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Abstract: Oncogene mutations may be drivers of the carcinogenesis process. MicroRNA (miRNA) 
alterations may be adaptive or pathogenic and can have consequences only when mutation in the 
controlled oncogenes occurs. The aim of this research was to analyze the interplay between miRNA 
expression and oncogene mutation. A total of 2549 miRNAs were analyzed in cancer tissue—in 
surrounding normal lung tissue collected from 64 non-smoking patients and in blood plasma. 
Mutations in 92 hotspots of 22 oncogenes were tested in the lung cancer tissue. MicroRNA altera-
tions were related to the mutations occurring in cancer patients. Conversely, the frequency of mu-
tation occurrence was variable and spanned from the k-ras and p53 mutation detected in 30% of 
patients to 20% of patients in which no mutation was detected. The prediction of survival at a 
3-year follow up did not occur for mutation analysis but was, conversely, well evident for miRNA 
analysis highlighting a pattern of miRNA distinguishing between survivors and death in patients 3 
years before this clinical onset. A signature of six lung cancer specific miRNAs occurring both in 
the lungs and blood was identified. The obtained results provide evidence that the analysis of both 
miRNA and oncogene mutations was more informative than the oncogene mutation analysis cur-
rently performed in clinical practice. 
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1. Introduction 
MicroRNAs (miRNAs) are non-coding RNA molecules that have different regula-

tory roles in cell differentiation, proliferation, and survival. miRNAs can inhibit com-
plementary mRNA targets, regulating translation through RNA degradation. miRNAs 
were found to be deregulated in numerous diseases, including cancer, and are frequently 
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altered owing to mutations or transcriptional changes of the enzymes that regulate 
miRNA biogenesis [1]. miRNAs are also involved in the epithelial–mesenchymal transi-
tion, cell growth, proliferation, migration, and invasion [2], as well as processes related to 
chemotherapy cell resistance. For example, miR-92a expression is increased in PTEN de-
letion cases [3], miR-244 is related to the apoptosis process enhancing the proliferative 
and migratory effects in non-small cell lung cancer (NSCLC) [4], and miR-200c influences 
the epithelial–mesenchymal transition in A549 cells [5]. 

Experimental findings have linked environmental exposure, carcinogenesis, and 
miRNA profiles. Neither epigenetic nor genetic alteration, when used alone, accurately 
predict the lung cancer risk in exposed subjects. Indeed, the adverse effects of mutations 
can be silenced by a functional microRNA machinery and the alteration of the miRNA 
machinery is devoid of remarkable consequences in absence of genotoxic damage. Early 
diagnosis of lung cancers using miR-33a-5p and miR-128-3p signatures have been pro-
posed as they are linked to tumor suppression processes [6]. These findings address the 
identification of a cluster of miRNAs to be used as cancer early predictors considering the 
high heterogeneity of lung cancer patients. 

However, the use of microRNA analysis alone for early lung cancer detection is still 
questionable. Indeed, despite a variety of miRNA being released extracellularly in the 
blood from growing cancers [7], the use of blood circulating miRNAs for cancer diagno-
sis is still a research matter and is not yet applicable to clinical and preventive practices. 
Several problems still hamper the on-field application of miRNA analysis as a tool for 
preventive medicine, including (a) the lack of correspondence between cancer and blood 
miRNAs; (b) the overwhelming effect of miRNA released from large mass organs on 
cancer miRNAs; (c) the poor reproducibility of miRNA cancer signatures among differ-
ent studies; (d) the limited predictivity of miRNA analysis when used alone. 

MicroRNAs are released not only from growing cancer but also, under physiological 
conditions, by organs, such as the skeletal muscle, liver, and kidneys (weighting kilos) 
[8]. The amount of these miRNAs overwhelms those released from the low-size growing 
cancer mass (weight of a few mg and size of a few mm), a problem increased by the fact 
that miRNAs are only partly tissue specific, as the same miRNA is expressed, although at 
different levels, in various body tissues. 

