
 

Thermal extension of the screened massive expansion in the Landau gauge
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The massive screened expansion for pure SU(3) Yang-Mills theory is extended to finite temperature in
the Landau gauge. All thermal integrals are evaluated analytically up to an external one-dimensional
integration, yielding explicit integral representations of analytic functions that can be continued to the
whole complex plane. The gluon propagator is first explored in the Euclidean space by making use of
parameters obtained from first principles, which were already found to accurately reproduce the lattice data
at zero temperature. Within such a scheme, the agreement with the lattice at T ≠ 0 turns out to be only
qualitative. The description improves provided that the parameters are tuned in a temperature-dependent
way by a fit to the data, carried out separately for each component of the propagator; in particular, the
transverse component closely follows the lattice data, while the agreement of the longitudinal component
with the data is poor at small momenta and moderately high temperatures. The dispersion relations of the
quasi-gluon are then extracted from the pole trajectory in the complex plane using the fitted parameters.
A crossover is found for the mass, suppressed by temperature like an order parameter in the confined phase,
while increasing like an ordinary thermal mass in the deconfined phase.
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I. INTRODUCTION

In the last decades, considerable efforts have been
devoted to the study of the complex behavior of quarks
and gluons under the extreme conditions which are reached
in heavy-ion collisions. In principle, the dynamical and
thermal properties of a quark-gluon plasma should descend
from the relatively simple Lagrangian of the SU(3) gauge
theory which describes QCD. However, things are not so
easy because the standard perturbative approach breaks
down in the strong-coupling IR limit and is also plagued by
further resummation problems at any finite temperature. As
a matter of fact, we still miss a full theoretical treatment of
the problem.
Even the pure gauge theory, without quarks, is not fully

understood, despite its relevance for describing the quark-
gluon plasma.Many important advances have beenmade by
the numerical simulation of the pure Yang-Mills (YM)
Lagrangian on a lattice, providing insights into the gluon
dynamics and the phase diagram. Among them, the con-
firmation of a dynamically generated gluon mass [1–8], as

predicted by Cornwall in 1982 [9], and the occurrence of a
phase transition, with the gluons that become confining
below a critical temperature [10–12].
It would be a desirable progress if the dynamical and

transport parameters, like masses, widths, dispersion rela-
tions, transport coefficients, etc., which are currently
regarded as phenomenological parameters [13–16], could
be directly evaluated from first principles. That program
might be accomplished in part if the elementary correlators
and their analytic properties were known in the Minkowski
space. Unfortunately, all lattice calculations and most
numerical works provide information in the Euclidean
space and the analytic continuation is a difficult ill-defined
problem for the numerical data [17].
In the last years, a very predictive analytical method has

been developed [18–21] by a mere change of the expansion
point of ordinary perturbation theory (PT) for the exact
gauge-fixed Becchi-Rouet-Stora-Tyutin (BRST) invariant
YM Lagrangian, yielding a screened massive expansion
which is safe in the IR while recovering the correct results
of ordinary PT in the UV. At one-loop and zero temper-
ature, the screened expansion provides analytical results
which are in excellent agreement with the lattice and can be
easily continued to Minkowski space [21–25]. Thus the
method provides a way to extract dynamical details like
masses and damping rates from first principles.
In this paper, the formalism is extended to a finite

temperature T ≠ 0, with the aim to provide a complemen-
tary tool for the study of the gluon plasma from first
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principles. As briefly discussed in Refs. [26,27], the
screened expansion can be extended to finite temperature,
providing a quasiparticle picture for the gluon which is
damped, with a very short finite lifetime, and canceled from
the asymptotic states. Here, we give a full account of the
details of the calculation and report a comprehensive
set of results for the gluon sector, including propagators,
analytic properties, poles, masses, widths and dispersion
relations. We discuss different optimization strategies and,
by a comparison with the available lattice data, we explore
how robust the screened expansion is when it is extended to
finite temperature.
While the existence of a screening mass mitigates the

effects of the hard thermal loops, several problems arise at a
finite temperature, ranging from the temperature depend-
ence of the optimal mass scale, to the analytic continuation
of the numerical integrals. Actually, even if a formal
extension to finite temperature is straightforward and based
on standard thermal Feynman graphs, the ambition to
extract analytical results requires a quite tedious and
lengthy analytical calculation of the integrals and, even
so, a final one-dimensional numerical integration cannot be
avoided. Nonetheless, the resulting numerical integrals are
shown to define analytic functions which can be evaluated
in the complex plane. Then, the poles of the gluon
propagator and the resulting dispersion relations can be
easily extracted numerically.
Overall, despite the expected difficulties, the one-loop

screened expansion seems to be reliable at low temperature,
with correct predictions which become less quantitative at
high temperature, especially for the longitudinal sector,
when compared with the lattice data.
At T ¼ 0, the one-loop approximation is quite sensitive

to the renormalization scheme and to the subtraction point,
but it can be shown to be basically tangent to the exact
result, which is approached for a special choice of the ratio
between the gluon mass parameter m and the renormaliza-
tion scale μ. Here,m is just a mass parameter which defines
the shift of the expansion point [18,19,24,25], not to be
confused with the physical mass of the gluon. It seems that,
for that special ratio μ=m, the higher order terms become
negligible, yielding very accurate analytical expressions for
the propagators. While that special ratio is scheme depen-
dent, it can be determined from first principles by mon-
itoring some identities which must be fulfilled by the exact
propagators, like the Nielsen identities, which express the
gauge invariance of the poles [21]. We must mention that,
once the ratio is optimized in the complex Minkowski
space, where the poles are defined, the propagators are
found in excellent agreement with the lattice data in the
Euclidean space. Thus, the optimized analytical expression
is not just a good interpolation formula, but a very good
approximation for the whole analytic function which is
defined in the complex plane. Moreover, at the optimal
ratio μ=m there is only one energy scale left in the

calculation, say the mass parameter m, so that its actual
value becomes irrelevant, since it can be used as energy
units and is eventually determined by a comparison with
the phenomenology. For instance, sharing the same units of
the lattice data, a value m ¼ 0.656 GeV was established in
previous works [21,24].
At a finite temperature T ≠ 0, there is a third energy

scale and the optimal parameters m, μ become two
independent functions of temperature, mðTÞ, μðTÞ, since
their optimal ratio is expected to depend on T. In principle,
one could proceed as for T ¼ 0 and fix the optimal ratio by
monitoring the gauge-invariance of the poles. However,
that would at least require a knowledge of the thermal
propagators in a generic covariant gauge, while the present
formalism has been developed only in the Landau gauge.
Moreover, no lattice data are available for a comparison in a
generic gauge and finite T. This is not a theoretical
limitation by itself, but leads to a weakening of the control
of the accuracy.
That of the gauge invariance of the poles actually is an

additional problem one encounters when extending the
theory to finite T [28–31]. Even though the poles of the
propagator are constrained to be nonperturbatively gauge-
independent by, e.g., the Nielsen identities [32], in the
thermal formalism different powers of the coupling con-
stant coexist at the same loop order when hard-thermal-
loop effects are taken into account, so that consistent
resummation schemes are needed in order to obtain truly
gauge-invariant results for the poles’ position. To first order
in the coupling, this can be shown to only affect the
imaginary part of the dispersion relations, i.e., the gluon’s
damping rate. In this work no attempt has been made to
implement such resummation schemes or to keep under
control the accuracy of the approximation with respect to
the issue of gauge invariance. Whereas at low, nonzero
temperatures the screening provided by the gluon’s mass
may somewhat suppress the effects of the required
resummed terms, at higher temperatures the latter are
expected to become non-negligible, causing our predictions
for the gluon damping rate to become less and less reliable
as the temperature is increased.
In the Landau gauge, we explored two complementary

strategies and checked that the qualitative description
which emerges is robust enough and does not depend on
the optimization choice. The first, simpler, strategy consists
in using the same m and μ parameters that work at T ¼ 0.
That choice was already made in Ref. [26] (albeit with
different values for the parameters) and makes sense at low
temperature where we expect that mðTÞ ≈mð0Þ and
μðTÞ ≈ μð0Þ. With this choice, we find the correct quali-
tative behavior without any adjustment of parameters. In
particular, the longitudinal propagator shows a non-
monotonic behavior with a crossover at T=mð0Þ ≈ 0.15.
However, the agreement with the lattice data is not
quantitative, and the predicted transition temperature is
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too small (T ≈ 100 MeV), thus indicating that we
are already outside the safe low-temperature range.
Nonetheless, the disagreement can be absorbed in part
by a temperature-dependent optimization of the expansion.
Thus, as a second strategy, we relax the constraints of m

and μ being equal to their T ¼ 0 values and regard mðTÞ
and μðTÞ as independent unknown functions. Reversing the
argument that led to their optimization at T ¼ 0, we tune
the unknown functions in the Euclidean space by looking
for the best agreement with the lattice data. Then, assuming
that the higher-order terms are smaller when the agreement
is better, the optimized propagators are continued to
Minkowski space where the pole location gives information
on the dispersion relations of the quasi-gluons at finite
temperature. We anticipate that, from a strictly quantitative
point of view, the agreement with the lattice is not
comparable with the excellent result which was reached
at T ¼ 0. Moreover, while the transverse propagator is
generally well described, the longitudinal projection
becomes very poor deep in the IR for moderately high
temperatures. Since most of the deviation occurs below
500–700 MeV, we expect that the predictions for the pole
position at high momenta might not be affected too much.
We stress that there are no data available in the Minkowski
space for a comparison, thus evidencing the power of the
method for exploring the analytic properties of the
propagators.
Irrespective of the optimization criterion, we confirm the

finding of Ref. [26] and the quasi-gluon scenario which was
described by Stingl [33], with a gluon which has a very
short finite lifetime and can only exist as a short-lived
intermediate state at the origin of a gluon-jet event.
This paper is organized as follows. In Sec. II we review

the setup and main features of the screened massive
expansion and its extension to finite temperatures. In
Sec. III we present our results for the Landau gauge gluon
propagator at T ≠ 0 and vanishing Matsubara frequency,
ω ¼ 0. In Sec. IV we derive the dispersion relations for the
quasi-gluons at finite temperatures. In Sec. V we discuss
our results and present our conclusions. In the Appendix we
explicitly compute the gluon polarization and ghost self-
energy at finite temperatures using the screened massive
expansion.

