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A novel methodology for epidemic 
risk assessment of COVID‑19 
outbreak
A. Pluchino1*, A. E. Biondo2, N. Giuffrida3, G. Inturri4, V. Latora1,5,6,7, R. Le Moli8, 
A. Rapisarda1,5, G. Russo9 & C. Zappal 1

We propose a novel data‑driven framework for assessing the a-priori epidemic risk of a geographical 
area and for identifying high‑risk areas within a country. Our risk index is evaluated as a function of 
three different components: the hazard of the disease, the exposure of the area and the vulnerability 
of its inhabitants. As an application, we discuss the case of COVID‑19 outbreak in Italy. We characterize 
each of the twenty Italian regions by using available historical data on air pollution, human mobility, 
winter temperature, housing concentration, health care density, population size and age. We find 
that the epidemic risk is higher in some of the Northern regions with respect to Central and Southern 
Italy. The corresponding risk index shows correlations with the available official data on the number 
of infected individuals, patients in intensive care and deceased patients, and can help explaining why 
regions such as Lombardia, Emilia‑Romagna, Piemonte and Veneto have suffered much more than the 
rest of the country. Although the COVID‑19 outbreak started in both North (Lombardia) and Central 
Italy (Lazio) almost at the same time, when the first cases were officially certified at the beginning of 
2020, the disease has spread faster and with heavier consequences in regions with higher epidemic 
risk. Our framework can be extended and tested on other epidemic data, such as those on seasonal 
flu, and applied to other countries. We also present a policy model connected with our methodology, 
which might help policy‑makers to take informed decisions.

The prediction of the future developments of a natural phenomenon is one of the main goals of science, but it 
remains always a great challenge when dealing with an epidemic. This proved to be particularly true in the case 
of the COVID-19 global pandemic that the world is suffering since January 2020.

SARS-CoV-2 is a novel coronavirus, initially announced as the causative agent of pneumonia of unknown 
etiology in Wuhan city, China. The genome sequence is related to a viral species named severe acute respira-
tory syndrome (SARS) related-CoV. These viral species also comprise some viruses detected in rhinolophid bat 
in Europe and  Asia1,2. The mechanisms of immunological response to the virus infection are partially known, 
however a dysregulation of the immune system is very likely responsible for a worse outcome especially in 
patients with pre-existing respiratory or systemic  diseases3. Most infections by coronavirus are mild and self-
treated. Therefore, especially in the early stages of the disease evolution, it can be misleading to estimate the 
real spread of the virus just on reports of hospital and general practitioner reports. Moreover, such reports vary 
according to how measurements are performed, the number of tests being related very often only to the number 
of symptomatic patients.

Despite all this, the large amount of official data published in the last months, and updated  daily4,5, has 
nourished the development of several mathematical models, which are fundamental to understand the possible 
evolution of an epidemic and to plan effective control  strategies6–15. However, due to the incompleteness of the 
data and to the intrinsic complexity of our globalized world, predicting the evolution, the peak or the end of 
the pandemic is a very difficult  challenge16,17. In this paper we propose a different approach aiming, instead, at 
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evaluating the a-priori risk of an epidemic, in particular the one caused by COVID-19. It can also result helpful 
in setting sound strategies to prevent or decrease the impact of future epidemic waves.

The COVID-19 outbreak started officially in China in January 2020, although probably the virus had been 
already circulating in the country since late October 2019 according to a recent  report18. In Italy the first infected 
Italian patient was officially detected on the night of February 20 in Codogno (Lombardia), even if a recent 
research study of Lombardia Region reveals that more than 1000 positive cases were already present (but not 
tested) in that region already in the second half of  January19 or even  before20. Moreover, at the end of January, 
a couple of Chinese tourists coming from Wuhan were hospitalized in Rome (Lazio) after the confirmation 
test of the infection. This proves that, in Italy, we have had at least two official starting points of the COVID-19 
outbreak, one in the north of Italy and one in the central  part18, thus leaving some doubts about the reasons of a 
faster diffusion of the virus in the northern regions of Italy with respect to the central ones. Then, on March 9, a 
period of strict lockdown was imposed by law in order to contain the rise of the contagion. After the end of the 

Figure 1.  (a) Color geographic maps of the apparent case fatality rate in the various regions on April 2, 2020 
and on July 14, 2020 (b), data released by the Italian Ministry of  Health4. Maps were realized with QGIS 3.10 
(https ://qgis.org/en/site/). (c) Percentage of deaths change in 2020 with respect to the average taken in the 
period 2015–2019 (ISTAT 22).

https://qgis.org/en/site/
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lockdown, at the beginning of May, Italian people were able to travel again with no restrictions: most of them 
went to south, either to go back home or for vacation. However, this reopening of the country did not change the 
different and more dramatic impact that the pandemic has continued to have on different parts of Italy. In fact, 
at the beginning of autumn 2020, when the second epidemic wave arrived in Italy, the same northern regions 
(Lombardia, Emilia Romagna, Piemonte, Veneto), which have suffered more due to the first wave, seem to be 
still the most impacted by the pandemic with respect to the central and southern regions, in terms of severe 
cases and deceased  persons5.

To go more into details of this asymmetric impact of Covid-19 on the various Italian regions, let us look at 
the official data released by the Italian Ministry of  Health4 on April 2, just before the epidemic peak, and on July 
14, at the end of the first wave in Italy. We report in Fig. 1a,b the apparent case fatality rate. It results to be quite 
high in northern Italian regions, about 10–14%, compared to the center and southern ones, where it is about 
1–4%. In general, these estimates are higher than those observed in other parts of the world, e.g., South Korea 
and Japan (1.7% and 2.6%, respectively)21. This can be explained by considering that the official data underesti-
mate the correct numbers of infected people, as shown in several recent studies. For example, in March, at least 
60% of infected individuals were asymptomatic, and usually difficult to  detect22. The testing strategies adopted 
in Italy, especially in March–April, generally consisted in checking only people showing severe symptoms and, 
in particular, aged over 65. Therefore, daily official records depend very much on the number of tests done on 
the population, resulting in a biased sample towards aged patients.

On the other hand, also the number of officially reported deaths due to Covid-19 seems to be quite under-
estimated, since many aged people have most probably died in their houses or nursing houses without having 
been tested for Covid-19. Thus, in order to have a more reliable indicator of damages caused by SARS-CoV-2, 
it is convenient to look at the excess of total mortality observed in Italy with respect to the average value of past 
five years, as reported by official data provided by ISTAT, the Italian Institute for  Statistics23, and shown here in 
Fig. 1c. The figure shows that the impact of the pandemic has been much more dramatic than it results from 
official Covid-19 data. Further, it is also clear that regions in the North of Italy have been most affected by the 
pandemic, even after the March–April lockdown.

The approach proposed in this paper can offer a possible explanation for the observed different diffusion 
and severe impact of the disease, based on a series of cofactors that differentiate the regions of Italy in various 
respects. In particular, the methodology we introduce, based on the Crichton’s  triangle24,25, evaluates the epidemic 
risk index of the various Italian regions in terms of several factors, such as air pollution, people mobility, winter 
temperature, housing concentration, health care density, population size and age, which can be quantified using 
available historical data. The rationale behind the selection of these factors, as explained in the Methods section, 
relies on the literature, on the easy accessibility of statistical spatial data and on their uneven distribution among 
the Italian regions. These factors have been then combined to construct a reliable indicator of the a-priori epi-
demic risk index in Italy, which has been compared to the impact of the current COVID-19 outbreak registered in 
two moments: one close to the epidemic peak and the other at the end of the first epidemic wave. As we will show 
hereafter, Italian regions mostly affected by the pandemic (in terms of total cases, patients in intensive care units 
(ICU) and deceased ones) are also those with the highest risk of joining a higher propensity to spread the virus 
with a greater vulnerability of the population to the damage of the disease. Furthermore, we will show that our 
epidemic risk index fits quite well also the official available data of seasonal flu in Italy for 2019–202026. Finally, 
we will propose a theoretical policy model, with actual examples, to design strategies aimed to the reduction of 
both the risk and the impact of new epidemic waves before their occurrence.

