Downloaded 04/14/15 to 146.83.7.27. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

SIAM J. Sci. COMPUT. (© 2015 Society for Industrial and Applied Mathematics
Vol. 37, No. 2, pp. B305-B331

LINEARLY IMPLICIT IMEX RUNGE-KUTTA METHODS FOR A
CLASS OF DEGENERATE CONVECTION-DIFFUSION PROBLEMS*

SEBASTIANO BOSCARINO', RAIMUND BURGER}, PEP MULET$, GIOVANNI RUSSOT,
AND LUIS M. VILLADAY

Abstract. Multispecies kinematic flow models with strongly degenerate diffusive corrections give
rise to systems of nonlinear convection-diffusion equations of arbitrary size. Applications of these
systems include models of polydisperse sedimentation and multiclass traffic flow. Implicit-explicit
(IMEX) Runge-Kutta (RK) methods are suitable for the solution of these convection-diffusion prob-
lems since the stability restrictions, coming from the explicitly treated convective part, are much less
severe than those that would be deduced from an explicit treatment of the diffusive term. These
schemes usually combine an explicit RK scheme for the time integration of the convective part with
a diagonally implicit one for the diffusive part. In [R. Biirger, P. Mulet, and L. M. Villada, SIAM
J. Sci. Comput., 35 (2013), pp. B751-B777] a scheme of this type is proposed, where the nonlinear
and nonsmooth systems of algebraic equations arising in the implicit treatment of the degenerate
diffusive part are solved by smoothing of the diffusion coefficients combined with a Newton-Raphson
method with line search. This nonlinearly implicit method is robust but associated with considerable
effort of implementation and possibly CPU time. To overcome these shortcomings while keeping the
advantageous stability properties of IMEX-RK methods, a second variant of these methods is pro-
posed in which the diffusion terms are discretized in a way that more carefully distinguishes between
stiff and nonstiff dependence, such that in each time step only a linear system needs to be solved still
maintaining high order accuracy in time, which makes these methods much simpler to implement. In
a series of examples of polydisperse sedimentation and multiclass traffic flow, it is demonstrated that
these new linearly implicit IMEX-RK schemes approximate the same solutions as the nonlinearly
implicit versions, and in many cases these schemes are more efficient.
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1. Introduction.

1.1. Scope. This paper is concerned with numerical methods for systems of
nonlinear convection-diffusion equations of the type

(1.1) 0D + 0, F(B) = 0, (B(9)0,P),

where ® = (¢1,...,6x)7T is the desired solution as a function of spatial position
and time t, f(®) = (fi(®),..., fnv(®))T is a vector of flux density functions, and
B(®) is a given N x N matrix function expressing a diffusive correction, where we
allow that B(®) = 0 on a set of nonzero N-dimensional measure, so that (1.1) is
possibly strongly degenerate. The system (1.1) is supplied with an initial condition
and zero-flux or periodic boundary conditions. We focus on two applications, namely,
a model of polydisperse sedimentation where the diffusive correction accounts for sed-
iment compressibility [3], and a version of the multiclass Lighthill-Whitham-Richards
(MCLWR) traffic model [2, 28] where the diffusive correction describes the effects of
reaction times and anticipation lengths.

An implicit treatment of the diffusion terms can overcome the drastic time step
size restrictions imposed by the stability condition for explicit schemes applied to
parabolic equations. This idea was used in [10] to introduce semi-implicit, so-called
implicit-explicit (IMEX) Runge-Kutta (RK) schemes for (1.1), which involve the
solution of highly nonlinear and nonsmooth systems of algebraic equations. This is
achieved in [10] by a regularization of the nonsmooth diffusion coefficients combined
with a suitable solver for the resulting nonlinear systems in an efficient way. While
these techniques turned out to be robust and provide approximate solutions even
when simpler methods (e.g., the Newton—Raphson (NR) method without line search)
do not converge, their effort of implementation is considerable.

It is the purpose of this work to propose a new class of semi-implicit methods for
the solution of (1.1) (see [5]) which are strongly inspired by partitioned RK meth-
ods [16]. To describe the main idea, assume that the semidiscrete formulation of (1.1)
can be written in vector form as

de 1 1

(1.2) = AN®)

d)P
dt Az B(®)2,

where ® = (®1(t),..., @y (t))T is the desired solution vector, where ®;(¢) is the
approximate solution at spatial position x;; Az := 241 —x; for j =1,..., M is the
uniform grid spacing; (A~ f)(®) € RVM denotes the vector of numerical flux vector
differences associated with the discretization of 9, f(®); and B(®) € RIVM)X(NM) jg 5
block tridiagonal matrix arising from the discretization of 9, (B(®)d,®). The precise
algebraic forms of (A~ f)(®) and B(®) are provided in [10]. Here we emphasize that
the matrix B inherits its discontinuous dependence on ® from that of B on ®.

The new approach is based on carefully distinguishing in (1.2) between stiff and
nonstiff dependence on the solution vector @, and in choosing the time discretization
by an implicit and an explicit RK scheme, respectively, of an IMEX pair of schemes
accordingly. Roughly speaking, in the product B(®)® the occurrence of the solu-
tion ® within B(®) is considered nonstiff, while that of the factor ® is considered
stiff. Thus, the implicit treatment is applied only to that second factor, in contrast
to [10], where the whole expression B(®)® is treated implicitly. This new approach
does not require solutions for nonlinear systems (in contrast to the approach of [10]),
since the new methods require only solving a discretized convection-diffusion equation
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with a linear diffusion term in which the matrix B is given. We therefore address the
new methods introduced herein as linearly implicit IMEX-RK methods, in contrast
to the methods of [10], to which we refer as nonlinearly implicit IMEX-RK methods.
Numerical examples demonstrate that the new linearly implicit methods, which are
much easier to implement, approximate the same solutions as the nonlinearly implicit
ones, and in many cases are more efficient.

1.2. Related work. One could discretize the problem (1.1) in space only, ob-
taining a method of lines formulation that can be treated by some ODE solver. It is
natural to treat the diffusion term implicitly, while maintaining the (possibly nonlin-
ear) explicit treatment of the convection term. This has been realized by adopting
IMEX-RK schemes [10]. References of the application of IMEX-RK schemes to hyper-
bolic systems with relaxation and the solution of semidiscretized partial differential
equations include [6, 5, 7, 8, 25] and [1, 18, 21, 25, 27, 29], respectively. Results pro-
duced by IMEX-RK schemes are compared with those generated by the Kurganov—
Tadmor (KT) high-resolution central difference scheme [22]. In the original approach
of the KT method, both convection and diffusion are treated explicitly [22, sect. 4.2],
and the time step is then restricted by stability rather than accuracy constraints.

First-order models of the type

(1.3) 0,0+ 0, f(®) =0, F(®) = (¢101(®),...,on0n(®))",

where @ is the vector of partial densities or volume fractions and vy, ..., vy are given
velocity functions, arise as models of polydisperse sedimentation, multiclass vehicular
traffic, and the settling of dispersions (see [10] for references). For these models, the
eigenvectors and eigenvalues of the Jacobian J¢(®) = (0f;(®)/0¢;)1<i j<n are usu-
ally not available in closed form. However, for some of them, and under determined
circumstances, the eigenvalues of J¢(®) are provably real and interlace with the ve-
locities v;. This information is the key ingredient for the construction of efficient
characteristicwise (spectral) weighted essentially nonoscillatory (WENO) schemes for
(1.3), denoted “WENO-SPEC” according to [9, 12], which are employed herein to
discretize the convective part of (1.1).

