications as well as cloud interoperability solutions,

presenting a limited list of open issues and directions for future research.

In [28], the authors surveyed the literature to analyse and categorise various

solutions for solving the interoperability and portability issues of Interconnected

clouds, referring to both user-side (Multi-clouds or Aggregated service by Broker)

and provider-side (Federated clouds or Hybrid clouds) scenarios, as specified in

[25, 8]. They also performed a comparative analysis of the literature works falling

into the same category, and discussed the challenges of Interconnected clouds along

the same lines as [17] and [26].

3.4 Cloud resource orchestration

In a panorama where organisations get to use many types of cloud computing sys-

tems simultaneously, the complexity of the workloads devoted to the management

of the life-cycle of resources (data and applications) across the systems dramatically

increases. Cloud orchestration is the process of managing these multiple workloads,

in an automated fashion, across several cloud solutions. Typical activities under-

lying such a complex process are the resource description, selection, configuration,

deployment, monitoring and control. Let us not forget that the orchestration prob-

lem is exacerbated by the diversity of the cloud systems, for what concerns both

technical and administrative features.

In [2], the authors characterised the cloud resource orchestration in a multi-layered

stack, and highlighted the main research challenges involved in programming or-

chestration operations for different cloud resource types across all layers of a cloud

resource stack. The scope of their analysis is nevertheless restricted to the area of

cloud resource orchestration.

In [3], the authors proposed a multidimensional taxonomy for classifying and com-

paring cloud resource orchestration techniques from both industry and academia,

identifying open research issues and offering directions for future study. Similar to

[2], their work only covers the topic of cloud resource orchestration.

In [29], the authors performed a systematic literature survey to build up a tax-

onomy of the main research interests regarding TOSCA. Different topics were ad-

dressed, such as devising cloud orchestration methods using TOSCA, extending

the language of TOSCA, and presenting tools for manipulating TOSCA models. A

few directions for further research were also identified, with interoperability being

pointed out as the topic which is expected to play an increasingly important role.

4 Analysis framework
In this section we introduce the desired capabilities for CROFs, focusing on deploy-

ment and management aspects. Significant research has been done in academic and

industry landscapes toward characterisation of cloud orchestration tools.

In [4, 30, 31], Baur et al. investigated the required features for such tools, and

gave a definition of them. In [32], Ranjan et al. introduced technical dimensions for



Tomarchio et al. Page 7 of 30

CROF analysis, thus providing insights into existing frameworks. In [3], Weerasiri et

al. identified the main dimensions and common building blocks which characterise

cloud resource orchestration solutions.

Figure 1 Taxonomy of the CROF characterisation framework

Open Libraries & Services
MDE

Semantics
Open Standards

External PaaS/IaaS Services

BYON

Command-Line

Web-based Dashboard

Web-based API

Model Standards

Model Reusability
Model Sharing

Runtime Binding
Optimised Binding
Automatic Binding

Manual Binding

External Services
Automatic Workflow

Manual Workflow
Attribute & Event Passing

Aggregation
Custom Metrics

Application Metrics
System Metrics

Historical Data

Migration
Horizontal Scaling

Rule Engine
Threshold-based

Failure Recovery
CI/CD

Application 
Features

Cloud 
Features

Multi-Cloud

Cross-Cloud

Development

Deployment

Execution

Integration

Access

Interoperability

Runtime 
Adaptation

Containerisation

Portability

Lifecycle Control

Resource 
Selection

Wiring & 
Workflow

Monitoring

DevOps

Script-based

In [33, 34, 35], the authors presented their vision for cloud computing, including

views on future research areas, one of them being resource provisioning and or-

chestration. A through analysis of these research areas and related challenges from

different perspectives was carried out.

In [36], GigaSpaces Research investigated prevalent approaches for managing ap-

plications in cloud environments, namely, orchestration, PaaS (Platform as a Ser-

vice) and CMP (Cloud Management Platform). A number of categories serving as

a common ground for comparison between the different approaches were proposed.

Based on the study of Baur et al.[4], we enriched the list of desirable capabilities

pertaining to CROFs by reviewing the literature and integrating the aforementioned

works. Such capabilities, summarised in Figure 1, can be classified into two main

categories as either Cloud Features or Application Features. Details about each set

of features are provided in the following subsections.



Tomarchio et al. Page 8 of 30

4.1 Cloud features

Cloud features address cloud infrastructure aspects with special focus on supported

deployment across multiple cloud providers.

4.1.1 Multi-cloud support

Supporting multiple cloud providers is one of the most crucial features for CROFs,

as it allows to select the best matching offer for an application from a diverse cloud

landscape. Cloud providers often differ from each other regarding their APIs. For

that reason CROFs should offer a cloud abstraction layer (see section 4.1.3), which

hides differences and avoids the need for provider-specific customisation causing the

vendor lock-in issue.

4.1.2 Cross-cloud support

Cross-cloud support enhances the multi-cloud feature by allowing to distribute com-

ponent instances of a single application over multiple cloud providers. The advan-

tages of cross-cloud deployment are threefold: a) it allows a sophisticated selection

of the best-fitting cloud providers on a per component instance basis, optimising

costs or improving quality of services; b) it leverages the application availability as

it introduces resilience against the failure of individual cloud providers; and c) it

helps coping with privacy issues.

4.1.3 Interoperability approach

In the context of cloud computing, interoperability can be defined as the the abil-

ity to develop applications that combine resources that can interoperate, or work

together from multiple cloud providers, hence taking advantage of specific features

provided by each provider [27]. A few research papers [9, 27, 28] comprehensively

reviewed the literature in order to dissect the state of the art in cloud interoperabil-

ity, resulting in a diverse range of approaches falling into the following categories:

open standards, semantics, model-driven engineering (MDE), and open libraries &

services.

Formulating standards for cloud computing is the most obvious solution for in-

teroperability. Even though a plethora of standards have been proposed so far

(e.g., OCCI[6], CIMI[7], OVF[8], CDMI[9], TOSCA [37]), lack of widespread ac-

cepted standards necessitates investigating other solutions for interoperability.

When cloud providers use different APIs and data models in order to exhibit the

same features, semantic interoperability becomes involved. Semantic technologies

(e.g, OWL[10], SPARQL[11], SWRL[12]) can prove useful to provide semantic inter-

operability among different cloud providers. Broker-based approaches can also alle-

viate semantic interoperability by means of ontology-based interfaces concealing the

differences among cloud vendors. Cloud interoperability can also be addressed by

[6]https://occi-wg.org/about/specification/
[7]https://www.dmtf.org/standards/cmwg
[8]https://www.dmtf.org/standards/ovf
[9]https://www.snia.org/cdmi
[10]https://www.w3.org/TR/owl-syntax/
[11]https://www.w3.org/TR/sparql11-query/
[12]https://www.w3.org/Submission/SWRL/



Tomarchio et al. Page 9 of 30

exploiting MDE techniques [10]. Another viable solution for cloud interoperability

includes open libraries (e.g., Apache jclouds[13], Apache Libcloud[14]) and services,

which rely on abstraction layers in order to decouple application development from

proprietary technologies of cloud providers.

4.1.4 Integration

Support for advanced IaaS/PaaS services (e.g., DBaaS, LBaaS, FWaaS) is desir-

able. It reduces complexity and management efforts for the end user. On a negative

note, it comes at the expense of flexibility.

BYON (Bring Your Own Node) captures the ability to use already running servers

for application deployment. In particular, it enables the use of servers not managed

by a cloud platform or virtual machines on unsupported cloud providers.

4.1.5 Access

This feature captures what interfaces CROFs use to interact with cloud resources.

Three types of interfaces are usually supported: command-line, web-based dash-

board, and web-based API.

Command-line interfaces wrap cloud-specific API actions as commands or scripts

executable through shell environments. Despite command-line interfaces being eas-

ier to implement, their usage requires a deep understanding about cloud resources

and related orchestration operations.

Web-based dashboards present cloud resources as user-friendly artifacts and re-

source catalogues. Visual artifacts and catalogues aim at simplifying resource selec-

tion, assembly, and deployment. These features make Web-based dashboards simpler

and more flexible than command-line interfaces.

Web-based APIs allow other tools and systems (e.g. monitoring tools) to integrate

cloud resource management operations into their functionalities. They provide the

highest abstraction out of the three interface types.

4.2 Application features

Application features address development, deployment, and execution aspects of

applications.

4.2.1 Application domain

Application domain refers to the types of applications that CROFs have been tar-

geted and customised for. Academic research has been done toward the character-

isation of application domains over the past few years [32][38][39]. Grounding on

the study of Buyya et al. [38], we classified application domains into two categories:

Scientific applications, and Business applications (see Figure 2).

Cloud computing systems meet the needs of different types of applications in the

scientific domain: high-performance computing (HPC) applications, high-throughput

computing (HTC) applications, and Large-scale data analytics/Internet of Things

(IoT), which is a matter of common interest for both scientific and business sectors.

In regard to the business domain, cloud computing is the preferred technology for a

[13]https://jclouds.apache.org/
[14]http://libcloud.apache.org/



Tomarchio et al. Page 10 of 30

wide range of applications, from multi-tier web applications (e.g., web, mobile, online

gaming applications) to media and content delivery network (CDN) applications

(e.g, video encoding & transcoding, video rendering, video streaming, web/mobile

content acceleration).

Figure 2 Application domain classification

Application 
domains

Scientific 
domain

Business 
domain

HPC applications

HTC applications

Large-scale data analytics/IoT

Multi-tier web applications

Media & CDN applications

4.2.2 Portability

Portability has been defined as the capability of a program to be executed on vari-

ous types of data processing systems without converting the program to a different

language and with little or no modification [40]. In the context of cloud comput-

ing, portability can be classified into three categories: data portability, function or

application portability, and service or platform portability [41]. In particular, ap-

plication portability refers to the ability to define application functionalities in a

vendor-agnostic way.

Supporting open standards such as CAMP [42] and TOSCA [37] for modelling the

application topology and the component lifecycles facilitates the usage of CROFs

and further increases the reusability of the topology definition, as it restricts the

vendor lock-in issue to cloud provider level. Reusability can also be improved via a

modularised approach regarding the application description. Methods to achieve

modularity include templating, parameterisation, and inheritance. Furthermore,

since the initial effort for describing applications and application components is

high, model sharing by means of existing libraries or marketplaces would be bene-

ficial.

