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Abstract
In the paper, a fractional-order RLC circuit is presented. The circuit is realized by using a fractional-order capacitor. This is
realized by using carbon black dispersed in a polymeric matrix. Simulation results are compared with the experimental data,
confirming the suitability of applying this new device in the circuital implementation of fractional-order systems.

Keywords Fractional-Order Calculus · Constant-Phase Element · Analog fractional-order RLC circuit · Carbon-black-based
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1 Introduction

Fractional-Order Calculus (FOC) has been investigated for
centuries by mathematicians and physicians. Only in the
last thirty years, engineers have been able to envisage and
finally exploit fractional-order calculus potentialities, so
that, nowadays, it is applied in many research areas; from
automatic control in [25–27,30], to medical applications in
[22,39], from time series and longmemory effects modelling
[17,33,41], to economics [19] as well as in civil engineer
applications [4]. For a comprehensive state of the art related
to FOC applications see [36].

Inside the FOC framework, the realization of electron-
ics devices whose behavior is described by means of FOC
has aroused particular interest in the researchers. These ele-
ments can be defined as Fractional-Order Elements (FOEs).
Furthermore, among the FOEs, a particular cluster is deeply
investigated due to its unique properties: the Constant-Phase
Elements (CPEs). Theoretically, a CPE has a constant phase
in all the frequency range and, hence, can be thought as a
generalization of the commercial capacitor or inductor.

The first CPE, called Fractor, was patented by Bohannan,
see [8], and in [7] it has been applied in motor control appli-
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cation. A further patent has been presented in 2016, see [23].
In this case Carbon Nano Tube (CNT), has been used as
possible realization basic element of CPE-based devices.

Different technologies have been developed, which can
be classified as: multi-components and single components
[35]. Heavised introduced the possibility to model the input
impedance of transmission lines by using half-order capac-
itors [16]. That work triggered the interest of FOEs multi-
component realizations. More specifically, multi-component
realizations are obtained thanks to RC-based networks.
Passive RC components and Op-Amps-based circuit are
exploited for realizing different types of networks (such as
infinite, semi-infinite, domino or nested) [31]. The above
mentioned approach requires a large number of electronics
devices. The number and size of the involved components
represent a bottleneck for their application in micro- or
nano-electronics. Many technologies have been proposed for
the realization of single-component FOEs. Among possi-
ble implementations, the possibility of mimicking the fractal
geometry of many natural processes and living organisms
has been exploited. In [21], the influence of the electrical
parameters on the input impedance of a fractal structure
realized on silicon is presented. Electrochemical FOEs have
been proposed [5]. FOEs, in this class, exploit generally the
porous structure of suitable polymeric materials. Solid-state
FOEs are currently the most widely investigated technol-
ogy. They can be classified as follows: graphene-polymer
dielectric [18], carbon black-polymer dielectric [11] and
MoS2-polymer composites [3]. Finally, the use of CNTs, see
[1], introduced a new family of FOEs. CNTs are dispersed
in a polymeric matrix and, as result, a dispersive resistive-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40435-021-00778-4&domain=pdf
http://orcid.org/0000-0002-9574-7187


R. Caponetto et al.

capacitive network is obtained, which can be modeled by
using RC ladder structures.

In [12,13] the authors introduced and characterized a CPE
based on Ionic Polimeric Metal Composites. In the papers a
simplified model of a IPMC has been presented a possible
realization of CPE. In particular the fractional-order feature
of the device has been related with the platinum absorption
time, that represent a technological parameter for the CPE
realization.

In [24], it has been experimentally proved that the
MWCNT (MultiWall Carbon NanoTubes) can be used to
realize fractional capacitors, (0 < α < 1). The CPE devices
have been realized using two copper plates as electrodes
of dimension 1.5 × 1.5 cm2 and in between a dielectric
made up of a mixture of MWCNT and epoxy to separate
the electrodes. Inside the electrode, another copper plate of
dimension 1 × 1 cm2 is placed.

In [2] poly (vinylidene fluoride)-based polymers and their
blends are used to fabricate electrostatic fractional-order
capacitors. Thissimplebut effectivemethod allows toprecisely
tune the constant phase angle of the resulting fractional-order
capacitor by changing the blend composition.

