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Abstract: A pericyte-like differentiation of human adipose-derived mesenchymal stem cells (ASCs)
was tested in in vitro experiments for possible therapeutic applications in cases of diabetic retinopathy
(DR) to replace irreversibly lost pericytes. For this purpose, pericyte-like ASCs were obtained after
their growth in a specific pericyte medium. They were then cultured in high glucose conditions to
mimic the altered microenvironment of a diabetic eye. Several parameters were monitored, especially
those particularly affected by disease progression: cell proliferation, viability and migration ability;
reactive oxygen species (ROS) production; inflammation-related cytokines and angiogenic factors.
Overall, encouraging results were obtained. In fact, even after glucose addition, ASCs pre-cultured
in the pericyte medium (pmASCs) showed high proliferation rate, viability and migration ability.
A considerable increase in mRNA expression levels of the anti-inflammatory cytokines transforming
growth factor-β1 (TGF-β1) and interleukin-10 (IL-10) was observed, associated with reduction in ROS
production, and mRNA expression of pro-inflammatory cytokines interleukin-1β (IL-1β) and tumor
necrosis factor-α (TNF-α), and angiogenic factors. Finally, a pmASC-induced better organization of
tube-like formation by retinal endothelial cells was observed in three-dimensional co-culture. The
pericyte-like ASCs obtained in these experiments represent a valuable tool for the treatment of retinal
damages occurring in diabetic patients.

Keywords: human adipose mesenchymal stem cells; high glucose; pericyte-like differentiation; eye
diseases; diabetic retinopathy; regenerative medicine

1. Introduction

Multipotent differentiation ability of human adipose-derived mesenchymal stem cells
(ASCs) has been extensively studied in the last few decades for their potential applications
in stem-cell-based therapeutic strategies. Indeed, they are able to differentiate not only into
cells of mesodermal origin such as adipocytes [1,2], chondrocytes [3] and osteocytes [4],
but also into cells of different lineages [5]. For this reason, they have been extensively inves-
tigated for potential therapeutic applications in a variety of pathologies, being also capable
of releasing immunosuppressive cytokines such as interleukin-10 (IL-10), or factors pro-
moting tissue regeneration (hepatocyte growth factor, and transforming growth factor-β;
TGF-β) [6–9]. Stem-cell-based therapies are currently explored for the treatment of ocular
diseases [10–13], including diabetic retinopathy (DR), in which a vascular complication
leads to the disruption of the blood retinal barrier (BRB) [14–16]. Microcirculation damage
is mainly ascribed to the irreversible loss of pericytes, an early hallmark of DR, because
in the adult retina they are not able to replicate [17,18]. Hyperglycemia-induced overpro-
duction of reactive oxygen species (ROS) stimulates inflammatory processes leading to
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retinal vasculature damages. In fact, increased levels of different inflammatory cytokines,
such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) have been found in DR
patients [19]. Activated microglia, endothelial cells and macroglia participate in the secre-
tion of these cytokines, whose accumulation contributes to neuronal death [20]. Moreover,
proangiogenic factors such as vascular endothelial growth factor (VEGF) and Angiopoietin-
2, have been shown to induce endothelial cell proliferation, eventually leading to increased
vessel permeability and breakdown [21,22].

To date, only limited positive outcomes have been obtained by using available ther-
apeutic strategies, which are limited to the late stages of the disease, when irreversible
damage has already occurred [23,24]. Therefore, a stem-cell-based therapy might repre-
sent a valuable tool to counteract the pericyte loss and slow down the progression of the
disease. Encouraging results have been reported in experiments in vitro and in a murine
model of DR [14]. By intravitreal injection of native or pretreated ASCs, retinal capillary
dropout was prevented and the revascularization of the central retina was observed. In our
previous in vitro investigation, a pericyte-like differentiation of ASCs was achieved by
growing ASCs in a culture medium specifically designed for pericytes (PM) [25]. As a
result, overexpression of smooth muscle actin α (α-SMA) and neural/glial antigen 2 (NG2)
was obtained, as well as their typical peritubular localization. In addition, co-cultures of
pericyte-like differentiated ASCs and human retinal endothelial cells (HRECs) induced an
increased expression of junction proteins. From here on, they will also be called pmASCs
because their differentiation process was achieved by using PM.

