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Abstract In this work, we study an application of
fractional-order Hopfield neural networks for opti-
mization problem solving. The proposed network was
simulated using a semi-analytical method based on
Adomian decomposition„ and it was applied to the on-
line estimation of time-varying parameters of nonlin-
ear dynamical systems. Through simulations, it was
demonstrated how fractional-order neurons influence
the convergence of the Hopfield network, improving
the performance of the parameter identification process
if compared with integer-order implementations. Two
different approaches for computing fractional deriva-
tiveswere considered and compared as a function of the
fractional-order of the derivatives: the Caputo and the
Caputo–Fabrizio definitions. Simulation results related
to different benchmarks commonly adopted in the liter-
ature are reported to demonstrate the suitability of the
proposed architecture in the field of on-line parameter
estimation.
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1 Introduction

The problem of system identification is ubiquitous in
different research fields ranging from biology to engi-
neering applications. The access to mathematical mod-
els of the considered phenomena, often in the form of
systems of nonlinear differential equations, can help
the identification process exploiting the available apri-
ori knowledge. However, the parameters of any models
present inaccuracies that need to be corrected on the
basis of the experimental data available (i.e. grey-box
modelling) [27]. The parameter identification prob-
lem can be solved using different techniques based on
least square and maximum likelihood methods even if
other techniques based on genetic algorithms, neural
networks, and neural-fuzzy systems are also adopted
[26,40,41].

It is well established that Hopfield neural networks
(HNNs) [17,18] canbeused to solve optimization prob-
lems, including parameter estimation in the context
of system identification [9]. Interesting examples are
reported in [6,20,21,39] where Hopfield neural net-
works were applied for on-line identification of grey-
boxmodels, to continuously obtain an estimation of the
system parameters.

The application of Hopfield models to optimiza-
tion is a consequence of study its stability with an
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energy function method: the network seeks a mini-
mum of its Lyapunov function which is built from the
target function. In parameters identification problems,
Hopfield network is designed in a way that its Lya-
punov function coincides with the prediction error so
that the network evolution approaches a minimum of
the error. In [8] and [7], the authors presented a sta-
bility analysis of HNNs for on-line parameters identi-
fication, which are different from conventional HNNs
becauseweights and biases are time-variant and depend
on the state variables of the modelled system. A com-
prehensive study of the problem of using HNNs for
on-line parameter estimation has been provided in [4].
While these studies are based on integer order real
neuron models, in our work we examine a general-
ization of HNNs which dynamic can be described by
fractional-order differential equations [10] and, for the
first time, we apply them to parameter estimation prob-
lems. Fractional-order systems were recently applied
to improve the accuracy of epidemic phenomena and
electricalmodels [1,11] and also to realizemore precise
and robust control systems [31,35]. In [12] a fractional
control protocol has been applied to multi-agent sys-
tems to enhance the convergence speed and robustness
of the system under constant disturbances. A new vari-
able fractional-order derivative, applied to the coron-
avirus epidemic phenomena, has been proposed in [38]
where, by using the fixed point theory, the existence and
uniqueness of the solution have been demonstrated. In
[36] a novel fractional-order PID sliding mode con-
troller with neural network observer is proposed and
applied to hypersonic vehicles. Another application of
fractional-order PID controllers has been presented in
[16] where a particle swarm optimization algorithm is
used to search for the optimal parameters of the con-
trollers. The interest of the research community in the
field of fractional-order HNN is further demonstrated
by recent theoretical analyses. Global stability prob-
lem for fractional-order HNN has been investigated
in [42], adopting an intermittent control. Moreover,
a new three-dimensional fractional-order HNN with a
delay has been investigated, proposing a synchroniza-
tion method based on a state observer [19]. The role
of activation functions has been also deepened in [33]
where the stability and synchronization of fractional-
order HNN are analysed using Lyapunov functions.
In [14] classical and non-integer model order reduc-
tion methodologies have been presented demonstrat-
ing the suitability of fractional calculus in compressing

information while modelling systems and in describing
long-term memory effects.