All the above list CPE have been realized using materials
that possess an intrinsic fractional-order nature. However,
in all the different technological realization of CPEs, they
have a constant phase only in a limited frequency range, A
great challenge is to realize CPEs with a constant phase in a
wide frequency domain. Besides, it must be pointed out that
using classical CMOS technology it is possible to design and
realize effective fractional-order capacitors, see [38].

A possible application of such a device can be represented
by the realization of analog filters. Exploiting aCPE, it is pos-
sible to add more constraints due to more degree of freedom
related to the fractional-order of the active elements. Among
the possible filters, particular interest has been addressed to
RLC circuits.

More specifically, fractional-order RLCcircuits have been
described and analyzed in literature. In the pioneering work,
[20], an analytical study of the circuit is given in terms of
the Mittag-Leffler function, depending on the order γ of
the fractional differential equation. The paper introduces an
auxiliary parameter that represents the fractional time com-
ponents in the system, components that show an intermediate
behavior between a conservative and dissipative system. In
[32], the authors introduce some generalized fundamentals
for fractional-order RLβCα circuits, as well as a gradient-
based optimization technique in the frequency domain. The
concepts introduced in the paper have been verified by
analytical, numerical, and PSpice simulations. In [34], the
conditions for checking the realizability of fractional-order
impedance functions by passive networks, composed of a
fractional element (either a fractional capacitor or a fractional
inductor) and some RLC components, are presented. Neces-

sary and sufficient conditions are given on a fractional-order
impedance function to be realized by a passive network com-
posed of a fractional element and RLC components. In [40],
the analysis of phase and magnitude resonance conditions
for a series RLC circuit is considered. The peculiarity of the
papers consists of considering a supercapacitor as a circuit
component. In the paper described above, the RLC system is
either solved in analytical form or implemented and studied
by using a finite order approximation. None of the described
papers uses devices with intrinsic fractional order nature in
the realization of the fractional-order RLC circuit. On the
contrary proposed circuits are realized by using either digital
or analog approximations the fractional-order elements.

The authors have already investigated the possibility of
using CPE devices for the realization of fractional order
circuits. In [9] a first-order fractional RC circuit has been
introduced, while in [10], starting from state-space descrip-
tion, fractional-order Wien oscillator has been described.

In this paper, a new CPE, whose technological realization
is described in [6,11], is applied for realizing a fractional-
orderRLCcircuit. To the best of authors knowledge this is the
first reported case of a fraction RLC circuit realized by using
a device with inherent fractional nature. Simulation results,
compared with the experimental data, confirm the possibil-
ity to apply this new device in real circuits. In particular,
the paper is structured as follows: Sect. 2 gives an overview
on the fractional-order calculus and on the ideal fractional-
order RLC circuit; Sect. 3 shows and analyses the obtained
experimental results while in Sect. 4 conclusions are drawn.

2 Methods

In this section, a brief overview on the fractional-order calcu-
lus and a detailed analysis on the ideal fractional-order RLC
circuit will be given.

2.1 Fractional-order calculus

Fractional-Order Calculus can be considered as a gener-
alization of the commonly used integer-order one [28].
Thought integer-order derivatives and integral of a function
are common concepts, it is possible to compute derivatives of
non-integer-order, e.g. 0.7, as well as non-integer integrals,
e.g. of order 0.2 of a function. Fractional calculus allows to
manage these concepts. The non integer order operator aDα

t
with a, t , and α ∈ R is defined as follows:

aDα
t =

⎧
⎨

⎩

dα

dtα : α > 0
1 : α = 0
∫ t
a (dτ)−α : α < 0

(1)

Three different definitions can be used to compute the
previous operators [28]: in the continuous-time domain, the
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Riemann-Liouville (RL) and Caputo (Cp) definitions can
be used, while in the discrete case, the Grunwald-Letnikov
(GL) one.

Contextually, FOSs can be described also in the Laplace
domain. For example, a fractional-order integrator is described
by the following transfer function:

Im(s) = 1

sα
(2)

with α ∈ �. The realization of such an integrator as a sin-
gle electronic component is one of the most active research
fields in these years: for this reason, in the past, many sci-
entists proposed several and different approaches to emulate
and approximate this behavior utilizing integer-order com-
ponents in a specified frequency domain [29,42].

