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Abstract: Rescue of cognitive function represents an unmet need in the treatment of neurodegenerative
disorders such as Alzheimer’s disease (AD). Nutraceuticals deliver a concentrated form of a pre-
sumed bioactive(s) agent(s) that can improve cognitive function alone or in combination with current
approved drugs for the treatment of cognitive disorders. Nutraceuticals include different natural com-
pounds such as flavonoids and their subclasses (flavan-3-ols, catechins, anthocyanins, and flavonols),
omega-3, and carnosine that can improve synaptic plasticity and rescue cognitive deficits through
multiple molecular mechanisms. A deficit of transforming growth factor-β1 (TGF-β1) pathway is an
early event in the pathophysiology of cognitive impairment in different neuropsychiatric disorders,
from depression to AD. In the present review, we provide evidence that different nutraceuticals, such
as Hypericum perforatum (hypericin and hyperforin), flavonoids such as hesperidin, omega-3, and
carnosine, can target TGF-β1 signaling and increase TGF-β1 production in the central nervous system
as well as cognitive function. The bioavailability of these nutraceuticals, in particular carnosine, can
be significantly improved with novel formulations (nanoparticulate systems, nanoliposomes) that
increase the efficacy and stability of this peptide. Overall, these studies suggest that the synergism
between nutraceuticals targeting the TGF-β1 pathway and current approved drugs might represent a
novel pharmacological approach for reverting cognitive deficits in AD patients.

Keywords: Alzheimer’s disease; cognition; transforming growth factor-β1; nutraceuticals; medicinal
herbs; omega-3 and omega-6 fatty acids; carnosine

1. Nutraceuticals and Mental Health: Focus on Cognitive Function

The term “nutraceutical” dates back to more than 30 years ago [1]. Among the nu-
merous definitions, González-Sarrías et al. classified nutraceuticals as “a type of dietary
supplement that delivers a concentrated form of a presumed bioactive(s) agent(s), nutrient
or non-nutrient, but from food origin” [2]. Vegetables, containing a variety of bioactive
compounds and micronutrients able to ameliorate the health status and/or decrease the
risk of developing different diseases (e.g., omega-3 fatty acids), are also considered nu-
traceuticals [3].

According to World Health Organization (WHO), mental health, an integral and
essential component of health, is “a state of well-being in which an individual realizes his
or her own abilities, can cope with the normal stresses of life, can work productively and
is able to make a contribution to his or her community” (https://www.who.int (accessed
on 23 June 2020)). In healthy people, cognition refers to the mental abilities allowing
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them to receive, acquire, and elaborate information from the surrounding environment and
involving several brain areas [4]. Cognition is based on complex processes such as attention,
perception, planning, learning, memory, and language [5], coordinated by executive control,
emotional, and motivational components, that modulate the behavior of each individual
person. An impairment of cognitive function represents a clinically relevant dimension in
different neuropsychiatric disorders such as schizophrenia, depression, and Alzheimer’s
disease (AD) [6].

Among the natural compounds, flavonoids and their subclasses such as flavan-3-ols,
catechins, anthocyanins, and flavonols have been associated with cognitive health, and
can significantly improve cognitive function through multiple molecular mechanisms [7].
Flavonoids may promote synaptic plasticity changes, influencing memory and learning
processes by acting on extracellular receptor kinase, Akt (also known as protein kinase
B (PKB)) and cyclic adenosine monophosphate (cAMP) response element-binding pro-
tein (CREB) [8]. Omega-3 fatty acids, essential polyunsaturated fatty acids also known
as omega-3 oils, ω−3 fatty acids or n−3 fatty acids, and polyphenols are abundant mi-
cronutrients that are part of the human diet, and are known to exert protective effects on
the central nervous system (CNS) thanks to their ability to modulate adult neurogenesis,
synaptic and neuronal plasticity, promoting neuronal homeostasis and finally improv-
ing cognitive function [9,10]. Polyphenol-rich extract as an add-on to a healthy lifestyle
may represent an additional pharmacological tool for the improvement of both working
memory and attention [11]. Furthermore, an increased consumption of polyphenol-rich
foods has been associated with better cognitive performance in elderly subjects with a
high cardiovascular risk [12]. Plant-based foods, such as fruits, vegetables [13], whole-
grains [14], nuts and legumes [15] are linked to many plausible effects toward human
health, including brain related disorders. These effects are mediated, at least partially,
through the anti-oxidant and anti-inflammatory activity of vitamins and polyphenols [10].
The synergism between nutraceuticals and current approved drugs for the treatment of
cognitive disorders can be used as a novel pharmacological approach to improve cognitive
function in patients with neurodegenerative disorders. For example, the co-administration
of vitamin D and memantine, an N-methyl-D-aspartate (NMDA) antagonist used for the
treatment of moderate-to-severe AD, improved the cognitive performance in AD patients
when compared with memantine alone [16].