4.2.3 Containerisation

Container-based virtualisation [43] is a key approach for sharing the host operating

system kernel across multiple guest instances (i.e., containers), while keeping them

isolated. Environment-level containers provide a resource isolation mechanism with

little overhead compared to OS-level hypervisors [44]. Moreover, the increased isola-

tion offered by containers allows resource consumption to be configured, controlled,

and limited at the instance level. Docker is the leading Linux-based platform for

developing, shipping, and running applications through container based virtualisa-

tion.



Tomarchio et al. Page 11 of 30

Since managing a large amount of containers inside a Docker cluster can be

difficult, container-centric orchestrators such as Docker Swarm[15], Google Kuber-

netes[16], and Apache Mesos[17] have appeared. They perform orchestration at con-

tainer level by automating the provisioning and management of complex container-

ised deployments across multiple hosts and locations.

4.2.4 Resource selection

Resource selection refers to the level of automation supported by CROFs with

respect to the selection of hardware and software resources. It usually involves

identifying and analysing alternative cloud resources based on selection criteria.

Resource selection approaches can be classified into four categories.

In a manual binding users provide the concrete unique identifiers of the cloud en-

tities. In an automatic binding they specify abstract requirements (e.g. number of

cores), which CROFs are responsible for binding to a concrete offer at runtime. Au-

tomatic binding can be enhanced by offering an optimised binding, which leverages

optimisation criteria based on attributes of the cloud provider (e.g., price, location)

to select the best fitting offer. A dynamic binding offers a solving system that en-

ables changes to the binding based on runtime information (e.g., metric data from

the monitoring system).

4.2.5 Lifecycle control

Lifecycle control defines the actions that need to be executed in order to fully

manage cloud applications. Existing CROFs provide varying levels of automation,

typically categorised as script-based, and DevOps approaches.

A script-based approach consists of a set of shell scripts, which are executed in a

specific order. It has limited ability to express dependencies, react to changes, and

verify configurations. Script-based approaches can be extended to support DevOps

tools (e.g., Chef[18], Puppet[19], Ansible[20]) that offer a more sophisticated approach

to deployment management and ready-to-use deployment descriptions.

4.2.6 Wiring & workflow

Most cloud applications are distributed with components residing on different vir-

tual machines. When application deployment takes place, an application instance

consisting of one or more component instances gets created. Since dependency re-

lationships may exist between components, the deployment functionality also has

the task of wiring component instances together.

A straight-forward approach to resolve those dependencies is attribute and event

passing, in which case lifecycle scripts lock/wait for attributes to become available

or register listeners on topology change events. An improvement is a manual work-

flow defined by users in order to take care of the deployment order. Nevertheless,

[15]https://docs.docker.com/engine/swarm/
[16]https://kubernetes.io/
[17]http://mesos.apache.org/
[18]https://www.chef.io/
[19]https://puppet.com/
[20]https://www.ansible.com/



Tomarchio et al. Page 12 of 30

the easiest way for users to deploy applications is an automatic workflow deduction

from the lifecycle actions defined on components and their relationships. Addition-

ally, CROFs may offer extensions for external services like IaaS/PaaS services (see

section 4.1.4) to ensure that the deployment engine is aware of this dependency.

4.2.7 Monitoring

Tracking the behaviour of applications is the key to assessing the quality of the

deployment and an important building block for adaptation. As a first step this

comprises the collection of metrics. CROFs should offer a way to measure system

metrics (e.g., CPU usage) and application metrics (e.g., number of requests). If

predefined metrics are not sufficient, a well defined way to add custom metrics

should be provided. Aggregation mechanisms enable to compute higher-level metrics

and combine multiple metrics as well. Access to historical data is also desirable in

order to support a higher-level evaluation of monitoring data.

4.2.8 Runtime adaptation

CROFs should automatically adapt applications in order to deal with dynamic devi-

ations (e.g., increased load). Operations to face such changes are mainly scaling, and

migration. However, the adaptation support of many CROFs is limited to horizontal

scaling with threshold-based triggers. Rule engines leveraging complex metrics and

QoS goals would be an improvement.

Since cross-cloud deployments may experience failures, CROFs should also sup-

port recovery from undesired, erroneous states. Another feature related to adapta-

tion is continuous integration/continuous delivery (CI/CD), which allows to modify

the topology model of deployed applications reducing changes to as few as possible.

5 Review of CROFs
This section presents a selection of CROFs from different landscapes. Notwithstand-

ing that the current state of the art embraces a large number of frameworks, this

work contemplates a subset of them which we deem to be representative of the

characteristics of the majority of existing solutions. We classify the frameworks in

two categories: production/commercial CROFs, and experimental/academic ones.

Production/commercial CROFs are used in a production environment by private

and public cloud providers. Whereas some of them are closed-source, others are

open-source and supported by a thriving community of developers and users. Exper-

imental/academic CROFs usually originate from the research scenery and advance

the state of the art, even though their implementation is mostly prototypal.

We discuss next each class of CROFs, and analyse their main capabilities from

both cloud and application perspectives, as extensively covered in section 4. Table 1

provides a bird’s-eye view of the frameworks taken under consideration. Specifically,

each row represents a CROF (Name) and specifies the original authors (Organisa-

tion), basic dates for the initial and latest releases (Active), a brief introduction

(Description), and the sources consulted (References).

5.1 Production/commercial CROFs

Nowadays, there is a great variety of production/commercial CROFs around [45],

such as infrastructure-centric services (e.g., Heat, CloudFormation) provided by



Tomarchio et al. Page 13 of 30

cloud providers which are also IaaS providers, platform-centric (e.g., Cloud Foundry,

OpenShift) and platform-agnostic (e.g., Cloudify, Terraform) tools provisioning re-

sources from IaaS providers. In this section we first debate some of the most relevant

solutions introduced in Table 1, and subsequently summarise their cloud and appli-

cation features in Table 2 and Table 3 respectively.

Table 1 List of CROFs under consideration for review purposes.

Name Organisation Active Description References

Heat OpenStack 2010-present
Heat orchestrates composite cloud applications via
templates, through both an OpenStack-native API

and a CloudFormation-compatible Query API.
[46]

Cloudify GigaSpaces 2012-present
Cloudify is a TOSCA-based cloud orchestration
framework which enables to model applications
and services and automate their entire lifecycle.

[47]

Brooklyn Apache 2012-present
Brooklyn is a cloud orchestration framework

implementing OASIS CAMP that allows to deploy
and manage applications via declarative blueprints.

[48]

Stratos Apache 2013-2017
Stratos is a polyglot PaaS framework that helps

model and run composite and scalable
applications on all major cloud infrastructures.

[49]

Alien4Cloud FastConnect 2014-present
Alien4Cloud is a web-based platform providing

means to model, deploy and manage TOSCA-based
applications via a TOSCA runtime engine.

[50]

Terraform HashiCorp 2014-present
Terraform is an infrastructure-as-code tool that
enables to provision, and manage infrastructures

using a high-level configuration language.
[51]

C
o

m
m

er
ci

a
l

CloudFormation AWS 2011-present
CloudFormation is an infrastructure-as-code tool
that helps model and set up AWS infrastructure

resources by means of a JSON encoded template.
[52]

Cloudiator
University

of Ulm
2015-2017

Cloudiator is a cross-cloud orchestration tool that
allows to describe an application once and deploy
it on different public and private cloud providers.

[31, 53]

Roboconf
University of

Grenoble Alpes
2014-2017

Roboconf is both a platform and a framework tool
to deploy and manage elastic cloud applications
using automatic reactions and reconfigurations.

[54]

INDIGO
INDIGO

consortium
2015-2017

INDIGO is a data and computing platform targeted
at scientific communities, which optimises application

execution on cloud and grid infrastructures.
[55, 56]

MiCADO
COLA

consortium
2017-2019

MiCADO is a highly customisable multi-cloud
orchestration and auto-scaling framework for

Docker containers, orchestrated by Kubernetes.
[57]

MODAClouds
MODAClouds

consortium
2012-2015

MODAClouds is a toolbox and a runtime platform
for the design and automatic deployment of

applications on multiple clouds with guaranteed QoS.
[58, 59]

A
ca

d
em

ic

SeaClouds
SeaClouds
consortium

2013-2016
SeaClouds is a framework that enables seamless

adaptive multi-cloud management of service-based
applications over multiple heterogeneous clouds.

[60, 61]

5.1.1 Heat

OpenStack Heat [46] is a service for managing the entire life-cycle of infrastructure

and applications within OpenStack clouds. It implements an orchestration engine

to launch multiple composite cloud applications based on either a CloudFormation

compatible template format (CFN) or the native OpenStack Heat Orchestration

Template format (HOT). HOT templates are defined in YAML.

A Heat template describes the infrastructure of a cloud application in a declar-

ative fashion, enabling creation of most OpenStack resource types as well as more

advanced functions (such as instance high availability, instance auto-scaling, and

nested stacks) through OpenStack-native REST API calls. The resources, once cre-

ated, are referred to as stacks. Heat templates are consumed by the OpenStackClient,

which provides a command-line interface (CLI) to OpenStack APIs for launching

stacks from templates, viewing details of running stacks, and updating and deleting

stacks.

Heat only allows a single-cloud deployment on an OpenStack environment. With

reference to interoperability, Heat provides neither semantics nor MDE solutions,

but it provides support for TOSCA via the independent Heat-Translator project[21]

which translates TOSCA templates to HOT.

[21]https://wiki.openstack.org/wiki/Heat-Translator



Tomarchio et al. Page 14 of 30

Regarding portability, Heat partially supports model standards (TOSCA) and

reusability via input parameters, and template composition. It also supports con-

tainerisation by means of OpenStack Zun service[22].

Cloud resources can only be selected through manual binding, whereas both man-

ual and automatic workflows can leverage script-based or DevOps tools (such as

Chef and Puppet) in order to handle the whole application life-cycle. Heat provides

horizontal scaling with threshold triggers based on infrastructure metrics. It par-

tially supports continuous delivery by updating existing stacks, resulting in some re-

sources being updated in-place and others being replaced with brand new resources.

Failure recovery capabilities are also supported by means of manual workflows and

stacks update.

5.1.2 Cloudify

Cloudify [47] is an open-source orchestration framework based on TOSCA. It

provides services in order to model applications and automate their entire life-

cycle through a set of built-in workflows. Application templates are referred to as

blueprints, which are YAML documents written in Cloudify’s DSL (Domain Specific

Language). Blueprints are normally consumed by the Cloudify CLI, which includes

all of the commands necessary to run any actions on Cloudify Manager.