II. THE SCREENED EXPANSION AND ITS
EXTENSION TO FINITE TEMPERATURE

In a linear covariant ξ-gauge, the gauge-fixed BRST
invariant Lagrangian of pure Yang-Mills SU(N) theory is

L ¼ LYM þ Lfix þ LFP; ð1Þ

where

LYM ¼ −
1

2
TrðF̂μνF̂

μνÞ;

Lfix ¼ −
1

ξ
Tr½ð∂μÂ

μÞð∂νÂ
νÞ�; ð2Þ

and LFP is the ghost term arising from the Faddeev-Popov
(FP) determinant. The tensor operator is defined as

F̂μν ¼ ∂μÂν − ∂νÂμ − ig½Âμ; Âν�; ð3Þ

where the gauge field operators satisfy the SU(N) algebra

Âμ ¼
X
a

X̂aA
μ
a;

½X̂a; X̂b� ¼ ifabcX̂c; fabcfdbc ¼ Nδad: ð4Þ

In the standard PT formalism, the total action is split as
Stot ¼ S0 þ SI , where the quadratic part can be written as

S0 ¼
1

2

Z
AaμðxÞδabΔ−1

0
μνðx; yÞAbνðyÞd4xd4y

þ
Z

c⋆aðxÞδabG−1
0 ðx; yÞcbðyÞd4xd4y; ð5Þ

while the interaction contains three vertices

SI ¼
Z

d4x½Lgh þ L3 þ L4�; ð6Þ

L3g ¼ −gfabcð∂μAaνÞAμ
bA

ν
c;

L4g ¼ −
1

4
g2fabcfadeAbμAcνA

μ
dA

ν
e;

Lccg ¼ −gfabcð∂μc⋆aÞcbAμ
c: ð7Þ

In Eq. (5), the standard free-particle propagators for gluons
and ghosts, Δ0 and G0 respectively, are defined by their
Fourier transforms

Δ0
μνðpÞ ¼ Δ0ðpÞ½tμνðpÞ þ ξlμνðpÞ�;

Δ0ðpÞ ¼
1

−p2
; G0ðpÞ ¼

1

p2
; ð8Þ

where the transverse and longitudinal projectors are used

tμνðpÞ ¼ gμν −
pμpν

p2
; lμνðpÞ ¼

pμpν

p2
: ð9Þ

Later, we will take the limit ξ → 0 and use the Landau
gauge which is a renormalization group (RG) fixed point
and is the most studied gauge on the lattice. In the above
equations, the fields and the coupling must be regarded as
renormalized objects and the inclusion of the usual set of
counterterms is understood in the total Lagrangian.
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The massive screened version of PT was developed
in Refs. [18–20]. At T ¼ 0 and in a generic covariant
gauge, the method is very accurate and predictive if
the expansion is optimized by the constraints of BRST
symmetry [21,24,25]. The expansion arises by a mere
change of the expansion point of ordinary PT. Following
Refs. [19,21], the new massive expansion is recovered by
just adding a transverse mass term to the quadratic part of
the action and subtracting it again from the interaction,
leaving the total action unchanged. In more detail, we add
and subtract the action term

δS ¼ 1

2

Z
AaμðxÞδabδΓμνðx; yÞAbνðyÞd4xd4y; ð10Þ

where the vertex function δΓ is a shift of the inverse
propagator,

δΓμνðx; yÞ ¼ ½Δ−1
m

μνðx; yÞ − Δ−1
0

μνðx; yÞ�; ð11Þ

and Δm
μν is a new massive free-particle propagator,

Δ−1
m

μνðpÞ ¼ ð−p2 þm2ÞtμνðpÞ þ −p2

ξ
lμνðpÞ: ð12Þ

Adding that term is equivalent to substituting the new
massive propagator Δm

μν for the old massless one Δ0
μν in

the quadratic part. Thus, the new expansion point is a
massive free-particle propagator for the gluon, which is
much closer to the exact propagator in the IR. The mass-
shift parameter m is irrelevant in the UV, but acts as a
natural cutoff which screens the theory in the IR.
Of course, in order to leave the total action unaffected by

the change, the same term is subtracted from the inter-
action, providing a new interaction vertex −δΓ, a two-point
vertex which can be regarded as a new counterterm.
Dropping all color indices in the diagonal matrices and
inserting Eqs. (8) and (12) in Eq. (11), the vertex is just the
transverse mass shift of the quadratic part,

−δΓμνðpÞ ¼ −m2tμνðpÞ; ð13Þ

and must be added to the standard set of vertices arising
from Eq. (7). The new vertex is now part of the interaction,
even if it does not depend on the coupling. Thus, the
expansion has the nature of a δ-expansion, since different
powers of the coupling coexist at each order in powers of
the total interaction.
The proper gluon polarization and ghost self energy

can be evaluated, order by order, by the modified PT. In all
Feynman graphs, any internal gluon line is a massive
free-particle propagator Δm

μν and the new insertions of
the (transverse) two-point vertex δΓμν are denoted by a
cross, as shown in Fig. 1. For further details we refer to
Refs. [18,19,21].

Since the total gauge-fixed FP Lagrangian is not modi-
fied and because of BRST invariance, the longitudinal
polarization is known exactly and is zero. At T ¼ 0, the
exact polarization and the dressed gluon propagator are
defined by a single function,

ΠμνðpÞ ¼ ΠðpÞtμνðpÞ; ð14Þ

so that, in the Landau gauge, the exact gluon propagator is
transverse,

ΔμνðpÞ ¼ ΔðpÞtμνðpÞ; ð15Þ

and defined by the scalar function ΔðpÞ. This feature is lost
at any finite temperature T > 0, since Lorentz invariance is
broken, and two scalar functions are required instead. In
that perspective, it is convenient to maintain the Lorentz
structure explicit and to switch to the Euclidean formalism.
Then, denoting with p2 the Euclidean squared momentum,
the exact (dressed) gluon and ghost propagators can be
written as

Δ−1
μνðpÞ ¼ ðp2 þm2ÞtμνðpÞ þ

p2

ξ
lμνðpÞ − ΠμνðpÞ;

G−1ðpÞ ¼ −p2 − ΣðpÞ; ð16Þ

where tμν and lμν are the Euclidean projectors of Eq. (A5).
The proper gluon polarization Πμν and the ghost self-
energy Σ are the sum of all one-particle-irreducible (1PI)
graphs in the screened expansion, including all counter-
terms. In Fig. 1, the two-point 1PI graphs are shown up to
one-loop and third order in the delta expansion. In the exact
self-energies, we can single out the tree-level terms and
write

=Σ +

+

+= + +

++

+
(1a) (1b) (1c) (1d)

(2b) (2c)(2a)

Π

FIG. 1. Two-point graphs with no more than three vertices and
no more than one loop. The cross is the transverse mass
counterterm of Eq. (13) and is regarded as a two-point vertex.
In the Appendix, a detailed description of the calculation at finite
T is given for all the polarization graphs in the figure.
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ΠμνðpÞ ¼ m2tμνðpÞ − p2tμνðpÞδZA þ Πloop
μν ðpÞ;

ΣðpÞ ¼ p2δZc þ ΣloopðpÞ; ð17Þ

where the first termm2tμνðpÞ is the tree graph (1a) in Fig. 1
and arises from the insertion of the new two-point vertex
−δΓμν of Eq. (13). We observe that this first tree term
cancels the mass shift of the gluon propagator in Eq. (16).
Indeed, the physical mass of the gluon arises from the loops
and is not merely given by the mass-shift parameter m2.
The other tree-level terms, −p2tμνδZA, p2δZc, are not
shown in Fig. 1 and are the usual field-strength renorm-
alization counterterms. Their UV diverging parts are not
affected by the mass parameter and are the same of standard
PT [18,19]. The proper functions, Πloop

μν , Σloop, are given by
the sum of all 1PI graphs containing loops. The finite parts
of δZA, δZc are arbitrary and depend on the scheme and on
the renormalization scale μ [24,25]. The diverging parts of
δZA, δZc cancel the UV divergences of the functions
Πloop

μν =p2 and Σloop=p2 which become finite dimensionless
functions of the variable pμ=m. They are defined up to a
constant which depends on the dimensionless renormali-
zation scale parameter t ¼ μ2=m2. Thus, at T ¼ 0, there are
two energy scales in the calculation, m and μ. For instance,
in a momentum subtraction scheme (MOM) and in the
Landau gauge, the one-loop dressed propagators can be
written as

ΔðpÞ−1 ¼ p2 − Ng2½Πð1ÞðpÞ − Πð1ÞðμÞ�;
GðpÞ−1 ¼ −p2 − Ng2½Σð1ÞðpÞ − Σð1ÞðμÞ�; ð18Þ

having made explicit the dependence on N and g2 as
factors in the one-loop functionsΠð1Þ, Σð1Þ, according to the
notation of Appendix A, where all details of the calculation
are reported. In Eq. (18), an explicit choice has been made
for the finite parts of the renormalization constants δZA,
δZc. Of course, that choice depends on the scheme and on
the renormalization scale μ. A more general way to get
rid of all the scheme-dependent parameters, including
the renormalized coupling g2, was discussed in previous
papers on the screened expansion [18,19,21,24], where
two dimensionless one-loop functions were defined (see
Appendix B.1 for their explicit expressions),

π1ðp2=m2Þ ¼ −
�
16π2

3

�
Πð1ÞðpÞ

p2
;