For models of polydisperse sedimentation, the diffusive terms leading to the form
(1.1) describe the formation of compressible sediments (see [3]). In that paper, the
system (1.1) was solved by the KT method. On the other hand, the diffusively
corrected version of the MCLWR  traffic model is derived in [10].

1.3. Outline of the paper. The remainder of the paper is organized as follows.
In section 2, which is at the core of the paper, both variants of semi-implicit IMEX-
RK schemes are introduced. After recalling the spatial discretization of (1.1) and
providing some preliminary notation common to both versions (sections 2.1 and 2.2),
we summarize in section 2.3 the nonlinearly implicit IMEX-RK methods for solving
the system (1.1) introduced in [10]. Section 2.4 is devoted to the new linearly implicit
IMEX-RK methods. Then, in section 2.5, we propose five classical second-order
IMEX-RK schemes adopted in the literature (cf., e.g., [4, 25]) from which we generate
nonlinearly implicit and linearly implicit versions for numerical tests, and we outline
in section 2.6 a linear stability analysis for these schemes. In section 3 we recall the
models that motivate the degenerate convection-diffusion equation (1.1), namely, a
model of polydisperse sedimentation of equal-density particles that form compressible
sediments (Model 1) and a multiclass diffusively corrected kinematic traffic flow model
(Model 2). The models are the same as those discussed in [10], so we refer the reader
to that paper for further explanations and references.
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Numerical examples are presented in section 4. We first state some preliminaries
in section 4.1 and compare in Examples 1 to 4 (sections 4.2 and 4.3) the performance
of the new linearly implicit IMEX-RK scheme with that of the nonlinearly implicit
one of [10] for a test case of Model 1 with N = 3. The same model, but with a
smooth initial datum, is used in Example 5 (section 4.4) to assess the numerical order
of accuracy of the linearly implicit IMEX-RK scheme. In section 4.5 we present one
test case for Model 2 (also with N = 3), for which the IMEX-RK scheme turns out
to be more efficient than the nonlinearly implicit version. Finally, some concluding
remarks are collected in section 5.

2. Numerical schemes.

2.1. Spatial discretization. Throughout the paper, interval [0, £] is divided
into M cells of equal size Ax, and the grip points z;, for i = 1,..., M, are located at
the center of each cell. The discretization (A~ f)(®) of the convective term 8, f(®)
is computed using the WENO-SPEC finite difference scheme [9]. The numerical fluxes
are obtained by fifth-order WENO reconstructions of characteristic fluxes. For the
diffusive term 0, (B(®)9,P) we use the same discretization as in [10, sect. 3.1], which
provides second-order approximation in space for this term. The precise form of
B(®) will be given in section 3. With the notation ® = (®7,... ®3,)T € RMN where
®,(t) ~ ®(x;,t) € RV, we can define the M x M block tridiagonal matrix B = B(®),
with blocks of size N x N, by

(B(®)®),(t) = (Bi—1/2®i-1 — (Bi—1/2 + Biy12)®i + Bij1/2®i11) (1)

fori=1,...,M, where B; /5 := %(B(‘I%) + B(®;41)). The terms Bji,/,®;+1 for

i =1 and i = M are modified according to the boundary conditions.

2.2. Time integrator. The pair of Butcher arrays of IMEX-RK methods for
the time integration of (1.2) is given by

é|A c|A

T I

S

where the s x s lower triangular matrices A = (a;;) (with a; = 0 for all j > i)
and A = (a;;) (with a;; = 0 for all j > i) are the matrices of the explicit and
implicit parts of the method, respectively, while b = (131, e BS)T, ¢=(¢1,...,6)7T,
b= (b1,...,bs)T, and ¢ = (c1,...,cs)" are s-dimensional vectors of real coefficients,
with ¢ and ¢ given by the usual relations

i—1 i
Ei: E dij, C; = E Qg izl,...,s.
j=1 j=1

Now we rewrite the semidiscrete formulation (1.2) in the form

(2.1) ‘L—‘f —C(®) + D(®),
where we define
(2.2) (@) = (A [)(®), D®) = B®)®
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An IMEX-RK scheme applied to (2.1) reads as

i—1 i
) ="+ At) a;C(@Y) + At ayD(@Y),
(2.3) = =
" =" + ALY 5;C(@Y) + At b;D(®Y).
j=1 j=1

We observe that in IMEX-RK schemes there is only one family of stage values. Fur-
thermore, the fact that the implicit part of the method is a diagonally implicit RK
(DIRK) scheme makes the implementation of an IMEX-RK scheme simpler and en-
sures that C' is effectively computed explicitly.

Notice that the system (2.1) can be treated by another family of methods, called
additive RK (ARK) schemes, introduced by Zhong (for details see [29]), and which
have the following form:

(2.4)
i—1 i—1
Ki = C(‘I’n + Atz&inj> + D(‘I’n + AtZainj + AtaiiKi> y 1= ]., ey S,
Jj=1 Jj=1
(2.5) " ="+ ALY biK;.
i=1

It is easy to show that ARK schemes can been seen as a particular case of IMEX-
RK schemes, obtained by introducing two families of stage values, respectively, for
the explicit and implicit parts (see [4]). ARK schemes allow a linearly implicit form
which is particularly efficient, since the implicit term is linear and entails no loss of
order of accuracy or stability. A further generalization of the above approaches is
given by the generalized additively partitioned RK (GARK) schemes [15].

Next we present and describe two different approaches for solving (1.1), i.e., the
nonlinearly implicit IMEX-RK methods and the linearly implicit IMEX-RK ones,
where the first is based on the IMEX-RK framework (2.3), while the second is a
semi-implicit variant of the ARK approach (2.4), (2.5).

2.3. Nonlinearly implicit IMEX-RK methods. To summarize the nonlin-
early implicit IMEX-RK (NI-IMEX-RK) method for solving (1.1) introduced in [10],
we consider the semidiscrete formulation (2.1), (2.2).

The simplest IMEX scheme for the approximation of (1.2) is

n+1l n At — n At n+1 n+1
(2.6) @ = " T (AT (@) + 5 B@TTe
where ®" denotes the approximate value of ®(¢) at t = ¢t". In general, the com-
putations of an NI-IMEX-RK scheme necessary to advance ®™ from time t™ to
tntl = ¢" + At in system (2.1)—(2.2) are given in Algorithm 2.1 [1, 25] (cf. [10]).
ALGORITHM 2.1 (NI-IMEX-RK scheme [10]).
Input: approzimate solution vector ®" fort =t,
doi=1,...,s
solve for & the nonlinear equation

i—1 i—1
) =" 4 At (Z a;; K; + a; D(@0) + > aijf{j>
j=1 j=1
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K; «+ D(®%)
K; « C(®W)
enddo

S S
ST "+ ALY biK;+ ALY b,
j=1 j=1
Output: approzimate solution vector &1 for t ="+ =" 4+ At.