Carnosine is a natural bioactive dipeptide synthesized starting from its two consti-
tuting amino acids, β-alanine and L-histidine, through the activity of carnosine synthase
enzyme [17,18]. This nutraceutical dipeptide, widely distributed in the tissues and or-
gans of vertebrates [19], has been shown to possess pro-cognitive effects under both
physiological and pathological conditions. The dietary supplementation of carnosine in
combination with its methylated analogue anserine for more than 12 weeks has been shown
to improve cognitive function [20,21], also preserving verbal episodic memory and brain
perfusion [20,22], and positively modulating network connectivity cognition-associated
changes [20] in elderly subjects. With regard to the therapeutic effects in cognitive disorders,
carnosine gave beneficial cognitive effects in Gulf War illness [23], mild cognitive impair-
ment (MCI) [24], and AD [25,26] subjects. In a study carried out by Fonteh et al., a selective
deficit of carnosine has been linked to cognitive decline in probable AD subjects [27].

In the present review, we will focus on selected nutraceuticals that are able to enhance
cognitive function by targeting a specific pathway, the transforming growth factor-β1
(TGF-β1) pathway, which exerts a key role in the pathophysiology of cognitive disorders.

2. TGF-β1 in Cognitive Disorders

TGF-β1 is a well-known anti-inflammatory cytokine that can act as a neurotrophic
factor exerting an essential role in the initiation and maintenance of neuronal differentiation
and synaptic plasticity at CNS level. TGF-β1 is able to protect neurons against the damage
induced by different stimuli such as excitotoxins, hypoxia/ischemia, and amyloid-β (Aβ)
aggregates [28,29].
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TGF-β1 signaling is initiated at the cell membrane surface through the binding of
TGF-β to TGF-β type II receptor (TβRII) (homodimers) which recruits activin-like kinase 5
(ALK5)/TGF-β type I receptor (TβRI) (homodimers) forming a heterotetrameric complex
with the ligand in which TβRII phosphorylates and activates TβRI [30,31] (Figure 1a).
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Figure 1. (a) Smad-dependent and (b) Smad-independent TGF-β1 signaling pathways are involved in the regulation of
various cellular processes, including cell growth/proliferation, differentiation, cell migration, invasion, and extracellular
matrix remodeling. (a) TGF-β1 binds to the TβRII homodimers allowing the dimerization with TβRI homodimers, the
activation of the kinase domain of TGF-βRI kinase domain, and the phosphorylation of both SMAD2 and SMAD3. These
phosphorylated proteins interact with SMAD4 leading to the formation of a heterotrimeric complex able to translocate into
the nucleus with the subsequent activation or repression of different genes involved in neuronal homeostasis. (b) TGF-β1
can also recruit Smad-independent signaling pathways such as ERK, NF-κB, JNK, and PI-3-K/AKT. These non-Smad
transducers can mediate signaling responses alone or in combination with Smads, also converging onto Smads to control
Smad activities. P indicates phosphorylation. TβRII = TGF-β type II receptor; TβRI = TGF-β type I receptor; BDNF = brain-
derived neurotrophic factor; Sara = Smad anchor for receptor activation; NF-κB = nuclear factor kappa-light-chain-enhancer
of activated B cells; ERK = extracellular signal-regulated kinase; PI-3-K = phosphatidylinositol-3-kinase; JNK = c-Jun amino
terminal kinase.

Upon activation, TβRI phosphorylates Smad2 and Smad3 (R-Smads) that will form
a complex with the Co-Smad protein Smad4 [32,33]. This complex will then translocate
into the nucleus, regulating the transcription of genes involved in different cell functions
such as proliferation, differentiation, and adhesion [34,35]. Not all Smad proteins are
activators, in fact Smad6 and Smad7 inhibit activation of R-Smads, then inhibiting the
genes’ transcription taking place at nuclear level.
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In addition to Smad-dependent pathways, TGF-β1 can also activate Smad-independent
pathways, including the extracellular-regulated kinase pathway [35], the nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB) pathway [36], c-Jun amino terminal
kinase (JNK) pathway [37], and the phosphatidylinositol-3-kinase (PI-3-K)/ AKT path-
way [38], involved in several processes such as the inhibition of cell-cycle, suppression of
immune response, and neuroprotection [39] (Figure 1b). These receptor-activated, non-
Smad transducers can mediate signaling responses either as stand-alone pathways or in
combination with Smads, and they can also converge onto Smads to control Smad activities.

TGF-β1 plays a key role in neuronal homeostasis function axon elongation, and
synaptogenesis; TGF-β1 signaling through Smad2 and/or Smad3 is also essential for
maintaining quiescent microglia after injury [40]. Furthermore, this factor is able to inhibit
free radical production and to induce apoptosis of stem/progenitor cells [40]. TGF-β1 can
enhance synaptic plasticity by promoting the expression of brain-derived neurotrophic
factor (BDNF) and tropomyosin receptor kinase B (TrkB) [41,42].