σ1ðp2=m2Þ ¼
�
16π2

3

�
Σð1ÞðpÞ
p2

; ð19Þ

so that the one-loop propagators in Eq. (18) can be recast as
functions of the dimensionless variable s ¼ p2=m2,

p2ΔðpÞ ¼ zπ
π1ðsÞ þ π0

;

p2GðpÞ ¼ −
zσ

σ1ðsÞ þ σ0
; ð20Þ

where zπ and zσ are irrelevant normalization constants
while all the scheme-dependent parameters are embedded
in the two constants π0 and σ0. With some abuse of
language, we will refer to them as renormalization con-
stants. Equation (20) is quite general since it does not
require any specific renormalization scheme to be defined.
Of course, our ignorance about those constants reflects a
well-known weakness of the one-loop approximation
which depends on the details of the renormalization scheme
and on the actual value of the renormalization scale μ. In
this sense, we still have two scales, m and μ, and the
arbitrary choice of their ratio t ¼ μ2=m2 somehow deter-
mines the actual value of the renormalization constants π0
and σ0.
A nice feature of the one-loop result is its apparent

tangency to the exact result which is approached for special
values of the renormalization constants. Those values are
equivalent to a choice of the best renormalization scale μ,
where the approximation is more effective. It is just an
example of the optimized perturbation theory by variation of
the renormalization scheme [34,35]. There might be a
special scale μwhere the expansion converges more quickly
and the higher order terms are minimal. Thus, from first
principles, we could determine the optimal constants by
monitoring some identities which must be satisfied by the
exact propagators. For instance, in Ref. [21], the Nielsen
identities [36,37] were used, which are a direct consequence
of BRST symmetry. From the identities, one can prove the
gauge-parameter-independence of the poles and residues of
the exact gluon propagator [21]. Then, we might expect that
the renormalization constants are optimal when the poles
have a minimal sensitivity to the gauge parameter. It is
remarkable that the optimized one-loop propagators turn out
to be in excellent agreement with the lattice data in the IR.
Notably, while the comparison with the data requires an
analytic continuation to the Euclidean space, the poles are
found in the complex plane. Thus, the one-loop propagators
in Eq. (20) are not just one of the many interpolation
formulas for the data, but they provide a very accurate
analytic function in the whole complex plane. The existence
of complex poles is one of the most important predictions of
the screened expansion. While a thermal mass and a finite
damping rate are expected by PT at high temperature, the
existence of finite intrinsic values at T ¼ 0 can be regarded
as a proof of confinement as first discussed by Stingl [33].
The quasi-gluon has a finite lifetime and can only exist as a
short-lived intermediate state. However, at finite temper-
ature, the quasi-gluons play an important role for determin-
ing the thermal properties of the hot plasma. Thus, a finite
temperature extension of the screened expansion is required
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for a full study of the dispersion relationswhich emerge from
the pole location.
At a finite temperature T > 0, Eqs. (16) and (17) are still

valid, but the one-loop graphs in Fig. 1 acquire a finite
thermal part which must be added to the vacuum (diverg-
ing) contribution at T ¼ 0. The thermal parts are finite and
no further renormalization is required. We only have to add
the thermal parts to the self-energies in Eq. (17).
Wewrite the Euclidean four-vector as pμ ¼ ðp;ωÞwhere

ω ¼ p4 ¼ −ip0, while the Lorentz four-vector was ðp0;pÞ.
In the finite-temperature formalism, ω ¼ ωn ¼ 2πnT and
the Euclidean integral is replaced by a sum over n and by a
three-dimensional integration,

Z
d4p
ð2πÞ4 → T

X
n

Z
d3p
ð2πÞ3 : ð21Þ

Since Lorentz invariance is obviously broken, we
introduce a transverse projector PT

μν, orthogonal to the
fourth Euclidean direction, and its longitudinal comple-
ment PL

μν, as defined in Eq. (A4), so that the gluon
polarization and propagator in Eqs. (16) and (17) can be
written in the Landau gauge, ξ ¼ 0, as

Πμνðp; TÞ ¼ ΠLðp; TÞPL
μνðpÞ þ ΠTðp; TÞPT

μνðpÞ;
Δμνðp; TÞ ¼ ΔLðp; TÞPL

μνðpÞ þ ΔTðp; TÞPT
μνðpÞ; ð22Þ

where the projected one-loop dressed functions are

ΔTðp; TÞ−1 ¼ p2 þ p2δZA − Ng2Πð1Þ
T ðp; TÞ;

ΔLðp; TÞ−1 ¼ p2 þ p2δZA − Ng2Πð1Þ
L ðp; TÞ: ð23Þ

and Πð1Þ
L;T are the one-loop projected polarizations, evalu-

ated by projection of the one-loop graphs in Fig 1, omitting
the tree graphs. As discussed in Appendix B, each graph

contributing to Πð1Þ
L;T can be split as

Πð1Þ
L;Tðp; TÞ ¼ ½Πð1Þ

L;T �Th þ ½Πð1Þ
L;T �V; ð24Þ

where the vacuum part ½Πð1Þ
L;T �V ¼ Πð1Þ

L;Tðp; 0Þ is the same
graph evaluated at T ¼ 0 and does not depend on T, while

the thermal part, ½Πð1Þ
L;T �Th, vanishes at T ¼ 0. Thus, we can

generalize Eqs. (19) and (20) and define dimensionless
functions

½πL;Tðp; TÞ�V ¼ −
�
16π2

3

� ½Πð1Þ
L;Tðp; TÞ�V

p2
¼ π1ðsÞ;

½πL;Tðp; TÞ�Th ¼ −
�
16π2

3

� ½Πð1Þ
L;Tðp; TÞ�Th

p2
; ð25Þ

so that the projections of the one-loop propagator can be
recast as

p2ΔL;Tðp; TÞ ¼
zπ

π1ðsÞ þ π0 þ ½πL;Tðp; TÞ�Th
: ð26Þ

In this form Eq. (26) is quite general since it does not
require any specific renormalization scheme to be defined.
All the scheme-dependent parameters are embedded in the
renormalization constant π0.
It is not obvious that the same scale μ and constant π0

which were optimal at T ¼ 0 are still optimal at finite T.
Indeed, they might depend on T and even take a different
value for the different projections. Moreover, the mass
parameter m, which was the only energy scale left after
optimization at T ¼ 0, might take a value mðTÞ which
depends on T. Thus we have three energy scales: the
optimal μðTÞ, the mass parameter mðTÞ and T itself. In
other words, according to Eq. (26), at any T and in units of
mð0Þ we have two free parameters, the ratio mðTÞ=mð0Þ
and the optimal renormalization constant π0ðTÞ. Having the
role of variational parameters, to be optimized, their best
values might be different for the two projections.
While at T ¼ 0 the optimal constant π0 was determined

from first principles [21], by requiring a minimal sensitivity
of the poles to any change of the gauge parameter, here we
have the less ambitious aim of exploring if a set of optimal
parameters does exist such that the screened expansion is
able to describe the lattice data with reasonable accuracy.
Thus, we work in the Landau gauge and, for each value of
T > 0, we fix the parameters by a fit of the available lattice
data in the Euclidean space.
At low temperature, as we said, we also explored the

alternative of maintaining the parameters fixed at their
optimal value for T ¼ 0, in order to give a general descrip-
tion at finite T from first principles, without any input
from the lattice and from the known phenomenology. Of
course, this approach can only be reliable ifT is very low and
the thermal effects are small. However, even extrapolating at
higher temperatures, the qualitative predictions turn out to
be in agreement with the data. Thus, the screened expansion
is able to capture themain features of gluon thermodynamics
at finite temperature. This is a very important aspect, since
our final aim will be to extract some dynamical properties of
the quasi-gluons, like the dispersion relations, which cannot
be measured on the lattice. Moreover, even qualitative
properties, like the existence of complex poles, are of central
interest for understanding the behavior of the gluon plasma
at high temperature and its phase transition.
In order to fulfill that program, once optimized by one

of the two alternatives discussed above, the gluon propa-
gator must be continued to the complex plane. This is a
straightforward step if the one-loop graphs are expressed as
analytic functions of the Euclidean momentum. A very
detailed but tedious analytical evaluation of the integrals is
reported in the Appendix. Most of the integrals were
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encountered in a study of the Curci-Ferrari model [38].
We basically use the same method for decomposing the
integrals. However, in the screened expansion there are also
some different graphs, namely the crossed graphs in Fig. 1,
with one insertion of the mass counterterm. Their explicit
expressions are obtained by a derivative in the Appendix.
Unfortunately, at finite T, not all the multidimensional

integrals can be evaluated analytically and an external one-
dimensional numerical integration cannot be avoided for
almost all the one-loop graphs. Thus, as shown in the
Appendix, all the graphs can be written as analytic
functions which are defined by integral representations.
The remaining integration can be carried out numerically
for any complex value of the external momentum, provided
that no singularity is encountered along the integration
path. Actually, in general, the analytic continuation of
integral functions is not trivial. As discussed in Ref. [39],
we must check that the external integration on the real axis
does not cross any singular point of the logarithmic
functions. Otherwise, a modified path must be chosen
before the analytic continuation can be undertaken. As
shown in Ref. [26], by inspection of the explicit expres-
sions, the existence of singular points on the integration
path can be ruled out in the present case. For instance,
denoting with Ω ¼ p0 and pμ ¼ ðΩ;pÞ the external
momentum in Minkowski space, the analytic continuation
of the thermal integral Iαβðy;−iΩÞ is defined by the integral
representation of Eq. (B30), where y is the external three
vector modulus, y ¼ jpj. We can continue the external
energy Ω to the complex plane if there are no singular
points on the positive real axis of the integration variable.
However, some branch cuts might be present, originating at
the singular branch point of the logarithmic function in
Eq. (B29) which reads

Lβðzα; y; qÞ ¼ log

�
z2α þ ϵ2yþq;β

z2α þ ϵ2y−q;β

�
; ð27Þ

where the complex variable zα is defined as zα ¼ iΩ�
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ α2

p
and ϵ2y�q;β ¼ ðy� qÞ2 þ β2. Here α and β are

masses equal to 0 or m and q is the integration variable.
Assuming the existence of a branch point at q ¼ q0 on the
real axis, the latter must satisfy

�2q0y ¼ α2 − β2 − y2 þ Ω2 � 2Ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q20 þ α2

q
; ð28Þ

where the � signs are independent of each other. Taking a
complex energy Ω ¼ ReΩþ iImΩ with ImΩ > 0, the
imaginary part of Eq. (28) gives

ReΩ ¼ ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q20 þ α2

q
; ð29Þ

and substituting back in the real part we obtain

ϵ2y�q0;β
þ ðImΩÞ2 ¼ 0; ð30Þ

which is never satisfied unless ImΩ ¼ β ¼ 0. Thus, if Ω is
not real, the branch point q0 cannot be real and the integral
over q, on the real axis, defines an analytic function of Ω.
The same argument holds for the other thermal integrals in
Appendix B. Thus, we can safely continue the numerical
integrals from the Euclidean space (ReΩ ¼ 0, ImΩ > 0) to
the whole upper half-plane. Moreover, in the large wave-
length limit y → 0, there are no branch points at all because
the logarithmic function can be written as Lβðzα; y; qÞ ≈
log ½1þOðyÞ� and the argument of the log does not vanish
if y is small enough.
Having ruled out the existence of singularities along the

integration path, the poles of the gluon propagator and the
dispersion relations can be easily extracted numerically in
the complex plane by the integral representation of the
thermal integrals which are derived in Appendix B.

