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COASTAL FLOODING RISK ASSESSMENT BY A NEURAL NETWORK 
APPROACH 

C. Iuppa1, L. Cavallaro1, R.E. Musumeci1 and E. Foti1 

An effective system of coastal flooding forecasting in the case of storm is essential to mitigate coastal risks for the 

population living in low-land coastal zones (<10 m above MSL). Nowadays, predictions of coastal flooding are 

usually carried out by adopting nested numerical models. However, the models adopted to obtain the data in the 

nearshore area require high computational costs, which are often too demanding and not viable for large scale 

forecasting. Data-driven models, such as Artificial Neural Networks (ANNs) can help to solve the problem as they 

can map complex nonlinear relationships between input and output variables once a suitable dataset of process 

realizations is available. In the present study a forecasting model for coastal flooding based on ANNs, in which the 

input data are the offshore wave characteristics from large scale model and the output results are the flooded areas, is 

proposed. These outputs provided a straightforward prediction of the area interested by coastal flooding during 

storms. Here an application of the model to assess the flooding risk in the village of Granelli, in the Southeast of 

Sicily (Italy) is presented. 
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Introduction 

Coastal zones are more densely populated than inland areas and they exhibit higher rates of 

population growth and urbanization (Small and Nicholls, 2003; Neumann et al., 2015). More in details, 

it has been estimated that at a global scale the population living in lowland coastal zones (elevation 

lower than 10 m) is more than 600 million (around 10% of the world's population and 13% of the 

world's urban population) (McGranahan et al., 2007). 

At the same time, such zones are exposed to several hazards. Storms, erosion, ecosystem losses 

and flooding are the main examples. The latter is considered as the major risk due to the potential 

losses it can inflict in human, environmental and economic terms (Coquet et al., 2019). Moreover, 

because of expected climate changes, projections of a sea level rise from 0.5 m to 1.8 m by 2100 

(Kopp, 2014; Le Bars et al., 2017) are estimated, which, in turn, significantly will increase the 

exposure to flooding.  

To reduce the risk in coastal areas, institutional, structural and preparedness measures can be 

adopted. Preparedness measures require mainly the improvement of the monitoring and forecasting 

systems and the development of an alert network. These aspects represent the necessary components 

for the development of an Early Warning System, namely a system which allows for a timely 

prediction of an adverse event so that Authorities can undertake the necessary actions to avoid or 

minimize the risk (Basher, 2006). 

Nowadays, several organizations (i.e., European Centre for Medium-range Weather Forecasts- 

ECMWF, National Oceanic and Atmospheric Administration - NOAA, etc.) provide hindcast and 

forecast data related to offshore wave characteristics, while predictions of coastal flooding are usually 

estimated by adopting nested numerical models which simulate hydrodynamic processes taking place 

in the nearshore area. 

A reliable and effective early warning system of coastal risks requires a system able to ensure: (i) 

high precision in the reconstruction of nearshore hydrodynamic and morphodynamic processes; and (ii) 

low computational times to minimize the impact of the event on the population. 

Unfortunately, the typical approach for coastal flooding prediction requires high computational 

costs, which is often too demanding and not viable for large scale forecasting system (Poelhekke et al., 

2016; Harley et al., 2016; Cheung et al., 2003). A way to overcome these limits is the creation of a 

database of the flooded areas related to predetermined offshore wave climates. Operationally, the 

flooded areas are estimated for several offshore probable scenarios. Therefore, once the offshore wave 

characteristics are known, it is possible to query such a database to estimate the corresponding coastal 

flooded areas. 

However, although the database may be very detailed it will not be able to process all the offshore 

wave conditions that can occur at a site. For such a reason, in the present study, Artificial Neural 

Networks (ANNs) were used. ANNs are mathematical/computer models characterized by structures 

and calibration processes that are inspired by the behavior of the human brain and which can map 

complex relationships between variables. In coastal engineering, neural networks are widely used in 
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several fields (Jain and Deo, 2006) as, for example, for the prediction of environmental parameters (e.g. 

wave characteristics, wind data, tide data, etc...) (Perez at al., 2015; Lee, 2012) or as support for the 

estimation of quantities such as wave reflection or wave overtopping for the design process (Formentin 

et al., 2017). 