In control system theory, particular interest is devoted
to the implementation of the integrator in (2). Three pos-
sible approaches can be adopted. The first is based on the
digital implementation, that after the mapping from the s
to z domain, concludes in applying the difference equation
methods. This is the case when microcontrollers or specific
DSPs are used for the implementation, see [15]. The sec-
ond approach is based on the design of integrated circuits
using standard technology, such CMOS, see for example
[14,38]. The third approach, the one proposed here, is based
on the realization of new electronic devices whose constitut-
ing material posses intrinsic fractional-order nature.

In general, considering a fractional-order device, if the
angular frequency ω is used, its impedance in the Laplace
domain can be obtained as follows:

F( jω) = K

( jω)α
(3)

being K the gain of the impedance and α the fractional-
order of the impedance. From (3) both module and phase
can be evaluated and are |F( jω)| = K/ωα and � (F( jω)) =
−α · π/2. The phase for common resistors, capacitors and
inductors are 0, −π/2 and π/2, respectively.
Eq. (3) suggests that depending on the value of α different
behaviors can be modeled. Note that if α ∈ R, an arbitrary
constant phase is obtained and these devices can be defined
as Constant Phase Elements.

2.2 The fractional-order RLC circuit model

The general schematic of a RLC series circuit is shown in
Fig. 1. If α = β = 1, the standard RLC circuit is obtained.

By applying the Kirchhoff’s Voltage Law, considering

also that i(t) = C
dVc
dt

, the following expression holds:

LC
d2Vc(t)

dt2
+ RC

dVc(t)

dt
+ Vc(t) − Vin(t) = 0 (4)

R L
�

�
CVin Vout

Fig. 1 Fractional-order RLC series schematics

On the other hand, if a general fractional-order RLC
circuit is considered, the equation requires some adjust-
ments because the fractional-orders of inductor and capacitor
must be considered according to their analytical expressions,
respectively,

VL(t) = L
dβ i(t)

dtβ
, i(t) = C

dαVc(t)

dtα
(5)

So, Eq. (4) can be rearranged as:

LC
dβ

dtβ

(
dαVc(t)

dtα

)

+ RC
dαVc(t)

dtα
+ Vc(t) − Vin(t) = 0(6)

and considering the chain-rule for the fractional-order deriva-
tives, i.e. Dα

[Dβ f (t)
] = Dα+β f (t):

LC
dα+βVc(t)

dtα+β
+ RC

dαVc(t)

dtα
+ Vc(t) − Vin(t) = 0 (7)

Exploiting the Laplace transform, it is possible to study the
behavior of the fractional-order RLC circuit in the frequency
domain,

LCsα+βVc(t) + RCsαVc(s) − Vin(s) = 0, (8)

and therefore the transfer function of the circuit will be:

G(s) = Vc(s)

Vin(s)
= 1

LCsα+β + RCsα + 1
(9)

Another aspect to focus on is related to the natural
pulsationωc of aRLCcircuit.While for the traditional imple-
mentation of the circuit it can be calculated as:

ωc = 1√
LC

, (10)

in the case of a non-integer-order one the natural pulsation
ωc assumes, see [32], the following form:

ωc =
⎛

⎝
sin

(
απ
2

)

LCsin
(

βπ
2

)

⎞

⎠

1

α + β
(11)
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Finally, the circuit can be also represented in state-space
form as follows, using as state-space variables, x1(t) = Vc(t)
and x2(t) = dαVC

dtα .

dαx1(t)
dtα = x2(t)

dx2(t)
dt = − 1

LC x1(t) − R
L x2(t) + 1

LC vin(t)
(12)

On the other hand, if the fractional-order RLC circuit is
evaluated in the frequency domain, by imposing s = jω, in
(9) the asymptotic phase lag can be evaluated as follows:

G( jω) = 1

LC · ( jω)α+β + RC · ( jω)α + 1
= N ( jω)

D( jω)
−→

� [G( jω)] = � N ( jω) − � D( jω) = −� D( jω)

(13)

After some manipulations, the following expression is
obtained:

� D( jω) =

= arctan
ωα

[
LCωβ sin

(
(α + β)