In addition to the above described, TGF-β1 has been demonstrated to be essential for
the transition from early (E-LTP) to late long-term potentiation (L-LTP), underlining its role
in recognition memory formation [43].

TGF-β1 knockout (KO) mice present dendritic spine density reduction and hippocam-
pal LTP impairment [44]. The dysfunction of TGF-β1 signaling has been associated with
neurodegenerative disorders; an impairment of TGF-β1 signaling has been reported in
AD pathogenesis, thereby contributing to Aβ accumulation, activation of microglia as
well as to the progression of neurodegeneration [42,45]. In most cases AD patients exhibit
decreased levels of nuclear Smad2, Smad3, and Smad4 in the temporal cortex [46], while
TβRII expression is reduced at neuronal level in an early phase of cognitive decline [45].
The double action of TGF-β1 on Smad-dependent and Smad-independent signaling is
relevant when considering the pathophysiology of cognitive decline in AD and the selective
impairment of Smad signaling detected in AD brains [46]. According to this scenario, the
identification of nutraceuticals able to activate these Smad-independent signaling pathways
and counteract the deficit of Smad signaling might be relevant for preventing AD-related
cognitive decline.

Cognitive deficits are also clinically relevant in major depression, and common patho-
physiological events have been identified in depression and AD, including neuroinflamma-
tion and an impairment of TGF-β1 signaling pathways [42]. Aβ injection into the dorsal
hippocampus of rats has been connected to neurotoxic effects that were further amplified
by intracerebroventricular (i.c.v.) injection of SB431542, a selective inhibitor of TβRI [38,47].
We have recently demonstrated a deficit of TGF-β1 signaling in a non-transgenic animal
model of AD at hippocampal level [48], a brain area essential in the storage and con-
solidation of short-term memory that is impaired in early stages of AD [49]. Different
second-generation antidepressants, in particular selective reuptake inhibitors (SSRIs), such
as fluoxetine, are able to increase TGF-β1 levels in depressed patients [50] and reverse
memory impairment in AD animal models [51]. It has been demonstrated that fluoxetine
exerts neuroprotective effects in an in vitro experimental model of Aβ-induced neurode-
generation via a TGF-β1-mediated mechanism [52]. Furthermore, a chronic treatment
with fluoxetine, or the new multimodal antidepressant vortioxetine, has been shown to
completely reverse depressive-like phenotype and memory deficits in Aβ-injected mice by
the rescue of hippocampal TGF-β1 levels [48]. Along this line, we can hypothesize that
nutraceuticals targeting TGF-β1 signaling pathways can synergize with antidepressants to
rescue cognitive function both in depression and AD.

Astrocytes represent the main source of TGF-β1 in the CNS and in the absence of
pathological conditions this cell type synthesizes and releases this neurotrophic factor
in different brain regions [53]. However, a TGF-β1 neuronal expression has also been
reported [54,55]. In addition, TGF-β1 can be synthesized and secreted from microglia in
response to inflammatory cytokines [40,56]. An in vivo study conducted by Yap et al. using
an animal model of ischemic stroke [57] demonstrated that astrocytes are able to secrete
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Interleukin 6 (IL-6) with consequent inhibition of T helper 1 cell differentiation and the
promotion of regulatory T cells (Tregs) with an increase in TGF-β1 levels contributing to
the effect of hyperforin on neuroangiogenesis and functional recovery.

TGF-β1 expression and activity are primarily regulated through the conversion of latent
TGF-β1 to active TGF-β1 by a variety of proteases, among which matrix metalloproteinase 2
(MMP-2) and matrix metalloproteinase 9 (MMP-9) play a central role in this conversion [58].
Psychotropic drugs, such as fluoxetine, promote the release of active TGF-β1 by favoring
the activation of MMP-2 in astrocytes, and the ensuing maturation of latent TGF-β1 [52]. We
can speculate that an increased conversion of latent TGF-β1 to active TGF-β1 might underlie
the increased secretion of TGF-β1 by cortical astrocytes induced by some nutraceuticals
such as hesperidin [59] and therefore hypothesize that cortical astrocytes might represent
an ideal cellular target for natural compounds (e.g., flavonoids) [60] able to promote the
secretion of TGF-β1 and then improve cognitive function.