In on-line applications the convergence time is par-
ticularly relevant, therefore, its relation with fractional-
order value has been investigated in simulations which
have been carried out using Adomian algorithm, a
semi-analytic method for simulating fractional-order
differential equations [3]. Different fractional deriva-
tive definitions are available in the literature [5,33,34].
The Caputo and the Caputo–Fabrizio definitions were
applied to develop the proposed fractional-order HNN
and compared on two different cases of study com-
monly adopted in the literature. The former is related
to the estimation of the parameter in the well-known
Lorenz system that exhibits a chaotic behaviour [28].
Besides the complexity of the system dynamics, the
approach can be easily applied to the system that is
linear referring to the parameters. It has been used as
testbed also by Lazzs and coauthors in [26] to eval-
uate the performances of parameter estimation meth-
ods based on swarm intelligence. Furthermore, the lat-
ter case of study is related to a mechanical two-cart
system, adopted in [4] to evaluate the identification
performance of an integer-order HNN. The role of
the fractional order of the derivatives was investigated
to demonstrate the improvements introduced by the
proposed architecture when compared with traditional
integer-order solutions.

The main contribution of this work is summarized
as follow:

1. An on-line identificationmethod for grey-boxmod-
els, based on an HNN, mathematically formulated
in the context of fractional-order systems is pro-
posed.

2. The Caputo and Caputo–Fabrizio definitions of the
fractional-order derivative are considered and com-
pared in the field of parameter identification.

3. The Adomian decomposition method is applied to
guarantee an accurate approximation of the frac-
tional derivatives and a fast convergence of the opti-
mization procedure.

4. The performance of the proposed solutions, both in
terms of convergence time and prediction accuracy,
are reported and compared, using well-established
benchmarks, with other techniques adopted in the
literature.

5. The relation between the obtained performance and
the fractional-order of the derivatives is deeply
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investigated to better understand the advantages
and bottlenecks of the proposed approach.

The remainder of this paper is organized as follows:
Sect. 2 describes the proposed HNN; Sect. 3 presents
the Adomian decomposition method which has been
used in simulations; Sect. 4 deals with the application
of fractional-order Hopfield networks to time-varying
parameter identification; and Sect. 5 describes the
application of our method and main findings. Finally,
conclusions are drawn in Sect. 6.

2 Fractional Hopfield neural network

A generalization of the HNN model is represented by
the introduction of a fractional-order neuron. Fractional
calculus has been suggested as an appropriate math-
ematical tool to describe a wide variety of physical,
chemical and biological processes and, in particular,
those following the so-called power law. Further, frac-
tional calculus is characterized by long-term memory
and non-locality: fractional derivatives of a function
depend not only on local conditions of the evaluated
time but also on all the history of the function [37].
A theoretical study of the behaviour and stability of
fractional-order Hopfield networks (FOHNN) was pre-
sented in [25], while implementation in the form of an
analog circuit in [32].

For our work, we consider FOHNN based on real-
valued neurons. The network has a recurrent structure
with all-to-all interconnections composed by N real-
valued neurons. The state of the nth neuron is denoted
by a real sn(t) variable for n = 1, . . . , N . Each neuron
has bias input I = {I j } and is connected to every other
neuron through weights W = {w jk}, where w jk ∈
R is the weight connecting j th and kth neuron. Each
neuron receives inputs from all other neurons, performs
a weighted sum of the inputs ξ and passes the sum
through the following activation function:

F(x) = 1

2

(
1 + tanh

(
x

χ

))
(1)

whereχ determines the slope of the activation function.
Dynamical model of the network can be described

in vectorial form by the following fractional-order dif-
ferential equation:

0D
(α)
t ξ(t) = WF(ξ(t)) − I (2)

where 0D
(α)
t is the fractional-order derivative of order

α,

ξ(t) = [ξ1(t), . . . , ξN (t)]T (3)

are the input potentials to neurons, F is the activation
function defined in Eq. (1) and I is the bias vector. The
state vector of the network is expressed as s = F(ξ(t)).

Equation (2) has the same structure of Abe for-
mulation of Hopfield neuron which is widely used
in optimization problems [2]. Several definitions of
fractional-order time derivative are available in the
literature. In this work, the Caputo and the Caputo–
Fabrizio definitions have been taken into account [15].

A sufficient condition for the stability of the dynam-
ics is that the matrix of synaptic weightsW is symmet-
ric with non-negative diagonal entries, that is, W =
WT , wi i ≥ 0 [23].

The Lyapunov or energy function of the state s is:

E = −1

2
sTWs + sT I (4)

The existence and the specific characteristics of this
Lyapunov function guarantee that the network evolves
spontaneously in the descending direction of such a
function until approaching the minima of the energy
function.

3 Adomian decomposition method

Finding numerical solutions to fractional differential
equations can be computationally intensive due to the
effect of non-local derivatives in which all previous
time points contribute to the current iteration [30].

However, a high-accurate approximation of frac-
tional derivatives which demonstrates fast convergence
to the solution can be obtained from the Adomian
decomposition method which has been developed by
George Adomian [3]. The algorithm is based on a
decomposition of the nonlinear operator as a series
where each term is a generalized polynomial called
Adomian polynomial.