π

2

)
+ RC sin

(
α

π

2

)]

LCωα+β cos
(
(α + β)

π

2

)
+ RCωα cos

(
α

π

2

)
+ 1

(14)

The asymptotic phase value, �as , can be evaluated as:

�as = − lim
ω→+∞

� D( jω) (15)

Finally, the following expression can be obtained:

� D( jω) =

= arctan
ωα

[
LCωβ sin

(
(α + β)

π

2

)
+ RC sin

(
α

π

2

)]

ωα

[

LCωβ cos
(
(α + β)

π

2

)
+ RC cos

(
α

π

2

)
+ 1

ωα

]

(16)

whose asymptotic value is:

�as = − (α + β)
π

2
(17)

Simulation analyses of the implemented circuit, represented
as reported in (12), have been carried out exploiting theFOM-
CON toolbox [37].

3 Experimental results and discussion

3.1 The CPE description

In [6,11], the authors demonstrated the possibility of real-
izing a CPE by using Carbon Black (CB) and a polymeric

Fig. 2 CB-based CPE device

matrix. More specifically, devices were realized using Syl-
gard, as the polymeric matrix, and CB as a dispersed filler.
Nanostructured devices, named in the following CB-FOEs,
were obtained. The CB-FOEs were fabricated by mixing the
PDMS and a crosslinking agent, in a weight ratio of 1 : 10,
in a Teflon crucible. Sylgard was purchased from DowCorn-
ing as a two part liquid elastomer kit. Part A (consisting
in the vinyl-terminated PDMS prepolymer) was mixed with
Part B (the crosslinking curing agent, consisting in a mixture
of methylhydrosiloxane copolymer chains with a Pt catalyst
and an inhibitor). CB (acetylene, 100%compressed, 99.9+%,
specific area 75m2/g, bulk density 170÷ 230 g/L, average
particle size 0.042μm) was purchased from AlfaAesar and
used as received.

Themixturewasmixed for 10 min. CBhas been added for
achieving the desired concentration. The mixture was stirred
for further 10 min, for enhancing the dispersion of the CB.

Curing at different temperatures was carried out, taking
into account both the manufacturer recommended curing
time and the heat propagation through themold. This resulted
in a stabilization time, required for the temperature of the cur-
ing PDMS approaching the desired curing temperature. The
mixture was used for realizing the dielectric of the capacitors
by pouring the viscous mixture into copper-made electrodes.
The mixture was allowed crosslinking at room temperature,
or in an oven preheated to the desired temperature, for 48 h.
More specifically cylindrical capacitors, whose geometry is
shown in Fig. 2, were realized.

The capacitor considered in the following has height h =
8 cm, internal diameter a = 0.6 cm and the external one
b = 1.2 cm.

A detailed description of the realization procedure for the
aforementioned device is given in [6].

The results reported in [6,11] allows to foresee a depen-
dence of the order α from the curing temperature and,
therefore, the possibility of controlling, by design, the of non-
integer coefficient. In particular, among the different curing
temperature values and percentages of CB diffused inside
the dielectrics, in this paper the CPE obtained with a curing
temperature of 130◦ C and a CB percentage equal to 2 %
has been taken into account.
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Fig. 3 Bode diagram of the CB-FOE

Fig. 4 Bode diagrams of the
C130B and the identified model
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In Fig. 3, the Bode diagram of the impedance of the con-
sidered FOE is reported. The diagram has been obtained by
using a spectrum analyzer Keysight Technologies E5061B.

Looking at the frequency range [1, 1000] kHz, both the
slope of the magnitude diagram and the value of the phase
lag give evidence of the fractional nature of the device.

An identification procedure has been performed, in the
frequency range mentioned above, to model the capacitor as
(3). The following values, C = 2.2 nF/s1−α and α = 0.82,

have been obtained, see Fig. 4. They will be used in the
following of the paper.

It is possible to argue that at the very low frequencies
(lower than 5Hz) resistive behaviors prevail. This is probably
due to leakage resistances and, hence, the proposed device
does not act as a CPE for frequencies lower than 1 kHz.
Moreover, in the investigated frequency range, the phase vari-
ation in the flat area is about∼ ±5 deg. It was not possible to
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Fig. 5 Fractional-order RLC circuit implementation

investigate frequencies larger than those reported in Fig. 3,
because of instrument limitations.