The purpose of the present investigation was to further explore the behavior of these
pmASCs obtained by the same differentiation protocol. In particular, to mimic conditions
occurring in diabetic patients, various parameters were measured and compared after
the addition of glucose to the culture medium. Cell proliferation, cell viability and their
migratory ability were evaluated. In addition, ROS production was measured as well
as the mRNA expression of pro-inflammatory (TNF-α and IL-1β) and anti-inflammatory
(TGF-β1 and IL-10) cytokines. Finally, mRNa expression of proangiogenic factors (VEGF,
Angiopoietin-2 and matrix metallopeptidase-9; MMP-9) was also detected. In later experi-
ments, three-dimensional co-cultures in Matrigel were designed to evaluate pmASC effects
on HREC ability to organize tube-like formations.

Results obtained are encouraging because, even in the presence of high glucose
concentrations, pericyte-like ASCs feature remarkable levels of viability, high proliferation
rate and noteworthy migratory ability. Moreover, a reduced production of ROS, pro-
inflammatory cytokines and pro-angiogenic factors was observed, in combination with
an increased production of anti-inflammatory cytokines. Finally, positive effects were
observed for HREC tube-like formations.

2. Results
2.1. Cell Proliferation and Viability

A high proliferation rate was observed in all ASC populations tested, although with
significant differences. Figure 1 shows the typical fibroblast-like morphology in all the four
subgroups studied. It can be easily noted that much denser populations are present in
pmASC cultures (Figure 1B,D), regardless of different glucose concentrations. Quantitative
data in Figure 2A indicate that pmASCs were more numerous by about 200%. A slight
decline could be noted at longer times, likely because of high cell density. No significant
differences were induced in these populations by glucose addition. Instead, a high glucose
concentration negatively affected the proliferation rate of human retinal pericytes (HRPCs),
which gradually decreased, especially at 72 h (−30%) from glucose addition (Figure 2B).
Cell viability measurements quantified by MTT assays (Figure 2C,D) largely confirmed cell
proliferation data. Similar high values were shown by pmASCs vs. ASCs, at any glucose
concentration at every time point (Figure 2C). On the contrary, lower values were measured
in the HRPC population (Figure 2D) after glucose addition; significant decreases were
progressively observed after 48 h (−20%) and 72 h (−30%).



Int. J. Mol. Sci. 2021, 22, 4604 3 of 15

Figure 1. Representative photomicrographs of human adipose mesenchymal stem cells cultured in basal medium (ASC) or
in pericyte medium (pmASC), stained by crystal violet during cellular proliferation assays. After three days of growth in
their respective medium, glucose was added in some samples (High Glucose, 25 mM, HG), whereas other samples were
kept in normal glucose (NG) condition. Pictures were taken after 72 h from glucose addition and compared to NG samples.
A: ASC NG; B: pmASC NG; C: ASC HG; D: pmASC HG. In each image, two magnification levels are shown (10× and 4×,
respectively). Scale bar: 100 µm.

2.2. Cell Migration

A wound-healing assay was performed to evaluate cell migration ability of the dif-
ferent ASC subgroups, compared to HRPCs (Figure 3A). Quantitative data show that a
remarkable migratory ability was exhibited by both ASCs and pmASCs over a 48-h obser-
vation period, leading to about 70% wound closure, when cultured in normal glucose (NG)
condition (Figure 3B). Significant differences were observed when glucose was added to
the culture medium (HG); in fact, an opposite trend was clearly shown by ASCs (showing
a wound closure of about 35%) compared to pmASCs, which virtually closed the gap.
Intermediate values were observed for HRPCs with approximately 70% wound closure
(Figure 3C). The relevant cell migration ability of pmASCs in HG condition was particularly
evident even at 48 h from the scratch.

2.3. ROS Level Measurements

To evaluate oxidative stress, ROS levels in each ASC subgroup (Figure 4A) and HRPC
population (Figure 4B) were measured and normalized by their own population density.
A progressive increase of ROS levels was noted in the ASC population over the observation
period, whereas steady, significantly lower values were detected for pmASCs at each
corresponding time point. No evident changes were observed within each ASC group after
glucose addition. A different trend was noted in HRPC cultures, where a significant higher
ROS production was observed after 72 h from glucose addition.