The limited predictivity for the cancer occurrence of miRNAs when used alone is 
because miRNAs are quite unspecific with each one regulating hundreds of genes and, 
not only one but many, miRNAs play a pathogenic role in cancer progression. The main 
anti-cancer mechanism exerted by miRNA is the suppression of messenger RNAs pro-
duced by mutated oncogenes. This situation occurs in lung cancer for let-7 miRNA sup-
pressing the expression of mutated k-ras oncogene [9] in breast cancer for miR-335 
modulating the expression and the biological effects of the mutated BRCA1 oncogene 
[10]. 

Accordingly, whenever an oncogene is mutated, but its suppressing miRNA is still 
functioning, there is no push toward cancer progression, and thus the mutation is devoid 
of clinical predictivity. Similarly, whenever a microRNA is altered or downregulated, but 
its controlled genes is not mutated, again, there is no push toward cancer progression, 
and thus the microRNA alteration mutation is devoid of clinical predictivity. Giving this 
situation, it appears to be of high relevance to test, in parallel, both microRNA alterations 
and oncogene mutations to increase the clinical predictivity of these cancer biomarkers. 

The study was focused on non or ex-smokers only. Indeed, cigarette smoke exerts a 
well-documented direct alteration of miRNA expression [11]. Accordingly, we decided to 
limit the effect of this confounding factor focusing on the relationship between miRNA 
and oncogenes as related to lung cancer only. This design was more difficult than re-
cruiting current smokers; however, this was the only feasible approach to guarantee that 
the obtained results reflected cancer-related effects only and were not the results of the 
direct action of cigarette smoke on the miRNA machinery. 
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The aim of the herein reported research project is to use integrated mutations and 
microRNA expression as a new tool to perform lung cancer diagnosis and to identify 
high risk subjects with reference to lung cancer in non-smokers. 

2. Materials and Methods 
2.1. Patient Recruitment and Sampling 

The enrollment of the patients was performed in the four biggest hospitals of Cata-
nia (University Hospital “G. Rodolico—San Marco”, “Garibaldi-Nesima” Hospital, 
“Cannizzaro” Hospital, and “Morgagni” Clinic), and in the “San Vincenzo” Hospital of 
Taormina of Messina province. 

The protocol of this study was approved by the Ethics Committees (n. 11778 re-
leased on March 17th 2015. and 346/C.E. released on May 28th 2015) of the involved in-
stitutions and performed according to the Declaration of Helsinki. 

We used the following inclusion criteria for the patient enrollment: age >18 years, 
undergoing lung cancer-surgery, being non-smokers or former smokers for at least 5 
years, survival within 3 years, the exclusion of other concurrent diseases, and having 
signed the written informed consent during the interview. No gender restriction was 
considered, and no restricted selection was performed regarding the morphology of the 
reported neoplastic lesions. From the same patient, both neoplastic and healthy tissue 
samples (lung tissue biopsy) were taken. 

The lung tissue samples were sampled directly from the pathological anatomies of 
the hospitals involved in the project. Instead, the venous blood samples were collected 
directly from the thoracic surgery units of the hospitals involved. A total of 64 patients 
were enrolled, including 42 males (66%) and 22 females (34%), aged 69.0 ± 9.5 years, min 
43 and max 84 years old. 

Through the questionnaire, socio-demographic and lifestyle information, including 
smoking history, nutrition, home characteristics, and home location, were collected. 
From the 64 patients enrolled we sampled 64 blood samples, of which, 41 blood samples 
and 52 lung tissues were dedicated to miRNA profiling and oncogene mutation analysis 
by Ion-Torrent sequencing. For 35 patients, a 3 years follow up was performed to evalu-
ate their clinical status. These 35 patients were referred to as ‘monitored patients’. 

2.2. DNA Extraction 
Genomic DNA (gDNA) was extracted from 25 mg of fresh frozen lung biopsy DNA 

using the DNeasy Blood & Tissue kit (Qiagen, Milan, Italy), as described by the manu-
facturer’s protocol. The purification of gDNA was automated on the QIAcube instrument 
(Qiagen, Milan, Italy). The gDNA quality and quantity were assessed with a NanoDrop 
1000 spectrometer and with a Qubit 3.0 Fluorometer using a dsDNA HS Assay Kit 
(Thermo Fisher Scientific, Carlsbad, CA, USA). 