III. THE GLUON PROPAGATOR AT FINITE T

The longitudinal and transverse projections of the polari-
zation graphs entering in Eq. (26) are decomposed as the
sumofmore basic Euclidean integrals in AppendixA, for all
the one-loop graphs of Fig. 1. The explicit thermal parts
of those integrals are presented in Appendix B by integral
representations. For any given value of the external
three-momentum y ¼

ffiffiffiffiffi
p2

p
and Euclidean frequency

ω ¼ p4 ¼ 2πnT, the one-dimensional integrals are evalu-
ated numerically by a simple integration on the real axis and
the result is inserted in Eq. (26). We will first explore the
projected propagators for π0 and m fixed at their zero-
temperature values which were determined from first prin-
ciples in Ref. [21]. Then, we will show how their values can
be optimized by a comparison with the available lattice data.

A. Expansion optimized at T = 0

In the low-temperature limit, we assume that the optimal
renormalization constant π0ðTÞ and mass parameter mðTÞ
can be replaced by their zero-temperature values π0 ¼
−0.876 and mð0Þ ¼ m0 ¼ 656 MeV, as determined in
Ref. [21] by requiring a minimal sensitivity of the pole
structure to the gauge parameter. Strictly speaking, in the
Landau gauge, that condition fixes π0, while m0 is the only
energy scale left and is fixed in order to match the energy
units of the lattice data.
Let us first explore the behavior of the gluon propagators

as a function of T in the limit ω → 0, where p2 ¼ p2,
which is the most studied case on the lattice [11,12]. The
longitudinal and transverse propagators are shown in units
of m0 in Figs. 2 and 3, respectively. The former were
multiplicatively renormalized by requiring that

ΔL;Tðp; TÞjω¼0;jpj¼μ0
¼ 1

μ20
ð31Þ
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with μ0=m0 ¼ 6.098 (corresponding to μ0 ¼ 4 GeV for
m0 ¼ 656 MeV). We observe that, because of the chosen
optimization, in the limit T → 0 the longitudinal and
transverse propagators coincide and reproduce the lattice
data extremely well [18,19,21,22,24,25], so that the low-
temperature limit can be regarded as exact. For reference, in
Table I we report the physical equivalent of the adimen-
sional temperatures T=m0 used for the plots.
We observe a crossover, in Fig. 2, with the longitudinal

propagator which increases in the IR for increasing T below
Tc ≈ 0.15 ·m0, but sharply decreases above Tc. This non-
monotonic behavior is a well-known feature which has
been reported by several lattice calculations [11,12]. The
transverse propagator in Fig. 3, on the other hand, has a
monotonic behavior, decreasing for increasing T, again in
qualitative agreement with the known predictions of the
lattice. Actually, we cannot expect a quantitative agreement
at T ≈ Tc or larger values, because we are extrapolating the

optimization condition which was valid at T ¼ 0. Thus, the
correct qualitative behavior of the propagators at high
temperature is an encouraging result. A crude estimate
of Tc is found by using the zero-temperature value m0 ¼
656 MeV for restoring the energy units, yielding at the
crossover Tc ≈ 100 MeV. This value is quite smaller than
the known transition temperature Tc ≈ 270 MeV which is
measured on the lattice [10–12]. The difference might well
be the consequence of a sub-optimal choice of the renorm-
alization constant, but it could also arise from a change of
the mass parameter with temperature or from the more
general failure of PT at high temperature. Thus, it becomes
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FIG. 2. Longitudinal propagator ΔL in units of m0 ¼ mð0Þ at
ω ¼ 0 for the low temperature range T=m0 < 0.15 (top) and
the high temperature range T=m0 > 0.15 (bottom). The renorm-
alization constant and the mass parameter are fixed at their
optimal T ¼ 0 values, π0ðTÞ ¼ π0ð0Þ ¼ −0.876 and mðTÞ ¼
m0 ¼ 656 MeV. All the curves are multiplicatively renormalized
at μ0=m0 ¼ 6.098 (μ0 ¼ 4 GeV in physical units).
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FIG. 3. Transverse propagator ΔT, with the same notation and
parameters of Fig. 2.

TABLE I. Dimensionful values of the adimensional temper-
atures T=m0 plotted in Figs. 2 and 3, given m0 ¼ 656 MeV.

T=m0 0.05 0.08 0.12 0.15

T (MeV) 32.80 52.48 78.72 98.40

T=m0 0.18 0.21 0.25 0.30 0.36 0.44

T (MeV) 118.08 137.76 164.00 196.80 236.16 288.64
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relevant to explore whether a more quantitative agreement
might be obtained by a tuning of the free parameters.

B. Optimization by a fit of data at finite T

As the temperature increases, our previous assumption,
mðTÞ ¼ mð0Þ, π0ðTÞ ¼ π0ð0Þ, becomes less valid. In what
follows, we turn to fixing the optimal value of the
parameters at T ≠ 0 by a fit of the lattice data of
Ref. [11]. Since at nonzero temperatures the projections
ΔLðp; TÞ and ΔTðp; TÞ have different behaviors with
respect to a change in T, we may expect that the optimal
values of the parameters will differ depending on which of
the two components of the lattice propagator is used for the
fit. This is indeed what we found. Of course, since in the
subtracted Lagrangian of the present formalism the gluon
mass parameter m2ðTÞ is multiplied by the full four-
dimensional transverse projector tμνðpÞ, choosing different
mass parameters/scales for the two components of the
propagators is not allowed from first principles. This issue
will be addressed at the end of this section.

In Figs. 4 and 5 we show, respectively, the longitudinal
and transverse components of the gluon propagator at
ω ¼ 0 (multiplicatively renormalized at μ0 ¼ 4 GeV), as
functions of the three-dimensional momentum jpj ¼

ffiffiffiffiffi
p2

p
,

with mðTÞ and π0ðTÞ as reported in Table II. Such values
where obtained by a separate fit of the two components to
the lattice data of Ref. [11]; the mass parameters should be
understood to have an uncertainty of about �50 MeV.
As we can see, once the parameters are tuned to fit the

data, the screened expansion is able to reproduce the lattice
propagators quite accurately down to momenta of approx-
imately 0.5 GeV. Moreover, the longitudinal propagator
still shows the characteristic non-monotonic behavior with
respect to a change in the temperature, increasing at fixed
momentum below T ¼ Tc ≈ 270 MeV and decreasing
above T ¼ Tc.
Below jpj ≈ 0.5 GeV, the transverse propagator is still in

good agreement with the data, while the longitudinal one
shows significant deviations, especially at high temper-
atures. In particular, from a qualitative standpoint, the

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0.5  1  1.5  2  2.5  3

Δ L
(p

) 
(G

eV
-2

)

p (GeV)

T = 121 MeV

T = 194 MeV

T = 260 MeV

 0

 2

 4

 6

 8

 10

 0.5  1  1.5  2  2.5  3

Δ L
(p

) 
(G

eV
-2

)

p (GeV)

T = 290 MeV

T = 366 MeV
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The lattice data were taken from Ref. [11].
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longitudinal propagator shows an infrared turnover as a
function of momentum which has no counterpart in the
lattice data. From a numerical point of view, the difficulty
in obtaining a good match with the data is exemplified in
Fig. 6, where we display the longitudinal propagator for
T ¼ 458 MeV and different values of the mass parameter.1

When tuning the mass parameter mðTÞ, there is a tension
between the low- and intermediate-momentum behavior of
the propagator: at lower values of m, the propagator is
enhanced (suppressed) below (above) jpj ≈ 1 GeV, so that
achieving a good match at low momenta results in a loss of
accuracy at intermediate momenta. This behavior is
actually shared by both the components of the propagator
and at every T ≠ 0, albeit being less significant for the
transverse component and at low temperatures. In particu-
lar, already at T ¼ 458 MeV the optimal longitudinal
values of the mass parameter and of the renormalization
constant strongly depend on the choice of a lower cutoff
momentum for the fit to the lattice data; for this reason, we
do not report them.
As anticipated earlier, the optimal mass parameters (and

renormalization constants) needed to reproduce the lattice
data differ for the two components of the propagator.
In Fig. 7 we plot the parameters of Table II as functions
of the temperature. With the exception of the point
T¼260MeV, which is very close to the critical temper-
ature Tc ≈ 270 MeV, the optimal mass parameter mðTÞ is
a nonincreasing function of the temperature for both
the projections. When fitted from the transverse propagator,
mðTÞ shows plateaux both at small and at large
temperatures, decreasing from mðTÞ ¼ mð0Þ ¼ 656 to
mðTÞ ≈ 450 MeV. As for the longitudinal propagator,
except for T ¼ 260 MeV, mðTÞ is approximately linear,
with a behavior which is well described by the equation

mðTÞ ≈ 656 MeV − 1.307T ðlongÞ: ð32Þ

At T ¼ 260 MeV ≈ Tc, the optimal value of mðTÞ is
nearly equal for both the projections, namely

mðTÞ¼425–450MeV. As for the renormalization constant,
except for the point at T ¼ 290 MeV ≈ Tc, the optimal
π0ðTÞ increases with the temperature when fitted from the
transverse propagator. When optimized by the longitudinal
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FIG. 6. Longitudinal propagator ΔL for ω ¼ 0, T ¼ 458 MeV
and different values of the gluon mass parameter. The lattice data
were taken from Ref. [11].