2.4. High Glucose Effects on ASC mRNA Levels of Anti-Inflammatory Cytokines,
Pro-Inflammatory Cytokines, and Angiogenic Factors

Inflammation-related cytokine mRNA levels were measured by quantitative RT-PCR
analyses in ASC and pmASC cultures, both in NG and in HG conditions (Figure 5). No
evident differences were observed for anti-inflammatory cytokine IL-10 mRNA expression
between ASCs and pmASCs when cultured in NG conditions. In HG conditions, instead,
IL-10 mRNA levels, slightly higher in ASC cultures, were increased 25-fold in pmASCs.
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Moreover, TGF-β1 mRNA levels were increased in pmASCs vs. ASC cultures, especially in
HG conditions. Similar values of TNF-α mRNA levels were detected in ASC and pmASC
cultures in NG conditions. In HG conditions, only weakly increased levels were observed
in pmASC, compared with more evident increases in ASCs. IL-1β mRNA levels in NG
conditions were significantly lower in pmASCs vs. ASCs. In HG cultures, lower levels
were measured in ASCs, whereas no significant differences were noticeable in pmASCs.

Figure 2. High glucose effects on cell proliferation and viability in human adipose mesenchymal stem cells cultured in
basal medium (ASC) or in pericyte medium (pmASC), and in human retinal pericytes (HRPC). In some samples, glucose
was added to the culture medium (High Glucose, 25 mM, HG); data were gathered after 24 h, 48 h and 72 h from glucose
addition and compared to corresponding samples kept in normal glucose (NG) condition. Proliferation rate was assessed
by crystal violet assays in ASC, pmASC (A), and HRPC cultures (B) in NG or in HG. Cell viability was evaluated by MTT
assays in ASC, pmASC (C), and HRPC cultures (D) in NG or in HG. Absorbance values were determined at 570 nm for
both assays. Values are expressed as mean ± SEM of three independent experiments. In A and C, values are referred to
ASC NG population, at each corresponding time point. In B and D, values are referred to HRPC NG population, at each
corresponding time point. * p < 0.05 pmASC vs. ASC; # p < 0.05 HG vs. NG. Two-way ANOVA, followed by Sidak’s test.

In further experiments, mRNA expression levels of angiogenic factors VEGF,
angiopoietin-2 and MMP9 were evaluated. Both VEGF and angiopoietin-2 values in-
creased in ASC cultured in HG, whereas lower levels in pmASCs were not significantly
affected. Dynamic effects were observed for MMP9 mRNA levels in the different condi-
tions. In particular, low levels detected in NG conditions were significantly higher in ASCs
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and even lower in pmASCs following glucose addition. Overall, these data indicate a
modulation of inflammation genes in favor of an anti-inflammatory phenotype. At the
same time, a general decrease of angiogenic factors was observed.

Figure 3. Cell migration ability evaluated by wound-healing assays in human adipose mesenchymal stem cells cultured in
basal medium (ASC) or in pericyte medium (pmASC), and in cultures of human retinal pericytes (HRPC). In some samples
of each culture type, glucose was added to the culture medium (High Glucose, 25 mM, HG) whereas other samples were
kept in normal glucose (NG) condition. (A): Representative pictures of each sample taken immediately after the scratch
(0 h), after 24 h and 48 h of culture. Scale bar: 100µm (Magnification: 4×). Percentage of wound closure was quantified by
Image J software for ASC and pm ASC cultures (B), and HRPC cultures (C). Values are expressed as mean ± SEM of three
independent experiments. * p < 0.05 pmASC vs. ASC; # p < 0.05 HG vs. NG. Two-way ANOVA, followed by Sidak’s test.
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Figure 4. High glucose effects on ROS levels evaluated by H2DCFDA assays in (A) human adipose mesenchymal stem cells
cultured in basal medium (ASC) or in pericyte medium (pmASC), and in (B) human retinal pericytes (HRPC). In some
samples, glucose was added to the culture medium (High Glucose, 25 mM, HG); data were gathered after 24 h, 48 h and 72
h from glucose addition, and compared to samples kept in normal glucose (NG) condition. ROS values of each group are
normalized by the corresponding population density, as determined by crystal violet staining, at each corresponding time
point (ROS/CV ratio). Values are expressed as mean ± SEM of three independent experiments. * p < 0.05 pmASC vs. ASC;
# p < 0.05 HG vs. NG; ‡ p < 0.05 72 h vs. 24 h; Two-way ANOVA, followed by Sidak’s test.