Results
Identification of the risk variables and their correlations with the COVID‑19 damages. We 
have investigated a series of factors contributing to the risk of an epidemic diffusion and its impact on the 
population. Among many possible, we selected the following variables: mobility index, housing concentration, 
healthcare density, air pollution, average winter temperature and age of population. In paragraph 1 of Methods 
section we motivate our choice on such variables (mainly based on epidemics literature and features of the 
COVID-19 outbreak), show the related data (see Table 1) and explain the adopted normalization.

The first step is, of course, to estimate to what extent the chosen normalized variables individually correlate 
with the main impact indicators of the COVID-19 epidemic, i.e., total cases and total deaths detected in each 
Italian region, cumulated up to July 14,  20204, when the first epidemic wave seemed to have finished, and the 
intensive care occupancy recorded on April 2,  20204, when the epidemic peak was reached. In the first two rows 
of Fig. 2, from panel (a) to panel (f), the spatial distributions of the six risk indicators, multiplied by the popula-
tion of each region, are reported as chromatic maps and thus can be visually compared with the analogous maps 
of the three impact indicators, panels (g), (h) and (i) in the third row. As detailed in Table 2, in paragraph 2 of 
Methods section, pairwise correlations between risk indicators are, with a few exceptions, quite weak; further-
more, in Table 3, results of the linear least squares fit of each individual risk indicator to damages are reported. 
We found correlation coefficients ranging from 0.71 to 0.96, always higher than those observed as a function of 
the population, which can be considered the null model; however, the relative quadratic errors stay quite high 
(from 0.26 to 0.62). This suggests that some opportune combination of risk indicators could better capture the 
risk associated to each region. In the next paragraph, we propose a risk assessment framework aimed to this.

Definition of a risk assessment framework and calibration with COVID‑19 data. Conventional 
risk assessment theory relies on “Crichton’s Risk Triangle”24,25, shown in panel (l) of Fig. 2. In this framework, risk 
is evaluated as a function of three components: Hazard, Exposure and Vulnerability. Hazard is the potential for 
an event to cause harm (e.g., earthquake, flooding, epidemics); Exposure measures the amount of assets exposed 
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to harm (e.g., buildings, infrastructures, population); Vulnerability is the harm proneness of assets if exposed to 
hazard events (e.g., building characteristics, drainage systems, age of population). The risk is present only when 
all of the three components co-exist in the same place. Used for the first time in the insurance  industry24, this 
approach has been extended to assess spatially distributed risks in many fields of disaster management, such as 
those related to climate change  impact27–31 and  earthquakes32.

In the present paper, we consider Hazard as the degree of diffusion of the virus over the population of an Ital-
ian region (influenced by a set of factors, related to spatial and socio-economic characteristics of the region itself); 
Exposure is the amount of people who might potentially be infected by the virus as a consequence of the Hazard 
(it should coincide with the size of the population of the region); Vulnerability is the propensity of an infected 
person to become sick or die (in general, it is strongly related to the age and pre-existing health conditions prior 
to infection). The combination of Vulnerability and Exposure provides a measure of the absolute damage (i.e., 
the number of ill people due to pathologies related to the virus in the region), which we called Consequences.

In paragraph 3 of Methods section we propose two models that differ in the way the risk indicators are 
aggregated into the three components of the Crichton’s risk triangle. In particular, we consider the E_HV model, 
where the effect of Hazard and Vulnerability are combined in a single affine function of the six indicators, and the 
E_H_V model, where Hazard and Vulnerability are considered as affine functions of, respectively, mobility index, 
housing concentration and healthcare density, on one hand, and air pollution, average winter temperature and 
age of population on the other hand (see Fig. 2 (m) for a summary). In both models the Exposure is represented 
by the population of each region. Furthermore, two versions of each model have been considered: an optimized 
one, where the weights of the risk indicators are obtained through a least-square fitting versus real COVID-19 
data, and an a-priori one, where all the weights are assumed to be equal.

As shown in Tables 4 and 5 of Methods section, models based on data fitting perform better, both in terms 
of relative mean quadratic error and correlation coefficient, as expected. In particular, the E_H_V model fits the 
best. Furthermore, in agreement with the strong correlation of the variables with the targets, most coefficients 
are positive. Indeed, all coefficients obtained by fitting the number of cases and the intensive care occupancy are 
positive, and only one negative coefficient appears in each model, when fitting the number of deceased. However, 
the numerical value of the coefficients strongly depends on both models and targets, making these models not 
very robust. On the other hand, the a-priori models are independent of the targets, depending only on the choice 
of the variables we decided to include in the risk evaluation.

Among the two considered a-priori models, where all coefficients assume the same value, we observe that the 
E_H_V model produces a smaller error with respect to real COVID-19 data and better correlation coefficients 
than the E_HV model, thus justifying the multiplicative approach which define the risk intensity in terms of 
the product between Hazard and Vulnerability (we used data at April 2, 2020 for this preliminary analysis but 
similar results would be obtained using data at July 14, 2020). Moreover, the aggregation of risk indicators in the 
three components of the E_H_V model follows better our motivations to choose those indicators (as explained 
in Methods, paragraph 1).

Validation of the a-priori E_H_V model on COVID‑19 data. Once we established the robustness of 
the a-priori E_H_V model, let us now build the corresponding regional risk ranking and validate the model 
with the regional COVID-19 data as a case study. In particular, following the scheme of Fig. 2 (m), by mul-
tiplying Exposure and Vulnerability for the k-th region, we first calculate the Consequences ( Ck = Ek · Vk , 
k = 1,…,20). Then, by multiplying Hazard and Consequences, we obtain the global risk index Rk for each region 
( Rk = Hk · Ck , k = 1,…, 20). In this respect, the risk index can be interpreted as the product of what is related to 
the occurrence of causes of the virus diffusion in a given region ( Hk ) and what is related to the severity of effects 
on people ( Ck).

In Fig. 3a we can appreciate the predictive capability of our model by looking at the a-priori risk ranking of 
the Italian regions, compared with the COVID-19  data4, in terms of total cases (cumulated), deaths (cumulated) 
and intensive care occupancy (daily, not cumulated), updated both at April 2, 2020 and July 14, 2020. The values 
of Rk have been normalized to their maximum value, so that Lombardia results to have Rk = 1. The average of Rk 
over all the regions is Rav = 0.15 and can be considered approximately a reference level for the Italian country 
(even if, of course, it has only a relative value).