Following the notation introduced in [13], we con-
sider the equation

F(x(t)) = g(t) (5)
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with

x(t) = (x1(t), x2(t), ..., xn(t))
T (6)

and

g(t) = (g1(t), g2(t), ..., gn(t))
T (7)

where F represents a nonlinear ordinary differential
operator involving both linear and nonlinear terms, and
g(t) is an inhomogeneous term.

The Adomian decomposition method requires that
F is separated into three terms F = L + R + N ,
where the differential operator L may be considered as
the highest order derivative in the equation, R is the
remainder of the differential operator and N expresses
the nonlinear terms.

Consequently, the system in Eq. (5) becomes

L(x) + R(x) + N(x) = g(t) (8)

Here, L is chosen to be easily invertible and applying
the inverse operator L−1 to both sides of Eq. (8) gives

x(t) = Ψ 0 + L−1(g(t)) − L−1(R(x)) − L−1(N(x))

(9)

where Ψ 0 is the kernel of the operator L−1.
The Adomian decomposition method admits the

decomposition of x into an infinite series of compo-
nents

x(t) =
∞∑
i=0

x(i) =
∞∑
i=0

⎛
⎜⎜⎜⎜⎝

x (i)
1

x (i)
2
...

x (i)
n

⎞
⎟⎟⎟⎟⎠ (10)

and the nonlinear term N (x) into an infinite series of
polynomials

N(x) =
∞∑
i=0

A(i) =
∞∑
i=0

⎛
⎜⎜⎜⎜⎝

A(i)
1

A(i)
2
...

A(i)
n

⎞
⎟⎟⎟⎟⎠ (11)

where the components A(i)
j are called the Adomian

polynomials which can be calculated by using the fol-
lowing expression

A(i)
j = 1

i !

[
di

dλi
N j

(
i∑

k=0

λkx(k)

)]

λ=0

(12)

with i = 0, . . . , M − 1 and j = 1, . . . , n.
Substituting (10) and (11) into Eq. (9) gives

∞∑
i=0

x(i) = Ψ 0 + L−1(g(t)) +

−L−1

(
R

( ∞∑
i=0

x(i)

))

−L−1

( ∞∑
i=0

A(i)

)
(13)

The components xi of the solution (10) can be easily
calculated by using the recursive relation

x(0) = Ψ 0 + L−1(g(t))

x(1) = −L−1(R(x(0))) − L−1(A(0))

x(2) = −L−1(R(x(1))) − L−1(A(1))

. . .

x(k+1) = −L−1(R(x(k))) − L−1(A(k)), k ≥ 0

(14)

Having determined the first M components x(i) of the
solution, the M-term approximate solution in the inter-
val [t0, t] can be defined as

x̃(t) =
M−1∑
i=0

x(i) (15)

In order to calculate an approximate analytical solu-
tion to system of differential equations with Caputo’s
derivative, we can consider L−1 = Jα

t0 , where Jα
t0 is

the Riemann–Liouville fractional integration of order
α, defined as

Jα
t0 f (t) = 1

Γ (α)

∫ t

t0

f (τ )

(t − τ)1−α
dτ. (16)

As the Caputo’s fractional derivative is defined as

Dα
t0 f (t) = Jm−α

t0

[
dm

dtm
f (t)

]
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= 1

Γ (m − α)

∫ t

t0

f (m)(τ )

(t − τ)α−m+1 dτ (17)

where m − 1 < α ≤ m and m ∈ N, by combining Eqs.
(16) and (17) we obtain

Jα
t0D

α
t0 f (t) = f (t) −

m−1∑
k=0

f (k)(t0)

k! (t − t0)
k . (18)

In the same way, we can consider the Caputo–
Fabrizio fractional-order derivative [29,34]:

FCDα
0 f (t) = (2 − α)M(α)

2(1 − α)

∫ t

0

exp

(
− α

1 − α
(t − τ)

)
f (1)(τ )dτ (19)

given t > 0 and M(α) a normalization constant
depending on α. In this case, the associated fractional-
order integral is:

L−1 = FCJα
0 f (t) = 2(1 − α)

(2 − α)M(α)
( f (t) − f (0))

+ 2α

(2 − α)M(α)

∫ t

0
f (τ )dτ. (20)

In our experiments, we imposed:

M(α) = 2

2 − α
. (21)

While numerical methods generally rely on discretiza-
tion techniques of nonlinearities in equations and per-
mit to calculate an approximate solution for specific
values of times and require computer-intensive calcu-
lations, an analytical method like the Adomian’s gives
a continuous approximation of unknown solution in
terms of a truncated series (see Eq. 15) in which the
original nonlinearity is transformed to other nonlinear
terms (i.e. Adomian polynomials) [24].