2.5. Three-Dimensional Cultures in Matrigel

Interactions between HRECs and ASCs or pmASCs were tested in three-dimensional
co-cultures, analyzing modifications induced on spontaneous HREC-assembled tube-like
formations (Figure 6A). Quantitative data show that, in HG vs. NG conditions, total master
segment length values (Figure 6B) were lower for HRECs, also when co-cultured with ASCs;
higher values were instead measured for HRECs co-cultured with pmASCs. An opposite
trend was noticed for the total isolated branch length (Figure 6C) which, in HG vs. NG
conditions, produced higher values for HRECs and HRECs + ASCs and significantly lower
values for HRECs + pmASCs. Branch point measurements shown in Figure 6D fit quite well
with the master segment and isolated branch length values. After glucose addition, branch
point numbers were lower in HRECs and in co-cultures of HRECs and ASCs, and higher in
co-cultures of HRECs and pmASCs. As was expected, the number of branch points was
proportionally higher with increased total master segment lengths, and inversely related to
the total isolated branch length.
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Figure 5. High glucose effects on anti- and pro-inflammatory cytokines and angiogenic factors in human adipose mesenchy-
mal stem cells cultured in basal medium (ASC) or in pericyte medium (pmASC). In some samples, glucose was added to
the culture medium (High Glucose, 25 mM, HG); data were gathered after 72 h from glucose addition and compared to
corresponding samples kept in normal glucose (NG) condition. Quantitative analysis of IL 10 (A), TGF-β1 (B), TNFα (C),
IL-1β (D), VEGF (E), Angiopoietin-2 (F) and MMP9 (G) mRNA levels, as evaluated by qRT-PCR. mRNA levels of each
group were normalized to the housekeeping reference gene ribosomal 18S RNA. In the histograms, values are expressed as
a fold change of those detected in ASCs cultured in NG condition. Each value represents mean ± SEM obtained from three
independent experiments. * p < 0.05 pmASC vs. ASC; # p < 0.05 HG vs. NG. Two-way ANOVA, followed by Sidak’s test.
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Figure 6. High glucose effects on tube-like structure formation by human retinal endothelial cells (HREC), or co-cultured
with ASCs (HREC + ASC) or with pmASCs (HREC + pmASC). In some samples, glucose was added to the culture
medium (High Glucose, 25 mM, HG) and compared to samples kept in normal glucose (NG) condition. (A), Representative
microphotographs showing three-dimensional cultures in Matrigel of each sample. Pictures were taken at 6 h after seeding.
Scale bar: 250 µm (Magnification: 4×). Histograms at the bottom show the “total master segment length” (B), the “total
isolated branch length” (C) and “branching points” (D). Quantitative analysis was carried out using Image J software.
Values are expressed as a mean ± SEM of three independent experiments. * p < 0.05 pmASC vs. ASC; # p< 0.05 HG vs. NG;
§ p< 0.05 vs. HREC HG. Two-way ANOVA, followed by Sidak’s test.

3. Discussion

Diabetes is a complex metabolic disorder, characterized by chronic hyperglycemia
along with dyslipidemia, hypoinsulinemia and hypertension [20]. Hyperglycemia triggers
a series of events that include inflammation, mitochondrial overproduction of ROS, neoan-
giogenesis and BRB breakdown. In particular, the integrity of the retinal microvasculature
mainly relies on a strong pericyte coverage, which is considerably higher than in any other
tissue. In fact, it is widely accepted that pericyte loss is a major cause of microvasculature
damage, as it occurs in DR patients. A weakened capillary wall causes exudates, hemor-
rhage, retinal edema, and capillary micro-aneurysms, eventually leading to visual loss [26].
In this context, a cell-based therapeutic approach would be advisable to replace lost peri-
cytes and restore BRB integrity. Indeed, beneficial effects were reported in rodent models of
DR following intravitreal injections of native or TGF-β1 pretreated ASCs [14]. Furthermore,
in a previous investigation we were able to induce a pericyte-like differentiation by growing
ASCs in a culture medium specifically designed for pericytes [25]. In our opinion, this
strategy offers the advantage of obtaining pericyte-like ASCs still in the proliferative stage,
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more suitable to restore a functional BRB. It is a pivotal issue to investigate to what extent
these cells are influenced by the altered microenvironment existing in diabetic eyes, where
hyperglycemia induces increased oxidative stress, inflammation, aberrant angiogenesis,
and edema. Therefore, several parameters related to hyperglycemia-induced alterations
were examined, such as cell proliferation, viability and migration ability, ROS production,
as well as the expression of inflammation-related cytokines and angiogenic factors.