As already explained, due to the intrinsic limitations of the official COVID-19 data, it is convenient to make 
the comparison at the aggregate level of groups of regions, without expecting to predict the exact rank within 
each group. Let us therefore arrange the 20 regions in four risk groups, each one characterized by a different 
color and ordered according to decreasing values of the risk index: very high risk ( 0.4 < Rk ≤ 1 , in red), high 
risk ( 0.2 < Rk ≤ 0.4 , in brown), medium risk ( 0.03 < Rk ≤ 0.2 , in beige) and low risk ( Rk ≤ 0.03 , in pink). With 
this choice, our model is clearly able to correctly identify the four northern regions where the epidemic effects 
have been far more evident, in terms of cases, deaths and intensive care occupancy: the first in the ranking, 
i.e. Lombardia (whose risk score is about three times the second classified) and the group of the three regions 
immediately after it, Veneto, Piemonte and Emilia Romagna (even if not in the exact order of damage). A quite 
good agreement can be observed also for the other two groups: only for Sardegna the effects on both total cases 
and deaths seem to have been slightly overestimated (its insularity might play a role), while for other two regions, 
Umbria and Valle d’Aosta, some impact indicators have been slightly underestimated. Notice that the proposed 
risk classification seems quite robust, since it holds both near to the peak of April and at the end of the first 
wave, in July, when the intensive care occupancy of the majority of the regions was zero. In Table 6 reported in 
Methods, a further analysis of the robustness of this classification has been performed by eliminating, one by one, 
single indicators from the risk index definition: results show that the position of some regions slightly changes 
inside each group, but the composition of the four risk groups remains for the mostly unchanged with just few 
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Figure 2.  The geographical distribution of the six risk factors (a–f) can be compared with the COVID-19 total 
cases (g), the total deaths (h) and the intensive care occupancy (i). Cases and deaths have been cumulated up 
to July 14, 2020, i.e. at the end of the first epidemic wave; the intensive care data have been recorded on April 
2, 2020, i.e. just before the epidemic peak. The risk indicators have been multiplied for the population of each 
region and normalized between 0 and 1 (the color scale for temperature has been reversed, i.e. dark colors mean 
low temperatures, see Methods). A concentration of dark colors in the northern regions is roughly visible for 
almost all the indicators and the correlations between the single factors and the damages range from 0.70 to 
0.95. Maps were realized with QGIS 3.10 (https ://qgis.org/en/site/). (l) Crichton’s Risk Triangle. (m) Risk Index 
assessment framework: risk indicators (factors) are reported in red, risk components in black.

https://qgis.org/en/site/
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exceptions worsening the agreement with the impact indicators shown in Fig. 3a. This confirms the advantage 
of including all indicators in the risk index.

The clear separation between northern regions from central and southern ones is also confirmed in the bottom 
part of Fig. 3, where the a-priori risk color map, in panel (c), is compared with the map of COVID-19 total cases 
in July, panel (b), and the map of the serious cases and deaths of the seasonal flu 2019/20 in Italy, panel (d) (ISS 
 data19). The agreement is clearly visible. In Fig. 4 we show the correlations between the a-priori risk index and 
the three main impact indicators related to the outbreak, i.e. the total number of cases (a) and the total number 
of deaths (b), cumulated up to July 14, 2020, and the intensive care occupancy (c), registered at April 2, 2020. 
For each plot, a linear regression has been performed, with Pearson correlation coefficients always taking values 
greater or equal to 0.97, indicating a strong positive correlation. On the right of each plot we report the corre-
sponding percentages of damage observed in the three Italian macro-regions—North, Center and South, see the 
geographic map (d). Also in this case the correlation is evident, if compared with the percentage of cumulated 
a-priori risk associated to the same macro-regions (e).

Another interesting way to visualize these correlations is to represent the a-priori risk index through its two 
main aggregated components, Hazard and Consequences, and plotting each region as a point of coordinates 
(Hi ,Ci) in the plane {H × C} . This Risk Diagram is reported in Fig. 5a, where the points have been also charac-
terized by the same color of the corresponding risk group of Fig. 3. It is evident that the iso-risk line described 
by the equation C = Rav/H (being Rav = 0.15 the average regional risk value) is correctly able to separate the four 
more damaged and highly risky, northern regions (plus Lazio) from all the others. The value of the risk index is 
reported in parentheses next to each region name. As shown in Fig. 5b, where the ranking of the Italian regions 
has been disaggregated for both Hazard and Consequences, it is interesting to notice that some regions (such 
as Friuli, Trentino or Valle d’Aosta) exhibit high values of Hazard and quite low values of Consequences, while 
for other regions (such as Campania or Piemonte) the opposite is true. See also the colored geographic maps in 
Fig. 5c,d for a visual comparison. This confirms that it is necessary to aggregate such two main components in 
a single global index to have a more reliable indication of the regional a-priori risk.

Let us close this paragraph by showing, in Fig. 6, three sequences of the geographic distribution of the total 
cases (a), total number of deaths (b) and current intensive care occupancy (c) as a function of time, from March 
9 to July 14, 2020. These sequences are compared with the geographic map of the a-priori risk level (the bordered 
image on the right in each sequence), the latter being independent of time. In all the plots, damages seem to 
spread over the regions with a variable intensity (expressed by the color scale) quite correctly predicted by our 
a-priori risk analysis. The intensive care occupancy map compared with the risk map is dated April 2, since the 
occupancy on July 14 is zero almost everywhere (with the exception of Lombardia and a few other regions).

In the next paragraph, the methodology proposed in this paper, and in particular this representation in 
terms of risk diagram, will be used to build a policy model aimed at mitigating damages in case of an epidemic 
outbreak similar to the COVID-19 one.

A proposal for a policy protocol to reduce the epidemic risk. We have seen how the risk can be 
thought as composed in two components, one related to the causes of the infection diffusion and the other to 
the consequences. In this paragraph we will interpret the consequences in terms of protection and required 
support to people with the goal of improving the social result and/or reducing the economic cost. It is evident 
that enhancing the capability of the healthcare system appears to be the most important action: basically, the 
insufficient carrying capacity creates the emergency. Beyond specific factors explained above, the epidemic crisis 
in Lombardia essentially showed a breakdown of its healthcare system, caused by high demand rate for hospital 
admissions, long permanence times in intensive care, insufficient health assistance (diagnosis equipment, staff, 
spaces, etc.).

Previously illustrated data provide a positive analysis of an epidemic disease (i.e., how things are, in a given 
state of the world). The normative approach here described presents a viable framework to assess possible policy 
protocols. Several variables affecting the diffusion of an infection can be looked at as suitable policy instruments 
to manage both the spreading process and the stress level to the healthcare system of a given district (such as 
a country, a region, an urban area, etc.). Following the evidence suggested by data, we propose a theoretical 
model (whose details are presented in the Methods section, paragraph 4) based on two independent variables 
influencing the level of risk, namely the infection ratio, i.e., the proportion of infected individuals over the total 
population, and the number of per capita hospital beds, as a measure of the impact of consequences caused by 
the spreading of the disease.

We adopt an approach based on a standard model of economic policy, in which a series of instruments explic-
itly affecting the infection ratio and the per capita hospital beds endowment can be used to approach the target, 
i.e., the minimization of the risk level. A similar rationale, covering other topics, can be found in Samuelson and 
 Solow33 (1960) and builds upon a widely consolidated literature which dates back in  time34–39 (among many oth-
ers). Despite the analysis concerns a collective problem, the model here proposed describes elements of a possible 
decision process followed by an individual policy-maker, thus remaining microeconomic in nature. Panel (a) in 
Fig. 7 shows the risk function, while the right panel provides an illustration of the family of its convex contours, 
for a finite set of risk levels (limited for graphic convenience):

Panel (b) in Fig. 7 replicates the meaning of Fig. 5a by translating the consequences indicated by data as the 
required per capita hospital beds, while explaining that the position of each iso-risk curve corresponds to the 
different actual composition of the scenario at hand.

We assume a unique care strategy based on the structural carrying capacity of the healthcare system, defined 
as the available number of per capita hospital beds. Such a carrying capacity derives from the health expenditure 
GH , which is set to a level considered sufficient. Such a choice is based on political decisions and is reasonably 
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inferred from past experience, structural elements of population, such as age and territorial density, etc. A part 
of the deliberated budget is dedicated to set up intensive care beds, as an advanced assistance service provision.