2.3. Somatic Mutation Identification  
The mutational status of 22 oncogenes (KRAS, EGFR, BRAF, PIK3CA, AKT1, ERBB2, 

PTEN, NRAS, STK11, MAP2K1, ALK, DDR2, CTNNB1, MET, TP53, SMAD4, FBX7, FGFR3, 
NOTCH1, ERBB4, FGFR1, and FGFR2) associated with lung cancer was analyzed by se-
quencing using the Colon and Lung Cancer Research Panel v.2 (Thermo Fisher Scientific , 
Carlsbad, CA, USA), which screens 92 amplicons in hotspots and target regions of these 
genes. For each sample, 15 ng of gDNA was amplified using the Ion AmpliSeq™ Library 
Kit 2.0 (Thermo Fisher Scientific Carlsbad, CA, USA) according to the protocol for gDNA 
isolated from fresh frozen samples [12]. 

The quality control of the libraries was assessed by TapeStation 2200 using the High 
Sensitivity D1000 assay (Agilent Technologies, Santa Clara, CA, USA) and with a Qubit® 
2.0 Fluorometer using the dsDNA HS Assay Kit (Thermo Fisher Scientific , Carlsbad, CA, 
USA). Then, seven multiplexed libraries (100 pM) were amplified and enriched by 
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OneTouch™ and the OneTouch™ ES, respectively using Ion PGM™ Hi-Q™ View OT2 
Kit (Thermo Fisher Scientific Carlsbad, CA, USA). Finally, the template was loaded onto 
a 316 v.2 chip and sequenced using the Ion PGM™ Hi-Q™ View Sequencing Kit on the 
Ion PGM™ platform (Thermo Fisher Scientific Carlsbad, CA, USA). The sequencing data 
were analyzed using the Ion Torrent Software Suite with the plugin Torrent Variant 
Caller v.5.10.0.18 (Thermo Fisher Scientific Carlsbad, CA, USA) applying somatic, high 
stringency parameters. We considered gene variants with a variant allele frequency up to 
1%, if covered at least 1000×. All gene variants were annotated by Ion Reporter™ Soft-
ware v. 5.10. 

2.4. Total RNA Extraction  
The total RNA was extracted from lung biopsies and blood plasma using standard-

ized protocols that combined phenol/guanidine-based lysis of samples and sili-
ca-membrane-based purification.  

Briefly, 3 mL of whole blood were collected in Ethylenediaminetetraacetic acid 
(EDTA) tubes and layered onto 3 mL Histopaque-1077 (Sigma-Aldrich Chemie Gmbh, 
Munich, Germany) through centrifugation at 400× g for 30 min. Plasma and lymphocytes 
were separately collected and stored at −20 °C at the Laboratory of Molecular Epidemi-
ology (University of Catania) until analysis. Next, the total RNA from the plasma was 
extracted using the miRNeasy Serum/Plasma Kit (Qiagen, Milan, Italy), as described by 
the manufacturer’s protocol.  

With respect to lung biopsies, 30 mg of fresh starting material was first stabilized in 
2.5 mL of RNAlater solution and stored at −20 °C at the Laboratory of Molecular Epide-
miology (University of Catania) until analysis. Next, lung biopsies were disrupted using 
the TissueRuptor II for 20–40 s and homogenized in 700 µL QIAzol Lysis Reagent (Qi-
agen, Milan, Italy). The total RNA was purified from the homogenate using the miR-
Neasy Mini Kit (Qiagen, Milan, Italy), as described by the manufacturer’s protocol. The 
purification of RNA was automated on the QIAcube instrument (Qiagen, Milan, Italy). 
The quantification of RNA was assessed with a qubit 3.0 Fluorometer using the HS RNA 
Assay kit (Thermo Fisher Scientific Carlsbad, CA, USA). 