Results show that a significantly higher proliferation rate and cell viability were ex-
hibited by pmASCs, probably due to the presence of supplementary growth factors in
the pericyte medium. Instead, a progressive decline in both proliferation rate and cell
viability was detected for HRPCs, starting at 48 h after glucose addition to the culture
medium, as also previously reported [15]. Further positive effects can be deduced ob-
serving cell migration ability of the different populations. While ASC wound-healing
activity was impaired by HG conditions, a better performance was shown by pmASCs
in both NG and HG conditions, even better than HRPCs, featuring intermediate ability.
Overall, it can be concluded that a hyperglycemic environment does not significantly affect
pmASCs. This substantial resistance to hyperglycemia was also supported by the lower
ROS production exhibited by pmASCs, if compared to native ASCs or HRPCs. This is
particularly interesting because increased ROS levels are involved in the up-regulation
of pro-inflammatory cytokine production [27]. Like other cells such as fibroblasts, ASCs
feature a remarkable immunomodulatory action [28,29]. In the present work, ASC im-
munomodulatory activity was enhanced by PM treatment, as indicated by the modulation
of inflammatory-related cytokine mRNA expressions. Basal values of anti-inflammatory
IL-10 observed in NG conditions were remarkably increased in pmASCs, especially in HG
conditions. This finding might be of crucial importance considering that in DR patients,
low levels of this anti-inflammatory cytokine are related to the increased severity of the
disease [30]. In addition, in vitro studies suggest that IL-10 exerts a protective role on
retinal endothelial cells [31–34]. Although to a lesser extent, TGF-β1 was also increased.
Among inflammatory regulatory cytokines, TGF- β exhibits important immunomodulatory
and fibrogenic activities, especially during inflammation and remodeling processes [35].
It is also known that, together with IL-10, it is able to suppress several pro-inflammatory
cytokines, [36] and in mouse models of retinitis pigmentosa, application of TGF-β1 was
able to protect degenerating cones and save vision [37]. As a result, it can be hypothe-
sized that inflammation-related damage would be efficiently counteracted by pmASCs,
also considering that pro-inflammatory cytokines such as TNF-α and IL-1β are kept at
low levels.

In DR patients, increased levels of intravitreal pro-inflammatory cytokines stimulate
aberrant angiogenesis, being associated with a high production of angiogenic factors such
as VEGF, angiopoietin-2 and MMP9 [20,38]. Increased levels of VEGF and angiopoietin-2
promote both increased angiogenesis and vessel leakage. In response to increased ox-
idative stress, MMP9 increases vascular permeability by disrupting the tight junction
complex [39,40]. Indeed, in the present experiments, an increased mRNA expression
of VEGF, Angiopoietin-2 and MMP9, was observed in ASC cultures after glucose addi-
tion. However, basal lower levels detected in pmASCs were virtually unaffected (VEGF
and Angiopoietin-2), or further reduced (MMP9) by glucose addition. In this respect,
corroborating results were obtained in three-dimensional cultures in Matrigel, examin-
ing HREC-assembled tube-like formations. In agreement with Fiori et al. (2020), when
HRECs were cultured alone, high glucose concentrations induced a reduction of master
segment lengths and the number of branch points; such a disarranged pattern was also
suggested by the increased number of isolated branches. No significant improvements
were observed when HRECs were co-cultured with ASCs. On the contrary, co-culturing
HRECs with pmASCs, master segment lengths and the number of branch points were
improved, whereas the number of isolated branches decreased. This might be indicative
that, also in high glucose conditions, the presence of pericyte-like ASCs would induce a
better organized vascular network.



Int. J. Mol. Sci. 2021, 22, 4604 10 of 15

In conclusion, data reported in this work indicate that a specific upstream treatment
can contribute to the optimization of a stem-cell-based therapeutic application. It remains
to be verified whether these encouraging results obtained in vitro really provide beneficial
effects when these pericyte-like ASCs are implanted in vivo, for example by intravitreal
injections in animal models of DR.