Typical blueprints contain declarations for various resource types, including cloud

resources. Cloudify allows multi-cloud and cross-cloud deployments by means of

built-in plugins. It also supports BYON, and leverages TOSCA for interoperabil-

ity and portability. However, despite being aligned with the modelling standard,

Cloudify’s DSL does not directly reference the standard types.

Cloudify supports containerisation using Docker. Container orchestration is also

available through Kubernetes. Cloud resources can only be selected through manual

binding, whereas both manual and automatic workflows can leverage script-based or

DevOps tools (such as Ansible, Chef, and Puppet) in order to handle the application

life-cycle. Cloudify provides infrastructure, application, and custom metrics. It also

enables the definition of custom aggregations and policies using Clojure[23] and

Riemann[24].

Cloudify offers built-in workflows for application healing (by applying the uninstall

and install workflows’ logic, respectively) and horizontal scaling. Complex scenar-

ios (e.g., vertical scaling, cloud bursting) are not supported out of the box. Live

migration is partially-fulfilled in the context of containerised applications, though.

Multiple pods with containerised applications can be moved between nodes in the

same Kubernetes cluster, without service disruption. Continuous delivery is sup-

ported through deployment updates, which allow to modify a running topology by

adding/removing/modifying nodes. Modifying existing nodes will cause their auto-

matic reinstallation, though.

5.1.3 Brooklyn

Apache Brooklyn [48] is an open-source framework for modelling, deploying, and

managing distributed applications defined using declarative YAML blueprints writ-

[22]https://wiki.openstack.org/wiki/Zun
[23]https://clojure.org/
[24]http://riemann.io/



Tomarchio et al. Page 15 of 30

ten in Brooklyn’s DSL. Brooklyn’s YAML format follows the CAMP specification

[42], but uses some custom extensions. Support for TOSCA is planned for the near

future. Blueprints are usually consumed by the Brooklyn client CLI in order to

access a running Brooklyn Server. A web console and powerful REST-APIs are

available as well.

Brooklyn allows multi-cloud and cross-cloud deployments on many public and pri-

vate clouds. It also supports private infrastructures (BYON), and leverages Apache

jclouds as cloud abstraction layer for interoperability. Portability is achieved via

model reusability mechanisms (e.g, type inheritance) and model sharing (e.g, types

shared either locally or in a Git repository). Brooklyn does not support containers

out of the box. However, containerisation can be integrated by means of separate

projects (e.g, Cloudsoft Clocker[25]).

Brooklyn supports manual as well as basic automatic binding for resource se-

lection, whereas it does not support workflow scenarios. Life-cycle actions (i.e. ef-

fectors) for entities can be configured through either shell scripts or Chef recipes.

Brooklyn pulls metrics by either executing remote actions or accessing an exter-

nal monitoring tool. Nevertheless, it is the user’s responsibility to implement those

actions, or to provide an interface to an external monitoring tool.

Metrics/QoS can be fed into policies, which automatically take actions such as

restarting failed nodes, or scaling out. By default, a threshold-based policy is avail-

able. Continuous delivery is exclusively possible on component level, namely by

redeploying single components with updated software.

5.1.4 Stratos

Apache Stratos [49] is an open-source PaaS framework which allows developers to

build distributed applications and services. Applications are typically composed of

sets of cartridges representing descriptions of abstract VMs hosting both business

and infrastructure services, combined with deployment and scaling policies. Stratos

defines configurations and applications in a specific JSON format, therefore they

can be shared. Reusability is limited, since cartridges contain references to IDs of

IaaS snapshots and hardware configuration. Applications can be managed by means

of Stratos CLI. A web console and powerful REST-APIs are available as well.

Stratos support multiple providers and utilises Apache jclouds as cloud abstrac-

tion layer for interoperability. Despite using jclouds, BYON is not supported. No

external services are supported either. Stratos leverages Kubernetes as a cluster

orchestration framework in order to provide containerisation. Cloud resources are

manually selected when configuring cartridges. In addition, while the life cycle de-

scription for managing VMs is done by Stratos itself, the software setup is delegated

to Puppet. Only manual workflows are supported.

Stratos uses a cartridge agent residing within each VM in order to access system

and application metrics. It is not possible to define custom metrics. Using in-flight

requests, load average, and free memory metrics combined with a complex event

processor and the Drools rule engine[26], Stratos enacts a multi-factored horizontal

[25]http://www.clocker.io/
[26]https://www.drools.org/



Tomarchio et al. Page 16 of 30

auto-scaling. It also includes cloud bursting, allowing to seamlessly migrate appli-

cations between clouds. Recovery actions are supported in case some tasks within

VMs of an application topology fail, by automatically destroying and recreating the

affected cartridge instance. Continuous delivery is not supported, since users need

to undeploy applications before changing their definitions.

5.1.5 Alien4Cloud

Alien4Cloud (Application LIfecycle ENabler for cloud) [50] is an open-source plat-

form that makes application management on the cloud easy for enterprises. It

leverages other existing open-source projects that help orchestrating cloud applica-

tions and focus on run-time aspects (e.g., Cloudify). In Alien4Cloud, applications

templates (blueprints) are modelled in TOSCA in order to allow interoperability

and portability. Blueprints can also be shared across platform users via a main-

tained TOSCA catalog. However, Alien4Cloud supports a slightly modified version

of TOSCA Simple Profile.

Application deployment is done through an orchestrator on a location configured

for and managed by an orchestrator. Alien4Cloud supports a number of orches-

trators (Cloudify, Puccini[27], and Marathon[28]) via plugins. Locations describe a

logical deployment target ranging from private/public clouds to a set of physical

machines (BYON), or even Docker containers (Kubernetes and Mesos). Multi-cloud

and cross-cloud deployments are supported.

Cloud resources can only be selected through manual binding (node substitution),

whereas both manual and automatic workflows can leverage script-based or DevOps

tools (such as Ansible, Chef, and Puppet) in order to handle the application life-

cycle. Regarding monitoring and run-time adaptation, since Cloudify can be used

as Alien4Cloud’s backend orchestration solution, the same considerations apply. In

particular, Alien4Cloud supports horizontal scaling as well as continuous delivery.

5.1.6 Terraform

Terraform [51] is an open-source infrastructure as code tool for building, changing,

and versioning infrastructures in a platform-agnostic way. It uses its own high-

level configuration language known as Hashicorp Configuration Language (HCL),

or optionally JSON, in order to detail the infrastructure setup. Despite being non-

compliant with any model standards, HCL supports reusability via modules and

module composition. Reusable modules can also be shared by means of the Ter-

raform Registry as well as other sources (e.g., GitHub, Bitbucket). Configurations

are usually consumed by the Terraform CLI, but Terraform Enterprise also pro-

vides both a web-based dashboard and REST APIs.

Terraform can manage multiple cloud providers and even cross-cloud dependen-

cies by means of special plugins called providers. Providers are available for Docker

containers and container orchestration as well as external cloud services (e.g. Ama-

zon RDS[29]). However, no support is provided for BYON. Cloud resources are

manually selected during configuration, while life-cycle actions can be configured

[27]https://github.com/tliron/puccini
[28]http://mesos.apache.org/
[29]https://docs.aws.amazon.com/rds/index.html



Tomarchio et al. Page 17 of 30

through provisioners executing scripts or running configuration management (Chef,

Puppet, Salt). Only automatic workflows are supported.

Terraform leverages providers in order to provide auto-scaling capabilities with

threshold triggers on system metrics gathered by monitoring services (e.g., Azure

Monitor[30], Amazon CloudWatch[31]). Continuous delivery is supported by applying

configuration updates, which allow to add/remove/modify resources. When resource

arguments cannot be updated in-place, the existing resource will be replaced by a

new one instead. No recovery actions are supported out of the box, since any errors

need to be addressed manually.

5.1.7 CloudFormation

AWS CloudFormation [52] is a template-based infrastructure-as-code tool for man-

aging AWS infrastructure deployments. All resources and dependencies are de-

clared in a JSON or YAML encoded template, which CloudFormation uses as a

blueprint for building AWS resources. A collection of managed resources is called

stack. Although CloudFormation templates do not comply with any model stan-

dards, reusability is partially supported via input parameters, and nested stacks.

Templates are usually consumed by the CloudFormation console, or REST APIs,

or CLI.

CloudFormation can only model and manage AWS resources. No support is pro-

vided for multiple cloud providers or BYON. Containerisation is natively supported

via Elastic Container Service (ECS)[32] resources. Container orchestration is also

supported by means of Elastic Kubernetes Service (EKS)[33] resources as well. Cloud

resources are selected through manual binding, whereas lifecycle actions can be con-

figured through user-data scripts or DevOps tools (Chef, Puppet). Only automatic

workflows are supported.

CloudFormation provides automatic scaling capabilities by means of AWS Auto

Scaling[34], which uses dynamic scaling and predictive scaling to automatically scale

application’s resources based on Amazon CloudWatch metrics. Customised metrics

for Application Auto Scaling can also be defined. Live migration is partially-fulfilled

in the context of containerised applications. For instance, it’s possible to gracefully

migrate existing applications from a worker node group to another. Continuous

delivery is supported by stack updates. Depending on the resource and properties

being updated, an update might interrupt or even replace an existing resource.

Recovery actions are supported by automatically rolling back the existing stack on

failure.

5.2 Experimental/academic CROFs

In this section, we initially review an ensemble of significant experimental/academic

CROFs outlined in Table 1, and then summarise them according to their cloud and

application features in Table 4 and Table 5 respectively. Additionally, we briefly

run through other research initiatives focusing only on specific aspects of CROFs.

[30]https://docs.microsoft.com/en-us/azure/azure-monitor/
[31]https://docs.aws.amazon.com/cloudwatch/index.html
[32]https://docs.aws.amazon.com/ecs/index.html
[33]https://docs.aws.amazon.com/eks/
[34]https://aws.amazon.com/autoscaling/



Tomarchio et al. Page 18 of 30

Table 2 Cloud-based comparison of production/commercial CROFs.