Algorithm 2.1 requires solving for the vector u = ®® € RMY g nonlinear system
of NM scalar equations of the following form:

(2.7) U;(u) :=u—ayAtD(u) —7; =0, i=1,...,s,

where r; € RMY is given by

i—1 1—1
r;=®" + At (Z ainj + ZduK}) .
j=1 j=1

For simplicity, we shall drop the index ¢ in ¥; for i = 1, ..., s for the rest of the discus-
sion. To approximately solve (2.7) by the NR iterative method we must require the
coefficients of B, and therefore those of B, to be at least continuously differentiable
[24, p. 311]. However, the models of interest herein (to be introduced in section 3) do
not naturally satisfy this assumption. Therefore B is replaced by a smooth approx-
imation B., and we denote the corresponding version of B by B., where B, — B
and B. — B as ¢ — 0. We propose in [10] the following strategy to efficiently solve
Y. (u) = 0 for a prescribed € = eyiy: if u. is a solution of ¥ (u.) = 0, then wu.
is used as an initial datum for approximating the solution of . (u) =0 for ¢’ < ¢
by the NR method with a line search strategy [11]. This process is started with a
sufficiently large value g and is performed until a solution ®¥._, (u) = 0 is obtained.
See Algorithm 4.1 of [10] for details.

2.4. Linearly implicit IMEX-RK methods. The NI-IMEX-RK schemes pro-
posed in [10], and whose simplest variant is (2.6), require solving a nonlinear system
of NM scalar equations (cf. Algorithm 2.1). To overcome this excessive numerical
work for the solution of the nonlinear system (2.7), an essential gain is obtained by
the following approach. We rewrite the semidiscrete formulation (1.2) in the form

a®

(2.8) o =k@.®),

with
1

K@, ®) = (@) + 1

B(®")®,
with C' given in (2.2), and we observe that the only stiff term is the linear term ®
that multiplies B(®*). We therefore treat ®* explicitly as an argument of f and B,
while @ is implicit in the term to which B is applied.

The schemes (2.4) can be extended to the more general equation (2.8). Consider
an autonomous equation of the form

dy _
dt

*

(2.9) Ky*.y),
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where the function I : R™ x R™ — R™ is supposed to be sufficiently differentiable.
Suppose that the dependence on the first argument of X is nonstiff, while that on the
second argument is stiff. Such a system can be rewritten in the form

dy* dy

2.1 - K(y* Kyt
(2.10) g Ky, y), I K(y*,y),

with y*(to) = y(to) = y,. This system is a particular case of partitioned system [16],
but with an additional computational cost since we double the number of variables.
Now let us apply an IMEX scheme to (2.10). This results in the formulas

i—1 i
Yr zy,*;—kAtZdile(Y;,Yj), Y, :yn-f—AtZaij’C(Y;,Yj),
Jj=1 j=1

i=1 =1

Observe that if b = b, then y;, = y,, for all n > 0, and therefore the duplication
of variables is not necessary if we adopt the RK fluxes K; = K(Y;,Y ;) as basic
unknowns, so that one can rewrite the scheme in the form

i—1 i—1
(2.11) K; =K <yn + AtZdinj,yn + Atz a;; Kj + Atan-Kl), 1=1,...,8,

Jj=1 Jj=1

with the numerical solution

(212) Ynt1 = Yn + Atz b; K.

=1

Notice that with the choice IC(®*, ®) = C(®*) + D(®), the approach reduces to the
one proposed by Zhong [29], requiring the solution of nonlinear systems.

Because of the formal equivalence with partitioned systems, order conditions for
ARK schemes can be derived from those for IMEX-RK schemes. High order in time
can be obtained by adopting IMEX-RK schemes with b = b. For a more general
description of the relation between IMEX and ARK methods, see [4].

In light of the previous discussion, the simplest first-order LI-IMEX-RK scheme
for (2.11), (2.12) is

n+1l _ n At — n At n n+1
i =& AL (A f)(@") + N B(®™")®" .

Now by (2.11) and (2.12) the step from t" to t"T1 = t" 4+ At of the new linearly
implicit IMEX-RK (LI-IMEX-RK) scheme is given by the following algorithm.

ALGORITHM 2.2 (LI-IMEX-RK scheme).

Input: approximate solution vector ®" for t = "
doi=1,...,s
compute the stage values:
i—1
é*(l) — D" + At Z dinj
j=1
i—1
+— P" + AtZainj
j=1

‘i)(i)
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solve for K; the linear system

enddo .
¢n+l < d" + Atz ijj
j=1

Output: approzimate solution vector ®" T for t = t"t1 =" + At.

The decisive advantage of the new linearly implicit approach for computing the
numerical solution of system (2.8) is obvious: we do not require solutions for any
nonlinear system, such as, for example, (2.7) (corresponding to (3.7) in [10]). In this
new approach, the system (2.13) is linear in K; and the numerical solution can be
obtained by solving a convection-diffusion equation with a linear diffusion term in
which the matrix function B, and therefore B, is computed explicitly.

2.5. Some second-order IMEX-RK schemes. In our numerical tests we use
the following five second-order schemes. The first one is the combination of the Heun
method and the trapezoidal rule, called H-CN(2,2,2); see Table 1(a). The second
scheme is the combination of the Heun method and an A-stable second-order DIRK
method, called H-DIRK2(2,2,2); see Table 1(b). The next two schemes are based on
the Heun method coupled with L-stable DIRK methods, introduced in [25], namely,
the schemes H-LDIRKp(2,2,2) for p = 2 and p = 3; see Table 1(c). The version
for p = 2 also has the strongly stability preserving (SSP) property. The choice of v
for p = 3 guarantees that the implicit part is a third-order DIRK scheme with the
best dampening properties [16]. The last scheme is obtained by combining a three-
stage, second-order SSP scheme with an L-stable, second-order DIRK scheme and is
denoted by SSP-LDIRK(3,3,2); see Table 1(d). As we shall see, this scheme has a
wider stability region, at the price of one extra level.

Notice that the scheme H-CN(2,2,2) is a natural choice when dealing with a
convection-diffusion equation, since the Heun method is an SSP explicit RK one [14],
and the trapezoidal rule (also known as Crank-Nicolson) is A-stable and widely used
for diffusion problems. The two schemes H-LDIRK2(2,2,2) and SSP-LDIRK(3,3,2)
were introduced in the context of hyperbolic systems with stiff relaxation [25].

TABLE 1
The second-order IMEX-RK schemes we adopt in this paper [4, 25].

(a) Scheme H-CN(2,2,2) (b) Scheme H-DIRK2(2,2,2)
11
o]0 o 010 0 0jo o 3|3 O
11 1 1
11 0 1135 3 111 0 3 0 3
i1 11 L1 11
22 3 2 22 2 2
(¢) Schemes H-LDIRKp(2,2,2) (d) Scheme SSP-LDIRK(3,3,2)
o0 O ¥ ¥ 0 111
1 ‘ 1 0 1 ‘ 1-2y 4 010 00 iz 00
1|1 1 1
101 1 1 515 0 0 210 5 0
B R S o I
1L L0 O I S St
2 2 3 3 3
1-1/v/2 forp=2, T 1 1 T 1 1
(3++3)/6 forp=3 3.3 3 3 3 3
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2.6. Linear stability analysis. There is no general notion of stability for IMEX
schemes, even if one restricts the discussion to the linear case [1, 13, 17, 21, 23, 26, 29].
Here we limit ourselves to a linear stability analysis for the complex scalar equation,
which is usually adopted in the classical definitions of A-stability for RK schemes
[16]. We show that IMEX-RK and ARK have the same stability function and analyze
the stability region for all schemes that we use in the paper. We are aware of the
limitation of this analysis with respect to the case of classical RK methods. For
example, stability results for the scalar equation cannot be exported to linear systems
of the form y’ = Ay + By, with A and B being real square matrices, unless the two
matrices share a basis of eigenvectors. In spite of such limitations, we believe that
linear stability gives some information useful in comparing the various schemes.