4. Materials and Methods
4.1. Materials

Culture media and supplements were purchased from Innoprot (Elexalde Derio, Spain)
or Lonza (Basel, Switzerland). T25 flasks and multiwell culture plates were purchased from
Corning (New York, NY, USA). MTT assay was purchased from Chemicon (Temecula, CA,
USA). Cellular Reactive Oxygen Species Detection Assay Kit was purchased from Abcam
(Cambridge, UK).

4.2. Cell Cultures
4.2.1. HRPC Cultures

Primary human retinal pericytes (HRPCs) were purchased from Innoprot (Elexalde
Derio, Spain). HRPCs were seeded in poly-L-lysine (0.01 mg/mL solution, Innoprot) coated
culture flasks and incubated at 37 ◦C with 5% CO2 in a specific pericyte medium (PM),
containing 2% fetal bovine serum (FBS), 1% pericyte growth supplement (PGS), and 1%
penicillin/streptomycin (Innoprot). At about 70% confluence, the cells were trypsinized and
plated for comparison with ASCs cultured in the different experimental conditions. For
experimental purposes, some samples were cultured in a high glucose concentration (25 mM;
HG) and compared to 5.55 mM glucose (NG) cultured cells. At 25 mM glucose concentration,
the literature data report pericyte apoptosis [41,42] and altered HREC tube formation [43].

4.2.2. HREC Cultures

HRECs were purchased from Innoprot and seeded in culture flasks with endothelial
cell medium (ECM) (Innoprot), containing 5% FBS, 1% endothelial cell supplement factor,
and 1% penicillin/streptomycin (Innoprot). Cells were incubated at 37 ◦C with 5% CO2 and,
when reaching approximately 70% confluence, were trypsinized and used for co-culture
experiments. For experimental purpose, some samples were cultured in HG conditions
and compared to NG cultured cells.

4.2.3. ASC Cultures

Adipose tissue was harvested from 4 healthy female donors (32–38 years old) un-
dergoing liposuction procedures at the Cannizzaro Hospital, Catania (Italy). The donors
were nonsmokers and were not on estrogen replacement therapy. The lipoaspirate was
obtained from the abdominal region after donors signed an informed consent to use the
lipoaspirate for experimental procedures, in accordance with the Declaration of Helsinki.
The protocol was approved by the local ethics committee (Comitato etico Catania1; Au-
thorization n. 155/2018/PO). The raw lipoaspirate (50–100 mL) was washed with sterile
phosphate-buffered saline (PBS; Invitrogen, Monza, Italy) to remove red blood cells and
debris, and incubated for 3 h at 37 ◦C with an equal volume of serum-free Dulbecco’s Mod-
ified Eagle’s Medium containing 5.55 mM glucose (DMEM; Sigma-Aldrich, Milan, Italy)
and 0.075% type I collagenase (Invitrogen). After inactivation of collagenase activity by
adding an equal volume of DMEM containing 10% FBS (Gibco, Monza, Italy), the digested
lipoaspirate was centrifuged at 1200 rpm for 10 min. The pellets were then resuspended in
PBS and filtered through a 100 µm nylon cell strainer (Falcon BD Biosciences, Milan, Italy).
After a further centrifugation (1200 rpm for 10 min), cells were plated in T75 culture flasks
(Falcon BD Biosciences) with DMEM containing 10% FBS, 1% penicillin/streptomycin, and
1% MSC growth supplement (ScienCell Research Laboratories, Milan, Italy). After 24 h
incubation at 37 ◦C with 5% CO2, non-adherent cells were removed by replacing the growth
medium. After reaching confluence (about 80% of total flask surface), all cultures were
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trypsinized and, after resuspension, cells were expanded for 3 passages before subsequent
experimental procedures.

The MSC nature of ASCs used in the present study was verified in previous works,
where cells of the same stock were investigated [25]. In particular, they were immuno-
positive for typical MSC markers (CD44, CD73, CD90 and CD105), and immunonegative
for hematopoietic stem cell markers (CD14, CD34 and CD45).