CROFs
Cloud Features Heat Cloudify Brooklyn Stratos Alien4Cloud Terraform CloudFormation

Multi-Cloud 7 3 3 3 3 3 7
Cross-Cloud 7 3 3 3 3 3 7

Interoperability
- Open Standards 0 0 7 7 0 7 7

- Semantics 7 7 7 7 7 7 7
- MDE 7 7 7 7 7 7 7

- Open Libraries & Services 7 7 3 3 7 7 7
Integration

- External IaaS/PaaS services 7 7 7 7 7 3 7
- BYON 7 3 3 7 3 7 7
Access

- Command-Line 3 3 3 3 3 3 3
- Web-based Dashboard 3 3 3 3 3 3 3

- Web-based API 3 3 3 3 3 3 3

7= not fulfilled, 0 = partially fulfilled, 3= fully fulfilled

Table 3 Application-based comparison of production/commercial CROFs.

CROFs
Application Features Heat Cloudify Brooklyn Stratos Alien4Cloud Terraform CloudFormation

Portability
- Model Standards 0 0 0 7 0 7 7
- Model Reusability 0 3 0 0 3 3 0

- Model Sharing 7 3 3 0 3 3 7

D
ev
el
o
p
m
en

t

Containerisation 3 3 7 3 3 3 3
Resource Selection
- Manual Binding 3 3 3 3 3 3 3

- Automatic Binding 7 7 0 7 7 7 7
- Optimised Binding 7 7 7 7 7 7 7
- Dynamic Binding 7 7 7 7 7 7 7
Lifecycle Control

- Script-based 3 3 3 7 3 3 3
- DevOps 3 3 3 3 3 3 3

Wiring & Workflow
- Attribute & Event Passing 3 3 0 3 3 3 3

- Manual Workflow 3 3 7 3 3 7 7
- Automatic Workflow 3 3 7 7 3 3 3

D
ep

lo
ym

en
t

- External Services 7 7 7 7 7 3 7
Monitoring

- System Metrics 3 3 7 3 3 3 3
- Application Metrics 7 3 7 3 3 7 3

- Custom Metrics 7 3 3 7 3 7 3
- Aggregation 3 3 0 3 3 3 3

- Historical Data 7 3 7 7 3 7 3
Runtime Adaptation

- Threshold-based 3 3 3 3 3 3 3
- Rule Engine 7 3 7 3 3 7 7

- Horizontal Scaling 3 3 3 3 3 3 3
- Migration 7 0 7 0 0 7 0

- Failure Recovery 3 3 0 3 3 7 3

E
xe
cu

ti
o
n

- CI/CD 0 3 0 7 3 3 3

7= not fulfilled, 0 = partially fulfilled, 3= fully fulfilled

5.2.1 Cloudiator

Cloudiator [31, 53, 62] is an open-source cross-cloud orchestration framework, which

relies on Apache jclouds in order to support many public and private cloud plat-

forms. The main orchestration component, namely Colosseum, can be accessed via

a Java client, or a web-based user interface, or a REST-API.

The application description consists of individual components, which are assem-

bled to form a full application. Each component provides interface operations (e.g.,

bash scripts) for managing the component life-cycle. Dependencies between appli-

cation components are described through communication entities linking provided

ports and required ports. Despite being non-compliant to any modelling standards,

application components are reusable across different applications.

The resource broker is responsible for automatically selecting the correct cloud

offer (previously discovered by the discovery engine), depending on the desired

requirements/constraints on virtual machine configuration. The deployment engine

acquires the virtual machine and forwards the component installation request to

the remote life-cycle agent, namely Lance. Lance runs component instances within

Docker containers by default. In addition, only automatic workflows are supported.

Automatic scaling capabilities are provided by means of AXE, a monitoring and

adaptation engine embedded in Cloudiator, which implements scalability rules con-



Tomarchio et al. Page 19 of 30

sisting of threshold-based conditions linked to raw or composed metrics. Migration

features are partially fulfilled by supporting access to OpenStack’s live migration

functionality. Recovery actions are supported by the recovery engine, which detects

abnormal states of system entities marking them as failed, and applies solutions

based on failure categories. The same mechanism is used in order to represent

changes in the models (continuous delivery).

5.2.2 Roboconf

Roboconf [54, 63] is an open-source scalable orchestration framework for multi-cloud

platforms. Many IaaS providers (e.g., OpenStack, AWS, Azure, vSphere), as well

as Docker containers and local deployments for on-premise hosts, are supported

by using special plugins. Roboconf partially supports interoperability by means of

OCCI extensions and a generic target implementation based on Apache jclouds. In

addition, it can be accessed by means of a shell-based console, or a web-based user

interface, or a REST API.

Roboconf provides a CSS-inspired DSL, which allows to describe applications and

their execution environments in a hierarchical way. A distributed application is seen

as a set of components, building an acyclic graph describing both containment and

run-time relationships between components, and a group of instances of these com-

ponents. Component definitions can be reused via abstract types (facets), imports,

and inheritance.

Roboconf consists of several modules. The Deployment Manager (DM) is in charge

of instantiating and managing VMs and remote agents. Agents use plugins (such

as Bash or Puppet) in order to handle the life-cycle of software instances. The DM

and the agents communicate with each other through an asynchronous messaging

server. The SoftwareInstanceManager is responsible for automatically generating

software life-cycle management and monitor software instances themselves.

Automatic scaling capabilities are provided by means of autonomic management

implemented by the DM and the remote agents. Agents send notifications to the DM

whenever certain threshold-based conditions linked to system metrics are met. The

DM’s decision engine responds to those notifications using corresponding imperative

rules. Monitoring application metrics still needs to be addressed. Both application

migrations and global/per-component rollbacks (continuous deployment) are part

of Roboconf’s roadmap, but they are not supported out of the box yet.

5.2.3 INDIGO-DataCloud

INDIGO-DataCloud (INtegrating Distributed data Infrastructures for Global Ex-

plOitation) [55, 56, 64] is an open-source data and computing platform targeted at

scientific communities, and provisioned over Cloud and Grid-based infrastructures

as well as over HTC and HPC clusters. The INDIGO-DataCloud framework has

been developed within the homonymous project funded under the EU’s Horizon

2020 Framework Programme [65].

The INDIGO-DataCloud project extended existing PaaS solutions in order to

provide automatic distribution of applications and/or services over a hybrid and

heterogeneous set of IaaS infrastructures. Some of the key INDIGO PaaS compo-

nents include: Orchestrator, Infrastructure Manager (IM), CloudProviderRanker,



Tomarchio et al. Page 20 of 30

Monitoring, SLA Manager (SLAM), Managed Services/Application (MSA) Deploy-

ment, and Data Management Services. The Orchestrator coordinates the process of

deploying services and applications on both on-premise and public IaaS platforms.

It can be accessed via a command-line interface (Orchent), or a GUI-based portlet,

or a REST API.

The Orchestrator delegates the deployment to the IM, to OpenStack Heat or to

the Mesos frameworks, based on TOSCA templates and a list of providers ranked

by the CloudProviderRanker. The Monitoring component collects monitoring data

from both PaaS core services and client infrastructure/services by means of specific

probes. The SLAM establishes an agreement between customer and provider about

capacity and quality targets. The Data Management Services provide an abstraction

layer for accessing the data storage in a unified and federated way.

INDIGO-DataCloud supports multi-cloud and cross-cloud deployments, as well

as interoperability by leveraging open standards (OCCI, CDMI). It also promotes

portability by adopting an extension of TOSCA for describing applications and

services. Cloud resources are automatically selected and optimised by the Cloud-

ProviderRanker, depending on SLAs and monitoring data. A configuration manage-

ment solution based on Ansible roles is adopted to carry out both the deployment

of the application and the creation of the pre-configured Docker images. Only au-

tomatic workflows are supported.

Runtime actions, such as horizontal scaling and failure handling, are automati-

cally supported by the MSA Deployment (based on Apache Mesos), which uses the

Automatic Scaling Service (based on EC3/CLUES[35]) to ensure the elasticity of the

cluster, Marathon[36] and Chronos[37] frameworks in order to handle Long-Running

Services (LRS) and application jobs, respectively. Marathon can also migrate ser-

vices if problems occur. Despite different DevOps practises being adopted for both

the core services and user applications (e.g., automated builds of each application

image are triggered once a new change is committed to its repository), hot changes

in application deployments are not supported out of the box.

5.2.4 MiCADO

MiCADO (Microservices-based Cloud Application-level Dynamic Orchestrator) [57]

is an open-source multi-cloud orchestration and auto-scaling framework for Docker

containers, orchestrated by Kubernetes (or alternatively by Docker Swarm). The

full MiCADO framework has been investigated and implemented in the COLA

(Cloud Orchestration at the Level of Application) project funded by the European

Commission [66].

MiCADO core services are deployed on MiCADO Master, which is configured as

the Kubernetes Master Node and provides the Docker Engine, Occopus [67] (to

scale VMs), Prometheus [38] (for monitoring), Policy Keeper (to perform decision

on scaling), and Submitter (to provide submission endpoint) microservices. Dur-

ing operation, MiCADO workers are instantiated on demand and join the cluster

managed by the MiCADO Master.

[35]https://www.grycap.upv.es/clues/eng/index.php
[36]https://mesosphere.github.io/marathon/
[37]https://mesos.github.io/chronos/
[38]https://prometheus.io/



Tomarchio et al. Page 21 of 30

MiCADO supports multi-cloud and cross-cloud deployments on various public

and private cloud infrastructures. It also provides interoperability and portability

by means of a TOSCA-based Application Description Template (ADT), which com-

prises three sections: a) the definition of the individual applications making up a

Kubernetes Deployment, b) the specification of the VM and c) the implementa-

tion of scaling policies for both VM and Kubernetes scaling levels. ADTs can be

consumed by means of a web-based dashboard or a REST API.

Cloud resources are manually selected when configuring VMs. The application

life-cycle is handled by MiCADO itself, which leverages Occopus and Kubernetes

for managing VMs and containers, respectively. Only automatic workflows are sup-

ported. MiCADO allows automated scaling depending on VM and container metrics

gathered by two built-in exporters on each MiCADO worker: Prometheus Node Ex-

porter[39] and CAdvisor[40]. Scaling policies can be defined specifically for the appli-

cations. Lastly, continuous delivery capabilities are supported via “rolling updates”

on Kubernetes Deployments.

5.2.5 MODAClouds

MODAClouds (MOdel-Driven Approach for the design and execution of applica-

tions on multiple Clouds) [58, 59] is an open-source design-time and run-time plat-

form for developing and operating multi-cloud applications with guaranteed QoS.

The MODAClouds framework has been developed within the homonymous project

funded by the European Commission [68].