LEMMA 2.1. If the IMEX scheme defined by (2.11), (2.12) is applied to the
autonomous equation (2.9) in the scalar case (m = 1) with

(2.14) K" y) = " +py, A\ peC,
then the iterates y, satisfy yn+1 = R(21, 2)yn, where z1 = AAL, z = uAt, and
(2.15) R(z1,2) =14 (21 + 2)b" (I — 1A — zA) te.

Here I denotes the s x s identity matriz and e = (1,...,1)T € R®.
Proof. Expression (2.11) for (2.9), (2.14), and m = 1 reads as

Ki:/\<yn+AtZC~linj> +,u<yn+AtZainj>, 1=1,...,s.

i<j i<j

For K := (K,...,K,)T we get K = (A4 p)yn(I —z1A — zA) 'e. Inserting this
into (2.12) yields

Yni1 = Yn + A K = (14+ (21 +2)b (I — 1A~ zA) 'e)y,. O

The A-stability region of the semi-implicit RK scheme (2.11) and (2.12) in the
complex plane is defined as

Sa={(z1,2) € C*: |R(21,2)| < 1}.
In this paper we adopt the definition of stability region given in [23], namely,
(2.16) S1={xneC: supze(c_‘R(zl,z)| <1},

which has the following motivations: we look for a simpler stability region which is a
subset of C rather than C2. Since the implicit part of the method is A-stable, it is
reasonable to look for the region z; € C such that the scheme remains A-stable, i.e.,
|R(21,2)] <1 for all z € C.

Notice that when z = 0 we obtain the classical stability function of an explicit
RK method, i.e.,

R(Zl,O) =142z Zbi + Z%Zbia@j +Z% Zbidijdjk} B R
=1 s 1,5,k

Some of the schemes adopted in this paper are L-stable in the implicit part, which
means that R(z1,2) = 0 as z — oo, and this implies that the coefficients of the
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Imz

= A ~ ~ 4

I
[
[
[
I
I
\
-5 -4 -3 -2 -1 0
Re z

Fic. 1. Stability regions S1 of the IMEX schemes adopted in the paper. Left panel: (2,2,2)
schemes H-DIRK2, H-LDIRK3, H-LDIRK?2, and H-CN. Right panel: Scheme SSP-LDIRK(3,3,2),
and the corresponding explicit RK method when z = 0. (See electronic version for color.)

semi-implicit scheme (2.11) and (2.12) satisfy the following condition (see [29] for
details):

s 1—1
1
2.17) 1+ b8 =0, wh = —— (1Y a8 ), i=1...s
(2.17) +i:1 Jé; where aii( —l—j_laj,b’j) i s

Note that the coefficients of the schemes H-LDIRKp(2,2,2) and SSP-LDIRK(3,3,2)
satisfy (2.17), while those of schemes H-CN(2,2,2) and H-DIRK2(2,2,2) do not.

In the left panel of Figure 1 we plot the stability regions of the four two-stage
schemes adopted in the paper. We observe that the stability region of H-DIRK2(2,2,2)
coincides exactly with the classical stability region of a second-order, two-level explicit
RK method, whose stability function is R(z1) = 1+ 21 +27/2, and the stability region
of H-CN(2,2,2) coincides with that of the explicit Euler method. We prove these facts
in Theorems B.1 and B.2 in Appendix B. The right panel of Figure 1 displays the
stability region S; of scheme SSP-LDIRK(3,3,2) (the boundary is marked by a blue
line; see electronic version for color) and the corresponding region of the explicit RK
method, whose stability function is R(z1) = 1 + 21 + 27/2 + 2§ /12 (black line), i.e.,
R(Zl, 0).

3. Multispecies kinematic flow models. Model 1 describes the sedimenta-
tion of a polydisperse suspension of equal-density particles belonging to N species
with sizes dy > do > --- > dn. We let ¢; denote the local volume fraction of species i
having size d;. The evolution of ® = ®(x,t) as a function of depth x and time ¢
in a column of height £ is then determined by (1.1) posed on the z-interval (0, L)
for t > 0, along with ®(z,0) = ®g(z) for 0 < x < L, where ®¢ is the given initial
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concentration distribution, and zero-flux boundary conditions, i.e.,

(3.1) f(®) - B(®)0,2=0 forr=0anda=L, t>0.
The flux density functions f1,..., fy are given by
(3.2) Ji(®) = pasdi V(@)1 - §)(5; — 6"®), i=1,...,N,

where ;1 > 0 is a viscosity constant, gs > 0 is the solid mass density minus the fluid
denSitY7 51 = d?/d%v 0= (517525 .. '75N)T7 51 - 17 ¢ = ¢1 + -+ ¢N7 and V(¢) is a
hindered settling function that can be chosen as

Vo) = {(1 —¢)"™2 2 for 0 < ¢ < Prmas;

0 otherwise,

where ngz > 2 is a material-dependent exponent.
The diffusion matrix is given by B(®) := (aj;)1<i,j<n, where

oy — “Z;‘” {(1 )6 (6 — 6T D) ()
(3.3)
..._.._ﬁ o _ st o ii=
_{515” 0 i ¢(5Z ) @)} C((b)}, ,j=1,...,N,

where 0;; is the standard Kronecker symbol and o, denotes the effective solid stress
function, and o, is its derivative. This function can be chosen as

(3.4) oo() =

for ¢ < ¢,
{0 ores 0o,k >0,

Uo((¢/¢c)k — 1) for ¢ > ¢,

where ¢, is a critical concentration at which the particles touch each other. Clearly,
(3.3) and (3.4) imply that B(®) = 0 whenever ¢ < ¢, so (1.1) is usually strongly
degenerate under the assumptions of Model 1. Otherwise the eigenvalues of B(®) are
positive and pairwise distinct [3, Thm. 4.3].

For Model 2, a diffusively corrected MCLWR model, we assume that v;"** is the
preferred velocity of vehicle class 7, where v{*** > v§'®* > ... > oy** > 0. If ¢; is the
local density of class i, then the local velocity v; of vehicles of class i is given by
v; = vV (¢), where ¢ = ¢ + -+ + ¢y and V is a nonincreasing function that
describes a driver’s attitude to reduce velocity in the presence of other cars. Thus,
the standard MCLWR model (without diffusive correction) is given by (1.3), where

(3.5) fi(®) = piv™>*V(¢), i=1,...,N,
along with periodic boundary conditions as for a circular road of length L, i.e.,
(3.6) ®(0,t) = B(L,t), t>0.

The assumption that drivers exhibit an anticipation distance L and a reaction
time 7 leads to a system of the form (1.1), where f(®) is given by (3.5) and the
diffusion matrix B(®) is now given by B(®) := (aj)1<i,j<n with

(37 ay(®) = V' (@)L +7(V(e) (™) @ + (V'™ — v™™) V()] givf"™.
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The MCLWR model (1.1) is strictly hyperbolic for B = 0 and is hyperbolic-
parabolic if some conditions on 7 and L hold (see [10] for the specific details).
A common choice of V' = V(¢) in traffic modeling is the model

1, ¢ < o,
lng/Inde, & > .