During an emergency, possibly deriving from an epidemic spreading, the number of beds can suddenly reveal 
insufficient. In other words, it is possible that the amount of hospital beds required at a certain point is greater 
than the current availability. In the model, we assume the number of hospital beds, H, and the proportion of 
intensive care beds, α , as exogenously determined by the policy-maker who fixes GH . The actual carrying capacity 
is shown as a function of the infection ratio, x, computed as the infected population over the total, as shown in 
panel (c) of Fig. 7, and detailed in paragraph 4 of Methods. Changes in the proportion of per capita intensive care 
hospital beds over the total, cause instead, a variation in the slope of the line (which becomes steeper for reduc-
tion in the proportion of intensive care beds). Finally, changes in the overall expenditure shift the line with the 
same slope (above for increments of the expenditure). In particular, it is worth to notice that the political choice 
of the ratio α = HH/H may imply that the overall capacity to assist the entire population is not guaranteed (i.e. 
the intercept on the x axis might be less than 1 ). A direct comparison of elements contained in panels (a-b) and 
(c-d) of Fig. 7 provides a quick inspection of the policy problem, focused to control the epidemic spreading. 
The constraint should be considered as a dynamic law, but since the speed of adjustment is reasonably low, we 
will proceed by means of a comparative statics perspective, in which a comparison of different strategies can be 
presented, by starting from different, static, scenarios.

Further, by definition, an emergency challenges the usual policy settings, since the speed of damages is 
greater than that of policy tools. In panel (e) of Fig. 7 a hypothetic country has a given carrying capacity to 
sustain the risk level represented by the iso-risk curve. Without an immediate availability of funds to increase 
the carrying capacity, the main policy target could easily be described as the transposition of the iso-risk curve 
to the bottom-left: the closer the curve to the origin, the higher the satisfaction for the community. Secondly, 
the meaning of the relationship between the curve and the line is that until the curve touches the line, the policy 
maker has a sort of measure of how much the problem is out of control, given by the distance between the curve 
and the constraint. Third, policies may try to transpose the curve to lower levels or, equivalently, the constraint 
upwards (with or without modification of the slope). A minimal result is reached if both are at least tangent, as 
depicted in panel (f) of Fig. 7.

Whenever such a tangency condition has been reached, the highest infection rate that the given health care 
system can sustain has been found. Further policy actions are possible to approach a lower iso-risk curve or to 
save resources and/or re-allocate them differently. A policy can be considered satisfactory when any of points 
belonging to the arc TT’ is reached, e.g. the point L. Alternative policies are neither equivalent, nor requiring 
the same actions, and the policy-maker has to choose actions with reference to the actual data collected by its 
own Country. Points F and G, although carrying the same risk level as E, still represent out-of-control positions. 
Different regions of the plot have a different signaling power: at point F, the infection rate is low and, thus, very 
difficult to be further reduced. In such a case, for example, it would be advisable to suggest health protocols which 
improve people safety. On the contrary, at point G, the infection rate is so high that a limit on social interaction 
easily appears to be much more urgent than medical protocols.

The right mix between a demand-side and a supply-side policy to adopt is a decision of political nature. A 
distinction can be made by saying that demand-side policies are devoted to reduce the number of newly infected 
people (by means of restrictions to movements, quarantine regulations, rules of conduct, etc.) and their effects are 
able to lower the iso-risk curves; supply-side policies are, instead, aimed at incrementing the carrying capacity of 
the system (by means of expenditure for the healthcare system, increments of dedicated personnel and intensive 
care beds, in-house medical protocols) and their effects can shift the constraint representing the carrying capac-
ity of the system. Politics has, then, to decide when the risk is low enough or the constraint is sufficiently high. 
Specific calibration of the model will allow, in a forthcoming research, a detailed analysis of policy implications, 
by considering actual conditions and risk factors of specific districts, thus providing the policy-maker with a 
toolbox for normative directions. For instance, the model can be read to analyze differences in proposed actions 
in Lombardia and Veneto, and in other regions or countries.

Discussion
We have shown how a data-driven epidemic risk analysis, accounting for a proper combination of a set of 
cofactors, can contribute to understand the highly inhomogeneous spread of COVID-19 in Italy during the 
first epidemic wave (from March 2020 to June 2020), in terms of a different a-priori risk exposure of different 
geographical areas. Regions such as Lombardia, Veneto, Piemonte and Emilia Romagna result indeed in the first 
positions of our proposed a-priori risk ranking, which consists of three main components, Hazard, Exposure 
and Vulnerability, related, directly or indirectly, to the probability of spreading of a virus and of its harming 
ability. We have evaluated these three components by using historical available data on various factors that can 
contribute to the territorial risk. Then, assuming the existing data are reliable, we compared our risk map with 
real impact indicators both close to the epidemic peak and at the end of the first epidemic wave. We are aware 
that the information about total number of cases can heavily be underestimated and is strictly dependent on 
the testing strategies. For this reason we also adopted for the comparison the total number of deaths and the 
intensive care occupancy. In all the cases we were able to correctly identify four groups of regions where the 
observed epidemic effects match with the a-priori risk level.

In the second part of the paper we then advanced a theoretical policy model that provides a decision-making 
toolbox to face a complex phenomenon as that of an epidemic emergency. In what follows, we provide an exam-
ple illustrating the application of the model, following the steps of its practical implementation. A policy maker 
facing an emergency outbreak, should:
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Figure 3.  (a) A-priori normalized risk ranking of Italian regions, emerging from our analysis of risk indicators, 
compared with the corresponding total cases, deaths and intensive care occupancy updated, respectively, at April 
2, 2020 (just before the epidemic peak) and at July 14, 2020 (at the end of the first wave). Regions are organized 
in four risk groups, corresponding to different colors: very high, high, medium and low risk. The agreement with 
the observed effects Data referring to overestimations or underestimations of risk are also colored in green and 
red, respectively. (b–d) Comparison between the spatial distribution of COVID-19 total cases at July 14, 2020 
(b), the most struck regions (in terms of severe cases and deaths) from 2019–2020 seasonal flu (d) according to 
the ISS  data19 and our a-priori risk map (c). The geographical correlation with the risk map is evident for both 
kind of epidemic flus. Maps were realized with QGIS 3.10 (https ://qgis.org/en/site/).

https://qgis.org/en/site/
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STEP 1) Detect the current Risk Profile:

1.a) compute the infection ratio over the population, x;
1.b) measure the demand for hospital beds, b;

STEP 2) Measure the current Carrying Capacity of the healthcare system (supply of hospital beds), z;
STEP 3) Check the sustainability of the epidemic burden and assess costs of possible interventions;
STEP 4) Apply the chosen policy;
STEP 5) Evaluate results and, if necessary, repeat.

In order to see the procedure in action, let us now go through a numerical example with hypothetical data, 
which can be easily substituted with actual data of any country/region, if available.

Imagine a district with a population of 10,000 people, invested by a pandemic without a known therapy. 
Assume, further, that the healthcare system has 2500 hospital beds (that is a very conspicuous endowment), 
among which 1000 are intensive care ones. Consider a first case in which 1500 persons are infected and 1200 
of them present symptoms and need hospital treatments. Thus, in terms of our theoretical model presented in 
Methods, values are set as: n = 10,000, H = 2500, HH = 1000; then, α = 0.4, h = 0.6 and  zH = 0.25.

Figure 4.  The three main impact indicators for COVID-19—the total number of cases (a) and the total 
number of deaths (b) cumulated up to July 14,  20204, and the intensive care occupancy (c) at April 2,  20204—are 
reported as function of the a-priori risk index for all the Italian regions. The size of the points is proportional to 
the risk index score. A linear regression has been performed for each plot. The Pearson correlation coefficients 
are very good, always greater or equal than 0.97. The corresponding percentages of damages, aggregated for the 
three Italian macro-regions (North, Center and South (d)) are also reported to the right and can be compared 
with the percentages of cumulated a-priori risk (e). It is clear that our a-priori risk index is able to explain the 
anomalous damage discrepancies between these different parts of Italy. Maps were realized with QGIS 3.10 
(https ://qgis.org/en/site/).

https://qgis.org/en/site/
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Figure 5.  (a) Risk Diagram. Each region is represented as a point in the plane {H × C} while the color is 
proportional to the corresponding risk group updated at July 14, 2020 (see Fig. 3a). The most damaged regions 
lie with a good approximation above the C =  Rav/H hyperbole (i.e. the iso-risk line related to the average regional 
risk index), while the less damaged ones lie below this line. The a-priori risk index score is also reported for each 
region. (b) The rankings of Italian regions according to either Hazard (on the left) or Consequences (on the 
right). The corresponding colored geographic maps are also shown in panels (c) and (d) for comparison. Maps 
were realized with QGIS 3.10 (https ://qgis.org/en/site/).

https://qgis.org/en/site/
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STEP 1) The infection ratio results, currently, to be equal to x = 1500/10,000 = 0.15 and the evidence suggests 
that, over the infected part of the population, 80% requires hospital treatments. Therefore, the actual estimate of 
the absorbed allowance (the demand of per capita hospital beds) is b = 1200/10,000 = 0.12. The point representing 
the country risk profile in the proposed plane hazard-consequences would, then, have coordinates (0.15, 0.12), 
as the point A in panel g) of Fig. 7.