The MODAClouds Toolbox consists of three main components: Creator4Clouds,

Venues4Clouds, and Energizer4Clouds. Creator4Clouds is a design-time platform

which allows to design multi-cloud applications, carry out performance and cost

evaluation, and plan the deployment strategy by choosing the service providers

that best suit all business and QoS requirements. Venue4Clouds is a decision sup-

port system (DSS) to choose the most suitable cloud providers depending on dif-

ferent aspects such as application architecture, business risk, quality and cost. En-

ergizer4Clouds is a run-time platform to deploy, manage, monitor and assure op-

erations of multi-cloud services. Specifically, Tower4Clouds sub-component is re-

sponsible for collecting, analysing, and storing monitoring information, whereas

SpaceOps4Clouds sub-component enacts application self-adaptation in order to

meet predefined objectives and/or constraints whenever changes happen.

MODAClouds supports multi-cloud and cross-cloud deployments on both IaaS

and PaaS providers. It leverages an MDE approach in order to support interoper-

ability between cloud providers. In particular, MODACloudML is a set of UML

extensions enabling developers to model multi-cloud applications through three

level of abstractions: Cloud-enabled Computation Independent Models (CCIM),

Cloud-Provider Independent Models (CPIM), and Cloud-Provider Specific Mod-

els (CPSM). These models facilitate portability, since they are mostly reusable.

Cloud resources can be automatically selected and optimised via Venues4Clouds

and SpaceDev4Clouds, and managed through either shell scripts or Puppet. Only

automatic workflows are supported.

[39]https://github.com/prometheus/node exporter
[40]https://github.com/google/cadvisor



Tomarchio et al. Page 22 of 30

Within the MODAClouds runtime environment, the Models@Runtime engine is

responsible for enacting adaptation actions such as application scaling and bursting,

data and application migration, and continuous delivery on both infrastructure and

component levels. Failure recovery is partially supported for data migration and

scaling/bursting scenarios.

5.2.6 SeaClouds

SeaClouds (SEamless Adaptive multi-Cloud management of service-based appli-

cationS) [60, 61] is an open-source platform for deploying and managing multi-

component applications over heterogeneous clouds. The SeaClouds framework has

been investigated and implemented within the homonymous project funded by the

European Commission [69].

The SeaClouds architecture comprises six main components: Dashboard, Discov-

erer, Planner, Deployer, Monitor, and SLA Service. The Dashboard allows to model

applications (topology and requirements). The Discoverer identifies the available

capabilities offered by cloud providers. The Planner receives the AAM (Abstract

Application Model) from the Dashboard and creates a set of ADP (Abstract De-

ployment Plan) meeting the application requirements. From the selected plan a

Deployable Application Model (DAM) is to be generated, containing the informa-

tion needed by the Deployer (based on Apache Brooklyn [48]) to deploy, configure

and run the application. The Monitor collects infrastructure and application level

metrics from the targeted cloud providers in order to verify that QoS requirements

are met. And if not, reconfiguration actions can be triggered. The SLA Service en-

forces business-oriented policies and business actions to apply in case of violation.

SeaClouds supports multi-cloud and cross-cloud deployments on both IaaS and

PaaS providers. It also promotes interoperability and portability by adopting a

TOSCA-based representation for AAMs and ADPs, as well as a CAMP-based de-

scription for DAMs. Cloud resources are automatically selected and optimised by

the Planner. Changes to the binding can also occur in case of reconfiguration ac-

tions. Only automatic workflows are supported.

SeaClouds allows repairing actions, such as scaling horizontally and vertically

cloud resources, or restarting and replacing failed components. It also supports

replanning in order to handle the cases that cannot be solved by repairing. A mi-

gration of application modules may happen in this process. Continuous delivery is

not supported out of the box.

5.2.7 Other initiatives

In this section, we briefly review a number of other research approaches derived from

related EU projects which address, to varying degrees, multi-cloud orchestration,

interoperability and portability. Specifically, a few works target semantic interoper-

ability (i.e., moSAIC, cloud4SOA), whereas others focus on application portability

via non-standard (i.e, Claudia, OPTIMIS, ASCETiC), partially-standard (i.e, so-

Cloud) and fully-standard (i.e., CELAR, CloudLightning) cloud modelling.

mOSAIC [70, 71] is an open-source API and platform for multiple clouds designed

and developed within the homonymous project [72]. Application deployment and

portability across multiple clouds are facilitated by means of a common API and



Tomarchio et al. Page 23 of 30

a high-level abstraction of cloud resources. mOSAIC also enables application de-

velopers to specify resource requirements in terms of a cloud ontology, whereas the

platform, using a brokering mechanism, performs a matchmaking process in order

to find the best-fitting cloud services. In so doing, developers can postpone their

decision on the procurement of cloud services until runtime. However, even though

a platform-independent component-based programming model is used, applications

need to be implemented by leveraging one of the supported language-dependent

APIs (Java, Python).

Cloud4SOA [73, 74] is a multi-cloud broker-based solution developed under the

homonymous project [75], which addresses semantic interoperability and portability

challenges at the PaaS layer. It supports multi-platform matchmaking, management,

monitoring and migration of applications by semantically interconnecting heteroge-

neous PaaS offerings. Similar to mOSAIC, Cloud4SOA introduces a cloud ontology

establishing a set of abstractions among different PaaS offerings while exposing a

multi-PaaS standardised API for the seamless application deployment and manage-

ment across different cloud platforms. Despite being independent of specific APIs

offered by the underlying PaaS offerings, adapters acting as a middleware between

the Cloud4SOA API and native PaaS APIs are still needed.

Claudia [76] is a service management system implementing an abstraction layer

that allows for the automatic service deployment and scaling depending on both

infrastructure and service status. Conversely to mOSAIC and Cloud4SOA, each

service in Claudia is defined by its corresponding Service Description File (SDF)

whose syntax is based on the OVF standard, thereby providing vendor and plat-

form portability. However, special OVF extensions must be defined in order to

support automatic scalability, deployment-time customisation and external connec-

tivity specification.

OPTIMIS [77] is a toolkit which addresses and optimises the whole service life-

cycle on the basis of aspects such as trust, risk, eco-efficiency and cost, taking into

consideration a number of cloud scenarios, namely, cloud federation, multi-cloud,

hybrid cloud. However, regarding multi-cloud, interoperability with non-OPTIMIS

providers can only be achieved by using APIs and adapters externally to the OP-

TIMIS components. According to OPTIMIS programming model, each service is

defined as a collection of core elements being packed along with any external soft-

ware components into VM images. Similar to Claudia, these VM images are con-

figured by means of a service manifest based on the OVF standard, but a set of

OVF extensions are required in order to specify the functional and non-functional

requirements of the service.

ASCETiC [78] is an open architecture and approach to multi-cloud optimising

energy efficiency, designed within the homonymous EU project [79]. Analogous to

OPTIMIS, the OVF specification is employed to define a complete set of VMs to be

deployed at an IaaS provider. Nevertheless, OVF extensions are necessary in order

to support SLA negotiation and self-adaptation rules.

soCloud [80] is a service-oriented component-based PaaS for managing portability,

elasticity, provisioning, and high availability across multiple clouds. Application de-

scriptors are based on the OASIS Service Component Architecture (SCA) standard

[81]. However, since the SCA model doesn’t allow to define non-functional require-

ments, special SCA extensions are required. A custom DSL is also used in order



Tomarchio et al. Page 24 of 30

to describe elasticity. Additionaly, not only does soCloud support only SCA-based

applications, but maintaining the mappings to various cloud providers and keeping

up with recent features of supported clouds are a concern.

CELAR [82, 83] is a resource management platform able to automatically de-

ploy, monitor and scale applications over a cloud infrastructure. Applications are

described using TOSCA, which ensures the portability of application descriptions

across different IaaS platforms. However, every time a new application is to be de-

ployed, users need to issue the request to the appropriate CELAR Server instance

inside the cloud they want to deploy their application to. In contrast to mOSAIC,

cloud4SOA and ASCETiC, no brokering mechanism is defined in order to best fit

cloud resource requirements. Furthermore, cross-cloud is not supported.

CloudLightning [84] is a heterogeneous cloud service management and delivery

model developed within the homonymous EU project [85]. Based on the principles

of self-organisation and self-management, CloudLightning allows users to design and

deploy their applications without the need for selecting the most suitable resources.

This separation of concerns is made possible using a CloudLightning-specific service

description language (CL-SDL), which extends TOSCA in order to capture specific

attributes. The declarative approach is enriched with resource discovery mecha-

nisms allowing easier identification and consumption of a variety of heterogeneous

resources. CloudLightning proposes a solution based on a Gateway Service, which

relies on two open-source tools: Alien4Cloud acting as the Gateway Service UI and

Brooklyn-TOSCA[41] acting as the deployment orchestrator. In view of the above,

the same remarks made in section 5.1.3 are applicable to CloudLightning.

Table 4 Cloud-based comparison of experimental/research CROFs.

CROFs
Cloud Features Cloudiator Roboconf INDIGO-DataCloud MiCADO MODAClouds SeaClouds

Multi-Cloud 3 3 3 3 3 3
Cross-Cloud 3 3 3 3 3 3

Interoperability
- Open Standards 7 0 3 0 7 0

- Semantics 7 7 7 7 7 7
- MDE 7 7 7 7 3 7

- Open Libraries & Services 3 0 7 7 3 3
Integration

- External IaaS/PaaS services 7 3 7 7 3 3
- BYON 7 3 3 7 7 3
Access

- Command-Line 7 3 3 7 3 7
- Web-based Dashboard 3 3 3 3 7 3

- Web-based API 3 3 3 3 3 3

7= not fulfilled, 0 = partially fulfilled, 3= fully fulfilled

6 Critical discussion
Tables 2 to 5 summarise the CROFs presented in Section 5 by outlining the features

debated in Section 4. We discuss the main characteristics of these frameworks next.

Most of the reviewed CROFs provide different access modes, including web-

based dashboards and APIs, and allow both multi-cloud and cross-cloud deploy-

ments, except for Heat and CloudFormation which, as infrastructure-centric ser-

vices, only support their own IaaS providers (i.e., OpenStack and Amazon, re-

spectively). Besides, some of them natively support deployments on BYON (e.g.,

Cloudify, Brooklyn, Roboconf, SeaClouds). Interoperability between cloud providers

is mainly achieved by means of open standards and open libraries/abstraction layers

[41]https://github.com/cloudsoft/brooklyn-tosca



Tomarchio et al. Page 25 of 30

Table 5 Application-based comparison of experimental/research CROFs.