It is known that physical activity promotes cognitive and memory functions by mod-
ulating the signaling pathway of neurotrophic factors [61] and, in turn, physical activity
can exert “neuroprotective effects” after brain injury [62]. Indeed, physical activity from
one hand promotes neurogenesis via synthesis and release of BDNF—one of the key
neurotrophic factors involved in brain plasticity [63]—and on the other hand it increases
TGF-β1 plasma levels [64], thus suggesting that physical activity can be considered as an
add-on strategy to the conventional drug treatment. According to this hypothesis, a very
recent study carried out by Szymura and collaborators showed that the concentrations
of TGF-β1 and BDNF increased in the blood samples obtained from healthy older adults
as well as in subjects suffering from Parkinson’s disease (PD) after 12 weeks of regular
balance training of moderate intensity [65]. An open question remains regarding how and
when a rescue of TGF-β1 levels can affect global cognitive function in these patients and
what impact might be of nutraceutical targeting the TGF-β1 pathway.

3. Nutraceuticals Targeting TGF-β1 Pathway: Evidence from Preclinical Studies

Medicinal plants are used in traditional medical practice to alleviate or, in the best
scenario, cure human suffering and illness. Medicinal plants represent a wide source of
bioactive phytochemicals that play a key role in preventing chronic diseases such as cancer
and diabetes [66]. In recent years, herbs have been considered an alternative approach for
the treatment of neuropsychiatric disorders, and in particular of anxious and cognitive
disorders, due to their good safety profile compared to current approved drugs [67].

Each class of these phytochemical compounds contains a wide range of active com-
pounds characterized by different potencies, with some of them presenting multifunctional
activity [68]. Different plants or natural compounds extracted from medicinal herbs with
the potential ability to improve cognitive functions have been identified during the last
decades. Among them, polyphenols, aromatic compounds isolated from fruits, vegetables,
and grains have shown the ability to suppress neuroinflammation and improve memory
and cognitive impairment [69]. In particular, among the subclasses of flavonoids associated
with the improvement of cognitive status [7], flavonols and flavanones are able to increase
the levels of TGF-β1 [70,71].

3.1. Medicinal Herbs

John’s wort, known botanically as Hypericum perforatum, is a natural agent with
antidepressant activity [72], which has also recently been considered as an enhancer on
cognitive function [73]. The extract of H. perforatum has proved to be neuroprotective in
animal models of AD [74] and the hypericin, one of the most effective active compounds, is
able to prevent stress-induced memory deficits and improve recognition memory induced
by chronic stress in rats [75]. Hypericin promotes wound-healing phenomena [76] by
inducing vascular-endothelial growth factor (VEGF) and TGF-β1 production in the burn
wound area [77]. Furthermore, it has been demonstrated by Yechiam et al. that the acute
administration of a low dose of H. perforatum (500 or 250 mg of H. perforatum quantified to
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either 1 or 0.5 mg of hypericin) has a positive effect on short-term verbal memory in healthy
subjects [78]. In a different study employing an animal models of stroke, hyperforin,
the main active ingredient derived from H. perforatum, showed the ability to promote
neuroangiogenesis and functional recovery by stimulating the production of IL-4, IL-6, and
TGF-β1 [57]. Both IL-4 and TGF-β1 exerted a key role in promoting the protective activity
of hyperforin in post-stroke angiogenesis and recovery. In a recent preclinical study, the
intranasal administration of hyperforin was able to improve post-stroke social isolation-
induced exaggeration of post-stroke depression and anxiety and promoted hippocampal
neurogenesis and cognitive function by rescuing TGF-β1 levels [79].

Flavonoids, a large family of polyphenolic secondary metabolites found in plants, pre-
vent the cognitive deficits associated with chronic inflammation in vivo [80–82]. Flavonoid-
induced activation of neuronal and glial signaling has been linked to the regulation of
mammalian target of rapamycin (mTOR), vascular endothelial growth factor B (VEGF-B),
and TGF-β1, promoting changes in synaptic plasticity and neurogenesis, which ultimately
positively influence memory, learning and cognition [8,83]. Among flavonoids, hesperidin,
a naturally flavanone glycoside present in Citrus sinensis [84], has been shown to improve
memory performance in adult mice through increased secretion of TGF-β1 by cortical
astrocytes [59]. This natural compound is also able to improve post-stroke depressive and
anxiety behavior promoting neurogenesis at hippocampal level and memory function by
TGF-β signaling [79]. In a different study, conducted by Li et al., a treatment for 10 days
with hesperidin ameliorated behavioral impairments and neuropathology of transgenic
amyloid precursor protein/presenilin 1 (APP/PS1) mice, also reducing microglial activa-
tion and TGF-β1 type 1 receptor in both the cortical cortex and hippocampus [85]. Icariin,
the major constituent of flavonoids from Epimedium brevicornum, has demonstrated a rele-
vant neuroprotective activity in animal models of AD as well as the ability to ameliorate
the cognitive deficits induced by permanent occlusion of bilateral common carotid arter-
ies (BCCAO) by reducing the BCCAO-induced TGF-β1 over-expression and Smad2/3
phosphorylation [86]. Icariin exerts a protective role in AD counteracting oxidative stress
phenomena [87] and, most importantly, prevents memory deficits in Aβ-injected rats [88]
by rescuing the BDNF signaling pathway and reverting decreases in postsynaptic density
protein (PSD-95) and the phosphorylated form of cAMP response element-binding protein
(p-CREB) levels. We have recently found a similar deficit of PSD-95 paralleled by a deficit
of hippocampal TGF-β1 in the same animal model of AD [48]. It is also known that TGF-β1
signaling and the BDNF pathway are strictly interconnected, and that TGF-β1 enhances
the expression of both BDNF and TrkB [41]. We can hypothesize that the neuroprotective
effects of icariin can be mediated by an increased TGF-β1 production and the following
release of BDNF, but new preclinical studies in the same animal model of AD should be
conducted to validate this hypothesis.