4.2.4. ASCs Undergoing Pericyte-Like Differentiation

For the present investigation, two groups of cultures were initially prepared: in one
group ASCs were kept for 3 days in NG DMEM containing 2% FBS; in the other group, a
pericyte-like differentiation was induced by culturing ASCs for 3 days in NG PM containing
2% FBS. At the third day, the medium was replaced and cells were cultured for further
three days as follows: one sample of each group was maintained in the respective NG
medium, another sample was cultured in HG concentrations. Therefore, four subgroups
were obtained: the first served as a control (ASC NG); in the second, ASCs were cultured
in high glucose DMEM (ASC HG); in the third, pre-differentiated ASCs were maintained
in PM (pmASC NG); in the fourth, pre-differentiated ASCs were cultured in high glucose
PM (pmASC HG). All cells were washed twice in PBS before undergoing successive
experimental procedures.

4.3. Cell Proliferation Assay

Crystal violet staining was used to evaluate the proliferation rate of HRPCs, ASCs
and pmASCs. After 1, 2 and 3 days of culture from glucose addition, both NG and
HG conditions were tested. For this purpose, cells were stained with 0.5% crystal violet
solution in 20% methanol for 10 min. Cells were then washed with distilled water and left
to dry. After photomicrographs were acquired (Leica), crystal violet was solubilized and
absorbance values were measured at 570 nm with a microplate reader (Synergy 2-BioTek).
Each assay was carried out in triplicate, from three independent experiments.

4.4. Cell Viability Assay

After 1, 2 and 3 days of culture from glucose addition, cell viability was evaluated in
both NG and HG conditions in HRPCs, ASCs and pmASCs. For this purpose, the 3-[4,5-
dimethylthiazol-2-y l]-2,5-diphenyl tetrasodium bromide (MTT assay, Chemicon, Temecula,
CA, USA) was added to each sample and incubated for 3 h at 37 ◦C. The supernatant was
then removed and 100 µL Dimethyl Sulfoxide (DMSO) were used to dissolve the precipitate.
Absorbance values were determined at 570 nm in a plate reader (Synergy 2-BioTek). Each
assay was carried out in triplicate, from three independent experiments.

4.5. Wound-Healing Assay

Cell migration ability was measured using a standard wound-healing assay. After
three days of growth in their respective medium, cultures of HRPCs, ASCs and pmASCs,
under both NG and HG conditions, were scratched by a p200 pipet tip and monitored
after 24 h and 48 h. Cell migration ability was evaluated by considering the percentage of
wound closure. For this purpose, photographs from randomly selected fields were taken at
each time point (0 h, 24 h and 48 h) using a phase-contrast microscope and processed using
ImageJ software (NIH, Bethesda, MD, USA).

4.6. ROS Measurements

ROS were measured by means of the DCFDA Cellular Reactive Oxygen Species
Detection Assay Kit (ab113851, Abcam Cambridge, United Kingdom), according to the
manufacturer’s protocol. HRPCs, ASCs and pmASCs, under both NG and HG conditions
were incubated with 25 µM 2′,7′-dichlorodihydrofluorescein diacetate (DCFDA) in buffer
solution at 37 ◦C for 30 min. Then, DCFDA was replaced with 100 µL of medium and ROS
concentration was measured by VarioskanTM (λex = 495 nm, λem = 529 nm). To compare
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data gathered from the different samples, raw ROS values were normalized by each
corresponding population density, as determined by crystal violet assay.

4.7. Extraction of Total RNA and Real-Time Reverse Transcriptase-Polymerase Chain Reaction
(RT-PCR)

After 3 days of culture from glucose addition, in ASCs and pmASCs, under both
NG and HG conditions, qRT-PCR was performed to determine mRNA levels of IL-10,
TGF- β1, IL-1β, TNF-α, VEGF, Angiopoietin-2, MMP9 and 18S rRNA. Briefly, total cellular
RNA was extracted from each group using TRIzol reagent (Invitrogen, Life Technologies,
Carlsbad, CA, USA) according to the manufacturer’s instructions and re-dissolved in 30 µL
of RNase-free water. RNA concentrations and purity were estimated by optical density at
260 and 280 nm (Nanodrop). Reverse transcription of RNA (1 µg) into first-strand cDNA
was accomplished by using 200 U of Quantiscript Reverse Transcriptase in a 20 µL reaction
volume with 50 ng random hexamers, 1.25 mM dNTP, 10 mM dithiothreitol, 50 mM Tris-
HCl pH 8.3, 75 mM KCl, and 3 mM MgCl2. cDNA synthesis was carried out at 42 ◦C for
20 min and subsequently stopped, and the temperature raised to 95 ◦C for 3 min. Aliquots
of cDNA (50 ng) were amplified by using iTaq Universal SYBR Green Supermix (Biorad,
Milan, Italy) in a final volume of 10 µL (0.8 µM primers, 1.6 mM Mg2+, 1 × SYBR Green).