STEP 2) The line representing the carrying capacity of the healthcare system intercepts the vertical axis to the 
point  zH = 0.25 and its slope is h = (1−α) = 1–1000/2500 = 0.6, as the black line depicted in panel g) of Fig. 7. It is 
worth to notice that, in this example, the healthcare system would not be able to handle infection ratios greater 
than 41.6%, as shown by the intercept on the horizontal axis.

STEP 3) The policy maker can see that point A can be managed by means of the current carrying capacity: 
it lies below the line representing the constraint. Despite this apparently encouraging result, what comes next 
might depend on the speed of the epidemic spreading. This model is, however, not dynamic; it uses instead a 
comparative static approach. Let us therefore consider two hypotheses. In case the contagion is not proceeding 
by involving a greater share of the population, the policy maker can reasonably decide to do nothing. Contrari-
wise, in case of a situation where the contagion is still in the ascending phase, the policy maker can (i) compare 
the pace of epidemic progression, (ii) measure the time remained before the free allowance will be used and (iii) 
decide, correspondingly, whether it is the case to intervene or not. In case the choice is “do nothing”, STEP 4) 
and STEP 5) are not necessary.

Figure 6.  The geographic distributions of damage in the various Italian regions—cumulated total cases (a), 
cumulated total deaths (b) and daily intensive care occupancy (c)—are reported as function of time, from 
March 9, 2020 to July 14, 2020 and compared with the geographic distribution of the a-priori risk. Obviously, 
the intensive care occupancy to compare with the risk map is that of April, since in July, at the end the epidemic 
wave, this variable is zero everywhere except for a few regions (among which only Lombardia has a score slightly 
higher than 25). Maps were realized with QGIS 3.10 (https ://qgis.org/en/site/).

https://qgis.org/en/site/
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Consider now a different example, in the same district as before, in which the contagion has reached 3000 
persons and 2500 of them need hospital treatments. In this case, the algorithm would lead to:

STEP 1) The infection ratio results to be equal to x = 3000/10,000 = 0.3 and the actual estimate of the absorbed 
allowance (the demand of per capita hospital beds) is b = 2500/10,000 = 0.25. The point representing the 
country risk profile in the proposed plane hazard-consequences has, now, coordinates (0.3, 0.25), as the 
point B in panel g) of Fig. 7, reported also in panel h).

Figure 7.  (a,b) The Risk function and its convex contours: an example for R = x0.5b0.5 . (c,d) The carrying 
capacity function and effects of policy interventions on the supply-side. (e,f) Comparative statics of equilibrium 
and disequilibrium. (g,h) Two examples of model implementation, see the main text.
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STEP 2) The line representing the carrying capacity of the healthcare system is the same as before, reported as 
the black line in panel g) and h) of Fig. 7.

STEP 3) The policy maker can immediately understand that the situation is out of control, since the constraint 
says that the healthcare system is able to allocate no more than z = 0.07 per-capita beds if the infection rate 
reaches x = 0.3, while the situation in progress requires b = 0.25 per-capita beds. This can be easily seen by 
comparing point B and the point on the constraint with the same abscissa of B. Since b > z, the policy maker 
has to decide what to do in order to satisfy the excess demand. Moreover, the situation could in principle 
represent a further element of diffusion of the epidemic, thus making the policy intervention more urgent. 
Different strategies are possible and, also in this case, the speed of contagion spreading matters in tuning 
opportune actions.

3.a) If, for example, the progression of the disease is decreasing or even constant, a viable decision is to allo-
cate resources to fill the gap in terms of hospital beds. Consequently, the expenditure will be incremented 
by ΔH, represented by a parallel shift upwards of the constraint, as the dashed line passing through point 
B. It is worth to notice that, in principle, the deliberated expenditure could also exceed the required gap 
and set the constraint to higher allowance.

3.b) If, instead, the progression of the disease is increasing, the policy maker could decide to modify also 
the proportion of intensive care beds (α), in order to face the probable growth of infected persons. This 
would make the constraint line flatter, while new expenditure will also be required to shift it upward to 
reach, at least, point B, as the dotted line passing through it.

3.c) Under both 3.a and 3.b, the policy maker can comparatively consider restrictive interventions aimed 
to reduce the infection ratio, while deciding the expenditure to expand the endowment of hospital 
beds. Examples of such restrictive policies could be a forced closure of restaurants, gyms and cinemas. 
Such interventions would have the effect to shift the point B to the bottom-left, thus associating infec-
tion ratios with lower per capita beds requirements. Then, the cost of additive hospital beds has to be 
compared to social cost of restrictions, in terms of tax revenues, required subsidies, unemployment and 
social uncertainty. The political preference and the availability of budget funds will guide the choice. 
Consider that the effectiveness of such restrictive initiatives is estimated according to the presumed 
knowledge of the social custom in the district at hand. In the example, a society where restaurant con-
sumptions are very frequent is very likely to respond well to a restriction of this type.

  It is worth to notice that such choices, i.e., the amount of governmental expenditure in the healthcare 
system (influencing the vertical distance between the new and the former linear constraint), the details of 
the regulation imposing the restrictions, etc., are of political nature and cannot be decided by the model. 
They will be tailored according to political preferences of the policy maker.

STEP 4) The chosen policy is applied and the consequences are measured, while the spreading continues at its 
pace. Evaluation and new measurements occur and the process starts again (STEP 5).

While preserving simplicity, the model is able to depict various scenarios according to actual data and can 
help designing policy strategies fitting the situation at hand. In particular, elements of the model can be depicted 
by importing data of a district (i.e., a region, a country, etc.) and follow the presented algorithm to tailor the 
most adequate policy. As explained above, the political preference will guide the decision, in terms of the chosen 
expenditure profile (i.e., whether to change H only or also α), and in terms of possible restrictions for society, 
as different lockdown strategies (e.g., more drastic but specific vs. more gradual but generalized). In all cases, 
the forced closure of socio-economic activities will serve as an ancillary tool aimed to support a potentially 
insufficient endowment of hospital beds, but the actual implementation relies on the ability and preference of 
the Government.

In conclusion, our work is a first attempt to jointly consider different factors contributing to evaluate the 
a-priori epidemic risk in a geographical area. Better medical knowledge and data availability will be important 
to further refine and improve the proposed methodology, which could also be easily applied to other countries 
provided that they make the necessary information accessible. Further studies will deal also with dynamic impli-
cations, thus providing more specific intuitions according to different evolutionary paths of contagion spreading.

Methods
Synthetic description of the risk indicators, population and data sources. This paragraph pre-
sents all the indicators we used, their rationale and the set of references supporting their selection. Table  1 
reports the data used for each region, their definition, unit of measure and relevant source. We included in the 
a-priori risk index only territorial or environmental factors unevenly distributed among the regions, easily avail-
able on national databases.