TABLE II. Parameters for the curves in Figs. 4 and 5, obtained
by a separate fit of the lattice data for the longitudinal and
transverse gluon propagator of Ref. [11].

T (MeV) mðTÞ (MeV) (long., trans.) π0ðTÞ (long., trans.)
121 550, 656 −0.89, −0.84
194 425, 550 −1.10, −0.70
260 425, 450 −1.42, −0.42
290 275, 450 −0.97, −0.48
366 150, 450 −0.60, −0.20
458 //, 450 //, þ0.21
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FIG. 7. Mass parameters (top) and renormalization constants
(bottom) of Table II, as extracted from the lattice data of Ref. [11].

1For each value of the mass parameter, the renormalization
constant π0ðTÞ was optimized so as to obtain the best fit with the
data at large momenta.
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propagator, on the other hand, it shows a nonmonotonic
behavior, decreasing below Tc and increasing again
above Tc.
The large differences in the optimal values of mðTÞ and

π0ðTÞ obtained for the two projections make it clear that, in
the present formalism, it is not possible to quantitatively
recover both the longitudinal and the transverse component
of the gluon propagator by a unique choice of parameters.
Thus at T ≠ 0 the screened expansion appears to be
suboptimal as a “variational” ansatz. At least in part, this
could be expected on the basis of what is known about the
high-temperature, low-momentum behavior of the Yang-
Mills propagators: at large temperatures and low momenta,
the gluons’ thermal mass is best described by a momentum-
and direction-dependent hard thermal loop (HTL) term in
the Lagrangian, given by [40]

ΔLHTL ¼ −
1

2
m2

elðTÞTr
�
Fμν

Z
dΩ
4π

ŷνŷλ

ðŷ ·DÞ2 F
μ
λ

�
; ð33Þ

where m2
elðTÞ ¼ g2NT2=3, ŷ is a lightlike four-vector and

the integration is over the directions of ŷ. To first order
in the coupling, ΔLHTL generates two different thermal
masses for the three-dimensional projections ΔLðp; TÞ and
ΔTðp; TÞ of the gluon propagator. By not taking into
account this difference, the screened expansion lends itself
to a breakdown at large temperatures, which can be
partially avoided if the mass parameter and renormalization
constant are tuned to separately fit the two projections.
The simplest way of solving this issue in the context of

the screened expansion, i.e., without resorting to a HTL
resummation, would be to change the expansion point of
perturbation theory in such a way that the two three-
dimensional projections of the zero-order gluon propaga-
tor,ΔT

m andΔL
m, have different masses ab initio. This can be

achieved by redefining the kernel δΓμνðp;TÞ¼m2ðTÞtμνðpÞ
of the shift of the action δS as

δΓμνðp;TÞ → m2
TðTÞPT

μνðpÞ þm2
LðTÞPL

μνðpÞ; ð34Þ

where mTðTÞ and mLðTÞ are independent mass-parameter
functions for the two projections. With such a prescription,
in a general covariant gauge the zero-order Euclidean gluon
propagator Δμν

m ðp;TÞ would read

Δmðp;TÞμν → ΔT
mðp;TÞPT

μνðpÞ þ ΔL
mðp;TÞPL

μνðpÞþ

þ ξ

p2
lμνðpÞ; ð35Þ

where

ΔT;L
m ðp;TÞ ¼ 1

p2 þm2
T;LðTÞ

ð36Þ

are the sought-after zero-order propagators. Setting-up the
perturbation theory with independent mass functions for
the two projections would give us the freedom to optimize
the former separately from first principles, according
to the behavior of the respective dressed propagators.
Implementing the shift in Eq. (35), however, is a nontrivial
task: having different longitudinal and transverse masses
running in the loops breaks the Lorentz invariance even of
the simplest vacuum integrals and, more generally, requires
a complete recalculation of the gluon polarization.

IV. DISPERSION RELATIONS AT FINITE T

Being in possession of analytical expressions (modulo a
one-dimensional integration at finite T) for the Euclidean
gluon propagator allows us to analytically continue the latter
to thewhole complex plane so as to study its singularities. As
is well known, the location of the poles of the propagator
gives us information on the dispersion relations of the
gluonic quasiparticles: the energy εT;Lðp; TÞ and damping
rate γT;Lðp; TÞof the quasiparticles, as functions of the three-
dimensional momentum p and of the temperature T, are
obtained by solving the equation

Δ−1
T;Lð−iωT;Lðp; TÞ;p; TÞ ¼ 0; ð37Þ

whereω ¼ ε − iγ (modulo a factor of i) extends the real and
discrete Matsubara frequencies ωn ¼ 2πnT to the complex
plane and the subscripts T, L refer to the components of the
propagator. At nonzero temperatures and momenta, the
poles of the two components are expected to be found at
different locations, yielding two separate branches of the
dispersion relations.
The limit T → 0 of the dispersion relations was already

studied in the framework of the screened massive expan-
sion in Refs. [20–22]. In [21] we found that the zero-
temperature gluon propagator (whose longitudinal and
transverse three-dimensional components are constrained
to be equal by Lorentz simmetry) has two complex-
conjugate poles at −p2 ¼ m2

pole; ðm2
poleÞ�, where, setting

m0 ¼ 656 MeV by sharing the same units of the lattice,

m2
R ¼ 0.197 GeV2; m2

I ¼ 0.436 GeV2; ð38Þ

with m2
pole ¼ m2

R þ im2
I . In terms of εvacðpÞ ¼

limT→0 εT;Lðp; TÞ and γvacðpÞ ¼ limT→0 γT;Lðp; TÞ—and
singling out one of the poles—, this translates into the
dispersion relations

εvacðpÞ ¼
�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 þm2

RÞ2 þ ðm2
I Þ2

q
þ 1

2
ðp2 þm2

RÞ
�
1=2

;

γvacðpÞ ¼
�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 þm2

RÞ2 þ ðm2
I Þ2

q
−
1

2
ðp2 þm2

RÞ
�
1=2

:

ð39Þ
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Clearly, m2
R ¼ ðε2vac − γ2vacÞjp¼0 and m2

I ¼ 2εvacγvacjp¼0,
where

εvacð0Þ ¼ 581 MeV; γvacð0Þ ¼ 375 MeV: ð40Þ

At the other end of the spectrum, as jpj → ∞, the gluon’s
vacuum dispersion relations reduce to those of a massless
particle, εvacðpÞ → jpj, γvacðpÞ → 0.
Under the assumption that the optimal masses mðTÞ and

renormalization constants π0ðTÞ reported in the previous
section only depend on the temperature, and not on the
Matsubara frequency ωn, the finite-T dispersion relations of
the gluon quasiparticles can be easily extracted from the

screened expansion’s gluon propagator, making use of said
parameters (cf. Table II). We remark that, since at low
momenta the longitudinal projection was not found to be in
good agreement with the lattice data for any value of the
parameters, the longitudinal dispersion relations are
expected to be reliable only at sufficiently high momenta
(say above jpj ≈ 0.5–0.7 GeV).
In Figs. 8 and 9 we plot the energy εT;Lðp; TÞ and

the damping rate γT;Lðp; TÞ of the transverse and longi-
tudinal gluons at fixed T, as functions of the momentum
jpj. As we can see, below the critical temperature Tc ≈
270 MeV both the transverse energy and the transverse
damping rate (Fig. 8) are suppressed with respect to their
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FIG. 8. Transverse dispersion relations for the gluon quasiparticles. The broken lines are the vacuum dispersion relations, common to
both projections and given by Eq. (39). The gluon mass parameters mðTÞ and renormalization constants π0ðTÞ used for the plots are
reported in Table II.
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zero-temperature (vacuum) limit, with the effect being
more pronounced for εT than for γT. Above Tc this behavior
is reversed; the transverse energy starts to approach again
its vacuum limit, while the damping rate grows larger than
it. The longitudinal branch (Fig. 9) shows a more signifi-
cant suppression in both the energy and the damping rate
below Tc, with γL becoming quite small at high momenta
around the critical temperature. At higher temperatures
both εL and γL start to approach back their vacuum limit.2

In the limit p → 0 and for any nonzero ω, the
longitudinal and the transverse projection of the gluon
propagator are known to collapse to a single temperature-
dependent function; as a consequence, the corresponding
branches of the dispersion relations share the same zero-
momentum limit. The p ¼ 0 poles of the gluon propagator
are located at −iðε0ðTÞ − iγ0ðTÞÞ, where

ε0ðTÞ¼ lim
jpj→0

εT;Lðp;TÞ; γ0ðTÞ¼ lim
jpj→0

γT;Lðp;TÞ ð41Þ

are, respectively, the mass and the (zero-momentum)
damping rate of the gluon quasiparticles. With regards to
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FIG. 9. Longitudinal dispersion relations for the gluon quasiparticles. The broken lines are the vacuum dispersion relations, common to
both projections and given byEq. (39). The gluonmass parametersmðTÞ and renormalization constants π0ðTÞ used for the plots are reported
in Table II. Except for vanishingly small temperatures, these dispersion relations are not expected to be reliable below jpj ≈ 500–700 MeV.