2.5. MiRNA Microarray Analysis 
MiRNA profiling was performed by Agilent Platform using Human miRNA 8×60K 

Microarray containing 2549 miRNAs (miRBase 21.0) (Agilent Technologies Santa Clara, 
CA, USA). For each sample, 50 ng of the total RNA, including the miRNAs, was labeled, 
and hybridized according to the manufacturer’s instructions for miRNA Complete La-
beling and the Hyb protocol (v. 3.1.1). The hybridized microarrays were acquired using 
the G2565CA scanner (Agilent Technologies) and the images were processed by Feature 
Extraction software v.9.5.3.1 (Agilent Technologies Santa Clara, CA, USA). All raw data 
were loaded in the Gene Expression Omnibus (http://www.ncbi.nlm.nih. gov/geo/; GEO 
number accession requested, 8th March 2021). A tab-delimited text file was analyzed in 
the R v. 2.7.2 software environment http://www.r-project.org using the limma package 
v.2.14.16 of Bioconductor http://www.bioconductor.org. 

Only spots with a signal minus background that were flagged as positive and sig-
nificant were used in the following analysis as ‘detected’ spots. Probes with less than 50% 
of detected spots across all arrays, and arrays with several detected spots smaller than 
50% of all spots on the array were removed. The background-corrected intensities of the 
replicated spots on each array were averaged. The data were then log2-transformed and 
normalized for between-array comparison using quintile normalization [13]. MicroRNAs 
with P-values < 0.05 were selected for further analysis. Given the explorative nature of 
this study, no correction for multiple testing was applied in the screening procedure 
aimed at selecting multiple sets of microRNAs for subsequent hierarchical clustering 
analyses. The agglomerative hierarchical clusters, used to detect similarity relationships 

http://www.ncbi.nlm.nih/
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in microRNA log2-transformed expressions, were computed using the Euclidean dis-
tance between single vectors and the Ward method [14]. 

2.6. Statistical Analysis 
GeneSpring software (GeneSpring Multi-Omic Analysis version 14.9–Build 11939 by 

Agilent Technologies) was used for the analysis of miRNA expression from lung-tumoral 
(T = 38), lung-healthy (S = 12), and blood tissues (n = 41).  

All lung-tissue-miRNA raw data files from the Agilent Technologies Microarray 
Scanner System G2505C were imported to GeneSpring using miRNA analysis type, 
Technology 70156_v21_0, without baseline transformation. The blood miRNA chip raw 
data were import to GeneSpring with a custom technology as scanner analysis technol-
ogy was not available. The protocol used was: Analysis type = Expression, Experiment 
type = Generic Single Color, Normalization algorithm = none, percentile target = 75, and 
baseline transformation = none.  

3. Results 
3.1. Mutations in Oncogenes 

Despite the presence of lung cancer, no hotspot mutation was observed in 10 out of 
the 52 examined patients (19.2%). In 42 patients, mutations in oncogenes were observed 
with the following frequency ranking: TP53 (36.54%), KRAS (30.77%), EGFR (25%), 
PIK3CA (13.46%), ERBB2 (1.92%), STK11 (5.77%), BRAF (3.85%), PTEN (9.62%), MAP2K1 
(1.92%), and FGFR (1.92%) (Figure 1). Only 14 Patients (26%) carried mutations targetable 
by available precision medicine therapies (EGFR 25 mutations, BRAF 2 mutations, and 
ALK 2 mutations), and 25 out of 52 patients presented more than one mutation (Table 1). 

 
Figure 1. Radar chart showing the frequency of mutations in the lung biopsies of analyzed patients. 
TP53 (36.54%), KRAS (30.77%), EGFR (25%), PIK3CA (13.46%), and NOTCH1 (11.54%) were the 
most frequent mutations in the analyzed patients. 

Table 1. Frequency of single, double, triple, quadruple, and quintuple mutations in lung biopsies 
from the analyzed patients. 

Number of Mutations Frequency Percentage 
0 10 19.2 
1 17 32.7 
2 19 36.5 
3 2 3.8 
4 3 5.8 
5 1 1.9 

Total 52 100.0 
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3.2. Relationship between miRNA Profiles and Mutations in Oncogenes 
From the 38 patients in which both miRNA and mutations were analyzed, 33 were 

patients carrying at least one mutation. The mutational status affects the miRNA expres-
sion. Indeed, the expression of Cancer Related miRNAs was different between muta-
tion-carrier and mutation-free patients, as shown for each mutation by scatter plot anal-
yses (Figure 2). 