CROFs
Application Features Cloudiator Roboconf INDIGO-DataCloud MiCADO MODAClouds SeaClouds

Portability
- Model Standards 7 7 0 0 7 0
- Model Reusability 3 3 3 3 0 3

- Model Sharing 3 3 3 0 3 3

D
ev
el
o
p
m
en

t
Containerisation 3 3 3 3 7 7

Resource Selection
- Manual Binding 7 3 7 3 7 7

- Automatic Binding 3 7 3 7 3 3
- Optimised Binding 3 7 3 7 3 3
- Dynamic Binding 7 7 7 7 7 3
Lifecycle Control

- Script-based 3 3 7 7 3 7
- DevOps 7 3 3 7 3 7

Wiring & Workflow
- Attribute & Event Passing 3 3 3 3 3 3

- Manual Workflow 7 7 7 7 7 7
- Automatic Workflow 3 3 3 3 3 3

D
ep

lo
ym

en
t

- External Services 7 3 7 7 3 3
Monitoring

- System Metrics 3 3 3 3 3 3
- Application Metrics 3 7 7 7 3 3

- Custom Metrics 3 7 7 7 7 7
- Aggregation 3 7 3 3 3 3

- Historical Data 7 7 3 3 3 3
Runtime Adaptation

- Threshold-based 3 3 3 3 3 3
- Rule Engine 3 3 3 3 3 3

- Horizontal Scaling 3 3 3 3 3 3
- Migration 0 7 0 7 3 0

- Failure Recovery 3 7 3 3 0 3

E
xe
cu

ti
o
n

- CI/CD 3 7 7 3 3 7

7= not fulfilled, 0 = partially fulfilled, 3= fully fulfilled

(e.g. jclouds). Open standards appear to be gaining ground, especially in academic

scenarios. As such, a number of academic CROFs provide interoperability via OCCI

(e.g., Roboconf) or CDMI (e.g., INDIGO-DataCloud) support, while others do via

TOSCA (MiCADO, SeaClouds). Despite being the focus of previous research efforts

(e.g., mOSAIC, Cloud4SOA), semantic approaches seem to be no longer a priority

compared to the adoption of open standards. Of all the initiatives, MODAClouds

is the only one to employ model-driven methodologies.

With regard to application portability, CROFs from both industry and academia

are placing ever-increasing importance on modelling standards. However, while tak-

ing TOSCA (e.g., Cloudify, MiCADO) and CAMP (e.g., Brooklyn, SeaClouds) as

reference models, they happen to customise and extend standard types. Thus, a

further effort would be appropriate in order to ensure greater compliance with the

aforementioned specifications. Aside from the adoption of standard models, model

reusability is encouraged by means of modules shared either locally or remotely.

Besides, since containers provide improved application encapsulation and abstrac-

tion from resources, most of the CROFs support containers as well as container

orchestration.

As regards resource provisioning, there are different aspects of the matter that

need to be considered, such as: selection, configuration and deployment of resources.

In multi-cloud scenarios, selection is far from being a trivial task due to the diversity

of cloud services’ characteristics and QoS. While manual selection is supported in

the majority of CROFs, automatic and optimised selections are almost exclusively

supported by academic CROFs. The optimised selection leverages QoS and techni-

cal requirements, and is carried out either based on static information on the service

quality provided by cloud providers or through dynamic negotiation of SLAs. A few

multi-cloud projects (e.g., INDIGO-DataCloud, MODAClouds, SeaClouds) provide

support for SLA management, even though multi-cloud SLAs are not covered. Lim-

ited support is currently available for dynamic selection (i.e., SeaClouds).



Tomarchio et al. Page 26 of 30

Resource deployment can be manual or automatic. While most commercial

CROFs support both manual and automatic workflows, academic CROFs exclu-

sively support automatic ones. Using standard models such as TOSCA, where ap-

plicable, proves useful both for defining a custom workflow and for automatically

generating one. However, since current standards lack support for modelling the se-

mantics related to the instantiation of relationships between component instances,

the actual wiring of component instances depends on the capabilities offered by

the CROF enacting the deployment. On that note, standard extensions in sup-

port of sophisticated wiring on instance level would be desirable. As for resource

configuration, on the one hand scripts are extensively supported, but on the other

hand configuration management tools are mostly supported by commercial CROFs.

Nonetheless, a few academic projects (e.g., INDIGO-DataCloud and MODAClouds)

exploit these tools in order to enact DevOps practices as well.

Monitoring plays a key role in keeping track of the status of applications as well

as physical and virtual resources. Monitoring metrics at different abstraction lev-

els (e.g., infrastructure and application ones) and capturing dependencies between

these levels allow to perform root cause analysis, such that any issues at infrastruc-

ture level can automatically lead to run-time infrastructure adaptation which best

fits run-time application requirements. While infrastructure metrics are widely sup-

ported by both commercial and academic CROFs, application and custom metrics

necessitate further investigation. Metric aggregation mechanisms are available for

a large majority of CROFs. Nevertheless, in light of multi-cloud scenarios, where

applications and resources may be largely distributed, metric collection and aggrega-

tion from heterogeneous cloud environments are necessary. As a result, standardised

interfaces and formats should be inspected.

Monitoring data allows for different purposes such as enforcing SLAs, enabling

elasticity, ensuring QoS. SLAs can be used as a basis for cloud services and re-

spective applications to be managed during their life-cycle. Multi-cloud manage-

ment requires specific mechanisms for run-time adaptation across a diversity of

cloud set-ups, including scalability, migration, fault-tolerance, continuous delivery.

While reactive approaches to run-time adaptation are fairly consolidated among all

CROFs, predictive approaches (based on workload prediction models and machine

learning optimisation) are only supported in some commercial CROFs (e.g., AWS

CloudFormation) and should be more explored.

Both academic and commercial CROFs largely provide support for threshold-

based horizontal scaling. Policy-based approaches, especially in the academic land-

scape, are gaining in importance as well. Migration support is still limited in

both industry and academia, as it is closely linked to portability in all its facets,

i.e., VM portability, application portability, data portability. Although platform-

independent standards (TOSCA) and virtualisation techniques (containers) have

improved application encapsulation and abstraction from resources, platform-

independent data representation and standardisation of data import and export

across diverse and heterogeneous clouds need to be inspected. In this regard,

MODAClouds provides a solution to the data migration issue, albeit in the con-

text of scalable NoSQL databases.

Both academic and commercial CROFs support failure recovery mechanisms

based on restarting/replacing failed components or, in a worst-case scenario, rolling



Tomarchio et al. Page 27 of 30

back entire application stacks. Of all academic CROFs, Cloudiator, MODAClouds

and SeaClouds allow to identify abnormal and undesirable states of the system and

apply a limited set of autonomic actions. However, the emergence of decentralised

multi-cloud setups connecting a wider variety of entities and resources requires au-

tonomic management systems that consider self-organisation, self-management and

self-healing across a diversity of cloud deployments. Continuous delivery is well sup-

ported in the commercial landscape, and it is also gaining ground in the academic

one because of the ever-growing use of DevOps methodologies.

7 Conclusion
Cloud computing technology has greatly evolved over the past few years, transform-

ing the traditional infrastructure, platform and software resources into elastic and

on-demand virtual components. However, heterogeneous and multi-layer resources

have to be orchestrated in an effective way in order to ensure that end-users are

provided with acceptable quality levels.

In this work we thoroughly analysed the cloud orchestration landscape: after pre-

senting a taxonomy of relevant features and dimensions, we mapped and evaluated

several cloud resource orchestration frameworks against it, especially focusing on

multi-cloud capabilities. This systematic analysis has allowed to identify key open

research issues, also proposing a set of future research directions in the cloud or-

chestration scenario.

Abbreviations
CROF: Cloud Resource Orchestration Framework. MDE: Model Driven Engineering. IaaS: Infrastructure as a

Service. PaaS: Platform as a Service. CMP: Cloud Management Platform. SLA: Service Level Agreement. TOSCA:

Topology and Orchestration Specification for Cloud Applications. VM: Virtual Machine. BYON: Bring Your Own

Node. CI/CD: Continuous Integration/Continuous Delivery.

Availability of data and materials
Not applicable

Competing interests
The authors declare that they have no competing interests.

Funding
Not applicable

Author’s contributions
All authors contributed equally to the article

Acknowledgements
Not applicable

Authors’ information
Department of Electrical, Electronic and Computer Engineering. University of Catania. Catania. Italy

References
1. RightScale: RightScale 2019 State of the Cloud Report.

https://info.flexera.com/SLO-CM-WP-State-of-the-Cloud-2019. Last accessed on 10-12-2019 (2019)

2. Ranjan, R., Benatallah, B., Dustdar, S., Papazoglou, M.P.: Cloud resource orchestration programming:

Overview, issues, and directions. IEEE Internet Computing 19(5), 46–56 (2015). doi:10.1109/MIC.2015.20

3. Weerasiri, D., Barukh, M.C., Benatallah, B., Sheng, Q.Z., Ranjan, R.: A Taxonomy and Survey of Cloud

Resource Orchestration Techniques. ACM Comput. Surv. 50(2), 26–12641 (2017). doi:10.1145/3054177

4. Baur, D., Seybold, D., Griesinger, F., Tsitsipas, A., Hauser, C.B., Domaschka, J.: Cloud Orchestration

Features: Are Tools Fit for Purpose? In: 2015 IEEE/ACM 8th International Conference on Utility and Cloud

Computing (UCC), pp. 95–101 (2015). doi:10.1109/UCC.2015.25

5. Bousselmi, K., Brahmi, Z., Gammoudi, M.M.: Cloud services orchestration: A comparative study of existing

approaches. In: 28th International Conference on Advanced Information Networking and Applications

Workshops, pp. 410–416 (2014). doi:10.1109/WAINA.2014.72

6. Grozev, N., Buyya, R.: Inter-cloud architectures and application brokering: taxonomy and survey. Software:

Practice and Experience 44(3), 369–390 (2014). doi:10.1002/spe.2168



Tomarchio et al. Page 28 of 30

7. Ferry, N., Rossini, A., Chauvel, F., Morin, B., Solberg, A.: Towards Model-Driven Provisioning, Deployment,

Monitoring, and Adaptation of Multi-cloud Systems. In: IEEE Sixth International Conference on Cloud