2Here we are disregarding the low-momentum behavior of the
longitudinal dispersion relations due to their lack of reliability, as
previously discussed.
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such a constraint, the optimized framework of Sec. III B is
inconsistent: using different mass parameters for the
longitudinal and the transverse projections of the propa-
gator causes the two branches of the dispersion relations to
have unequal p → 0 limits. All the same, as previously
discussed, the low-momentum limit of the longitudinal
gluon propagator was found to be quantitatively unreliable
at temperatures which are not vanishingly small. It follows
that the p → 0 limit of the longitudinal dispersion relations
cannot be trusted regardless of the inconsistency. Since
only the screened expansion’s transverse propagator, with
the parameters in Table II, was found to reproduce the
lattice data at low momenta, in what follows we will make
use of the transverse dispersion relations to study the
behavior of ε0ðTÞ and γ0ðTÞ. From first principles, it is
understood that a good description of the long-wavelength
longitudinal gluon excitations must yield the same results.
In Fig. 10 we display the mass and the zero-momentum

damping rate of the gluon quasiparticles as functions of the
temperature. Across the critical temperature, both of them
show a characteristic behavior, decreasing below Tc and
increasing again in a linear fashion above Tc. The mass
decreases from ε0ð0Þ¼εvacð0Þ¼581 to ε0ðTcÞ≈450MeV,
whereas the zero-momentum damping rate slightly
decreases from γ0ð0Þ ¼ γvacð0Þ ¼ 375 to about 350 MeV
around Tc. The increase in the damping rate actually seems
to start somewhat below the critical temperature (see the
data point T ¼ 260 MeV in Fig. 10); we could not
determine whether this is a physically meaningful behavior
or an artifact due to uncertainties in the parameters of
Table II.
The behavior of the gluon mass in Fig. 10 confirms the

picture of a confined gluon—whose mass is dynamically
generated through the strong interactions themselves like in
the T → 0 limit—which becomes deconfined above the
critical temperature Tc ≈ 270 MeV. In the deconfined
phase, the mass of the gluon is thermal in nature and
increases linearly with the temperature. The same qualita-
tive behavior was observed in [26], where the gluon mass
and zero-momentum damping rate were studied in the
screened expansion at finite T using the same scheme of
Sec. III A, i.e., taking temperature-independent values for
both the gluon mass parameter m and the renormalization
constant π0.

V. DISCUSSION

The comparison with the available lattice data showed
that, overall, the screened expansion gives a correct
qualitative description of the gluon propagator at finite
T. The agreement improves if the renormalization constants
are tuned at each value of the temperature. At high
temperatures and deep in the IR, the failure to reproduce
the longitudinal projection might arise from the combined
effect of several issues like the need of some HTL
resummation, a poor optimization and the inadequacy of

the single-mass splitting of the action at a finite temper-
ature. Indeed, the lattice data seem to suggest that a two-
mass scheme should be introduced from the beginning for
extending the screened expansion at a finite temperature.
With the exception of an infrared turnover in the

longitudinal propagator, which has no counterpart in the
lattice data, the qualitative behavior of the propagators
seems to be correct and quite robust, irrespective of the
optimization scheme. The pole trajectories can be deter-
mined in the complex plane, yielding valuable predictions
which cannot be extracted from the lattice data in the
Euclidean space. We have reported in some detail the
dispersion relations of the quasi-gluon for several temper-
atures across the deconfinement transition.
An important feature which emerges from our study is a

crossover at the deconfinement transition. The energy of
the quasi-particle is suppressed by temperature in the
confined phase. On the other hand, above the critical
temperature, the behavior is reversed and the energy
increases as a function of temperature. The same effect
can be observed for the physical mass, defined as the long-
wavelength limit ε0ðTÞ of the pole’s real part, as shown in
Fig. 10. In the confined phase, the mass decreases like an
order parameter being suppressed by the temperature. This
behavior is consistent with that of a dynamical mass which
is related to a condensate, the latter being expected to
vanish at the transition temperature. However, at finite
temperature the quasi-gluon is also expected to acquire a
thermal mass which increases linearly, like any other
quasiparticle. The two effects might coexist across the
transition, yielding a crossover rather than a sharp tran-
sition. In the low-temperature limit the dynamical nature of
the mass dominates, while above the deconfinement
transition the mass becomes a pure thermal mass. Thus,
we argue that in the low-temperature phase the mass
suppression might be a signature of the dynamical nature
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FIG. 10. Mass ε0ðTÞ and zero-momentum damping rate γ0ðTÞ
of the gluon quasiparticles, as functions of the temperature. The
parameters used for the plot are reported in Table II under the
transverse denomination. See text for further details.
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of the gluon mass. On the other hand, as discussed in
Ref. [26], the existence of an intrinsic damping rate, which
saturates at a finite value at T ¼ 0, is a confirmation of the
quasi-gluon scenario laid out by Stingl [33]. The massive
gluon also has a very short finite lifetime and is canceled
from the asymptotic states [26], suggesting that the gluon
quasiparticles of the interacting vacuum can only travel the
short distance of about a Fermi and can only exist as
intermediate states at the origin of a gluon-jet event.
The issue of the gauge invariance of the poles at T ≠ 0

within the framework of the screened expansion remains, to
date, unexplored. One possible development of our study at
finite temperature would be to apply the guiding principles
and methods of Ref. [21] in order to monitor whether the
Nielsen identities can be satisfied in a general covariant
gauge, while fixing the values of the free parameters of the
formalism from first principles. A thorough analysis of the
matter would presumably require the explicit implementa-
tion of specific resummation schemes, as is already the case
within the framework of ordinary thermal perturbation
theory. Nonetheless, the success of the screened expansion
in reproducing the lattice data—albeit subject to a fit to the
data themselves and with the limitations discussed in the
previous sections—leads us to believe that a two-mass shift
of the expansion point of the thermal perturbative series
may prove to be a robust enough alternative scheme already
at one loop. Such a reformulation of the screened expansion
requires a full recalculation of both the thermal and vacuum
integrals involved in the definition of the propagators, and
will be left to future studies.
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APPENDIX A: ONE-LOOP GRAPHS

1. Notation

The Euclidean four-vector pμ is defined as

pμ ¼ ðp;ωÞ; ðA1Þ

where ω ¼ p4 ¼ −ip0 and the Lorentz four-vector is
ðp0;pÞ.
In the finite temperature formalism, ω ¼ ωn ¼ 2πnT

and the Euclidean integral is replaced by a sum over n and
by a three-dimensional integration

Z
d4p
ð2πÞ4 →

Z
p
¼ T

X
n

Z
d3p
ð2πÞ3 : ðA2Þ

The generic (massive) propagator GmðpÞ is

GmðpÞ ¼
1

p2 þm2
¼ 1

ω2
n þ p2 þm2

: ðA3Þ

At finite temperature, it is useful to introduce the
following orthogonal projectors

PT
μνðpÞ ¼ ð1 − δμ;4Þð1 − δν;4Þ

�
δμν −

pμpν

p2

�
;

PL
μνðpÞ ¼ tμνðpÞ − PT

μνðpÞ; ðA4Þ

beside the Lorentz projectors

tμνðpÞ ¼ δμν −
pμpν

p2
;

lμνðpÞ ¼
pμpν

p2
: ðA5Þ

The trace of the projectors is

PT
μμ ¼ 2; PL

μμ ¼ 1: ðA6Þ

The dressed Euclidean propagator of the gluon can be
written as Δab

μνðpÞ ¼ δabΔμνðpÞ where

Δ−1
μν ðpÞ¼GmðpÞ−1tμνðpÞ−Ng2ΠμνðpÞþ

p2

ξ
lμνðpÞ ðA7Þ

and the gluon polarization is Πab
μνðpÞ ¼ Ng2δabΠμνðpÞ.

Since ΠμνðpÞ is transverse, i.e., pμΠμνðpÞ ¼ 0, in the
Landau gauge (ξ → 0) the dressed propagator is also
transverse. We introduce the projected polarizations

ΠTðpÞ ¼
1

2
PT
μνðpÞΠμνðpÞ;

ΠLðpÞ ¼ PL
μνðpÞΠμνðpÞ; ðA8Þ

so that the total polarization reads

ΠμνðpÞ ¼ ΠLðpÞPL
μνðpÞ þ ΠTðpÞPT

μνðpÞ ðA9Þ

and the dressed propagator can be written as

ΔμνðpÞ ¼ ΔLðpÞPL
μνðpÞ þ ΔTðpÞPT

μνðpÞ

þ ξ

p2
lμνðpÞ; ðA10Þ

where the projected parts are

Δ−1
T ðpÞ ¼ GmðpÞ−1 − Ng2ΠTðpÞ;

Δ−1
L ðpÞ ¼ GmðpÞ−1 − Ng2ΠLðpÞ: ðA11Þ

In the Landau gauge, ξ → 0, the propagator is transverse
and its components are determined by the projected polar-
izations ΠTðpÞ and ΠLðpÞ. The graphs are evaluated in the
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Landau gauge, using the (transverse) massive free propa-
gator ½GmðpÞtμνðpÞ� in the internal gluon lines.
The dressed Euclidean propagator of the ghost can be

written as GabðpÞ ¼ δabGðpÞ, where

G−1ðpÞ ¼ −G−1
0 ðpÞ − Ng2ΣðpÞ ðA12Þ

and the ghost self energy is ΣabðpÞ ¼ δabΣðpÞ. In the
graphs, the massless free propagator −G0ðpÞ is used in the
internal ghost lines.
All the uncrossed one-loop graphs can be decoupled by

the method of Ref. [38] and written in terms of the set of
integrals

Jα ¼
Z
k
GαðkÞ;

IαβμνðpÞ ¼
Z
k
GαðkÞGβðp − kÞkμkν;

IαβðpÞ ¼
Z
k
GαðkÞGβðp − kÞ; ðA13Þ

together with their projections

IαβT ðpÞ ¼ 1

2
PT
μνðpÞIαβμνðpÞ;

IαβL ðpÞ ¼ PL
μνðpÞIαβμνðpÞ;

IαβTp ¼ 1

2
PT
μνðpÞIαβμνð0Þ;

IαβLp ¼ PL
μνðpÞIαβμνð0Þ: ðA14Þ

Explicit expressions are reported in Appendix B.
By exchanging kμ and pμ − kμ in the integrals, it is

easy to show that IαβðpÞ ¼ IβαðpÞ, while in general
IαβμνðpÞ ≠ IβαμνðpÞ. However, since pμPL;T