Since V'(¢) = 0 for 0 < ¢ < ¢, using model (3.8) in (3.7) means that B(®) = 0 for
¢ < ¢. also holds for Model 2, i.e., (1.1) again becomes strongly degenerate.

We remark that for both Model 1 with o¢(¢) defined by (3.4) and Model 2 with
V(¢) defined by (3.8), the diffusion matrix B(®) is discontinuous at ¢ = ¢.. This
property is explicitly included in the well-posedness analysis available for (1.1) in the
scalar case (cf., e.g., [19, 20]).

(3.8) V(¢) = Vba(0) = {

4. Numerical results.

4.1. Preliminaries. In the following examples, we solve (1.1) numerically for
0<t<Tand0 <z <L for Models 1 and 2. We compare numerical results obtained
by the NI-IMEX-RK schemes, denoted here “NI-H-CN(2,2,2),” “NI-H-DIRK2(2,2,2),”
and so on according to the respective underlying IMEX-RK scheme (see Table 1),
where we also omit the insertion “IMEX” for brevity, with those obtained by the new
LI-IMEX-RK schemes of section 2.4, denoted correspondingly by “LI-H-CN(2,2,2),”
“LI-H-DIRK2(2,2,2),” etc. Moreover results are compared with those generated by
the explicit KT method [22].

For each model, the a-interval [0, £] is subdivided into M subintervals of length
Az = L/M. We denote by At the time step used to advance the numerical solution
from t = ¢" to t"*! = " + At and by ®% the vector of numerical solutions associated
with cell [jAz, (j + 1)Az], j = 0,...,M — 1, at time ¢". For each iteration, At is
determined by the following formula (derived from a linearized CFL condition):

At . At N
Az max o(J5(27)) + 555 max o(B(®])) = Cen,

for the KT scheme and

At
Az 1<j<M

0(J5(27)) = Ceny

for the semi-implicit schemes, where o(-) is the spectral radius. In the numerical
examples we choose C.q, as the largest multiple of 0.05 that yields oscillation-free
numerical solutions.

For comparison purposes, we compute reference solutions for numerical tests by
the KT scheme with Mot = 25600 cells. As in [10], we compute approximate L!
errors at different times for each scheme as follows. We denote by (¢; (t));” , and
( folf(t)) =f the numerical solution for the ith component at time ¢ calculated with
M and Mrcf cells, respectively. We use cubic interpolation from the reference grid to
the M-cell grid to compute rCf( ) for j =1,...,M. The total approximate L' error

of the numerical solution on the M-cell grid at time ¢ is then given by

(4.1) 0 =L 5 S — oo,

=1 j=1
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Based on the errors defined by (4.1), we may calculate a numerical order of conver-
gence from pairs of total approximate L' errors et (¢) and ef9 (¢) by

(4.2) O (t) :=logy (el (1)/ €53 (1))

To demonstrate that our way of calculating approximate errors and estimating
convergence rates leads to conclusions that are independent of the particular refer-
ence solution, we employ in one case (Example 5) an alternative way of calculating
approximate errors and convergence rates; namely, we use cubic interpolation from
the grid of 2M cells that of M cells grid to compute the quantities

(43) QNS%( ) (¢2j1 +¢2j lz) (¢2]+11 +¢2] 21) ]: 17" "M’

because 23" = (23} + 23} ) /2.

We then calculate an alternative (to (4.1)) total approximate L' error by

(4.4) e (1) ZZW @)l

i=1 j=1
An alternative numerical order of convergence can then be computed by
(4.5) O (t) = logy (47 (1)/€53: (1))

(Note carefully that 6y (t) is calculated from the three numerical solutions calculated
on grids with M, 2M, and 4M cells.) Since the scheme is second-order accurate for
smooth solutions, an estimate of the (unknown) total exact L' error

(4.6) enr (1) : Z Z|¢z (,1) = 075(t)]

i=1 j=1
is given by
tot,* ~tot 4 ~tot
(4.7) en” (t) = e (8) = génr (b)-

The motivation of (4.3)—(4.7) is briefly recalled in the appendix.

4.2. Example 1: Model 1 with N = 3, comparison of LI- and NI-
IMEX-SSP2 schemes. We employ Model 1 to simulate the settling of a tridisperse
(N = 3) suspension forming a compressible sediment [3]. The mixture is described by
the model functions (3.2)—(3.4) with ¢max = 0.66, ngy = 4.7, 09 = 180Pa, ¢, = 0.2,
k=2, uf =10"3Pas, d = 1.19 x 10~°m, ps = 1800kg/m?, and g = 9.81m/s?%. The
initial concentration is ®y = (0.04,0.04,0.04)T in a vessel of height £ = 1m with
normalized squared particle sizes § = (1,0.5,0.25)". Here and in Examples 2 to 5 we
employ the zero-flux boundary conditions (3.1).

Numerical results at simulated time 7' = 4000 s are obtained by four schemes, i.e.,
LI-SSP-LDIRK(3,3,2) (see Figure 2), LI-H-LDIRK2(2,2,2), LI-H-LDIRK3(2,2,2), and
LI-H-DIRK2(2,2,2), and are compared with those generated by their NI counterparts
and the KT scheme. For the nonlinearly implicit schemes, we solve the nonlinear
system by Algorithm 4.1 of [10] that uses a variant of the NR method with a prescribed
relative tolerance tol, where the regularization B, of the original diffusion matrix B is
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Fia. 2. Ezample 1 (Model 1): Numerical solution obtained by scheme LI-SSP-LDIRK(3,3,2)
at stmulated time T = 4000s and Az = 1/1600.

achieved by replacing the function o, in (3.3) by ce(¢;¢) = 0e(9) exp(—¢/(¢ — ¢c)?),
where ¢ > 0 decreases gradually from £g = 10™% to ey = 1075, tol = 1078, while the
linearly implicit and KT schemes are applied without regularization of the diffusive
term (this also includes the reference solution). Another strategy, denoted by LI-SSP-
LDIRK(2,2,2)-reg, is to use the scheme LI-SSP-LDIRK(2,2,2) directly applied to the
regularized diffusion term with 1, = 107%. The schemes LI-H-LDIRK2(2,2,2)-reg,
LI-H-LDIRK3(2,2,2)-reg, and LI-H-DIRK2(2,2,2)-reg are defined analogously. For
both NI and LI versions of IMEX-RK schemes we use Ccn, = 0.7, and for the KT
scheme, Ceq, = 0.25. Figures 3(a) and (b) provide the error histories of all schemes
tested, and Figures 3(c) and (d) are the corresponding efficiency plots (informing
approximate L! errors versus CPU time).

Figures 3(a) and (b) show that for all schemes tested and all discretizations,
the error produced by linearly implicit schemes for a given discretization is larger
than that of the corresponding nonlinear counterpart (as expected). Furthermore,
for some of the schemes and some discretizations the “Ll-reg” version of a scheme
produces smaller errors than the corresponding linearly implicit version. This holds,
for example, for schemes LI-H-DIRK3(2,2,2) and LI-DIRK2(2,2,2) for M = 100 and
M = 200, as can be seen in Figure 3(b). However, there is no appreciable difference
in the numerical order of accuracy of all schemes tested.