 
Figure 2. Scatter plot analyses of the miRNA-chip-array results from tumoral lung biopsies of an-
alyzed patients without (horizontal axis) and with (vertical axis) mutations for the oncogenes TP53, 
KRAS, EGFR, PIK3CA, ERBB2, STK11, BRAF, and PTEN. The miRNA profile was significantly re-
lated with the mutational status of the analyzed oncogenes as demonstrated by the miRNA 
changing their expression more than two-fold falling outside the two-fold variation interval indi-
cated by the diagonal green lines. The slope of the best fit regression line (black diagonal line) in-
dicates the overall trend toward up or downregulation for the mutational status of each oncogene. 
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miRNAs altered in tumoral tissue associated with each oncogene mutation were 
identified by volcano plot analyses (FC > 2.0, P < 0.05). Their identity is reported in the 
supplementary material (Table S1). The number of cancer-related miRNAs altered in 
tumoral tissue as associated for each oncogene mutation is reported in Table 2. 

Table 2. A number of miRNAs significantly changed their expression according to the mutational 
status of each oncogene. This table lists the number of these miRNAs in patients carrying oncogene 
mutations. 

Gene Mutated/Total Patients 
Number of Enti-

ties (Altered 
miRNAs) 

Up Down 
miRNAs Targeting  
Mutated Oncogene 

BRAF 2/33 7 1 6 0 
EGFR 9/33 1 0 1 0 
ERBB2 1/33 - - - - 
ERBB4 1/33 - - - - 
FGFR3 1/33 - - - - 

KRAS 10/33 13 13 0 
2 

(hsa-miR-15b-3p, 
hsa-miR-21-3p) 

NOTCH1 3/33 1 1 0 0 
PIK3CA 3/33 0 0 0 0 
PTEN 2/33 0 0 0 0 

STK11 2/33 31 30 1 
1 

(hsa-miR-548aa) 

TP53 10/33 4 4 0 
1 

(hsa-miR-205-3p) 

3.3. Clinical Predictivity of miRNA Profiling 
In this study: 9 out of 35 monitored patients died within 3 years of the biopsy. We explored 
whether the miRNA lung tumor expression profile was predictive of the clinical outcome in the 
following years after surgery. Indeed, the miRNA expression profile in cancer tissue was different 
between survivors and non-survivors, as shown by the scatter plot (Figure 3a) and volcano plot 
analyses (Figure 3b). The list of the 11 miRNAs predictive of patient survival (10 up-regulated (red 
dots) in survivors as compared to non survivors and 1 down-regulated (blue dot)) is reported in 
Table S2. A prediction model using the list of these 11 miRNAs related to survival and the 
GeneSpring Neural Network prediction algorithm was run, obtaining an overall accuracy of 0.92 
(+0.11), a higher result than those obtained for all miRNA entities (accuracy 0.81). This high accu-
racy shows the potential of these 11 cancer-related miRNAs from lung biopsies to be used as sur-
vival predictors. 
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Figure 3. Best-fit line in black, fold change and p-value lines in green. (a) Scatter plot analysis = entity list: cancer-related 
miRNAs (273), interpretation: averaged (alive) vs. (dead), FC ≥ 2.0. (b) Moderated T-test volcano plot analysis = entity list: 
cancer-related miRNAs (273), interpretation: averaged (alive) vs. (dead), without multiple testing correction, p-value 
cut-off = 0.05, fold-change cut-off = 2.0. 

Conversely, the mutation status poorly predicted the survival. Indeed, the rate of 
survivors (47 out of 60) and non-survivors (13 out of 60) was not different between mu-
tation free (10 out of 52) and mutation carrier (42 out of 52) patients. The patient’s de-
tailed information can be found in Annex 2. The number of mutations carried by the 
same patients was not different between survivors and non-survivors as demonstrated 
by the Chi-squared test (p = 0.803) (Figure 4). 
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Figure 4. The number of mutations did not predict patient survival. (a) Bar plot of the number of patients with zero to five 
mutations detected separated by survival. (b) Same data of (a) summarized in a contingency table. (c) The Chi-squared 
test maintained the null hypothesis: the survival and mutation number were independent variables. 