3.2. Omega-3 and Omega-6 Fatty Acids

Omega-3 and omega-6 fatty acids represent two main families of fatty acids that
cannot be synthesized by the human body, are therefore “essential”, and need to be
introduced by the diet. Several studies have reported a positive correlation between omega-
3 supplementation and a reduced risk of developing cognitive decline and dementia [89–91].
In addition to this evidence, it has been shown that omega-3 fatty acids are able to influence
brain development and improve reference memory and mood [89,92,93]. Along this line,
the reduction in omega-3 and/or omega-6 intake by the diet contributes to cognitive
decline [94]. In vivo studies have demonstrated that the deficiency in omega-3 intake
could also be associated with reduced biosynthesis of noradrenaline and dopamine in
rat brains and then linked to a decreased learning ability [95], whereas omega-3 chronic
administration improves reference memory and learning [96], and increases neuroplasticity
of nerve membranes [97]. The benefit of omega-3 supplementation on cognition has also
been observed in different clinical trials; in this regard, Fontani et al. have shown a positive
effect of omega-3 polyunsaturated fatty acids on cognitive domains in healthy subjects, in
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particular, an improvement in attentional and physiological functions, particularly those
involving complex cortical processing [98]. Based on the above-mentioned information,
omega-3 levels and/or omega-6/omega-3 ratio could represent novel pharmacological
tools for the prevention of cognitive impairment during aging and in the prodromal phase
of AD [99].

Omega-3 fatty acids are characterized by an anti-inflammatory activity, as demon-
strated in different studies on diseases including diabetes, arthritis, cancer, depression,
and AD [100–102]. Lower arachidonic and docosahexaenoic acids (DHA) levels were
associated with higher pro-inflammatory (e.g., IL-6) and lower anti-inflammatory (e.g.,
TGF-β1 and IL-10) cytokines concentrations [103]. Sharma et al. demonstrated that omega-
3 fatty acids possess an inhibitory activity in ovarian cancer cells in which TGF-β1, Smad-3,
and p21 levels were increased [104]. The DHA showed immunomodulatory and anti-
inflammatory activities in an animal model of atopic dermatitis by increasing TGF-β1
expression and suppressing the secretion of pro-inflammatory cytokines by CD4+ T cells
and macrophages [105]. Recently, Xu and colleagues showed a positive effect of omega-3
supplementation in a chronic renal failure animal model by regulating the nuclear fac-
tor erythroid 2–related factor 2 (Nrf2) and TGF-β/SMAD pathway [106]. The ability of
omega-3 fatty acids to increase the synthesis of TGF-β1 has been shown both in vitro
and in vivo [107,108]; in particular, a multicenter, randomized, double-blind, placebo-
controlled trial conducted by Krauss-Etschmann and co-workers employing 311 pregnant
women, long-term fish oil supplementation—containing a high concentration of omega-3
and omega-6—was associated with decreased mRNA levels of T(H)2-related molecules in
the fetus and decreased maternal inflammatory cytokines, combined with an increased pro-
duction of TGF-β1 acting as a master regulator in decreasing maternal inflammation [109].

Preclinical studies show that omega-3 intake is associated with an improvement in
cognitive deficits paralleled by an antioxidant effect in animal models of AD, and also
that the chronic administration of docosahexaenoic acid improves learning ability in aged
rats [110,111]. Furthermore, a reduction in neuroinflammatory phenomena and Aβ-amyloid
accumulation have been observed following the administration in vivo of omega-3 fatty
acids [112,113]. Unfortunately in these studies the authors did not explore the impact of
omega-3 fatty acids on TGF-β1 signaling, but recent studies in animal models of depression,
a well-known risk factor for AD, support the hypothesis that omega-3 fatty acids can
stimulate in vivo the secretion of TGF-β1 from microglial cells [114]. Gu et al. demonstrated
that the endogenous omega-3 polyunsaturated fatty acid (PUFA) administration is able to
counteract depressive-like behavior lipopolysaccharide (LPS)-induced by rescuing TGF-
β1 levels and by balancing microglial M1 and M2 phenotypes [114]. Interestingly, lower
concentrations of omega-3 fatty acids (in particular, eicosapentaenoic acid (EPA)) have
been detected in humans in fasting plasma associated with lower TGF-β1 levels [103], and
the supplementation with high dose of omega-3 fatty acids is able to reduce depressive
symptoms in adolescent depressed patients [115]; despite this evidence, new clinical studies
both in depressed and AD patients are needed in order to understand whether the cognitive-
enhancing activity of omega-3 PUFA can be mediated by a rescue of TGF-β1.