The results were normalized by the product of 18S ribosomal RNA (rRNA) gene
expression. Primers were purchased from Eurofins Genomics Germany GmbH. Specific
primer sequences, product size and gene bank accession number are reported in Table 1.
Negative controls were included in each assay. Amplifications were carried out in a Quant
Studio 3 Applied Biosystems, Thermo Fischer Scientific (Waltham, MA, USA). The relative
mRNA variations of target genes in each experimental group were calculated using the
2-∆∆ CT method by comparing the CT value of the gene of interest to the CT value of the
selected 18S rRNA gene, considered as the internal reference control gene.

Table 1. Primer sequences used for quantitative PCR.

Gene Sequence (5′-3′) Amplicon (bp) Accession Number

IL-10
Fw: GACTTTAAGGGTTACCTGGGTTG

112 NM_000572.3
Rv: TCACATGCGCCTTGATGTCTG

TGF-β1
Fw: CGTCTGCTGAGGCTCAAGT

74 NM_000660.7
Rv: CGCCAGGAATTGTTGCTGTA

TNF-α
Fw: AGCCCATGTTGTAGCAAACC

134 NM_000594.4
Rv: TGAGGTACAGGCCCTCTGAT

IL-1β
Fw: AGCTACGAATCTCCGACCAC

186 NM_000576.3
Rv: CGTTATCCCATGTGTCGAAGAA

VEGF
Fw: ATCTTCAAGCCATCCTGTGTGC

121 NM_001025366.3
Rv: GAGGTTTGATCCGCATAATCTG

Angiopoietin-2
Fw: CTCGAATACGATGACTCGGTG

76 NM_001386337.1
Rv: TCATTAGCCACTGAGTGTTGTTT

MMP9
Fw: CACTGTCCACCCCTCAGAGC

264 NM_004994.3
Rv: GCCAACTTGTCGGCGATAAGG

18S rRNA
Fw: TAAGTCCCTGCCCTTTGTACACA

69 NR_146119
Rv: GATCCGAGGGCCTCACTAAAC

4.8. Three-Dimensional Cultures in Matrigel

Tube-like formations by HRECs were tested in three-dimensional cultures in Matrigel
Basement Membrane Matrix system (BD Discovery Labware, Bedford, MA, USA). The experi-
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mental protocol was run according to the manufacturer’s instructions. Briefly, the gel solution
was thawed at 4 ◦C overnight, then 96-well plates were coated with 50 µL of Matrigel per well
and allowed to solidify at 37 ◦C for 2 h. A total of 15,000 cells per well were seeded as follows:
in the first group, 15,000 HRECs alone; in the second group, 10,000 HRECs and 5000 ASCs; in
the third group, 10,000 HRECs and 5000 pmASCs. In one sample of each group, glucose was
added to the culture medium (25 mM), obtaining six subgroups. Each experimental condition
was run in triplicate. After 6 h of incubation, tube-like structures were photographed using an
inverted microscope [23]. Pictures from randomly selected fields were processed using ImageJ
software. In particular, the total master segment length, the total isolated branch length and
the number of branch points were calculated.

4.9. Statistical Analysis

All results were reported as mean ± SEM. The results were analyzed using two-way
ANOVA followed by Sidak’s multiple comparisons test; differences between groups were
considered significant for p-value < 0.05.
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ASCs human adipose-derived mesenchymal stem cells
DR diabetic retinopathy
ROS reactive oxygen species
PmASCs ASCs pre-cultured in the pericyte medium
TGF-β1 transforming growth factor-β1
IL-10 interleukin-10
IL-1β interleukin-1β
TNF-α tumor necrosis factor-α
BRB blood retinal barrier
VEGF vascular endothelial growth factor
PM pericyte medium
α-SMA smooth muscle actin α

NG2 neural/glial antigen 2
HRECs human retinal endothelial cells
MMP-9 matrix metallopeptidase-9
HRPCs pericytes
NG normal glucose
HG high glucose
ECM endothelial cell medium
DCFDA 2′,7′-dichlorodihydrofluorescein diacetate
MTT 3-[4,5-dimethylthiazol-2-y l]-2,5-diphenyl tetrasodium bromide
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