Tough devices obtained with the described technology
have been used for years, no significant changes have
observed in their electrical characteristics, giving evidence
of stability.

A fractional-order RLC series circuit was realized by
using the CB-FOE device. Commercial inductor,(i.e., with
β = 1), and resistance were used for the circuit realization.
The circuit, shown in Fig. 5, has been realized with a resistor
R = 1 k	, an inductor with a nominal value L = 47mH and
β = 1, and the aforementioned CB− FOE fractional-order
capacitor with C = 2.2 nF/s1−α and α = 0.82.

3.2 The FO-RLCmodel identification

An ideal FO-RLC circuit of Fig. 1 has been proposed as
model for the real circuit depicted in Fig. 5, without con-
sidering any parasitic effects. The Bode diagrams of the real
circuit and the proposed nominal model, obtained by exploit-
ing the parameters defined before, are shown in Fig. 6.

Table 1 Parameters of the
inductor EECM

Parameter Value

Rpar 15.874 G	

Cpar 12.707 pF

Rs 0.459 k	

Lreal 39.8 mH

As it is possible to notice, the nominal model is not able
to fit the real response of the circuit. Further investigations
on each components have been performed in order to build a
more reliable model.

3.3 The FO-RLC completemodel identification

The other two components of the circuit (i.e. resistor and
inductor) have been deeply analyzed in order to consider any
parasitic effects (if present) or to usemore accurate real value
of their impedances.

Firstly, the response of the resistance R has beenmeasured
with a digital multimeter and it is equal to Rreal = 997.6 	.

In order to dealwith the parasitic components of the induc-
tor, an Equivalent Electric Circuit Model (EECM) has been
identified. The schematic of the EECM is reported in Fig. 7,
while in Table 1 parameters of the model are reported.

The identified frequency response of the inductor is com-
pared with experimental measurements in Fig. 8. From the
dot-marked line, it is quite evident the presence of a res-
onance peak, at about 250 kHz, due to inductor parasitic
components.

The global fractional-order RLC circuit has been obtained
by the series connection of the resistance Rreal , the capaci-
tance Cα and the ECCM of the inductor.

Figure 9 shows the comparison between the frequency
response of the fractional-order RLC circuit model with that
of the real circuit, highlighting a well-performed identifica-

Fig. 6 Bode diagrams of the
real circuit and the nominal
model
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Rpar

Cpar

Rs Lreal

Fig. 7 Inductor EECM

tion procedure that allows to model the real behavior of the
system under investigation.

3.4 Discussion andmodel validation

Looking at Fig. 9, it is possible to notice that the FO-RLC cir-
cuit, as expected, has a resonant peak. This occurs at about
50 kHz. The parasitic effects produce an undesired anti-
resonant like effect at 250 kHz. Such parasitic effects are
responsible for discrepancies that can be observed in the
high-frequency range for both the module and the phase
graphs shown in Fig. 6.

Based on such consideration, further investigation are
limited up to 100 kHz. More specifically, three different
sinusoidal tones, the first one at 10 kHz, the second one
at 50 kHz and the last at 100 kHz, have been chosen as
forcing inputs to the circuit. The first tone was intended for
investigating the behavior of the circuit at low frequencies,
the second one to evaluate the response in the neighborhood
of the resonance frequency, while the third tone was used
for investigating the circuit at frequencies higher than the
circuit resonance frequency. Both the model simulation and

Fig. 8 Bode diagrams of the
inductor and its EECM
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Fig. 9 Bode diagrams of the
real FO-RLC circuit and the real
equivalent model
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Fig. 10 Sinusoidal input @
10 kHz
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Fig. 11 Sinusoidal input @
50 kHz
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Fig. 12 Sinusoidal input @
100 kHz
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Table 2 Maximum deviation values

Deviation Value Frequency

Module 1.704 dB 51.286 kHz

Phase 8.289 deg 63.648 kHz

the experimental investigation of the fractional-order RLC
circuit, at these three tones, will shown in the following.