Computing, pp. 887–894. IEEE, ??? (2013). doi:10.1109/CLOUD.2013.133

8. Petcu, D.: Consuming resources and services from multiple clouds. Journal of Grid Computing 12(2), 321–345

(2014). doi:10.1007/s10723-013-9290-3

9. Petcu, D., Vasilakos, A.: Portability in Clouds: Approaches and Research Opportunities. Scalable Computing:

Practice and Experience 15(3), 251–270 (2014). doi:10.12694/scpe.v15i3.1019

10. Ferry, N., Rossini, A.: CloudMF: Model-Driven Management of Multi-Cloud Applications. ACM Trans. Internet

Technol 18(2), 16–24 (2018). doi:10.1145/3125621

11. Ferrer, A.J.: Inter-cloud research: Vision for 2020. Procedia Computer Science 97, 140–143 (2016).

doi:10.1016/j.procs.2016.08.292. 2nd International Conference on Cloud Forward: From Distributed to

Complete Computing

12. Buyya, R., Srirama, S.N., Casale, G., Calheiros, R., Simmhan, Y., Varghese, B., Gelenbe, E., Javadi, B.,

Vaquero, L.M., Netto, M.A.S., Toosi, A.N., Rodriguez, M.A., Llorente, I.M., Vimercati, S.D.C.D., Samarati, P.,

Milojicic, D., Varela, C., Bahsoon, R., Assuncao, M.D.D., Rana, O., Zhou, W., Jin, H., Gentzsch, W., Zomaya,

A.Y., Shen, H.: A Manifesto for Future Generation Cloud Computing: Research Directions for the Next Decade.

ACM Comput. Surv. 51(5), 105–110538 (2018). doi:10.1145/3241737

13. Lewis, G.A.: Role of standards in cloud-computing interoperability. In: 46th Hawaii International Conference on

System Sciences, pp. 1652–1661 (2013). doi:10.1109/HICSS.2013.470

14. Badger, L., Bohn, R., Chandramouli, R., Grance, T., Karygiannis, T., Patt-Corner, R., Voas, E.: Cloud

Computing Use Cases. https://www.nist.gov/itl/use-cases. Last accessed on 10-12-2019 (2010)

15. M. Ahronovitz et ali.: Cloud Computing Use Cases White Paper Version 4.0.

http://www.cloud-council.org/Cloud Computing Use Cases Whitepaper-4 0.pdf. Last accessed on 10-12-2019

(2010)

16. Distributed Management Task Force: Use Cases and Interactions for Managing Clouds.

https://www.dmtf.org/sites/default/files/standards/documents/DSP-IS0103 1.0.0.pdf. Last accessed on

10-12-2019 (2010)

17. Zhang, Z., Wu, C., Cheung, D.W.L.: A survey on cloud interoperability: Taxonomies, standards, and practice.

SIGMETRICS Perform. Eval. Rev. 40(4), 13–22 (2013). doi:10.1145/2479942.2479945

18. Stravoskoufos., K., Preventis., A., Sotiriadis., S., Petrakis., E.G.M.: A Survey on Approaches for Interoperability

and Portability of Cloud Computing Services. In: Proceedings of the 4th International Conference on Cloud

Computing and Services Science (CLOSER2014), pp. 112–117. SciTePress, ??? (2014).

doi:10.5220/0004856401120117

19. Garćıa, Á.L., del Castillo, E.F., Fernández, P.O.: Standards for enabling heterogeneous iaas cloud federations.

Computer Standards & Interfaces 47, 19–23 (2016). doi:10.1016/j.csi.2016.02.002

20. Gartner: Competitive Landscape: Cloud Service Brokerage.

https://www.gartner.com/en/documents/3889023/competitive-landscape-cloud-service-brokerage. Last

accessed on 10-12-2019 (2018)

21. Liu, F., Tong, J., Mao, J., Bohn, R.B., Messina, J.V., Badger, M.L., Leaf, D.M.: NIST Cloud Computing

Reference Architecture. https://www.nist.gov/publications/nist-cloud-computing-reference-architecture. Last

accessed on 10-12-2019 (2011)

22. Elhabbash, A., Samreen, F., Hadley, J., Elkhatib, Y.: Cloud brokerage: A systematic survey. ACM Comput.

Surv. 51(6), 119–111928 (2019). doi:10.1145/3274657

23. Bernstein, D., Ludvigson, E., Sankar, K., Diamond, S., Morrow, M.: Blueprint for the Intercloud - Protocols

and Formats for Cloud Computing Interoperability. In: Proceedings of the 2009 Fourth International Conference

on Internet and Web Applications and Services. ICIW ’09, pp. 328–336. IEEE Computer Society, ??? (2009).

doi:10.1109/ICIW.2009.55

24. Global Inter-cloud Technology Forum: Use Cases and Functional Requirements for Inter-Cloud Computing: A

white paper. http://www.gictf.jp/doc/GICTF Whitepaper 20100809.pdf. Last accessed on 10-12-2019 (2010)

25. Petcu, D.: Multi-cloud: Expectations and current approaches. In: Proceedings of the 2013 International

Workshop on Multi-cloud Applications and Federated Clouds. MultiCloud ’13, pp. 1–6. ACM, New York, NY,

USA (2013). doi:10.1145/2462326.2462328

26. Toosi, A.N., Calheiros, R.N., Buyya, R.: Interconnected cloud computing environments: Challenges, taxonomy,

and survey. ACM Comput. Surv. 47(1), 7–1747 (2014). doi:10.1145/2593512

27. Nogueira, E., Moreira, A., Lucrédio, D., Garcia, V., Fortes, R.: Issues on developing interoperable cloud

applications: definitions, concepts, approaches, requirements, characteristics and evaluation models. Journal of

Software Engineering Research and Development 4(1), 7 (2016). doi:10.1186/s40411-016-0033-6

28. Kaur, K., Sharma, D.S., Kahlon, D.K.S.: Interoperability and portability approaches in inter-connected clouds:

A review. ACM Comput. Surv. 50(4), 49–14940 (2017). doi:10.1145/3092698

29. Bellendorf, J., Mann, Z.Á.: Cloud Topology and Orchestration Using TOSCA: A Systematic Literature Review.

In: Kritikos, K., Plebani, P., de Paoli, F. (eds.) Service-Oriented and Cloud Computing, pp. 207–215. Springer,

??? (2018). doi:10.1007/978-3-319-99819-0 16

30. Domaschka, J., Griesinger, F., Baur, D., Rossini, A.: ”Beyond Mere Application Structure Thoughts on the

Future of Cloud Orchestration Tools. Procedia Computer Science 68, 151–162 (2015).

doi:10.1016/j.procs.2015.09.231. 1st International Conference on Cloud Forward: From Distributed to Complete

Computing

31. Baur, D., Domaschka, J.: Experiences from building a cross-cloud orchestration tool. In: Proceedings of the 3rd

Workshop on CrossCloud Infrastructures & Platforms. CrossCloud ’16, pp. 4–146. ACM, New York, NY, USA

(2016). doi:10.1145/2904111.2904116

32. Khoshkbarforoushha, A., Wang, M., Ranjan, R., Wang, L., Alem, L., Khan, S.U., Benatallah, B.: Dimensions for

evaluating cloud resource orchestration frameworks. Computer 49(2), 24–33 (2016). doi:10.1109/MC.2016.56

33. Clusters of European Projects on Cloud: Inter-cloud Challenges, Expectations and Issues Cluster Position



Tomarchio et al. Page 29 of 30

Paper: Initial Research Roadmap and Project’s Classification.

https://eucloudclusters.wordpress.com/future-cloud. Last accessed on 10-12-2019 (2015)

34. Clusters of European Projects on Cloud: Inter-cloud Challenges, Expectations and Issues Cluster Position

Paper: Research Roadmap Update. https://eucloudclusters.wordpress.com/future-cloud. Last accessed on

10-12-2019 (2016)

35. Clusters of European Projects on Cloud: Future Cloud Cluster Vision for 2030.

https://eucloudclusters.wordpress.com/future-cloud. Last accessed on 10-12-2019 (2017)

36. GigaSpaces Research, Cloudify Team: Cloud Management in the Enterprise - An Overview of Orchestration vs.

PaaS vs. CMP. https://cloudify.co/blog/cloud-management-roundup-orchestration-paas-cmp/. Last accessed

on 10-12-2019 (2016)

37. OASIS: Topology and Orchestration Specification for Cloud Applications Version 1.0.

http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html (2013)

38. Buyya, R., Vecchiola, C., Selvi, S.T.: Chapter 10 - Cloud Applications. In: Buyya, R., Vecchiola, C., Selvi, S.T.

(eds.) Mastering Cloud Computing, pp. 353–371. Morgan Kaufmann, Boston (2013).

doi:10.1016/B978-0-12-411454-8.00010-3

39. Costache, S., Dib, D., Parlavantzas, N., Morin, C.: Resource management in cloud platform as a service

systems: Analysis and opportunities. Journal of Systems and Software 132, 98–118 (2017).

doi:10.1016/j.jss.2017.05.035

40. Kolb, S., Wirtz, G.: Towards Application Portability in Platform as a Service. In: IEEE 8th International

Symposium on Service Oriented System Engineering, pp. 218–229 (2014). doi:10.1109/SOSE.2014.26

41. Oberle, K., Fisher, M.: ETSI CLOUD - Initial Standardization Requirements for Cloud Services. In: Proceedings

of the 7th International Conference on Economics of Grids, Clouds, Systems, and Services. GECON’10, pp.