4 Parameter estimation using Hopfield networks

The parameter estimation problem is the identifica-
tion of the numeric value of uncertain, unknown or
time-varying parameters when the ordinary differential
equations (ODEs) of themodel are known. This kind of
optimization problem can be addressed by using Hop-
field Networks, as described in [8] and [22]. A scheme
of the proposed identification process is reported in
Fig. 1.

Fig. 1 Neural network identification scheme. The parameters
of the system are estimated using a FOHNN on the basis of the
system matrix A and using the output signal y(t)

In particular, the dynamical system is required to
be linear in parameters (LIP); therefore, it can be
expressed as follows:

y = A(x, u)θ (22)

where y is called output vector (that not necessarily
corresponds to the physical output of the system), x
state vector, u input vector and θ parameter vector and
A(x, u) is a matrix whose components are nonlinear
functions of the state variables and inputs. It is also
required that both y and A are measurable or known.

Once the system has been described in the LIP form,
the problem of parameter estimation at each time step
is equivalent to find the parameter values of θ that min-
imize the prediction error e of the system, which is
given by the difference between y (the actual, mea-
sured value of the output) and ŷ the output value that
is calculated by substituting the estimated parameters
θ̂ into the model:

e = y − ŷ = y − A(x, u)θ̂ (23)

The target function is the squared norm of the predic-
tion error:

E = 1

2
‖e‖2 = 1

2
eT e (24)

and, by using equation (23), it can be expressed as:

E = 1

2
θ̂
T
AT Aθ̂ − θ̂

T
AT y + 1

2
‖ y‖2 (25)
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The last term of Eq. (25) can be neglected as it does not
depend on the estimated parameters. Finally, we obtain
the following energy function:

E = 1

2
θ̂
T
AT Aθ̂ − θ̂

T
AT y (26)

On the basis of the considerations reported in Sect. 2
and, following the Lyapunov function for HNNderived
in Eq. (4), we can extract from Eq. (26) the following
weights and biases:

W = −AT A I = −AT y (27)

As a consequence, the network defined by weights and
biases in Eq. (27) has one neuron for each parameter
to be estimated and θ̂ is the state that minimizes the
energy function of the network.

Furthermore, as the activation function of the net-
work (see Eq. (1)) has a limited range of variability, it
is necessary to have previous knowledge of the maxi-
mum range of variability of parameters.

5 Numerical simulations

In order to test the reliability of our model, a simulation
tool based on the Adomian decomposition method was
developed in Mathematica and tested to address some
parameter estimation problems. All simulations were
carried out with M = 8 terms of Adomian polynomi-
als as a good compromise between computational effort
and numerical accuracy. Two cases of study, commonly
adopted as a testbed for on-line parameter estimation
technique, are considered: the chaotic Lorenz system
and a mechanical two-cart system. We have analysed,
in both cases, the effect of the fractional parameter α in
a wide range, α ∈ [0.05, 1.5], evaluating the perfor-
mance of the Caputo and Caputo–Fabrizio fractional
derivative formulations.

5.1 Parameter estimation of a Lorenz system

Parameter estimation in chaotic systems is an important
topic in signal processing and control system theory
[26]. A representative case of study is here reported
applying the proposed identification strategy to the
Lorenz oscillator. It is a three-dimensional dynamical
system that exhibits chaotic flow and was named after

(a)

(b)

Fig. 2 Estimation of σ parameter of the Lorenz system at differ-
ent fractional-order values adopting: a the Caputo–Fabrizio and
b the Caputo derivative

Edward N. Lorenz, who derived it from the simplified
equations of convection rolls in the atmosphere [28].

For the first time, he used the term “butterfly effect”
to indicate the sensitive dependence on initial condi-
tions: small variations of the initial condition in chaotic
system may produce large variations in the long term
behaviour.