3.4. Liquid Biopsy: Lung Versus Blood 
The intensity of the expression of circulating blood miRNAs from 41 patients was 

used to classify miRNAs according to their inter-quartile average intensity expression 
(0–25% = undetectable, 26–50% = low, 51–75% = intermediate, and 76–100% = high). Out 
of the 273 Cancer Related miRNAs, 217 entries were also present in miRNA blood arrays. 
Venn diagram analysis indicated that the majority (n = 121) were undetectable and ex-
pressed at a low, 43 were detectable at an intermediate level, and 53 at a high level, i.e., in 
the upper quartile of the distribution (Table S3). 

Accordingly, a signature of 53 cancer related miRNAs present in the blood with a 
high expression was identified. The panel of these highly detectable miRNAs was com-
pared with their use as possible biomarkers in blood and serum as available in the ex-
isting literature (Table 3). Let-7b-5p, miR-150-5p, miR-22-5p, miR-26a-5p, miR-30b-5p, 
miR-30c-5p, and miR-486-3p were also present in other studies examining circulating 
miRNAs in the blood as lung cancer biomarkers [15–18]. 
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Table 3. Cancer-related miRNAs present in the blood with a high expression falling in the upper quartile of the distribu-
tion of intensity expression. The intensity of the miRNA expression was reported in fluorescence units as detected by 
microarray analysis (middle column). The miRNAs found in our study were compared with the bibliography to evaluate 
if their dysregulation in the blood could be considered as potential markers for lung cancer (right column). 

Tumoral miRNAs in Blood 
Average Signal in Blood Plasma  
Microarray (Fluorescence Units) 

Reference in Literature 

hsa-let-7b-5p 1556.03 [16,17] 

hsa-let-7e-5p 2570.68 [15]  
hsa-let-7g-5p 1591.89 ND 

hsa-miR-103a-3p 1966.77 ND 
hsa-miR-107 2307.96 ND 

hsa-miR-1247-5p 1619.35 ND 
hsa-miR-143-3p 1517.48 ND 
hsa-miR-147b 2867.22 ND 

hsa-miR-150-5p 1728.39 [15]  
hsa-miR-151a-5p 2375.45 ND 

hsa-miR-151b 2375.45 ND 
hsa-miR-181a-2-3p 1714.68 ND 

hsa-miR-183-3p 4515.51 ND 
hsa-miR-184 3097.26 ND 

hsa-miR-185-5p 2809.76 ND 
hsa-miR-193a-5p 1482.98 ND 
hsa-miR-22-5p 1889.39 [15,17] 
hsa-miR-224-3p 1805.07 ND 
hsa-miR-23a-5p 2880.99 ND 
hsa-miR-26a-5p 1497.29 [17] 
hsa-miR-2861 3086.05 ND 

hsa-miR-29b-2-5p 1481.13 ND 
hsa-miR-30b-5p 2117.35 [16] 

hsa-miR-30c-2-3p 2919.97 ND 
hsa-miR-30c-5p 3299.46 [17,18] 
hsa-miR-3149 2367.91 ND 

hsa-miR-361-3p 1454.65 ND 
hsa-miR-371b-5p 12583.51 ND 
hsa-miR-424-5p 1660.83 ND 
hsa-miR-4252 1558.12 ND 
hsa-miR-4290 1875.54 ND 
hsa-miR-4306 7145.12 ND 
hsa-miR-4324 1530.87 ND 
hsa-miR-4440 1537.86 ND 
hsa-miR-4443 3859.37 ND 
hsa-miR-4481 1605.44 ND 

hsa-miR-450a-5p 4646.58 ND 
hsa-miR-4516 11603.31 ND 

hsa-miR-452-5p 1629.61 ND 
hsa-miR-4532 13231.17 ND 
hsa-miR-4634 1884.47 ND 

hsa-miR-483-3p 3177.46 ND 
hsa-miR-486-3p 2337.52 [14,18], 
hsa-miR-490-3p 1882.31 ND 
hsa-miR-505-5p 3775.67 ND 

hsa-miR-516b-5p 5121.31 ND 
hsa-miR-548aa 3480.4 ND 
hsa-miR-548q 1453.76 ND 

hsa-miR-642b-5p 2070.84 ND 
hsa-miR-664b-3p 1539.91 ND 
hsa-miR-744-5p 3112.18 ND 
hsa-miR-99a-3p 1503.5 ND 
hsa-miR-99b-5p 1575.63 ND 