Mobility index Commuting data are often used to correlate population mobility and the spreading of an 
 infection40. On the other hand, many recently published papers have monitored to what extent people are 
complying to issued travel  restrictions41 and if they are proofing to be effective in the reduction of the Covid-19 
epidemic  spreading42. According to available data, the average trip rate of mobile population in Italy is 2.50 per 
day and the average distance covered is 28.5 km per  day43. We characterize each region with a “mobility index” 
as the regional average of the ratio between the sum of commuting flows (incoming and outgoing) for each 
municipality and its employed population. The data source is the Italian Ministry of Economic Policy Planning 
and  Coordination44. Housing concentration Urbanization increasingly affects the epidemiological characteristics 
of infectious  disease45,46. Close proximity of people in their short range mobility and the attitude to use crowded 
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public transport is amplified in compact and dense  cities47. We capture those circumstances by the “Housing 
Concentration”, measured as the ratio between the number of houses classified as "non detached houses" and 
the total number of houses. The data source is the same database cited for the mobility index. Healthcare density 
Delayed hospital admission, misdiagnosis, unsuitable air conditioning systems, lack of infected patients segrega-
tion and inter-hospitals transfers, all might contribute in what it is commonly called super-spreading  event48. 
It is worthwhile to notice that super-spreading events can occur in many situations where overcrowding in 
closed spaces favour the transmission of the infection. Nevertheless, our intention was to include in the a-priori 
risk index only territorial or environmental factors unevenly distributed among the regions, easily available on 
national databases. We measure the potential occurrence of this events in the infection spreading by including 
the “Healthcare Density” as the number of hospital beds per 10.000 inhabitants at regional level. Data source is 
the website of the Ministry of Health (http://www.dati.salut e.gov.it/dati/detta glioD atase t.jsp?menu=dati&idPag 
=17). Pollution Long-term exposure to air pollution may be one of the most important contributors to fatality 
caused by the COVID-19 in  Europe49 and in northern  Italy4. Particulate matter (PM) is able to penetrate deeply 
into the respiratory tract and increase the risk of respiratory  diseases50. According to the European Environment 
Agency (EEA Report No 10/2019), PM concentration in 2016 were responsible for about 374.000 premature 
deaths in the EU-28. Recently has been evidenced that PM10 determines a hyperactivation of JAK/STAT pro-
tein family that is associated with cells proliferation and  survival51. JAK/STAT is also hyperactivated by several 
cytokines generated during the Covid-19  infection5. For these reasons a strengthening mechanism between PM10 
and Covid-19 infection could be assumed. Besides, very recent studies are directly correlating the population 
exposed to particulate pollution and the contagion from COVID-19 and the consequent health  damage52–54. 
Based on these premises, we decided to include the PM10 annual average of the mean daily concentration as a 
factor influencing the vulnerability of people exposed to the infection. The data source is WHO (https ://www.
who.int/airpo lluti on/data/citie s/en/), that provides measures at urban background, residential areas, commercial 
and mixed areas for the period 2013–2016. Temperature Weather plays a role in the spread of 2019-nCoV55–57, 
although not fully established.  Chan58 et al. (2011) report that a low temperature and low humidity environment 
may facilitate the virus transmission in subtropical areas during the spring and in air-conditioned environments. 
It is also commonly accepted that cold cuts down the defense barriers of the respiratory  tracts59,60. We decided 
to include the average winter (from December 2016 to April 2017) daily mean temperature in each region as a 
factor potentially enhancing the individual vulnerability. The source of data is the Italian Ministry of Agriculture 
(https ://www.polit ichea grico le.it/). Age of population Most of the official data sources report more severe impacts 

Table 1.  The risk indicators original data are reported for each Italian region, together with their sources.

Indicator Mobility index
Housing 
concentration Healthcare density Pollution Temperature Age of population Population

Data source www.urban index .it www.urban index .it www.dati.salut 
e.gov.it

www.who.int/airpo 
lluti on/data/citie s/en

www.polit ichea 
grico le.it

www.istat .it/it/archi 
vio/10431 7

www.istat .it/it/archi 
vio/10431 7

Definition
Ratio between com-
muting flows and 
employed population

Ratio between the 
number of "non 
detached houses" 
and the total number 
of houses

Number of hospital 
beds per 10.000 
inhabitants

Annual average of 
PM10 daily mean 
concentration

Average winter daily 
mean temperature 
(from 12/2016 to 
04/2017)

Ratio between over 
60 population and 
total population

Total residents living 
in the region

Region Dimensionless Dimensionless # beds/inhab. (’0000) mg/m3 °C Dimensionless Inhabitans

Abruzzo 0.752 0.871 33.8 24.3 5.4 0.281 1.307.309

Basilicata 0.738 0.869 32.2 18.7 8.4 0.267 578.036

Calabria 0.775 0.917 29.6 22.9 10.5 0.252 1.959.050

Campania 0.762 0.863 31.2 31.1 8.5 0.222 5.766.810

Emilia-Romagna 0.823 0.851 40.1 24.8 5.7 0.293 4.342.135

Friuli-Venezia 
Giulia 0.823 0.952 35.7 21.9 4.0 0.308 1.218.985

Lazio 0.793 0.834 37.8 25.3 7.7 0.265 5.502.886

Liguria 0.788 0.903 36.4 20.7 6.8 0.344 1.570.694

Lombardia 0.844 0.961 38.9 29.5 3.6 0.271 9.704.151

Marche 0.801 0.795 33.9 23.9 6.6 0.292 1.541.319

Molise 0.735 0.871 39.2 18.9 7.1 0.287 313.660

Piemonte 0.799 0.862 38.1 26.3 2.5 0.303 4.363.916

Puglia 0.767 0.950 31.0 23.2 9.6 0.253 4.052.566

Sardegna 0.767 0.962 35.3 22.4 10.7 0.266 1.639.362

Sicilia 0.794 0.942 31.6 21.7 11.9 0.250 5.002.904

Toscana 0.815 0.857 32.7 22.7 7.2 0.306 3.672.202

Trentino-Alto Adige 0.807 0.888 40.8 18.1  − 1.0 0.247 1.029.475

Umbria 0.795 0.805 37.0 22.2 6.4 0.303 884.268

Valle d’Aosta 0.805 0.919 38.6 21.4  − 2.3 0.279 126.806

Veneto 0.838 0.884 36.1 27.6 4.3 0.268 4.857.210

http://www.dati.salute.gov.it/dati/dettaglioDataset.jsp?menu=dati&idPag=17
http://www.dati.salute.gov.it/dati/dettaglioDataset.jsp?menu=dati&idPag=17
https://www.who.int/airpollution/data/cities/en/
https://www.who.int/airpollution/data/cities/en/
https://www.politicheagricole.it/
http://www.urbanindex.it
http://www.urbanindex.it
http://www.dati.salute.gov.it
http://www.dati.salute.gov.it
http://www.who.int/airpollution/data/cities/en
http://www.who.int/airpollution/data/cities/en
http://www.politicheagricole.it
http://www.politicheagricole.it
http://www.istat.it/it/archivio/104317
http://www.istat.it/it/archivio/104317
http://www.istat.it/it/archivio/104317
http://www.istat.it/it/archivio/104317
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of 2019-nCoV on elderly people, probably both for an intrinsic weakness of their immunity system and for the 
co-existence of other chronic pathologies. Therefore we use the ratio between the population over 60 and the 
total population to take into account this vulnerability factor, even if it shows only relatively small differences 
from one region to another. Data source is the same as population, i.e. ISTAT database (www.istat .it/it/archi 
vio/10431 7). Population Of course, as anyone who is infected might get ill, it is straightforward to use the total 
population of each region that could be affected by the infection as a measure of the risk exposure. We also use 
the population as a multiplying factor of each risk indicator when measuring its degree of correlation to the 
damage of each region (see first paragraph in the Results section). About 43% of the population is concentrated 
in the five regions of Northern Italy and one out of six in Lombardia. Data on regional population are available 
on ISTAT database (www.istat .it/it/archi vio/10431 7).