Lorenz’s system can be described as:

dx1(t)

dt
= σ(x2(t) − x1(t))

dx2(t)

dt
= x1(t)(ρ − x3(t)) − x2(t)

dx3(t)

dt
= x1(t)x2(t) − βx3(t) (28)

where σ is called the Prandtl number and ρ is called
the Rayleigh number.
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Table 1 The precision of σ

estimation in Lorenz system
with Caputo–Fabrizio (C–F)
and Caputo (C) derivatives

Mean Squared Error

α Average (C-F) Average(C) Std Deviation (C-F) Std Deviation (C)

0.05 1.03 × 10−4 1.05 × 10−4 1.05 × 10−3 1.10 × 10−3

0.1 1.03 × 10−4 1.10 × 10−4 1.05 × 10−3 1.14 × 10−3

0.2 1.03 × 10−4 1.12 × 10−4 1.07 × 10−3 1.15 × 10−3

0.3 1.04 × 10−4 1.12 × 10−4 1.09 × 10−3 1.19 × 10−3

0.4 1.04 × 10−4 1.31 × 10−4 1.09 × 10−3 1.24 × 10−3

0.5 1.09 × 10−4 1.45 × 10−4 1.13 × 10−3 1.29 × 10−3

0.6 1.10 × 10−4 1.62 × 10−4 1.14 × 10−3 1.35 × 10−3

0.7 1.16 × 10−4 1.86 × 10−4 1.17 × 10−3 1.41 × 10−3

0.8 1.26 × 10−4 2.19 × 10−4 1.22 × 10−3 1.49 × 10−3

0.9 1.38 × 10−4 3.39 × 10−4 1.27 × 10−3 1.58 × 10−3

1.0 1.53 × 10−4 4.45 × 10−4 1.32 × 10−3 1.70 × 10−3

1.1 1.74 × 10−4 6.03 × 10−4 1.38 × 10−3 1.86 × 10−3

1.2 2.02 × 10−4 8.36 × 10−4 1.45 × 10−3 2.10 × 10−3

1.3 2.43 × 10−4 1.18 × 10−3 1.53 × 10−3 2.45 × 10−3

1.4 3.02 × 10−4 1.68 × 10−3 1.64 × 10−3 2.95 × 10−3

1.5 3.89 × 10−4 1.68 × 10−3 1.78 × 10−3 3.61 × 10−3

All parametersσ, ρ, β > 0, but usually σ = 10,
β = 8/3, while the system exhibits chaotic behaviour
for ρ = 28.

Equation (28) are linear in parameters and can be
written in the form y = A(x, u)θ , where

y =
⎛
⎜⎝

dx1(t)
dt

dx2(t)
dt + x1(t)x3(t) + x2(t)

dx3(t)
dt − x1(t)x2(t)

⎞
⎟⎠

A =
⎛
⎝x2(t) − x1(t) 0 0

0 x1(t) 0
0 0 −x3(t)

⎞
⎠

θ =
⎛
⎝σ

ρ

β

⎞
⎠ (29)

The system described in Eq. (28) has been simulated
for 20 s with β = 8/3, ρ = 28 and considering an
integration time step τ = 0.1, while σ is randomly
changed at every 50 s.At each time step τ , the equations
of HNN were integrated with Adomian algorithm with
a sub time step of δ = τ

200 . These hyperparameters have
been chosen as a trade-off between precision and the
computational effort. Furthermore, different values of

α were investigated. We found that another parameter
that influences the performance of the network is the
slope χ in Eq. (1). In particular, we selected χ = 0.02
for Caputo–Fabrizio definition and χ = 4.0 for Caputo
definition of the fractional derivative.

In order to compare the performance of the algo-
rithm, at different conditions (with α from 0.05 to 1.5),
the mean squared error was calculated, that is, the aver-
age squared difference between the estimated values
and the actual value:

MSE(σ ) = 1

N

N∑
k=1

(σ̂k − σk)
2 (30)

where N = 2000 denotes the length of data used
for parameter estimation, σ̂k and σk the estimated and
actual parameter respectively.

With regard to fractional-order derivative, both
Caputo–Fabrizio and Caputo equations were taken into
account.

Figure 2a shows the results obtained for Caputo–
Fabrizio FOHNN case, while the Caputo FOHNN case
is reported in Fig. 2b. It can be noticed that, in both
cases, fractional-order HNNs exhibit a better estima-

123



S. Fazzino et al.

Fig. 3 MSE for the σ parameter estimation of the Lorenz system
at different fractional-order values when the Caputo and Caputo–
Fabrizio fractional-order derivatives are considered

Fig. 4 MSE obtained estimating the σ, ρ and β parameters of
the Lorenz system as function of the fractional-order values

tion capability, compared to the integer-order neuron
structure when α < 1. Moreover, lower values of α

provide a better estimation both in terms of precision
and convergence time.

Table 1 and Fig. 3 report the estimation performance
in term of MSE for each experiment.