Figures 3(c) and (d) illustrate that although linearly implicit schemes produce
larger errors than corresponding nonlinearly implicit schemes, they are still competi-
tive since they are at least as efficient, and in many cases significantly more efficient,
in error reduction per CPU time than their corresponding nonlinear counterparts
(this is particularly visible if one compares the performance of the scheme NI-H-
LDIRK3(2,2,2) with that of its linear counterpart; see Figure 3(d)). In fact, linearly
implicit schemes have been designed to execute faster than their respective nonlinear
counterparts, since the former need to solve only one linear system per RK stage,
whereas the latter have to solve many during the nonlinear solves in Algorithm 4.1
of [10].

It is natural to expect that differences in solution behavior between the various
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FiG. 3. Ezample 1 (Model 1): (a), (b) Approzimate L' errors for all schemes tested as function
of M. (c), (d) Efficiency plots obtained for discretization levels Az = 1/M with M = 100, 200, 400,
800, and 1600.

schemes become apparent close to the parabolic-hyperbolic interface ¢ = ¢.. To
illustrate them, we present in Figure 4 enlarged views of the box area marked in
Figure 2. As can be seen in all plots, the approximation of discontinuous solution
profiles is more accurate for the nonlinearly implicit version of each scheme, while
some overshoots and oscillations appear in the corresponding linearly implicit versions.
These glitches do not disappear upon refinement. Therefore, the approximate errors
with respect to the reference solution (computed without e regularization) are larger
for the linearly implicit versions than for the nonlinearly implicit versions, as is shown
in Figures 3(a) and (b). The overshoots are especially pronounced with the scheme
LI-H-LDIRK2(2,2,2) in Figure 4(a). At the same time we see that in this situation the
corresponding “LI-reg” versions of each linearly implicit scheme produce slightly more
accurate and less oscillatory solutions that their original linearly implicit versions.

4.3. Examples 2—4: Model 1 with N = 3, variation of e,,;,. Examples 2
to 5 are based on the same data as Example 1, but we now apply four schemes, namely,
LI-SSP-LDIRK(3,3,2), LI-H-LDIRK2(2,2,2) (both with the SSP property), and their
respective NI versions, to the e-regularized problems with decreasing values of «.
The linearly implicit schemes keep solving one linear system per RK stage, whereas
the nonlinearly implicit schemes need several of them and may need the gradual
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Fic. 4. Exzample 1 (Model 1): FEnlarged views of the numerical solution near the parabolic-
hyperbolic interface ¢ = ¢c (marked region in Figure 2).

decrease of € toward e,;,. The reference solution is computed in each example to an
e-regularized diffusive term. Here we focus on studying the effect of varying emin.

In Example 2, we choose a regularized diffusive term with e, = 1073, In
the results displayed in Figures 5(a)—(c), which are enlarged views of the results for
each component corresponding to the marked region of Figure 2 of Example 1, we
observe that the numerical solutions obtained with the linearly implicit schemes do
not present overshoots. Moreover, Figure 5(d) shows that—at least for moderately
fine discretizations—the linearly implicit schemes are slightly more efficient than their
nonlinear counterparts.

Next, in Example 3, we choose the same parameters as in Examples 1 and 2 but
regularize the diffusive term by emin = 5 x 107°. This regularization yields diffusion
coefficients that are less smooth than in the previous example. Figure 6 shows the
solutions that are analogous to Figure 5 for Example 2. In fact, the solutions displayed
in Figures 6(a)—(c) are qualitatively similar, and the efficiency curves in Figure 6(d)
of both linearly implicit schemes are closer to those of the corresponding nonlinearly
implicit schemes.

Finally, in Example 4 we set eyin = 5 x 1075, In the results displayed in Fig-
ures 7(a)—(c) we observe some glitches in the numerical solutions obtained with both
linearly implicit schemes. Figure 7(d) indicates that the linearly implicit schemes are
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FiG. 5. Ezample 2 (Model 1, N = 3, diffusive term regularized with oe(¢;1072)): (a)—(c) En-
larged views of the numerical solution near the parabolic-hyperbolic interface (¢ = ¢c). (d) Efficiency
plot for discretization levels Ax = 1/M with M = 100, 200, 400, 800, and 1600.

slightly more efficient than their respective nonlinear counterparts.

4.4. Example 5: Model 1 with N = 3, numerical order of accuracy.
In this test we check the order of accuracy of the linearly implicit numerical schemes
introduced in section 2.5 applied to the regularized model with e, = 0.1. We
consider the normalized squared particle sizes § = (1,0.8,0.6)T and a smooth initial
concentration profile given by ¢;(z) = 0.12exp(—200(x — 0.5)2) for i = 1,...,3.
We compute approximations with M = 50 -2/, 1 = 0,...,6, and a fixed time step
At = 500Az, which yields a Courant number of 0.1. Figure 8 shows the numerical
result for M = 1600 for T = 20s (before shock formation, when the solution is still

smooth) and for T'= 500s (after shock formation).

The approximate L' errors e9°(T") defined by (4.1) and their corresponding nu-

merical orders 657 (T") given by (4.2) are displayed in Table 2 for both 7' = 20s and
T = 500s. The reference solution is computed with M.t = 25600 cells. We select
the results for ' = 20s to conduct an alternative error analysis (according to sec-
tion 4.1). To this end we compute values of €4*(20) according to (4.3), (4.4), (4.7),
and the corresponding numerical orders of convergence 6, (20) given by (4.5). The
behavior of both #(20) and 0,,(20) for increasing values of M confirms that the
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FIG. 6. Example 3 (Model 1, N = 3, diffusive term reqularized with oe(¢; 5x1075)): (a)—(c) En-
larged views of the numerical solution near the parabolic-hyperbolic interface (¢ = ¢c). (d) Efficiency
plot for discretization levels Ax = 1/M with M = 100, 200, 400, 800, and 1600.

scheme is second-order accurate for smooth solutions and that, for large M, the val-
ues of €197(20) are very close to those of the approximate L! errors e{5f(20), while the
results for "= 500s indicate that accuracy is reduced to first order when shocks are

present.

4.5. Example 6 (Model 2 with N = 3). We consider a circular road of
length K = 5mi (mi stands for miles, and periodic boundary conditions (3.6) are
used) with V = 3 driver classes associated with v{"®* = 70 mi/h, v5"** = 50 mi/h, and
2% = 30mi/h. We employ the Dick—Greenberg model (3.8) and choose (as in [10])
¢ = exp(—T/e) ~ 0.076142. We choose L = 0.05mi and 7 = 2s = 0.0005h, such
that a particular sufficient condition for parabolicity of (1.1) for ¢ > ¢, is satisfied.

The initial density distribution is given by an isolated platoon of maximum global
density pg, ®o(z,0) = p(z — 0.3)p(0.25,0.4,0.35)T, where pg = 0.45 and

10x for 0 <z <0.1,
p(r) =141 for 0.1 <z <0.9,
—10(x —1) for 09 <z <1.