ND, Not Detected. 
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A similar approach was used to identify the presence in the plasma of lung miRNAs 
predictive of clinical outcome (survival). Out of the 11 predictive miRNAs identified in 
the lung cancer tissue (Annex 1, Table S2), Venn diagram analysis indicated that four 
were expressed at a high level (high inter-quartile intensity) in the plasma. These miR-
NAs were miR-23a-5p, miR-147b, miR-371b-5p, and miR-2861. 

4. Discussion and Conclusions 
The identification of novel biomarkers based on miRNA profiles from accessible bi-

ological samples, like blood, would help in the near future for a better understanding of a 
patient’s health state. Outcomes, like better malignant tumor tissue early detection, over 
time therapy effectiveness prediction, and patient survival prediction rates, may become 
a reality. The identification of useful circulating miRNAs for predictive outcomes may 
require models based on standardized tissue-specific and blood-based profiles in onco-
logic patients. 

As seen in our results, the presence of different mutations can modify the scatter plot 
in each case. From the cancer-related miRNAs significantly altered in each mutation, only 
four were predicted by TargetScan to target the considered genes as follows: 
hsa-miR-15b-3p and hsa-miR-21-3p for KRAS, hsa-miR-548aa for STK11, and 
hsa-miR-205-3p for TP53. This suggests that the dysregulation in these miRNAs may 
worse the mutation condition. 

Indeed, functional miRNAs may silence the expression of mutated oncogenes by 
destroying their encoded mRNA. Accordingly, whenever the miRNA machinery is well 
functioning, oncogene mutation does not bear relevance for phenotypic changes and 
progression of the cell in the carcinogenesis process. Conversely, whenever these miR-
NAs are altered, their efficacy in neutralizing the mRNAs encoded by mutated onco-
genes is lost, and oncogene mutation acquires relevance and efficacy for changing cell 
phenotypes and moving the carcinogenesis process forward. 

We found 11 miRNAs as statistically significant predictors of the patients’ dead 
within 3 years: hsa-miR-1227-5p, hsa-miR-147b, hsa-miR-187-5p, hsa-miR-23a-5p, 
hsa-miR-2861, hsa-miR-3663-5p, hsa-miR-371b-5p, hsa-miR-6068, hsa-miR-6075, 
hsa-miR-6771-5p, and hsa-miR-7704. At the same time, our analysis confirmed that sur-
vival was not correlated to the number of oncogene mutations. 

From this list, four miRNAs (miR-187-5p, miR-147b, miR-2861, and miR-6075) ap-
pear to be the most promising survival markers. Researchers observed that miR-187-5p 
suppresses cancer cell progression in non-small cell lung cancer (NSCLC) through the 
down-regulation of CYP1B1 [19,20], and that miR-147b promotes lung adenocarcinoma 
cell aggressiveness through glycoprotein 4 (MFAP4) regulation [21]; miR-2861 was pro-
posed as a biomarker of lung cancer stem cells [22]; and miR-6075 was used as a bi-
omarker for lung cancer high-accuracy diagnosis prediction models [23]. As our results 
demonstrated, from the 59-miRNA signature for blood, the best candidates were 
let-7b-5p, miR-150-5p, miR-22-5p, miR-26a-5p, miR-30b-5p, miR-30c-5p, and miR-486-3p, 
as they are also present in other studies regarding circulating miRNA biomarkers in the 
blood for lung cancer. 