The applicationof fractional-order systems improves
the parameter estimation error when α < 1. Moreover,
the reduction of the fractional parameter α is highly
correlated with the improvement of the estimation per-
formance. However, it can be noticed that for low val-
ues of α (i.e. α < 0.4) for the Caputo–Fabrizio case),
the MSE reaches a plateau where further reductions
of the fractional parameter value will produce a mini-
mum impact on the estimation performance. In general,
when α is very low (e.g. α < 0.05) numerical issues
can arise during the simulations, requiring a further
optimization of the adopted hyperparameters and an
increase of the computational effort. The reported sim-

Table 2 The MSE obtained for parameters estimation in the
Lorenz system with FOHNN for different values of α and apply-
ing the ant colony optimization as described in [26]

FO-HNN
α MSE (C-F) MSE (C)

0.05 9.82 × 10−6 5.71 × 10−6

0.1 9.82 × 10−6 6.06 × 10−6

0.2 1.05 × 10−5 6.91 × 10−6

0.3 1.16 × 10−5 8.63 × 10−6

0.4 1.17 × 10−5 1.11 × 10−5

0.5 1.34 × 10−5 1.47 × 10−5

0.6 1.38 × 10−5 2.02 × 10−5

0.7 1.58 × 10−5 2.84 × 10−5

0.8 1.90 × 10−5 3.90 × 10−5

0.9 2.34 × 10−5 5.17 × 10−5

1.0 2.89 × 10−5 6.59 × 10−5

1.1 3.56 × 10−5 8.10 × 10−5

1.2 4.33 × 10−5 9.66 × 10−5

1.3 5.20 × 10−5 1.13 × 10−4

1.4 6.13 × 10−5 1.29 × 10−4

1.5 7.12 × 10−5 1.47 × 10−4

PSO-ACO MSE: 1.20 × 10−5

ulation results show better performance when Caputo–
Fabrizio derivative is adopted although the estimation
error converges to similar values when the parameter
α is in the next to the bottom side of the considered
range.

Our FOHNN architecture was also compared to the
particle swarmoptimization approach proposed in [26],
where a hybrid swarm intelligence algorithm has been
proposed for the estimation of σ , ρ and β. In our exper-
iments, an estimation of σ , ρ and β was conducted by
using fractional-order HNN starting from an initial ran-
dom estimation chosen in the following range:

σ ∈ [0, 20], ρ ∈ [0, 50] and β ∈ [0, 5] (31)

A total of nine experiments were conducted by varying
α from 0.05 to 1.5. The Lorenz system was always
integrated with τ = 0.01 for N = 100 steps, while
the FOHNN has been simulated with δ = τ

1000 at each
time step.

We evaluated the accuracy of the identification pro-
cess adopting the following index:
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(a) (b)

(c) (d)

(e) (f)

Fig. 5 Estimation error of σ (a, b), ρ (c, d) and β (e, f), of the Lorenz system adopting different values for the fractional-order parameter
α in the case of Caputo–Fabrizio (left side) and Caputo (right side) derivatives

MSE(σ, ρ, β)

= 1

N

N∑
k=1

(σ̂k − σk)
2 + (ρ̂k − ρk)

2 + (β̂k − βk)
2

(32)

Figure 4 shows the MSE as a function of α and the
estimated parameters. Our algorithm outperforms the
solution proposed in [26] terms of MSE as demon-
strated in Table 2 when a fractional-order α ≤0.4 is
considered. In this simulation, the Caputo–Fabrizio
method slightly outperforms the Caputo one, for low
values of α (i.e. α ≤0.4).
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Fig. 6 Model of a two-cart system with masses m1 and m2,
connectedwith a spring–dampingmechanismwith two unknown
parameters k and b and subject to an external force u(t)

Further details are reported in Fig. 5 where the esti-
mation error in the simultaneous searching of three
unknown parameters σ , ρ and β, using different values
of α for both Caputo–Fabrizio and Caputo derivatives,
is depicted. The obtained results

5.2 Parameter estimation of a two-cart system

In [4] HNNs have been studied for on-line parameter
estimation and applied in a two-cart system connected
with a spring-damping mechanism with two unknown
parameters k and b (see Fig. 6).

In this simulation, the system under consideration is
linear in parameters and then it can be written in the
form y = A(x, u)θ :

y =
(
m1

d2

dt2
x1(t) − u(t)

m2
d2

dt2
x2(t)

)

A =
(−x1(t) + x2(t) − d

dt x1(t) + d
dt x2(t)

x1(t) − x2(t)
d
dt x1(t) − d

dt x2(t)

)

θ =
(
k
b

)
(33)

where xi , d
dt xi (t),

d2

dt2
xi (t) andmi denote the displace-

ment, velocity, acceleration and mass of cart i , respec-
tively, and u(t) is the force applied to the cart 1. The
unknown parameters to be identified are the spring con-
stant k and the damper constant b.