The nonlinear systems arising in the nonlinearly implicit schemes are solved by Al-
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F1G. 7. Ezample 4 (Model 1, N = 3, diffusive term reqularized with oe(¢; 5x1076)): (a)—(c) En-
larged views of the numerical solution near the parabolic-hyperbolic interface (¢ = ¢c). (d) Efficiency
plot for discretization levels Ax = 1/M with M = 100, 200, 400, 800, and 1600.

gorithm 4.1 of [10], where V(¢) is regularized by V(¢;e) = 1+ (V(¢) — 1) exp(—¢/(¢d—
b¢)?), where ¢ varies from g9 = 107 to £y = 107 and tol = 1077,

The reference solution is computed by the KT scheme (without regularization)
with Az = 1/6400 and Ccpr, = 0.25.

In Figure 9(a) we display the numerical solution obtained by scheme LI-SSP-
LDIRK(3,3,2) (without regularization) with Az = 1/400 and Ccpr, = 0.7 at sim-
ulated time 7" = 0.05h. Enlarged views are shown in Figures 9(b)—(f), where we
compare the numerical solutions (at the same resolution) produced by the schemes
NI-SSP-LDIRK(3,3,2), LI-H-LDIRK2(2,2,2), and LI-H-LDIRK3(2,2,2) and their NI
counterparts with Ccpr, = 0.7, those generated by the KT and LI/NI-H-CN(2,2,2)
schemes with Cepr,, = 0.25, and the reference solution. We observe that the approx-
imation obtained by the scheme LI-SSP-LDIRK(3,3,2) adequately approximates the
reference solution. In Figures 10(a) and (b) we display error and efficiency plots,
respectively, for a sequence of discretization levels and all schemes tested. Roughly
speaking, the results confirm the tendency observed in Figure 3 for Model 1: for a
fixed discretization, each linearly implicit scheme produces a slightly larger error but
executes significantly faster than its nonlinear counterpart, such that the linearly im-
plicit schemes turn out to be notably more efficient than their corresponding nonlinear
counterparts.
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Fia. 8. Ezample 5 (Model 1, N = 3): Numerical results obtained by scheme LI-SSP-

LDIRK(3,3,2)-reg with M = 1600 at simulated time (a)

T = 20s, (b) T = 500s.

5. Concluding remarks. Although LI-IMEX-RK schemes might seem like a
simple variant of NI-IMEX-RK schemes, they indeed suppose a profound change of
paradigm for which the variables that bring stiffness to the explicit schemes are finely
located in such a way that (a) at each RK stage only one linear system is solved,
instead of a costly nonlinear solve that involves many of them; and (b) no accuracy

order is lost.

The numerical examples presented herein indicate, first of all, that the new LI-
IMEX-RK schemes yield very similar results, independently of the choice of the un-
derlying RK schemes, that they approximate the same solutions as their nonlinear
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TABLE 2
Ezample 5 (Model 1, N = 3): Errors and numerical order for linearly implicit schemes applied
to smooth initial conditions for T = 20s (before shock formation) and T = 500s (after shock
formation).

T =20s T =500s
M |ef9UT) Or(T) EH(T) O (T) | St (T) Oar(T)
50 |1.38¢-4 0.14 8.41le-5 -0.33 [2.27e-3 1.59
100 | 1.25e-4 1.45 1.06e-4 1.48 |7.49e¢-4 0.95
200 |4.58e-5 1.80 3.80e-5 1.68 |3.86e-4 1.11
LI-SSP- 400 {1.30e-5 1.88 1.19e-5 1.76 [1.78e-4 0.91
LDIRK(3,3,2) | 800 |3.54e-6 1.87 3.52e-6 1.87 |9.49e-5 1.05
1600 | 9.66e-7 2.00 9.63e-7 1.98 |4.56e-5 1.01
3200 2.40e-7 2.06 2.44e-T7 — 2.26e-5 1.01
6400 | 5.73e-8 — — — 1.12e-5 —
50 |1.38¢-4 0.14 8.44e-5 -0.33 [2.27e-3 1.60
100 | 1.25e-4 1.45 1.06e-4 1.48 |7.46e-4 0.95
200 |4.57e-5 1.81 3.79e-5 1.68 |3.85e-4 1.11
LI-H- 400 {1.30e-5 1.89 1.18e-5 1.76 [1.78e-4 0.91
LDIRK2(2,2,2) | 800 |3.53e-6 1.87 3.5le-6 1.87 |9.48e-5 1.05
1600 | 9.64e-7 2.00 9.60e-7 1.98 |4.56e-5 1.01
3200 2.40e-7 2.07 2.43e-T7 — 2.26e-5 1.72
6400 | 5.71e-8 — — — 6.82e-6 —
50 |1.38e-4 0.14 8.45e-5 -0.32 [2.27e-3 1.60
100 | 1.25e-4 1.45 1.06e-4 1.48 |7.46e-4 0.95
200 |4.57e-5 1.81 3.80e-5 1.68 |3.85e-4 1.11
LI-H- 400 {1.30e-5 1.87 1.18e-5 1.76 [1.78e-4 0.91
LDIRK3(3,3,2) | 800 |3.53e-6 1.87 3.50e-6 1.87 |9.49e-5 1.05
1600 | 9.64e-7 2.01 9.60e-7 1.99 |4.56e-5 1.01
3200 2.40e-7 2.07 2.43e-T7 — 2.26e-5 1.73
6400 | 5.75e-8 — — — 6.82e-6 —
50 |1.38e-4 0.14 8.42e-5 -0.33 [2.27e-3 1.60
100 | 1.25e-4 1.45 1.06e-4 1.48 |7.46e-4 0.95
200 |4.58e-5 1.81 3.80e-5 1.68 |[3.85e-4 1.11
LI-H- 400 |1.31e-5 1.89 1.19e-5 1.77 [1.78e-4 0.91
DIRK2(2,2,2) | 800 [3.53¢-6 1.87 3.5le-6 1.87 |9.48e-5 1.05
1600 | 9.64e-7 2.01 9.61le-7 1.98 |4.56e-5 1.01
3200 2.40e-7 2.07 2.43e-T7 — 2.26e-5 1.73
6400 | 5.72e-8 — — — 6.82e-6 —
50 |1.38¢-4 0.14 8.40e-5 -0.34 [2.27e-3 1.60
100 | 1.25e-4 1.45 1.06e-4 1.48 |7.47e-4 0.95
200 |4.59e-5 1.81 3.80e-5 1.68 |[3.85e-4 1.11
LI-H- 400 |1.31e-5 1.89 1.19e-5 1.76 [1.78e-4 0.91
CN(2,2,2) 800 |3.54e-6 1.87 3.5le-6 1.87 [9.48e-5 1.06
1600 |9.65e-7 2.01 9.6le-7 1.98 |4.56e-5 1.01
3200 2.40e-7 2.07 2.43e-T7 — 2.26e-5 1.73
6400 | 5.73e-8 — — — 6.82e-6 —

~

counterparts (introduced in [10]), and that in many cases they are more efficient. In
the case of the regularized problem with e,;, = 1072 of Example 2, shown in Figure 5,
the new linearly implicit schemes provide essentially the same results as the classical
implicit IMEX at a much lower cost. The decisive advantage of the linearly implicit
variant is the ease of implementation. While the numerical examples presented herein
have been limited to N = 3 for the sake of presentation, this advantage is likely to
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Fic. 9. Ezample 6 (Model 2, N = 3): Numerical results at simulated time T = 0.05h (a)
obtained by scheme LI-SSP-LDIRK(3,3,2) with Az = 1/800, (b)—(f) obtained by other schemes and
compared with the reference solution.

become more stringent for larger values of N—for example, when in the context of
the polydisperse sedimentation model (and related applications), a continuous particle
size distribution is approximated by NV size classes.