Comparison between single risk indicators and impact indicators. The seven risk indicators under 
consideration are named below, together with their reference interval:

Population  X0 ∈ [126806, 9704151].
Mobility index  X1 ∈ [0.74, 0.84].
Housing concentration  X2 ∈ [0.80, 0.96].
Healthcare density  X3 ∈ [29.6, 40.80].
Air Pollution  X4 ∈ [18.09, 31.07].
Average Winter Temperature  X5 ∈ [− 2.29, 11.92].
Age of Population (fraction of over-60 individuals)  X6 ∈ [0.22, 0.34].

These variables are suitably normalized between 0 and 1 as:

where min(Xi) and max(Xi) are, respectively, the minimum and the maximum value assumed by each variable 
Xi in its own reference interval. The new normalized variables are also dimensionless.

Notice that the normalization is different for the population, since we want to avoid values equal to zero, 
and for the temperature, since, at variance with all other quantities, we expect that the risk increases with the 
decrease of the temperature.

The first test is to check possible pairwise correlations among normalized indicators, with the exception of the 
population (whose correlation with many other indicators is quite obvious). The Pearson correlation coefficient 
is reported for each couple in the correlation matrix, see Table 2.

As one can see, the majority of the indicators are weakly correlated. Noticeable exceptions concern the moder-
ate positive correlations of some indicators, such as mobility and healthcare, with the inverted temperature. These 
can be explained by observing that northern Italian regions are, on average, colder and with greater mobility and 
healthcare density than central and southern regions.

The second thing is to check if any of the six risk indicators, x1, . . . , x6 , each considered separately, can fit 
any of the targets Tl , l = 1, 2, 3 , i.e. our three impact indicators: cumulative number of cases, cumulative number 
of deceased and number of hospitalized in intensive care at April 2, 2020. For each variable xi , i = 1, . . . , 6, we 
consider a risk Ri,l = x0 ∗ αi,l ∗ xi , and each αi,l is determined by matching the target Tl in the least square sense.

In particular, we perform a linear least square fit, minimizing the following quadratic error:

for the i-th risk indicator with respect to the l-th impact indicator. In this expression n = 20 is the number of 
regions and Tlk denotes the impact indicator ( l = 1, total cases, l = 2 , number of deceased, l = 3 , intensive care 
occupancy) for region k.

The relative mean quadratic error is defined as

x0 =
X0

max(X0)
; xi =

Xi −min(Xi)

max(Xi)−min(Xi)
, i = 1, 2, 3, 4, 6, x5 =

max(X5)− X5

max(X5)−min(X5)

ǫ2il =

n
∑

k=1

(

Tlk − Ri,l
)2

Table 2.  Pearson correlation coefficients among the indicators x1, . . . , x6.

Mobility index
Housing 
concentration

Healthcare 
density Air pollution

Inverted 
temperature

Over 60 
concentration

Mobility index 1.0000 0.0820 0.4064 0.3505 0.4640 0.2337

Housing concen-
tration 0.0820 1.0000  − 0.1356  − 0.0510  − 0.0737  − 0.2119

Healthcare density 0.4064  − 0.1356 1.0000  − 0.0935 0.6998 0.3389

Air pollution 0.3505  − 0.0510  − 0.0935 1.0000  − 0.0405  − 0.2527

Inverted tempera-
ture 0.4640  − 0.0737 0.6998  − 0.0405 1.0000 0.2183

Over 60 concentra-
tion 0.2337  − 0.2119 0.3389  − 0.2527 0.2183 1.0000

http://www.istat.it/it/archivio/104317
http://www.istat.it/it/archivio/104317
http://www.istat.it/it/archivio/104317
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The result is summarized in Table 3. It appears that each single parameter correlates with all three targets 
(respectively number of cases, deceased and hospitalized in intensive care) well above the obvious correlation 
coefficient of the population, shown in the first column, however the correlation are not strikingly high, and the 
mean quadratic error is not so small.

Definition of the Risk Index and comparison among some models. The goal of this paragraph is to 
choose the best model of aggregation of the risk indicators presented before in the framework of the Crichton’s 
Risk Triangle (see Results section). We observe that, in any model of this kind, the risk has to be necessarily 
proportional to the exposure, represented by the population. Therefore, we will assume that the risk R is given by 
the product of Exposure E times a given function FHV of the other parameters, related with Hazard and Vulner-
ability:

ε2il =
ǫ2il

∑n
k=1 T

2
kl

.

Table 3.  Relative mean quadratic error and correlation coefficient of single parameters.

Only 
population Mobility index

Housing 
concentr

Healthcare 
density Air pollution

Average winter 
temp

Fraction 
over 60

Relative quadratic error

Cases 0.606 0.350 0.508 0.371 0.527 0.358 0.565

Deceased 0.715 0.505 0.555 0.516 0.616 0.523 0.700

Intensive care 0.533 0.298 0.481 0.335 0.480 0.257 0.471

Correlation coefficient

Cases 0.750 0.927 0.814 0.912 0.795 0.924 0.787

Deceased 0.700 0.874 0.830 0.860 0.763 0.862 0.706

Intensive care 0.780 0.934 0.811 0.914 0.813 0.954 0.837

Table 4.  Relative average quadratic error and correlation coefficients for E_HV and E_H_V models, for both 
the versions with data fitting and with a-priori coefficients.

E_HV with data fit E_HV a-priori E_H_V with data fit E_H_V a-priori

Relative quadratic error

Cases 0.15337 0.35737 0.13909 0.18283

Deceased 0.19584 0.50521 0.16712 0.33841

Intensive care 0.12579 0.28044 0.12025 0.15106

Correlation coefficient

Cases 0.98448 0.93505 0.98719 0.97991

Deceased 0.97767 0.89278 0.98387 0.95089

Intensive care 0.98823 0.94922 0.98923 0.98335

Table 5.  Normalized coefficients αi , i = 1, . . . , 6 of both E_HV and E_V_H models, in the versions computed 
by fitting the data (1.a and 2.a). Most coefficients are positive, however their numerical value strongly depends 
on the model and on the fitted data.

Mobility index Housing concentr Healthcare density Air pollution Average winter temp Fraction over 60

α1 α2 α3 α4 α5 α6

E_HV

Cases 0.19650 0.29255 0.24843 0.06419 0.34052 0.33643

Deceased 0.03966 0.32144 0.26030  − 0.18589 0.31125 0.37612

Intensive care 0.11338 0.26399 0.06936 0.35980 0.48352 0.28330

E_H_V

Cases 0.32702 0.32792 0.34506 0.27325 0.47767 0.24908

Deceased  − 0.10150 0.48994 0.40856 0.16334 0.29603 0.54063

Intensive care 0.26213 0.55156 0.18631 0.38991 0.45037 0.15972
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We propose and compare the following models, in order to understand which one is most suited for a robust 
risk evaluation.

1) E_HV Linear Model Here the effect of Hazard and Vulnerability are combined in a single affine function of 
the parameters. We assume a dependence of the risk of the form:

  The coefficients cHV ,α1, . . . ,α6 , in turn can be:

a) obtained by a least square fitting;
b) assigned a-priori with cHV = 0 and all the αi , i = 1, . . . , 6 , assumed to be equal.