In the following simulations, it was assumed that
m1 = m2 = 2 [kg], k = 1 [Nm ], b = 0.1 [Nsm ] and two
sets of initial conditions are considered:

IC1: xi (0) = 0 [m], d
dt

∣∣
t=0xi (t) = 0 [ms ]

IC2: xi (0) = 0 [m], d
dt

∣∣
t=0x1(t) = 1, d

dt

∣∣
t=0x2(t) =

2 [ms ]
Furthermore, two values of force applied to the cart

1 where considered: u1(t) = e−t [N] and u2(t) =

sin(π t) [N]; initial estimates of k and b were randomly
generated in the interval [0, 5] with uniform distribu-
tion.

The time evolution of the estimated parameters is
represented in Fig. 7 for the Caputo–Fabrizio deriva-
tive and in Fig. 8 for Caputo derivative. The FOHNN
behaviour is evaluated for a subset of α values extract
from the considered range. The entire sets of combi-
nations, including initial conditions IC and forces u(t),
are reported. All simulations have been performedwith
the following hyperparameters: τ = 0.01 and δ = τ

200 .
In order to evaluate the improvement of using dif-

ferent fractional-order α, the estimation error (ER) at
time t was calculated, defined as:

ER(t) =
√

(k − k̂)2 + (b − b̂)2 (34)

Tables 3 and 4 show the settling times (in πs) at
which ER < 5 × 10−3 for each experiment consider-
ing both Caputo–Fabrizio and Caputo definitions of the
fractional-order derivative. Also in this case, low val-
ues of α correspond to better performance if compared
with the integer-order case reported in [4]. The effect
of the derivate definition is different among the con-
sidered cases: in the first and fourth set-ups (IC1, u1)
and (IC2, u2), similar results are obtained in particular
for low values of the parameter α; in the second set-
up (IC1, u2), the Caputo–Fabrizio method outperforms
the Caputo solution regardless of the selected α; and in
the third set-up (IC2, u1), the results obtained adopting
the Caputo definition outperform the Caputo–Fabrizio
solution.

6 Conclusions

In thiswork, an application of fractional-orderHopfield
neural network was investigated for on-line parameters
estimation of nonlinear dynamical models. In particu-
lar, it was found in the simulations that fractional order
influences the convergence of the parameter estimation
process. The selection of the Fractional-order deriva-
tive definition is another important aspect to investi-
gate. Furthermore, simulations have been performed
using Adomian decomposition method which has been
confirmed as a reliable algorithm for solving fractional-
order differential equations.

As known in the literature for integer-order neu-
rons, also in the proposed approach the main require-
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Fig. 7 Time evolution of
the parameter estimation
obtained with the FOHNN
using the Caputo–Fabrizio
derivative, when α =
[0.05, 0.2, 0.5, 0.8, 1.2, 1.5]
and for different sets of
initial condition IC and
forces u, where IC1:
xi (0) = 0 [m],
d
dt

∣∣
t=0xi (t) = 0 [ms ], IC2:

xi (0) = 0 [m],
d
dt

∣∣
t=0x1(t) = 1,

d
dt

∣∣
t=0x2(t) = 2 [ms ],

u1(t) = e−t [N] and
u2(t) = sin(π t) [N]. The
solid and dashed lines
represent the estimated
values for parameters k and
b, respectively
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Fig. 8 Time evolution of
the parameter estimation
obtained with the FOHNN
using the
Caputo derivative, whenα =
[0.05, 0.2, 0.5, 0.8, 1.2, 1.5]
and for different sets of
initial condition IC and
forces u. The solid and
dashed lines represent the
estimated values for
parameters k and b,
respectively
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Table 3 Settling times (πs)
at which the estimation
error ER is below 5 × 10−3

for the two-cart system
parameter identification in
different operational
conditions when the
Caputo–Fabrizio derivative
is considered