An approach like the one proposed here was introduced by Sahoo and Bhaskaran (2019), who used the 

ANN for the prediction of storm surge and onshore flooding. In such a work, pre-computed scenarios 

of storm tide and inundation data were used to train ANN model. The scenarios were defined for 

various combinations of cyclone track, wind speed, translation speed, angle of approach, and tidal 

amplitudes. In the present study, the ANNs are used for the prediction of the coastal flooding due to the 

combined effect of wind waves and storm tide, for this reason, the selected input variables are the 

offshore wave characteristics and water level. The proposed approach was applied to the village of 

Granelli, which belongs to the municipality of Pachino, on the Southeast side of Sicily (Italy). The 

study area covers a surface of 1.40 km2, comprise between two headlands (Castellazzo and Gratticelle). 

Most of the area considered is characterized by an elevation over the mean still water level less than 3 

m. The high exposition to coastal flooding risk of the investigated area is confirmed by the analysis 

based on a new climate model for weather prediction set up by the National Agency for New 

Technologies, Energy and Sustainable Economic Development, which has allowed estimating that 

Granelli is one out of seven sites in Italy that could be entirely lost due to flooding by 2100 (Antonioli 

et al., 2020). 

The work is organized as follows. The next section describes the methodology adopted to build the 

flooding area database and to calibrate the ANN. Then, the data used as input for the calibrated ANN 

are described and the results of the coastal flooding risk assessment are discussed. Finally, the main 

findings of the present study are summarized. 

 Creation of a database of the flooded areas 

The training data of the neural network were obtained by using two state-of-the-art nested 

numerical models: SWAN (Simulating Waves Nearshore) and Xbeach. 

SWAN is a third-generation wave model, developed by Delft University of Technology (Booij et 

al., 1999), which computes random, short-crested wind-generated waves in coastal regions and inland 

waters. The model is based on the wave action balance equation with sources and sinks.  

Xbeach is a two-dimensional model used for the computation of nearshore hydrodynamics and of 

the morphodynamic response of beaches during storm-events (Roelvink et al., 2015). The model 

allows users to include two different options for wave boundary conditions in the model: spectral 

conditions or not spectral condition. In the present study we applied the first option using the wave 

spectra estimated by SWAN at the seaward boundary. The hydrodynamics processes were simulated 

using the short-wave averaged modes (surf beat) where the short-wave variations on the wave group 

scale and the long waves associated with them are resolved. The simulations were performed assuming 

negligible the effects of wave-current interaction (Marino et al., 2020a; Marino et al., 2020b) and 

considering a fixed bottom. 

The morphology of the seabed was obtained from the charts of the Italian Navy Hydrographic 

Institute and from a specific in situ bathymetric survey. The emerged beach was reconstructed using the 

DTM provided by the Sicilian Region, which is characterized by a 2x2 m spatial resolution. 

The SWAN computational domain (see Figure 1) was discretized using an unstructured grid. For 

the present case, the computational domain was discretized with 5563 nodes and 10719 triangular 

elements. The grid resolution has been assumed constant for depths shallower than 50 m and deeper 

than 100 m, while it varies linearly in range 50-100 m. Accordingly, the mesh sizes are 400 m for the 

depths shallower than 50 m, and 1000 m for the depths deeper than 100 m, and vary linearly between 

400 m and 1000 m for the depths in the range of 50-100 m. 

The lateral boundaries of the Xbeach domain are characterized by a length of 1686 m, while the 

seaside and the land side boundaries are characterized by a length of 3700 m. On the seaside boundary, 

the cells have a width both in the y and x directions equal to 10 m; on the land side contour, the cell 

width in y is 10 m, while it is reduced to 2.5 m in the x direction. 