2) E_H_V Multiplicative Model Here, Hazard and Vulnerability are considered as affine functions of, respec-
tively, x1, x2, x3 and x4, x5, x6 . We assume that FHV is the product of Hazard and Vulnerability, i.e.:

R = (E ∗ FHV )

RE_HV = E ∗ FHV

E = x0; FHV = cHV + α1x1 + · · · + α6x6

(1)RE_H_V = E ∗ FHV = E ∗H ∗ V ,

Table 6.  Robustness of the a-priori risk ranking, shown in Fig. 3a of the main text, under elimination of single 
indicators from the risk index definition. The composition of the four risk groups seems to remain mostly 
unchanged. The few regions that change group have been colored in red. Notice that all these small changes 
worsen the group composition, in terms of the comparison with the impact indicators shown in Fig. 3a. Only 
the elimination of the over-60 indicator leaves the groups composition unchanged, probably due to the fact that 
the fraction of over 60 individuals shows only small fluctuations going from one region to another (see Table 1).

All indicators No mobility No housing No healthcare No pollu�on No temp No over 60

Lombardia Lombardia Lombardia Lombardia Lombardia Lombardia Lombardia

Veneto Piemonte Veneto Veneto Piemonte Veneto Veneto

Piemonte Veneto Piemonte Piemonte Emilia-Romagna Piemonte Piemonte

Emilia-Romagna Emilia-Romagna Emilia-Romagna Emilia-Romagna Veneto Emilia-Romagna Emilia-Romagna

Lazio Lazio Lazio Toscana Lazio Lazio Lazio

Toscana Campania Toscana Lazio Toscana Toscana Campania

Campania Puglia Campania Campania Liguria Campania Toscana

Puglia Toscana Liguria Puglia Friuli-Venezia Giulia Sicilia Puglia

Friuli-Venezia Giulia Liguria Friuli-Venezia Giulia Sicilia Tren�no-Alto Adige Puglia Friuli-Venezia Giulia

Liguria Friuli-Venezia Giulia Marche Friuli-Venezia Giulia Puglia Liguria Sicilia

Sicilia Sicilia Tren�no-Alto Adige Liguria Sicilia Friuli-Venezia Giulia Tren�no-Alto Adige

Tren�no-Alto Adige Sardegna Sicilia Sardegna Marche Sardegna Liguria

Marche Tren�no-Alto Adige Umbria Calabria Sardegna Marche Marche

Abruzzo Abruzzo Puglia Tren�no-Alto Adige Abruzzo Calabria Sardegna

Sardegna Calabria Sardegna Marche Umbria Abruzzo Abruzzo

Calabria Umbria Abruzzo Abruzzo Campania Umbria Calabria

Umbria Marche Calabria Umbria Calabria Tren�no-Alto Adige Umbria

Valle d'Aosta Molise Valle d'Aosta Valle d'Aosta Valle d'Aosta Molise Valle d'Aosta

Molise Valle d'Aosta Molise Basilicata Molise Valle d'Aosta Molise

Basilicata Basilicata Basilicata Molise Basilicata Basilicata Basilicata
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  Again, cH , cV ,α0, . . . ,α6 can be:

a) obtained by a least square fitting;
b) assigned a priori, by setting cH = 0, cV = 0, and with all the αi , i = 1, . . . , 6, assumed to be equal.

As before, we shall compare these four models (1.a, 1.b, 2.a and 2.b) versus the three types of targets avail-
able, Tl(l = 1, 2, 3 ), represented by our impact indicators: cumulative number of cases, cumulative number of 
deceased or number of hospitalized in intensive care, all registered at April 2, 2020. In particular, for models 1.b 
and 2.b we adopt a linear least square fit, while, for determining the optimal parameters of models 1.a and 2.a 
we perform a nonlinear least square best-fit, by trying to fit the total number of cases in each region up to April 
2, 2020. Since in the E_H_V model the dependence of the risk on E,H and V is multiplicative, we may add two 
normalization conditions in order to avoid infinite solutions, for example:

For all the models, we minimize the error:

with respect to the parameters. In this expression n = 20 is the number of regions, Tlk denotes the impact indica-
tor ( l = 1, total cases, l = 2 , number of deceased, l = 3 , intensive care occupancy) for region k , Ek indicates the 
population of region k, and the function FHV depends on the model considered. The relative mean quadratic 
error ε is defined as

The non-linear fit is obtained by minimizing the error function by using the Levenberg–Marquardt algorithm 
of Matlab® (Optimization Toolbox™). Results of the best-fit with the four models are summarized in Table 4, while 
α coefficients of the fitting parameters, normalized so that the sum of their absolute value is 2, are reported in 
Table 5 for both E_HV (1.a) and E_H_V (2.a) models. Finally, in Table 6, a stability analysis of the risk ranking 
of the Italian regions obtained with the E_H_V a-priori model (1), performed by eliminating each one of the six 
risk indicators, x1, . . . , x6 in turn.

The theoretical model for policy assessment. We propose a theoretical framework to discuss the pol-
icy problem. The risk of a community has been described above as depending on several components. We now 
adopt a simplification and consider the whole set of possible elements reconciled on two aspects, namely the 
proportion of infected individuals over the total population, which we call here infection ratio, x , and the impact 
of consequences caused by the spreading of the disease, measured as the number of per capita hospital beds, b , 
required by the emergency situation. Without loss of generality, we assume, for the sake of simplicity, that the 
above-explained negative role played by hospitals as contagion spreading factors, can be neglected here. Thus, 
define such a simplified notion of risk as R : (0, 1)× R → (0, 1) be a C2 function, determined by x ∈ (0, 1) and 
b ∈ R , i.e., R = f (x, b) . Consistently with previous analysis, we assume that ∂R

∂x > 0 , ∂R
∂b > 0 and since, the level 

of risk is subject to saturation, ∂
2R
∂x2

< 0 , ∂
2R
∂b2

< 0.

The level of risk is the target variable that the policy-maker tries to minimize, given the constraint consti-
tuted by the current carrying capacity, i.e., the endowment of hospital beds (H) financed by the expenditure in 
the healthcare system GH . In principle, it may be considered as a dynamic variable, but we will proceed with a 
comparative-static analysis, by presenting policy intuitions from different initial configurations. Thus, the con-
straint is the result of the political orientation of the Government. In particular, let the part of the global allow-
ance dedicated to intensive care beds, HH , be the sole remedy to the epidemy and define HH = αH ,α ∈ (0, 1) . 
The current carrying capacity of the healthcare system, i.e. the available number of hospital beds, is the function 
Z : (0, 1)2 × N× R → (0, 1) , defined as Z = H − hxn , where h = (1− α) and n is the population of the district 
under consideration. In per capita terms, it can be rewritten as z = zH − hx , with z = Z/n and zH = H/n . 
Within a comparative statics perspective, for any given couple (H ,α) we can consider a reduced form of the 
carrying capacity constraint, depending on the infection diffusion rate as a negatively sloped line in the plane 
(infection ratio, hospital beds), where also the convex contours of the risk function can be considered. It is worth 
to notice that the model refers to the variable hospital beds in both demand, b , and supply, z , terms. All in all, 
the proposed framework matches required and available beds per infection ratio. Policies may try to affect x and 

(2)E = α0x0,

(3)H = cH + α1x1 + α2x2 + α3x3,

(4)V = cV + α4x4 + α5x5 + α6x6.

(5)α1 + α2 + α3 = 1,

(6)α4 + α5 + α6 = 1.

ε2l =

n
∑

k=1

(

Tlk − Ek ∗ FHV

(

x
(k)
1 , . . . , x

(k)
6 ; params

))2

ε2l =
ε2l

∑n
k=1 T

2
kl

.
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can effectively tune z , by adjusting α and GH , in such a way that the exploitation of available resources allows the 
minimization of b , at least, a tangency point between the capacity constraint and the risk level. The model assumes 
that the intensive care is the sole remedy to the epidemy. The fact that other effective protocols exists may have an 
effect on the slope of the linear constraint that represents the current carrying capacity of the healthcare system. 
In case other protocols exist, the model operates as described, but the line is translated downwards, other things 
being equal. In effect, other therapies or remedies would operate as an alternative to hospital beds, thus making 
the constraint less binding, i.e., reducing the needed allowance to face a given infection ratio.
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