μν ðpÞ ¼ 0,

ðpμ − kμÞPL;T
μν ðpÞðpν − kνÞ ¼ kμkνPL;T

μν ðpÞ ðA15Þ

and the projected integrals turn out to be symmetric,
IαβL;T ¼ IβαL;T .
We note that IαβLp and IαβTp might depend on p because of

the explicit dependence in the projectors. For instance, let
us consider any constant integral

Iμν ¼
Z
k
kμkνfðkÞ ¼ δμνIμμ; ðA16Þ

which does not depend on the external momentum p. Let us
denote by IL;0, IT;0, the nonzero components that can be
written, taking kμ ¼ ðk;ωnÞ, as

I44 ¼ IL;0 ¼
Z
k
ω2
nfðk;ωnÞ;

Iii ¼ IT;0 ¼
1

3

Z
k
k2fðk;ωnÞ; i ¼ 1; 2; 3: ðA17Þ

In fact, the explicit projections IL;p, IT;p can be defined and
evaluated as in Eqs. (A14):

IT;p ¼ 1

2
PT
μνðpÞIμν ¼ IT;0;

IL;p ¼ PL
μνðpÞIμν ¼ ðIL;0 − IT;0Þ

p2

p2 þ ω2
þ IT;0: ðA18Þ

While IT;p ¼ IT;0 and does not depend on p, the longi-
tudinal projection depends on p and has the different limits

lim
p→0

IL;p ¼ IT;0; lim
ω→0

IL;p ¼ IL;0: ðA19Þ

More generally, for the integral IαβμνðpÞ, which has an
explicit dependence on p, the projections have the follow-
ing limits:

IαβL;0 ¼ lim
p→0

h
lim
ω→0

IαβL ðpÞ
i
; IαβT;0 ¼ lim

ω→0

h
lim
p→0

IαβL ðpÞ
i
;

IαβT;0 ¼ lim
p→0

h
lim
ω→0

IαβT ðpÞ
i
¼ lim

ω→0

h
lim
p→0

IαβT ðpÞ
i
; ðA20Þ

they are related to the projections of the limit Iαβμνð0Þ, as
defined in Eqs. (A14),

IαβT;p ¼ IαβT;0;

IαβL;p ¼ ðIαβL;0 − IαβT;0Þ
p2

p2 þ ω2
þ IαβT;0; ðA21Þ

where

IαβL;0 ¼ Iαβ44ð0Þ; IαβT;0 ¼ Iαβii ð0Þ: ðA22Þ

The limits in Eq. (A20) agree with the physical requirement
that transverse and longitudinal projections must coincide
for anyω in the limit p → 0, while they are different for any
finite p in the limit ω → 0.
Each crossed graph Π×, containing one insertion of the

mass counterterm, can be obtained by the corresponding
uncrossed graph Π by a simple derivative

Π× ¼ −m2
∂

∂m2
Π: ðA23Þ

Their explicit calculation requires the definition of a new
set of integrals ∂Iαβ, ∂IαβL;T , ∂Jm, ∂2Jm:
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∂IαβðpÞ ¼ ∂
∂α2 I

αβðpÞ;

∂IαβL;TðpÞ ¼ ∂
∂α2 I

αβ
L;TðpÞ;

∂Jm ¼ ∂
∂m2

Jm;

∂2Jm ¼ ∂2

∂ðm2Þ2 Jm: ðA24Þ

We note that the second argument (β) is kept fixed in the
derivative, so that ∂Iαβ ≠ ∂Iβα. When α ¼ β the derivative
must be taken twice, so that for instance

∂
∂m2

Imm ¼
� ∂
∂α2 I

αβ þ ∂
∂β2 I

αβ

�
α¼β¼m

¼ 2∂Imm: ðA25Þ

Not all the integrals are independent. For instance, it can
be easily shown that

Iαβð0Þ ¼ 1

β2 − α2
½Jα − Jβ�;

∂Jm ¼ −Immð0Þ;

∂Iαβð0Þ ¼ 1

β2 − α2
½Iαβð0Þ − Iααð0Þ�: ðA26Þ

It is useful to introduce the integrals JL;Tm which follow by
setting fðkÞ ¼ GmðkÞ in Eq. (A17),

JLm ¼
Z
k
ω2
nGmðk;ωnÞ;

JTm ¼ 1

3

Z
k
k2Gmðk;ωnÞ; ðA27Þ

so that Eqs. (A26) can be extended to the projected
integrals,

IαβL;T0 ¼
1

β2 − α2
½JL;Tα − JL;Tβ �;

∂JL;Tm ¼ −Imm
L;T0;

∂IαβL;T0 ¼ 1

β2 − α2
½IαβL;T0 − IααL;T0�; ðA28Þ

and, by Eq. (A21), the projections IαβL;Tp can be expressed in

terms of the constant integrals JL;Tm .

2. Graph 1b—(tadpole)

Setting d ¼ 4, Eq. (31) of Ref. [41] reads

Πð1bÞ
μν ðpÞ ¼ −

Z
k
½3δμν − tμνðkÞ�GmðkÞ; ðA29Þ

yielding

Πð1bÞ
μν ¼ −½2δμνJm þ Im0

μν ð0Þ�; ðA30Þ

where the integrals Jα, I
αβ
μνðpÞ were defined in Eqs. (A13)

and their explicit expressions are reported in Appendix B.
The projected polarization of graph ð1bÞ is

Πð1bÞ
T ðpÞ ¼ −½2Jm þ Im0

Tp�;
Πð1bÞ

L ðpÞ ¼ −½2Jm þ Im0
Lp�: ðA31Þ

The vacuum contribution can be extracted by evaluating the
integrals in the limit T → 0 where Im0

μν ð0Þ → 1
4
δμνJm so that

Πð1bÞ
μν ðT ¼ 0Þ ¼ −

9

4
δμνJm ðA32Þ

in agreement with the general result of Ref. [19] for d ¼ 4.

3. Graph 2b—(gluon loop)

The general explicit expression for the graph ð2bÞ has
been reported in Ref. [41], for a generic dimension d and a
generic free-particle propagator. In the Landau gauge, the
explicit expression for d ¼ 4 can be written as (see also
Ref. [38])

ΠμνðpÞ ¼
X4
i¼1

Πμν
i ðpÞ ðA33Þ

where, denoting q ¼ p − k,

Πμν
1 ðpÞ ¼ 1

2

Z
k
ðq − kÞμðq − kÞν½tλρðqÞtρλðkÞ�GmðkÞGmðqÞ;

Πμν
2 ðpÞ ¼

Z
k
tμνðkÞ½ðpþ kÞλtλρðqÞðpþ kÞρ�GmðkÞGmðqÞ;

Πμν
3 ðpÞ ¼ −

Z
k
½tμλðkÞðpþ qÞλ�½tνρðqÞðpþ kÞρ�

×GmðkÞGmðqÞ;

Πμν
4 ðpÞ ¼

Z
k
ðq − kÞμ½tνλðkÞtλρðqÞðpþ kÞρ�GmðkÞGmðqÞ

þ μ ↔ ν: ðA34Þ

All integrals can be evaluated by the method of Ref. [38]
and written in terms of the integrals in Eq. (A13).
In some detail,

Πμν
1 ðpÞ ¼ 1

2

Z
k
ðq− kÞμðq− kÞν

�
2þ ðk · qÞ2

k2q2

�
GmðkÞGmðqÞ;

ðA35Þ

and making use of the identities

THERMAL EXTENSION OF THE SCREENED MASSIVE … PHYS. REV. D 103, 074014 (2021)

074014-17



2k · q ¼ ðkþ qÞ2 − k2 − q2 ¼ p2 −GαðkÞ−1 −GβðqÞ−1 þ α2 þ β2;

GmðkÞ
k2

¼ G0ðkÞGmðkÞ ¼
1

m2
½G0ðkÞ −GmðkÞ�;

ðq − kÞμðq − kÞν ¼ 2ðqμqν þ kμkνÞ − pμpν ðA36Þ

we can write

ðk · qÞ2
k2q2

GmðkÞGmðqÞ ¼
1

4m4
½ðp2 þ 2m2Þ2GmðkÞGmðqÞ þ p4G0ðkÞG0ðqÞþ

− ðp2 þm2Þ2ðG0ðkÞGmðqÞ þ GmðkÞG0ðqÞÞ� þ
1

4
ðGmðkÞG0ðkÞ þGmðqÞG0ðqÞÞ; ðA37Þ

Z
k
ðq−kÞμðq−kÞν

ðk ·qÞ2
k2q2

GmðkÞGmðqÞ¼
1

4m4
½ðp2þ2m2Þ2ð4Imm

μν ðpÞ−pμpνImmðpÞÞþ

þp4ð4I00μνðpÞ−pμpνI00ðpÞÞ−2ðp2þm2Þ2ð2½Im0
μν ðpÞþ I0mμν ðpÞ�−pμpνIm0ðpÞÞ�þ

þ2Im0
μν ð0Þþ

1

2
pμpνIm0ð0Þ; ðA38Þ

Z
k
ðq − kÞμðq − kÞνGmðkÞGmðqÞ ¼ 4Imm

μν ðpÞ − pμpνImmðpÞ ðA39Þ

so that Eq. (A35) reads

Π1μνðpÞ ¼
p4

2m4
I00μνðpÞ þ

�
4þ ðp2 þ 2m2Þ2

2m4

�
Imm
μν ðpÞ − ðp2 þm2Þ2

2m4
ðIm0

μν ðpÞ þ I0mμν ðpÞÞ þ Im0
μν ð0Þþ

− pμpν

�
p4

8m4
I00ðpÞ þ

�
1þ ðp2 þ 2m2Þ2

8m4

�
ImmðpÞ − ðp2 þm2Þ2

4m4
Im0ðpÞ − 1

4
Im0ð0Þ

�
: ðA40Þ

The second polarization term in Eq. (A34) reads

Π2μνðpÞ ¼ 4

Z
k

h
δμν −

kμkν
k2

i�
p2 −

ðp · qÞ2
q2

�
GmðkÞGmðqÞ

¼ 4

Z
k
½δμνp2 − p2kμkνG0ðkÞ − δμνðp · qÞ2G0ðqÞ þ ðp · qÞ2kμkνG0ðkÞG0ðqÞ�GmðkÞGmðqÞ

¼ 4
h
δμνp2ImmðpÞ − p2

m2
ðI0mμν ðpÞ − Imm

μν ðpÞÞ
i
þ Π2aμνðpÞ þ Π2bμνðpÞ; ðA41Þ

where

Π2aμνðpÞ ¼ −4δμν
Z
k
GmðqÞGmðkÞG0ðkÞðp · kÞ2 ¼ −

4

m2
δμν

Z
k
GmðqÞðG0ðkÞ − GmðkÞÞðp · kÞ2;