The acquired responses and the correspondingmodel sim-
ulations are shown in Figs. 10, 11 and 12. It is possible to
notice that, at both the lowest and the highest considered fre-
quency values, the model simulations are in agreement with
the experimental results, while, at 50 kHz the amplitude
of the real circuit output is higher than the simulated one.
This discrepancy is due to a imperfect fit between real and
equivalent model. Looking at Fig. 9, in correspondence of
f = 50 kHz, a module difference of almost 2 dB can be
detected and such a difference justifies the variation of about
0.2 V .

This variation is further confirmed by the error values for
theBode diagrams in the interval [1, 100] kHz. The obtained
values, along with the corresponding frequency values, are
reported in the Table 2. Frequencies close to the circuit reso-
nance frequency are obtained. Finally, the real Bode diagram
allows to validate the identified orderα of the fractional-order
capacitor because the circuit asymptotic value is almost equal
to the one of the simulated model.

In Table 3 different parameters characterizing the Bode
diagrams, the sinusoidal, and step responses have been eval-
uated for the real and simulated fractional-order RLC circuit
respectively. The values obtained for the corresponding inte-
ger order RLC circuit (i.e., same R, L and C values, and
α = 1) are also reported in the table for the sake of compar-
ison.

The step response has been also investigated, see Fig. 13.
Although the pseudo-periods of the oscillation, both for the
real and the simulated responses, do not show relevant dif-
ferences, the simulated response is more dumped than the
real one: this phenomenon is justified by analyzing the Bode
diagram of Fig. 9, where, in correspondence of the peak res-
onance, the real module is slightly higher than the simulated
one.

The values presented in the table outline the dependence
of the non-integer-order RLC parameters on the non-integer-
order value α. In the following, evidence will be given of the
role of the fractional nature of the capacitor in the obtained
circuits behavior. More specifically, the investigation will
be performed for the case of the high frequency phase lag.
In this investigation the parasitic effects of the inductor are
neglected. The following notation has been adopted: IO indi-
cates the integer-order RLC circuit, FO-S is used for the
simulated fractional-order RLC circuit, andFO-R for the real
fractional-order RLC circuit.

More specifically, for α = 0.82 the corresponding asymp-
totic value, estimated according to 17, is −163.8 deg. The
values reported in Table 3 are in agreement with the analyti-
cal estimation.

Results obtained during the model identification and
validation show that the adopted linear model is a good
approximation of the device real behavior for the investi-
gated working condition.

4 Conclusions

In this paper a fractional-order RLCα circuit, realized
by using a CPE constructed with a CB nanostructured
dielectrics, has been introduced. To the best of the authors’
knowledge, it is the first realization of fractional-order RLC

Table 3 Parameters for
different responses

Estimated for IO FO-S FO-R
Bode diagram (Fig. 9)

Resonance peak 10.1 dB 8.4 dB 9.9 dB

Resonance frequency 15.2 kHz 46.7 kHz 51.3 kHz

Module slope −40 dB/dec −̃38 dB/dec //

Phase value −180 deg −163.8 deg −163 deg

Sine response (Figs. 10 and 12)

Amplitude peak-to-peak @ 10 kHz 1.462 V 0.975 V 1 V

Amplitude peak-to-peak @ 50 kHz 0.122 V 2.195 V 2.64 V

Amplitude peak-to-peak @ 100 kHz 0.024 V 0.313 V 0.3 V

Step response (Fig. 13)

Rise time 1.128 · 10−5 s 4.3 · 10−6 s 4.3 · 10−5 s

98% Settling time 2.138 · 10−4 s 1.032 · 10−4 s 1.104 · 10−4 s

Overshoot 58% 37% 50%
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Fig. 13 Step response
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circuit employing a real CPEs as a fractional capacitor.
The circuit has been investigated in the frequency domain
[1, 1000] kHz. Two models have been proposed and the val-
idation of the models both in time and frequency domain
is given. Evidence is given about the possibility of accu-
rately modeling the fractional-order RLC circuit. Reported
results show that new behavior can be obtained because of
the fractional nature of the capacitor. Finally, further stud-
ies are required to fully characterize the dependence of the
FOE from environmental quantities, such as temperature
and humidity. The obtained results are encouraging and let
foresee a possible application of these devices in analog
fractional-order circuits.
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