α IC1, u1 IC2, u1 IC1, u2 IC2, u2

0.05 1.30 × 10−1 8.30 × 10−2 2.30 × 10−1 8.60 × 10−2

0.1 1.30 × 10−1 1.00 × 10−1 2.30 × 10−1 1.1 × 10−1

0.2 1.50 × 10−1 1.10 × 10−1 2.30 × 10−1 1.2 × 10−1

0.3 1.70 × 10−1 1.10 × 10−1 3.10 × 10−1 1.3 × 10−1

0.4 1.90 × 10−1 1.10 × 10−1 3.30 × 10−1 1.3 × 10−1

0.5 1.90 × 10−1 1.20 × 10−1 3.50 × 10−1 1.3 × 10−1

0.6 2.20 × 10−1 1.20 × 10−1 4.50 × 10−1 1.6 × 10−1

0.7 2.20 × 10−1 1.20 × 10−1 4.50 × 10−1 1.6 × 10−1

0.8 2.20 × 10−1 1.20 × 10−1 1.00 1.60 × 10−1

0.9 2.50 × 10−1 1.60 × 10−1 1.00 1.60 × 10−1

1.0 2.50 × 10−1 1.60 × 10−1 1.00 1.60 × 10−1

1.1 2.50 × 10−1 1.60 × 10−1 1.00 1.60 × 10−1

1.2 2.70 × 10−1 1.60 × 10−1 1.00 1.60 × 10−1

1.3 2.70 × 10−1 1.70 × 10−1 1.00 1.90 × 10−1

1.4 2.70 × 10−1 1.70 × 10−1 1.00 1.90 × 10−1

1.5 2.70 × 10−1 1.90 × 10−1 1.00 1.90 × 10−1

Table 4 Times (πs) at
which the estimation error
ER is below 5 × 10−3 for
the two-cart system
parameter identification in
different operational
conditions when the Caputo
derivative is considered

α IC1, u1 IC2, u1 IC1, u2 IC2, u2

0.05 1.30 × 10−1 1.10 × 10−1 6.00 × 10−2 9.20 × 10−2

0.1 1.50 × 10−1 1.10 × 10−1 6.00 × 10−2 1.10 × 10−1

0.2 1.50 × 10−1 1.10 × 10−1 2.10 × 10−1 1.10 × 10−1

0.3 1.50 × 10−1 1.60 × 10−1 2.30 × 10−1 1.20 × 10−1

0.4 1.70 × 10−1 1.60 × 10−1 2.30 × 10−1 1.20 × 10−1

0.5 1.80 × 10−1 1.70 × 10−1 2.30 × 10−1 1.20 × 10−1

0.6 1.90 × 10−1 1.70 × 10−1 2.30 × 10−1 1.30 × 10−1

0.7 1.90 × 10−1 1.90 × 10−1 2.30 × 10−1 1.60 × 10−1

0.8 2.20 × 10−1 1.90 × 10−1 3.30 × 10−1 1.60 × 10−1

0.9 2.20 × 10−1 1.90 × 10−1 4.40 × 10−1 1.60 × 10−1

1.0 2.20 × 10−1 2.30 × 10−1 4.40 × 10−1 1.60 × 10−1

1.1 2.50 × 10−1 2.30 × 10−1 4.50 × 10−1 1.60 × 10−1

1.2 2.50 × 10−1 2.30 × 10−1 4.50 × 10−1 2.90 × 10−1

1.3 2.70 × 10−1 2.50 × 10−1 4.50 × 10−1 2.90 × 10−1

1.4 2.70 × 10−1 2.50 × 10−1 4.50 × 10−1 4.40 × 10−1

1.5 3.00 × 10−1 2.50 × 10−1 4.50 × 10−1 5.70 × 10−1

ments for the application in parameter estimation are
that parameters must have a limited known variation
range and that dynamical system equationsmust be lin-
ear in parameters. It was demonstrated for two differ-

ent cases of study that the proposed approach can out-
perform other methods available in literature exploit-
ing the properties of fractional-order systems that are
better responsive than the integer-order one and are
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able to capture complex behaviours, such as the long-
termmemory effects of the dynamics. In particular, the
fractional-order parameter α represents a key element
to be selected. The selection of the parameter α > 1
does not lead to good results, whereas, for α < 1, the
estimation of the parameters improves both in terms
of convergence time and accuracy. It is important to
note that often the improvements obtained tend to sta-
bilize once an optimal alpha value is reached. How-
ever, this value depends on the specific case of study
investigated. It seems to be unnecessary to assign very
small values to the parameter α (i.e. below the range
considered). However, this actionwould require further
optimization of the hyperparameters to avoid numerical
problems. The choice of the fractional-order derivative
definition is a further element to be considered for the
optimization of the FOHNN.The results obtained show
that when α is close to the top of the considered range
the Caputo–Fabrizio derivative is more efficient than
the Caputo definition, while, in the bottom of the con-
sidered α range, the two approaches are either equiva-
lent or there is a specific preference based on the case
study under consideration. Further works will include
the application of the proposed architecture in adaptive
control schemes analysing the stability of the related
closed-loop systems.
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