3.3. Multifunctional Nutraceuticals Able to Target TGF-β1 Signaling: Focus on Carnosine and Its
Therapeutic Potential in Cognitive Disorders

Among the multitude of nutraceuticals to be considered as novel therapeutic tools in
improving cognition and/or counteracting cognitive disorders such as AD, recent evidence
suggests a relevant therapeutic potential for the naturally occurring dipeptide carnosine
(β-alanyl-L-histidine), a nutraceutical characterized by a multimodal and neuroprotective
activity that includes the scavenging of reactive species [116], the negative regulation of
pro-inflammatory markers [117], and the modulation of immune cells (e.g., macrophages
and microglia [18,47,118–120]), and could thus play an important role in preventing and/or
counteracting cognitive disorders often characterized by high levels of oxidative stress and
neuroinflammation [121].
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The ability of carnosine to modulate the activity of the above-mentioned immune cells
is clinically relevant, since it has been shown that the dysfunction of both macrophages and
microglia, the resident innate immune cells in the CNS, strongly contribute to cognitive
decline detected in different neurodegenerative disorders such as Down syndrome, MCI,
and AD [122–124].

With specific regard to TGF-β1, there are several studies showing the ability of carno-
sine to positively modulate the synthesis and the release of this pleiotropic cytokine [18,47].
In particular, in a study carried out by Fresta et al., carnosine, used at a physiological
concentration (5–20 mM), was able to increase the mRNA expression levels of TGF-β1 in
LPS-stimulated macrophages; this activity was also accompanied by the amelioration of
the macrophage energy status, the down-regulation of the expressions of pro-inflammatory
molecules and pro-oxidant enzymes, as well as the positive modulation of the expression
levels of different members of the antioxidant machinery [18]. All these modulatory activi-
ties are of interest when considering different CNS disorders characterized by cognitive
decline deriving from increased oxidative stress combined with neuroinflammation. Still
considering the immune cells, in a model of an Aβ-induced neuroinflammation, carnosine
was able to increase the gene expression levels as well as the protein secretion of TGF-β1,
simultaneously preventing microglial cell death and lowering oxidative stress [47], all
factors that are strictly connected to the risk of developing dementia and, more in general,
to the aging-related cognitive decline [125]. In the same study, the key role played by
TGF-β1 in mediating the beneficial effects of carnosine was validated by using a selective
inhibitor of the type-1 TGF-β receptor (SB431542). In addition to the above-mentioned
in vitro studies, the ability of carnosine to increase the production of TGF-β1, also playing
a key role in hippocampal synaptic plasticity and memory [43], has also been observed
in vivo in a mouse model of type 2 diabetes [126], a known risk factor for the development
of AD [127,128].

When considering the therapeutic potential of carnosine, it should be also taken
into account that the strong preclinical evidence is also strengthened by human studies
showing an enhancement of cognition in elderly people as well as in subjects suffering of
brain-related disorders [129].

All these data suggest a multimodal mechanism of action of carnosine underlying
its therapeutic potential for the treatment of cognitive disorders, especially through the
positive modulation of TGF-β1 production. Nevertheless, a major unmet need in this field
remains that of increasing the bioavailability of carnosine both in rodents and humans
after its systemic administration [125]. Carnosine administration in humans only leads to a
small increase in circulating carnosine, because of its fast degradation by serum carnosine
dipeptidase 1 (CNDP1) [130].

In light of the above metabolism, during the last decades lots of efforts have been made
in order to develop new approaches or new formulations of carnosine able to improve its
bioavailability and target delivery. A first approach might be the use of potent and selective
inhibitors of CNDP1, such as carnostatine, in combination with carnosine, to increase
carnosine’s bioavailability [131]. Alternatively, intranasal administration of carnosine has
been proposed to bypass the blood-brain barrier (BBB) and first-pass metabolism [132,133].
Recent studies suggest that novel formulations can be developed to increase the therapeutic
potential of carnosine.

Increasing Carnosine Delivery and Its Bioavailability: Focus on Vesicular,
Nanoparticulates Systems and Derivatives

In recent decades, the delivery of carnosine into innovative formulations (drug deliv-
ery systems) has attracted a lot of interest (Figure 2).