Figure 2 shows the calculation domain used for the simulations conducted at the Granelli beach. 

The figure also shows the location of section 1 in which the time-series of the moving waterline was 

recorded. Such data were used to compare the results of Xbeach with the empirical model proposed by 

Stockdon et al. (2006). 

Several sea states were simulated to obtain an adequate dataset for the training of the neural 

network. More in details, 1680 sea states were selected characterized by: 
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1. wave height in the range of 2-8 m, with a resolution of 0.5 m; 

2. wave period in the range of 5-15 s, with a resolution of 2.5 s;  

3. wave direction in the range of 120- 270°N, with a resolution of 10°; 

4. mean sea level in the range of 0.0-0.50 m, with a resolution of 0.25 m. 

The wave input at the seaside boundary was defined using the JONSWAP (Joint North Sea Wave 

Project) spectrum. The spectrum was discretized into 36 directions and 40 frequencies in a range of 

0.04–0.5 Hz, which corresponds to range of 2–25 s in terms of time.  

 
Figure 1. Computational domains and bathymetry adopted for the numerical simulations using SWAN. 

 
Figure 2. Computational domains and bathymetry adopted for the numerical simulations using Xbeach. The 
dashed line individuates the section 1 in which the waterline position was recorded.  

The results of simulation performed with Xbeach were compared with the empirical method 

proposed by Stockdon et al. (2006). The latter method is a simple parameterization which provides 

useful predictions of extreme setup and runup on natural beaches. This method includes foreshore 

beach slope, offshore wave height, and deep-water wavelength. For the comparison, the output data of 

Xbeach (setup and runup) were extracted along the section 1, whose more offshore point is at x= 

501351 m and y= 4060520 m and the more onshore point is at x = 501558 m and y= 4061993 m (see 

Figure 2).  

As it can be seen in Figure 3, the correspondence between the numerical model and the empirical 

model is quite good. However, for some extreme events, it can be noted that the method of Stockdon et 

al. (2006) provides lower values than those estimated by Xbeach. The mean error between the two 

model was equal to 0.004 m and 0.02 m for the setup and the runup, respectively. The root mean square 
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discrepancy between the two sets of data was equal to 0.09 m and 0.27 m for the setup and the runup, 

respectively. 

 
Figure 3 Comparison between wave setup and wave runup estimated using both the numerical model 
Xbeach and the empirical model proposed by Stockdon et al (2006). 

Figure 4 shows six sectors (A1-A6) in which the village of Granelli was divided according to the 

population density. The results on flooded surface areas within such sectors have been used to train the 

ANNs, as discussed in the next section. 

 
Figure 4 Population density and location of the six sectors (A1-A6) in which the village of Granelli was 
divided according to the population density. 

Neural Network Calibration 

Fully connected single hidden layer feed forward ANNs have been used (see Figure 5). The input 

nodes provide information on the storm wave characteristics and mean sea level to the network. The 

hidden nodes compute the parameters of the ANNs and transfer information from the input nodes to the 

output nodes. The output nodes predict the flooded areas. 
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Figure 5 Structure of the artificial neural network used for the prediction of the flooded areas. 

According to population density (Figure 4), the village of Granelli was divided into six areas. For 

each area, several configurations of ANN were analyzed by changing the number of the nodes in the 

hidden layer. In particular, the numbers of nodes considered are: 1, 5, 10, 20, 40, 80, 100, 200 and 500. 

The calibration of the ANNs was carried out by means of the early stopping method. In this method, 

the data is divided into three subsets. The first subset is the training set, which is used for computing 

the gradient and updating the network weights and biases. This analysis was carried out by means of 

the Matlab function trainlm which updates weight and bias values according to Levenberg-Marquardt 

optimization. The second subset is the validation set. The error on the validation set is monitored 

during the training process. When the validation error increases for a specified number of iterations, the 

training is stopped, and the weights and biases at the minimum of the validation error are returned. The 

last subset is the test set which is used both to check the network generalization and to identify the 

neural network configuration which best describes the function between the input data and the output 

data. According to this method, the whole dataset of scenarios (consisting of offshore wave 

characteristics, mean seal level data as well as flooded areas) was split into three subsets: 60 % for the 

training set, 20% for the validation set, and 20% for the test set. The optimal numbers of the nodes in 

the hidden layer were estimated by comparing the flooded areas estimate by ANN and those estimated 

by using Xbeach. 