The silencing role of microRNA on the expression of mutated oncogenes is well es-
tablished mainly for lung carcinogenesis. The k-ras let-7 interaction is the best typical 
example. However, the interaction of miRNAs with the target mRNA may be either spe-
cific or unspecific according to the number of complimentary nucleotides recognized on 
targeted sequences. We cannot exclude that, if the mutations of the oncogenes occurred 
in their coding regions, this situation could generate escaping mutants not recognized by 
the miRNA. However, thus far, this situation has not yet been demonstrated, at variance 
with the presence of experimental data clearly indicating the inhibitory role of miRNA 
toward oncogene expression. 

The main finding of this study was that the evaluation of oncogene mutations alone 
was poorly predictive of the clinical outcome. The predictive potential was remarkably 
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increased when oncogenes mutation were evaluated in parallel with the analysis of re-
lated miRNAs. This approach may be used for the personalized screening of lung cancer 
to identify high risk subjects to undergo early diagnosis screening by spiral TAC. Indeed, 
for practical and economic reasons, this approach cannot be applied to the whole popu-
lation but only to high risk subjects identified by predictive biomarkers. 

The obtained results may also be useful for lung cancer treatment, which is currently 
focused only on the oncogene mutational status. Our results provide evidence that on-
cogene mutation does not per se directly reflect on clinical outcomes and cancer behavior. 
These variables are determined by other important contributing factors, such as miRNA 
expression. The comparative analysis of oncogene mutations and miRNA alteration may 
be useful to identify responders to treatments specifically targeting oncogene mutations 
or those developing resistance to these treatments. 

A remarkable results of our study is the correspondence of the results between the 
liquid biopsy analysis and corresponding data for the target tissue, i.e., the lung. Indeed, 
we evaluated in parallel in the same patient both blood and lung tissues. The can-
cer-related signature was evaluated by comparing the miRNA expression between the 
cancer and healthy surrounding tissue. This signature accounted for 273 miRNAs, 53 of 
them being well detectable (i.e., in the highest quartile of the distribution) and also by 
liquid biopsy in the blood plasma. Among these 53 miRNAs, 7 were further confirmed as 
lung cancer biomarkers in the blood by other independent studies. These results repre-
sents a step forward to identify a miRNA blood signature applicable to the early diag-
nosis of lung cancer. 

Overall, the herein reported results provide evidence that the parallel analyses of 
miRNA and oncogene mutations was more predictive of lung cancer occurrence that the 
single analysis of only one of these two biomarkers. A tight interconnection between the 
pattern of miRNA alteration and the mutations occurring was detected, a finding 
demonstrating the interplay between genetic damage and the postgenomic control ex-
erted by the miRNA machinery. The predictivity of the clinical outcome (survival) was 
good for the postgenomic miRNA analysis and undetectable for the oncogene mutation 
analysis. This analysis could be executed by the non-invasive sampling of blood plasma 
given the fact that both oncogene mutations and specific lung cancer miRNAs can be 
detected in this body fluid. Such an approach could represent a new tool applicable to 
cancer preventive and predictive medicine. 

These findings support the use of parallel miRNA and oncogene mutation analysis 
as a new tool to provide clinical and preventive interventions tailored for the individual 
situation of each subject or patients, thus, realizing a practical approach of personalized 
medicine applicable to cancer prevention. 

Supplementary Materials: The following are available online at 
www.mdpi.com/2075-4426/11/3/182/s1, Table S1. Cancer Related miRNAs altered (FC ≥ 2, p ≤ 0.05) 
in Volcano Plot Analysis between average signal in samples with non-small cell lung cancer vs. 
small cell lung cancer. Table S2. Cancer Related miRNAs run on a Moderated T-Test Volcano Plot 
analysis (FC ≥ 2, p ≤ 0.05) for each environmental exposure: (a) passive smoke at home (No vs. Yes), 
(b) passive smoke at work (No vs. Yes); (c) airborne car traffic pollution (low vs. high); (d) volcano 
ashes (>60Km vs. ≤ 60Km); (e) radon risk (according to house type low vs. high)., Table S3 . Cancer 
Related miRNAs altered (FC ≥ 2, p ≤ 0.05) in Volcano Plot Analysis between average signal in 
samples of patients alive vs. dead within 3 years since biopsy. 
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