In particular, vesicular, nanoparticulate systems and carnosine derivatives have been
investigated (Table 1).
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Table 1. List of drug delivery strategies for carnosine.
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sine-coated iron oxide nanoparticles have been prepared via co-precipitation of iron ox-
ide in the presence of carnosine. The synthesized carnosine-coated magnetic nanoparti-
cles might be applied to diagnosis and targeted drug delivery for cancer therapy [139]. 
Farid et al. developed stimuli-responsive magnetic nanoparticles coated with carnosine 
as promising nanoplatforms for breast cancer therapy. Surface grafting of magnetic na-
noparticles with the dipeptide carnosine maintained nanoparticles’ colloidal stability, 
preventing their agglomeration. In vitro cytotoxicity results revealed superior cytotoxic 
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compared with a carnosine solution. In vivo chemotherapeutic activity on Ehrlich Ascites 
tumor Bagg Albino (Balb)-C mice model showed that carnosine-coated magnetic nano-
particles exhibited a significant reduction in tumor size with no observed systemic tox-
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tionalized with carnosine were prepared and investigated as a drug delivery platform for 
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receptor-related protein (LRP) receptors to access the brain tissues [140]. 
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nosine, nanoliposomes were prepared by the thin film hydration method comparing the 
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1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) as well as 
1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) were able to provide the ideal 
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to the higher saturation degree compared to 
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dual effect: achieving nanoparticle stability and enhancing the carnosine therapeutic ef-
fect. Peptide and/or proteins are some of the most promising materials serving as pro-
tective layers on superparamagnetic iron oxide nanoparticles (SPION) [138]. Carno-
sine-coated iron oxide nanoparticles have been prepared via co-precipitation of iron ox-
ide in the presence of carnosine. The synthesized carnosine-coated magnetic nanoparti-
cles might be applied to diagnosis and targeted drug delivery for cancer therapy [139]. 
Farid et al. developed stimuli-responsive magnetic nanoparticles coated with carnosine 
as promising nanoplatforms for breast cancer therapy. Surface grafting of magnetic na-
noparticles with the dipeptide carnosine maintained nanoparticles’ colloidal stability, 
preventing their agglomeration. In vitro cytotoxicity results revealed superior cytotoxic 
effects of carnosine-coated magnetic nanoparticles on human breast cancer cell lines 
compared with a carnosine solution. In vivo chemotherapeutic activity on Ehrlich Ascites 
tumor Bagg Albino (Balb)-C mice model showed that carnosine-coated magnetic nano-
particles exhibited a significant reduction in tumor size with no observed systemic tox-
icity. In addition, carnosine-coated magnetic nanoparticles displayed superior an-
ti-angiogenic effects compared with a carnosine solution [137]. 

Another interesting application can be found in the study of Lu et al., in which Fe3O4 
nanoparticles/poly(lactic-co-glycolic acid) (PLGA) polymer-loaded dexamethasone func-
tionalized with carnosine were prepared and investigated as a drug delivery platform for 
simultaneous BBB crossing and treatment of ischemic stroke. The incorporation of this 
dipeptide has also played an efficient role in BBB crossing transcytosis under lipoprotein 
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1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) were able to provide the ideal 
nanoliposomes with the smallest size and highest encapsulation efficiency, probably due 
to the higher saturation degree compared to 
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). 
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Polymerosomes [144]

From 2001 to 2007, the first strategy investigated was the derivatization of carnosine to
increase its stability to carnosinases, representing an important limit for the therapeutic use
of this molecule due to the reduction in its bioavailability [145]. Carnosine was derivatized
with β-cyclodextrin and trehalose; both formulations demonstrated an antioxidant efficacy at
concentrations 10–20 times lower than that reported for other synthetic derivatives [134,136].
Derivatization was also studied to facilitate the site-specific transport to different tissues.
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Bellia et al. investigated a new carnosine derivative (BioCar) with biotin [136]. They demon-
strated an increase in the stability of this derivative towards the hydrolytic action of serum
CNDP1. Moreover, the binding affinity of BioCar to avidin and streptavidin were studied
with the aim to exploit the potential functionalization of gold nanoparticles.