Coastal flooding risk assessment through the ANN 

To estimate the flooded areas for the select site, the wave characteristics (significant wave height, 

peak period, and direction) and storm tide (i.e the sum of the storm surge and astronomical tide) must 

be known. For the select site, there are no measuring stations for wave or tide. For this reason, the 

ERA5 dataset created by ECMWF was used. ERA5 is the fifth generation ECMWF atmospheric 

reanalysis of the global climate and covers the period from 1979 and continues to be extended forward 

in near real time. The database provides hourly estimates of many atmospheric, land and oceanic 

climate variables. Such data were produced using 4D-Var data assimilation in CY41R2 of ECMWF’s 

Integrated Forecast System (IFS), with 137 hybrid sigma/pressure (model) levels in the vertical, with 

the top level at 0.01 hPa. The wave model is characterized by a spatial resolution of 0.5° both latitude 

and longitude and a spectral resolution of 24 directions and 30 frequencies. From this dataset, in 

addition to the characteristics of the wave motion, data relating to wind speed and atmospheric pressure 

were extracted. These two last variables were used to estimate the storm surge by adopting the 

empirical methods suggested by the guidelines issued by World Meteorological Organization 

(Horsburgh and De Vries, 2011). As regards the surge due to the wind, the guideline suggests the 

relationship proposed by Reid (1956), while the component of the storm surge related to the 

atmospheric pressure was estimated assuming that a decrease of 1 hPa in atmospheric pressure gives 

rise to an increase of 1 cm in the water level. The astronomical tide was obtained by the model OSU 

Tidal Prediction Software (OTIS) created by the collaboration of the Scientists at Earth and Space 

Research (ESR) and Oregon State University (OSU). The input data of the ANN used in the present 

study covers the period between 1979 and 2019. 

For each sector, Figure 6 shows the ratio between the flooded area and the total area versus a 

dimensional parameter which is a function of wave characteristics (significant wave height Hm0 and the 

wavelength, related to peak wave period, Lp) and the beach slope (f). The dot line indicates the limit 

between the beach and the urban zone. 
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Figure 6 Ratio between the flooded area and the total area versus the dimensional parameter. 

As it can be seen from Figure 6, for the areas A2, A5, and A6 a limited number of flooding events 

was estimated. In these cases, the urban zones are protected by the dunes which reduce the overtopping 

discharge. Area A1, instead, has a higher number of flooding events but the population density is very 

low. The annual average number of flood events estimated for such areas are: 32 for A1, 7 for A2, 5 for 

A5 and 1 for A6. The higher risk for the population due to the flood was estimated for the areas A3 and 

A4. Indeed, for these two areas, a yearly average number of flood events equal to 27 and 47 was 

assessed, respectively.  

Conclusion 

Early Warning Systems can help to mitigate coastal flooding risks. However, typical prediction 

methods of coastal flooding require too high computational costs, which are incompatible with an 

effective early warning system. 

The proposed strategy couples a database of coastal flooding areas related to predetermined 

offshore wave climates and the ANNs. Such an approach allows an instantaneous evaluation of coastal 

flooding which, in turn, permits the Authorities a timely decision for preparing the population in the 

case of storm. 

The calibrated ANNs allowed the reconstruction of the historical data of the flooded areas for the 

village of Granelli. In particular, the ANN has been used in a back-analysis mode to identify the areas 

exposed to a higher risk.  

Future analyses will be aimed at validating the proposed ANNs through field measurements which 

will be carried out in the correspondence of flood events. 
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