105–115. Springer, Berlin, Heidelberg (2010). doi:10.1007/978-3-642-15681-6 8

42. OASIS: Cloud Application Management for Platforms Version 1.1.

http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.html. Last accessed on 10-12-2019 (2014)

43. Soltesz, S., Pötzl, H., Fiuczynski, M.E., Bavier, A., Peterson, L.: Container-based Operating System

Virtualization: A Scalable, High-performance Alternative to Hypervisors. In: Proceedings of the 2Nd ACM

SIGOPS/EuroSys European Conference on Computer Systems 2007. EuroSys ’07, pp. 275–287. ACM, New

York, NY, USA (2007). doi:10.1145/1272996.1273025

44. Singh, S., Singh, N.: Containers & Docker: Emerging roles & future of Cloud technology. In: 2nd International

Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), pp. 804–807

(2016). doi:10.1109/ICATCCT.2016.7912109

45. Komarek, A., Pavlik, J., Sobeslav, V.: Hybrid System Orchestration with TOSCA and Salt. Journal of

Engineering and Applied Sciences 12(9), 2396–2401 (2017). doi:10.36478/jeasci.2017.2396.2401

46. OpenStack: OpenStack Heat. https://wiki.openstack.org/wiki/Heat. Last accessed on 10-12-2019 (2016)

47. Cloudify: Cloudify. http://cloudify.co/. Last accessed on 10-12-2019 (2019)

48. The Apache Software Foundation: The Apache Brooklyn project. https://brooklyn.apache.org/. Last accessed

on 10-12-2019 (2016)

49. Apache: Apache Stratos. https://stratos.apache.org/. Last accessed on 10-12-2019 (2015)

50. FastConnect: Alien4Cloud. https://alien4cloud.github.io. Last accessed on 10-12-2019 (2018)

51. HashiCorp: HashiCorp Terraform. https://www.terraform.io/. Last accessed on 10-12-2019 (2019)

52. Amazon: Amazon CloudFormation. https://aws.amazon.com/cloudformation/. Last accessed on 10-12-2019

(2016)

53. Baur, D., Seybold, D., Griesinger, F., Masata, H., Domaschka, J.: A Provider-Agnostic Approach to

Multi-cloud Orchestration Using a Constraint Language. In: 18th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing (CCGRID), pp. 173–182 (2018). doi:10.1109/CCGRID.2018.00032

54. Pham, L.M., Tchana, A., Donsez, D., de Palma, N., Zurczak, V., Gibello, P.: Roboconf: A Hybrid Cloud

Orchestrator to Deploy Complex Applications. In: IEEE 8th International Conference on Cloud Computing, pp.

365–372 (2015). doi:10.1109/CLOUD.2015.56

55. Salomoni, D., Campos, I., Gaido, L., et al.: Indigo-datacloud: foundations and architectural description of a

platform as a service oriented to scientific computing. CoRR abs/1603.09536 (2016). 1603.09536

56. Salomoni, D., Campos, I., Gaido, L., et al.: INDIGO-DataCloud: a Platform to Facilitate Seamless Access to

E-Infrastructures. Journal of Grid Computing 16(3), 381–408 (2018). doi:10.1007/s10723-018-9453-3

57. Kiss, T., Kacsuk, P., Kovacs, J., Rakoczi, B., Hajnal, A., Farkas, A., Gesmier, G., Terstyanszky, G.:

MiCADO—Microservice-based Cloud Application-level Dynamic Orchestrator. Future Generation Computer

Systems 94, 937–946 (2019). doi:10.1016/j.future.2017.09.050

58. Ardagna, D., Di Nitto, E., Mohagheghi, P., Mosser, S., Ballagny, C., D’Andria, F., Casale, G., Matthews, P.,

Nechifor, C., Petcu, D., Gericke, A., Sheridan, C.: MODAClouds: A model-driven approach for the design and

execution of applications on multiple Clouds. In: 4th International Workshop on Modeling in Software

Engineering (MISE), pp. 50–56 (2012). doi:10.1109/MISE.2012.6226014

59. Nitto, E.D., Matthews, P., Petcu, D., Solberg, A.: Model-Driven Development and Operation of Multi-Cloud

Applications: The MODAClouds Approach. Springer, ??? (2017). doi:10.1007/978-3-319-46031-4

60. Brogi, A., Carrasco, J., Cubo, J., D’Andria, F., Ibrahim, A., Pimentel, E., Soldani, J.: SeaClouds: Seamless

adaptive multi-cloud management of service-based applications. In: 17th Conferencia Iberoamericana en

Software Engineering (CIbSE 2014), pp. 95–108. Curran Associates, Inc., Pucon, Chile (2014)

61. Brogi, A., Fazzolari, M., Ibrahim, A., Soldani, J., Wang, P., Carrasco, J., Cubo, J., Durán, F., Pimentel, E.,

Di Nitto, E., D’Andria, F.: Adaptive management of applications across multiple clouds: The SeaClouds

Approach. CLEI Electronic Journal 18, 2–2 (2015). doi:10.19153/cleiej.18.1.1

62. University of Ulm: Cloudiator. http://cloudiator.org/. Last accessed on 10-12-2019 (2015)

63. Linagora: Roboconf. http://roboconf.net. Last accessed on 10-12-2019 (2013-2018)

64. Caballer, M., Zala, S., Garćıa, Á.L., Moltó, G., Fernández, P.O., Velten, M.: Orchestrating Complex Application

Architectures in Heterogeneous Clouds. Journal of Grid Computing 16(1), 3–18 (2018).



Tomarchio et al. Page 30 of 30

doi:10.1007/s10723-017-9418-y

65. INDIGO consortium: The INDIGO-DataCloud project. https://www.indigo-datacloud.eu/. Last accessed on

10-12-2019 (2017)

66. COLA consortium: The COLA Project. https://project-cola.eu/. Last accessed on 10-12-2019 (2017-2019)

67. Kovács, J., Kacsuk, P.: Occopus: a multi-cloud orchestrator to deploy and manage complex scientific

infrastructures. Journal of Grid Computing 16(1), 19–37 (2018). doi:10.1007/s10723-017-9421-3

68. MODAClouds consortium: The MODAClouds project. http://multiclouddevops.com/. Last accessed on

10-12-2019 (2012-2015)

69. SeaClouds consortium: The SeaClouds project. http://www.seaclouds-project.eu/. Last accessed on 10-12-2019

(2013-2016)

70. Petcu, D., Macariu, G., Panica, S., Crăciun, C.: Portable Cloud applications—From theory to practice. Future

Generation Computer Systems 29(6), 1417–1430 (2013). doi:10.1016/j.future.2012.01.009

71. Petcu, D., Martino, B.D., Venticinque, S., Rak, M., Máhr, T., Lopez, G.E., Brito, F., Cossu, R., Stopar, M.,

Šperka, S., Stankovski, V.: Experiences in building a mOSAIC of clouds. Journal of Cloud Computing:

Advances, Systems and Applications 2(1), 12 (2013). doi:10.1186/2192-113X-2-12

72. mOSAIC consortium: The mOSAIC project. http://www.mosaic-cloud.eu/. Last accessed on 10-12-2019

(2010-2013)

73. DAndria, F., Bocconi, S., Cruz, J.G., Ahtes, J., Zeginis, D.: Cloud4SOA: Multi-cloud Application Management

Across PaaS Offerings. In: 14th International Symposium on Symbolic and Numeric Algorithms for Scientific

Computing, pp. 407–414 (2012). doi:10.1109/SYNASC.2012.65

74. Kamateri, E., Loutas, N., Zeginis, D., Ahtes, J., D’Andria, F., Bocconi, S., Gouvas, P., Ledakis, G., Ravagli, F.,

Lobunets, O., Tarabanis, K.A.: Cloud4SOA: A Semantic-Interoperability PaaS Solution for Multi-cloud

Platform Management and Portability. In: Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) Service-Oriented

and Cloud Computing, ESOCC 2013, pp. 64–78. Springer, ??? (2013). doi:10.1007/978-3-642-40651-5 6

75. Cloud4SOA consortium: The Cloud4SOA project. http://www.cloud4soa.eu/. Last accessed on 10-12-2019

(2010-2013)

76. Rodero-Merino, L., Vaquero, L.M., Gil, V., GalÃ¡n, F., FontÃ¡n, J., Montero, R.S., Llorente, I.M.: From

infrastructure delivery to service management in clouds. Future Generation Computer Systems 26(8),

1226–1240 (2010). doi:10.1016/j.future.2010.02.013

77. Ferrer, A.J., HernÃ¡ndez, F., Tordsson, J., Elmroth, E., Ali-Eldin, A., Zsigri, C., Sirvent, R., Guitart, J., Badia,

R.M., Djemame, K., Ziegler, W., Dimitrakos, T., Nair, S.K., Kousiouris, G., Konstanteli, K., Varvarigou, T.,

Hudzia, B., Kipp, A., Wesner, S., Corrales, M., ForgÃ³, N., Sharif, T., Sheridan, C.: OPTIMIS: A holistic

approach to cloud service provisioning. Future Generation Computer Systems 28(1), 66–77 (2012).

doi:10.1016/j.future.2011.05.022

78. Ferrer, A.J., Lordan, F., Ortiz, D., Guitart, J., Macias, M., Panuccio, P., M. Badia, R., Ponsard, C., Temporale,

C., Garćıa, D., Sirvent, R., Deprez, J., Sommacampagna, D., Djemame, K., Armstrong, D., Agiatzidou, E.,

Ejarque, J., Blasi, L., Kammer, M.: Ascetic - adapting service lifecycle towards efficient clouds. In: European

Project Space on Information and Communication Systems - EPS Barcelona,, pp. 89–106. SciTePress,

Barcelona, Spain (2014). doi:10.5220/0006183400890106

79. ASCETiC consortium: The ASCETiC project. http://ascetic-project.eu/. Last accessed on 10-12-2019

(2013-2016)

80. Paraiso, F., Merle, P., Seinturier, L.: soCloud: a service-oriented component-based PaaS for managing

portability, provisioning, elasticity, and high availability across multiple clouds. Computing 98(5), 539–565

(2016). doi:10.1007/s00607-014-0421-x

81. OASIS: Service Component Architecture (SCA). http://www.oasis-opencsa.org/sca. Last accessed on

10-12-2019 (2011)

82. Giannakopoulos, I., Papailiou, N., Mantas, C., Konstantinou, I., Tsoumakos, D., Koziris, N.: CELAR:

Automated application elasticity platform. In: IEEE International Conference on Big Data (Big Data), pp.

23–25 (2014). doi:10.1109/BigData.2014.7004481

83. CELAR consortium: The CELAR project. http://www.celarcloudproject.eu/. Last accessed on 10-12-2019

(2012-2015)

84. Selea, T., Drăgan, I., Fortiş, T.-F.: The CloudLightning Approach to Cloud-user Interaction. In: Proceedings of

the 1st International Workshop on Next Generation of Cloud Architectures. CloudNG:17, pp. 4–145. ACM, New

York, NY, USA (2017). doi:10.1145/3068126.3068130

85. CloudLightning consortium: The CloudLightning project. https://cloudlightning.eu/. Last accessed on

10-12-2019 (2018)