Among the few published studies, great attention has been focused on magnetic
nanoparticles coated with L-carnosine [137]. This strategy can be advantageous for its
dual effect: achieving nanoparticle stability and enhancing the carnosine therapeutic effect.
Peptide and/or proteins are some of the most promising materials serving as protective
layers on superparamagnetic iron oxide nanoparticles (SPION) [138]. Carnosine-coated
iron oxide nanoparticles have been prepared via co-precipitation of iron oxide in the
presence of carnosine. The synthesized carnosine-coated magnetic nanoparticles might
be applied to diagnosis and targeted drug delivery for cancer therapy [139]. Farid et al.
developed stimuli-responsive magnetic nanoparticles coated with carnosine as promis-
ing nanoplatforms for breast cancer therapy. Surface grafting of magnetic nanoparticles
with the dipeptide carnosine maintained nanoparticles’ colloidal stability, preventing their
agglomeration. In vitro cytotoxicity results revealed superior cytotoxic effects of carnosine-
coated magnetic nanoparticles on human breast cancer cell lines compared with a carnosine
solution. In vivo chemotherapeutic activity on Ehrlich Ascites tumor Bagg Albino (Balb)-C
mice model showed that carnosine-coated magnetic nanoparticles exhibited a significant
reduction in tumor size with no observed systemic toxicity. In addition, carnosine-coated
magnetic nanoparticles displayed superior anti-angiogenic effects compared with a carno-
sine solution [137].

Another interesting application can be found in the study of Lu et al., in which
Fe3O4 nanoparticles/poly(lactic-co-glycolic acid) (PLGA) polymer-loaded dexamethasone
functionalized with carnosine were prepared and investigated as a drug delivery platform
for simultaneous BBB crossing and treatment of ischemic stroke. The incorporation of this
dipeptide has also played an efficient role in BBB crossing transcytosis under lipoprotein
receptor-related protein (LRP) receptors to access the brain tissues [140].

Among different encapsulation strategies, vesicular systems have been investigated
using phospholipids, surfactants or polymers, thus obtaining liposomes, niosomes or poly-
merosomes, respectively [146]. In order to improve the efficacy and stability of carnosine,
nanoliposomes were prepared by the thin film hydration method comparing the effects
of three different lipids on the vesicles’ features (size, zeta potential, phase transition
temperature and fluidity) [141]. Authors were able to demonstrate that 1,2-dioleoyl-sn-
glycero-3-phosphocholine (DOPC) as well as 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
(DPPC) were able to provide the ideal nanoliposomes with the smallest size and high-
est encapsulation efficiency, probably due to the higher saturation degree compared to
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC).

Maestrelli et al. condensed carnosine with lipoic acid, obtaining a lipoic acid-based
transient receptor potential akyrin type-1 antagonist, which was successfully encapsulated
into niosomes for brain targeting [142]. Free carnosine and carnosine-loaded niosomes
were investigated by in silico and in vitro studies to evaluate their effects on modifications
of bovine serum albumin (BSA) and their interactions with specific amino acids [143].
Moulahoum et al. demonstrated the occurrence of a dose-dependent inhibition of advanced
glycation end-products (AGE), advanced oxidation protein products (AOPP), and BSA
aggregation, thus demonstrating the potential of carnosine-loaded niosomes as a valid
strategy in the treatment of age-related protein modification. Recently, a novel strategy
based on carnosine encapsulation in lipoprotein receptor-related protein-1 (LRP-1)-targeted
functionalized polymersomes for the treatment of ischemic stroke was developed [144].
This formulation showed neuroprotective effects at a dose of carnosine three orders of
magnitude lower than that of free carnosine. The LRP-1-targeted functionalization was
relevant for brain targeting, allowing a time-dependent polymerosome accumulation in
the brain.
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4. Conclusions and Perspectives

Nutraceuticals deliver a concentrated form of a presumed bioactive(s) agent(s) from
food/vegetables that can improve cognitive function alone or in combination with current
approved drugs for the treatment of cognitive disorders. Drug discovery in the field of
cognitive disorders is currently focused on the identification of active principles, with
strong neuroprotective activity and high therapeutic potential. Nutraceuticals include
different natural compounds such as flavonoids and their subclasses (flavan-3-ols, cate-
chins, anthocyanins, and flavonols), omega-3, and carnosine that can improve synaptic
plasticity and increase cognitive function through multiple molecular mechanisms. Rescue
of cognitive function still represents an unmet need in the treatment of neurodegenerative
disorders such as AD. A deficit of TGF-β1 pathway is an early event in the pathophysiology
of cognitive impairment in different CNS disorders, from depression to AD.

In the present review, we provided evidence that different nutraceuticals such as
H. perforatum (hypericin and hyperforin), flavonoids such as hesperidin, omega-3, and
carnosine can target TGF-β1 signaling, increase TGF-β1 production in the CNS and finally
enhance cognitive function both in rodent models of cognitive disorders and in humans.
The bioavailability of these nutraceuticals, in particular carnosine, can be significantly
improved with novel formulations (nanoparticulate systems, nanoliposomes, niosomes
or polymerosomes) that increase the efficacy and stability of carnosine finally increasing
its therapeutic potential in humans. The studies examined in the present review also
suggest that the synergism between nutraceuticals targeting the TGF-β1 pathway and the
drugs currently approved for the treatment of cognitive disorders might represent a novel
pharmacological approach for rescuing cognitive function in patients with AD.
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