Both LI-IMEX-RK and NI-IMEX-RK schemes converge to the same solutions as
the KT scheme does [22], which provides justification of their application, although
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Fic. 10. Ezample 6 (Model 2, N = 3): FEfficiency plot based on numerical solutions for
Az =1/M with M = 50, 100, 200, 400, and 800.

a well-posedness theory for (1.1), at least in the strongly degenerate case, is still
lacking. However, it turns out that at the same spatial resolution, discontinuities
in the solution, especially those associated with the type-change interface, are more
accurately resolved by the NI-IMEX-RK schemes. It therefore seems highly desirable
to combine the respective advantages of LI- and NI-IMEX-RK schemes by a hybrid
scheme that would concentrate the use of the nonlinearly implicit variant on regions
of presumed irregularities of the solution (such as discontinuities and kinks), which
usually form only a small fraction of the computational domain, while in the remaining
“smooth” regions the faster linearly implicit variant would be used. In other words,
such a scheme would attain an accuracy similar to the nonlinear IMEX-RK one, at a
computational cost almost the same as for the linearly implicit version.

The application to diffusively corrected kinematic flow models has been chosen as
a test case for IMEX-RK schemes in [10] herein since this class of problems includes
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systems (1.1) of arbitrary size N and provides meaningful justification for the assump-
tion of strong degeneracy. On the other hand, the LI- and NI-IMEX-RK schemes do
not involve the particular algebraic structure of these models, and could therefore
also be applied to other models that can be cast in the form (1.1). In that context
we recall that the WENO reconstruction is based on the computation of smoothness
indicators that monitor the presence of irregularities in the solution. We are currently
investigating the option of using the same smoothness indicators to design a hybrid
scheme of the above-mentioned kind.

Appendix A. Assume that the computed approximations (b% (t) satisty

(A1) %(t) = ¢i(xj,t) + a;(z;,t)Az" + O(Az" 1),
where Az = L/M and x; = (j —1/2)Az, for r < 2 and sufficiently smooth coefficient
functions a;. Then it can be seen that the quantities defined by (4.3) satisfy

(A.2) M () = di(wj,t) + ai(zi,t)(Az/2)" + O(Az™ ).

We recall that we calculate an alternative (with respect to (4.1)) total approximate
L' error from the quantities (4.3) by (4.4), and that the (unknown) exact total error

tot,*

ey (t) is given by (4.6). From (A.1), (A.2), and standard quadrature rules, we get

N
(1) = a(t)(1 - 27 A + OB, a(t) = 3 /|ai(a:, )| da.

and el (t) = a(t)Az" + O(Az"+1). We therefore deduce that

lim (ef'(t)/e (1)) =27 and  lim (eff(¢)/efy " (t)) =1—27",

M—o0 M—o0

i.e., for the quantity 6/ (¢) given by (4.5) we have fy/(t) — 7 as M — oo, and for
large M the exact total error )} *(t) can be estimated from ét5(t) by

()~ D) = (1 27) )
which yields (4.7) for r = 2.

Appendix B. We prove that the stability region S; of scheme H-DIRK2(2,2,2)
coincides with that of the classical Heun scheme, while the stability region S; of
scheme H-CN(2,2,2) coincides with that of the explicit Euler scheme. Such results are
not obvious. In particular, the first one is interesting, since the choice of an A-stable
scheme for the implicit part provides a wider stability region S; than the choice of
the more stable LDIRK schemes for the implicit part.

THEOREM B.1. The stability region

S| = {zl € C: sup |R(z1,2)| < 1}
zeC—

of the H-DIRK2(2,2,2) scheme coincides with the stability region of the Heun scheme

<1.

22
SH:{zleC : ‘14—214-?1

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/14/15 to 146.83.7.27. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

LINEARLY IMPLICIT IMEX-RK METHODS B329

Proof. For this method, we employ the matrices A and A and the vector b* given
in Table 1(b). Evaluating (2.15) in Lemma 2.1 then yields that

2 2 2
_ L2 _Z
Rz, 2) = <1+Zl+ 2 4)/(1 2) '

We have that R(z1,z) is bounded and analytic in C~ with respect to z since

lim |R(z1,2)| =1,

|z| =00

and the only singularity of R is in z = 2.
The maximum principle for analytic functions implies that

(B.1) sup ‘R(zl,z)| = sup ‘R(zl,z)‘ = sup|R(zl,21C)‘.
zeC— z€0C~ CER

Now setting 27 = x + iy, z = 2i¢ and defining C' = x + (2? — y?)/2, B = y(z +y), we
get

2’2 22 2’2
1+z1+71:1+0+Bi, 1+z1+51—1=1+0+<2+Bi
and therefore
14+C+¢?)?+B? 2C0(1+¢?)+C? + B?

(1+¢2)? - (1+¢2)? ’

50 |R(z1,2)[* < 1if and only if 2C(1+¢?)+C?+ B* < 0. Thus sup.cg | R(21,2i¢)| < 1
if and only if 2C + C? + B? < 0, or, equivalently,

2

=C+1)?*+B*<1. O

2
z
‘14—21-1—71

THEOREM B.2. The stability region Sy of the Heun-CN(2,2,2) scheme coincides
with the stability region of explicit Euler scheme

SE:{21€C7 : |1+21|§1}

_ Proof. The proof is similar to that of Theorem B.1. For this method, we utilize
A, A, and b* as given in Table 1(a). Evaluating (2.15) in Lemma 2.1, we now obtain

z z
R(z,2) = (1+21 +28+ 5(1 +21)) /(1 - 5) .
Since lim;| o [R(21, 2)| = |1 4 21|, we have that R(z1,2) is bounded and analytic in
C~ with respect to z. The maximum principle for analytic functions yields that (B.1)
is again valid. Setting now z; = x + iy, z = 2i(, and C := x + (22 — y?)/2, we get
2

z z
L2+ 5 =1+ C+yl@+ i, S(1+2)=((—y+ (1+2)),

and finally

(L+C -y + W+ +a)°

2
|R(2’1,Z)| = 1+¢2
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This implies that |R(z1,2)|? < 1 is equivalent to
(B.2) CCHy((+z)2+y  —D+0+0C)2+y*(1+2)2—1<0.

Since 1+C = 3((z + 1) + 1 —y?),

(B.3) (40P 420427 = (@17 497 +1)7 — 42).

Setting D := (1 +x)? +y* — 1 = |21 + 1|*> — 1, then (B.3) reads as
2 2 2 1 2 2
(1+C)° +12(1+2)° = Z((D+2) 4y )
and (B.2) as
1
(B.4) D¢? + Dy¢ + Z(D2 +4D — 4% <0.

Therefore we have established the equivalence of |R(21,2i¢)|*> < 1 for all ¢ € R and
(B.4) holding for any ¢ € R. This is in turn equivalent to

(B.5) D<0 and D(D+4)(y*>— D) <0.

However, since D > —1, we have D + 4 > 0, and therefore D < 0 implies D(D +
4)(y?> — D) < 0, which yields that (B.5) is equivalent to D < 0, which is precisely
equivalent to |1 + z1| < 1, thus concluding the proof. O
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