Π2bμνðpÞ ¼ 4

Z
k
GmðkÞGmðqÞG0ðkÞG0ðqÞðp · qÞ2kμkν: ðA42Þ

Using the identities

2ðp ·kÞ¼p2þβ2−α2þG−1
α ðkÞ−G−1

β ðqÞ;
2ðp ·kÞGβðqÞGαðkÞ¼ ðp2þβ2−α2ÞGβðqÞGαðkÞþGβðqÞ−GαðkÞ;
4ðp ·kÞ2GβðqÞGαðkÞ¼ ðp2þβ2−α2Þ2GβðqÞGαðkÞþðp2þβ2−α2ÞðGβðqÞ−GαðkÞÞþ2ðp ·kÞðGβðqÞ−GαðkÞÞ; ðA43Þ

which hold for any pair k, q satisfying kþ q ¼ p, we obtain for ðα; βÞ ¼ ð0; mÞ and for ðα; βÞ ¼ ðm;mÞ, respectively,
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4ðp · kÞ2GmðqÞG0ðkÞ ¼ ðp2 þm2Þ2GmðqÞG0ðkÞ þ ðp2 þm2ÞðGmðqÞ −G0ðkÞÞ þ 2ðp · kÞðGmðqÞ −G0ðkÞÞ;
4ðp · kÞ2GmðqÞGmðkÞ ¼ p4GmðqÞGmðkÞ þ p2ðGmðqÞ − GmðkÞÞ þ 2ðp · kÞðGmðqÞ − GmðkÞÞ; ðA44Þ

so that the term Π2a can be written as

Π2aμν ¼ −
δμν
m2

½ðp2 þm2Þ2I0mðpÞ − p4ImmðpÞ −m2ðp2 þm2ÞI0mð0Þ�: ðA45Þ

Using the second of Eqs. (A36), the term Π2b can be written as

Π2bμνðpÞ ¼
4

m4

Z
k
ðp · qÞ2kμkνðG0ðkÞG0ðqÞ −G0ðkÞGmðqÞ − GmðkÞG0ðqÞ þGmðkÞGmðqÞÞ; ðA46Þ

while reversing k and q in Eq. (A43) we obtain, for α and β that take the values 0 and m,

4ðp · qÞ2G0ðkÞG0ðqÞ ¼ p4G0ðkÞG0ðqÞ þ 3p2ðG0ðkÞ −G0ðqÞÞ − 2p · kðG0ðkÞ −G0ðqÞÞ;
4ðp · qÞ2G0ðkÞGmðqÞ ¼ ðp2 −m2Þ2G0ðkÞGmðqÞ þ ð3p2 −m2ÞðG0ðkÞ −GmðqÞÞ − 2p · kðG0ðkÞ −GmðqÞÞ;
4ðp · qÞ2GmðkÞG0ðqÞ ¼ ðp2 þm2Þ2GmðkÞG0ðqÞ þ ð3p2 þm2ÞðGmðkÞ −G0ðqÞÞ − 2p · kðGmðkÞ −G0ðqÞÞ;
4ðp · qÞ2GmðkÞGmðqÞ ¼ p4GmðkÞGmðqÞ þ 3p2ðGmðkÞ −GmðqÞÞ − 2p · kðGmðkÞ −GmðqÞÞ; ðA47Þ

yielding for Π2b

Π2bμνðpÞ ¼
1

m4
½p4ðI00μνðpÞ þ Imm

μν ðpÞÞ − ðp2 −m2Þ2I0mμν ðpÞ − ðp2 þm2Þ2Im0
μν ðpÞ� þ 2I0mμν ð0Þ þ pμpνI0mð0Þ: ðA48Þ

Adding Eqs. (A45) and (A48) in Eq. (A41), the second polarization term in Eq. (A34) is

Π2μνðpÞ ¼ δμν

�
p2

m2
ðp2 þ 4m2ÞImmðpÞ − ðp2 þm2Þ2

m2
I0mðpÞ þ ðp2 þm2ÞI0mð0Þ

�
þ pμpνI0mð0Þþ

þ p4

m4
I00μνðpÞ þ

p2

m4
ðp2 þ 4m2ÞImm

μν ðpÞ − ðp2 þm2Þ2
m4

ðIm0
μν ðpÞ þ I0mμν ðpÞÞ þ 2I0mμν ð0Þ: ðA49Þ

The third polarization term in Eq. (A34) can be decomposed by observing that

½tμλðkÞðpþ qÞλ� ¼ 2

�
pμ −

p · k
k2

kμ
�
; ½tνρðqÞðpþ kÞρ� ¼ 2

�
pν −

p · q
q2

qν
�
; ðA50Þ

so that, changing the integration variable from k to q in the qνpμ term, Π3 reads

Π3μνðpÞ ¼ −4
Z
k

�
pμpν −

p · k
k2

ðkμpν þ kνpμÞ þ
ðp · kÞðp · qÞ

k2q2
kμqν

�
GmðkÞGmðqÞ

¼ −4pμpνImmðpÞ þ Π3aμνðpÞ þ Π3bμνðpÞ; ðA51Þ

where

Π3aμνðpÞ ¼ 4

Z
k
ðp · kÞðkμpν þ kνpμÞG0ðkÞGmðkÞGmðqÞ;

Π3bμνðpÞ ¼ −4
Z
k
ðp · kÞðp · qÞkμqνG0ðkÞG0ðqÞGmðkÞGmðqÞ: ðA52Þ

The first integral can be decomposed by using the identity

ðkμpν þ kνpμÞ ¼ pμpν þ kμkν − qμqν ðA53Þ
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and observing that, by the second of Eqs. (A36) and the second of Eqs. (A43),

4ðp · kÞG0ðkÞGmðkÞGmðqÞ ¼
4ðp · kÞ
m2

½G0ðkÞGmðqÞ −GmðkÞGmðqÞ�

¼ 2

m2
½ðp2 þm2ÞG0ðkÞGmðqÞ − p2GmðkÞGmðqÞ −m2G0ðkÞGmðkÞ�; ðA54Þ

yielding

Π3aμνðpÞ ¼
2

m2
pμpν½ðp2 þm2ÞI0mðpÞ − p2ImmðpÞ� þ 2

m2
ðp2 þm2ÞðI0mμν ðpÞ − Im0

μν ðpÞÞ: ðA55Þ

In the second integral Π3b we can use the identity

kμqν ¼
�
1

2
pμpν − kμkν

�
þ 1

2
ðkμ − qμÞpν; ðA56Þ

where the last term can be dropped because it is antisymmetric in the exchange of k and q and its contribution to the integral
is zero. Taking the second of Eqs. (A43) with α ¼ β ¼ m and the same equation with α ¼ β ¼ 0 and k,q interchanged, their
product can be written as

4ðp ·kÞðp ·qÞGmðkÞGmðqÞG0ðkÞG0ðqÞ¼
p4

m4
½G0ðkÞG0ðqÞþGmðkÞGmðqÞ�þ

þ
�
1−

p4

m4

�
½G0ðkÞGmðqÞþGmðkÞG0ðqÞ�−G0ðqÞGmðqÞ−G0ðkÞGmðkÞ; ðA57Þ

where the second of Eqs. (A36) has been used for decomposing the products of more than two G functions. Then, the
integral can be written

Π3bμνðpÞ ¼
p4

m4
ðI00μνðpÞ þ Imm

μν ðpÞÞ þ
�
1 −

p4

m4

�
ðI0mμν ðpÞ þ Im0

μν ðpÞÞþ

− pμpν

�
p4

2m4
ðI00ðpÞ þ ImmðpÞÞ −

�
p4

m4
− 1

�
I0mðpÞ

�
− 2I0mμν ð0Þ: ðA58Þ

Adding Eqs. (A 3) and (A58) in Eq. (A51), the third polarization term in Eq. (A34) is

Π3μνðpÞ ¼
p4

m4
ðI00μνðpÞ þ Imm

μν ðpÞÞ þ 3m4 þ 2m2p2 − p4

m4
I0mμν ðpÞ −

ðp2 þm2Þ2
m4

Im0
μν ðpÞ − 2I0mμν ð0Þþ

− pμpν

�
p4

2m4
I00ðpÞ þ p4 þ 4m2p2 þ 8m4

2m4
ImmðpÞ − ðp2 þm2Þ2

m4
I0mðpÞ

�
: ðA59Þ

The last polarization term in Eq. (A34) can be decomposed by observing that

½tνλðkÞtλρðqÞðpþ kÞρ� ¼ 2
ðk · qÞ
q2

�ðk · pÞ
k2

kν − pν

�
: ðA60Þ

Then, recalling that qμ ¼ pμ − kμ, the integral reads

Π4μνðpÞ ¼ 2

Z
k

�ðk · pÞ
k2

ðpμkν − 2kμkνÞ þ ð2kμpν − pμpνÞ
�
ðk · qÞG0ðqÞGmðkÞGmðqÞ þ μ ↔ ν: ðA61Þ

Using the identity

pμkν þ pνkμ ¼ pμpν þ kμkν − qμqν ðA62Þ
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the two pieces can be added together yielding

Π4μνðpÞ ¼ 2

Z
k

�ðk · pÞ
k2

ðpμpν − 3kμkν − qμqνÞ þ 2ðkμkν − qμqνÞ
�
ðk · qÞG0ðqÞGmðkÞGmðqÞ: ðA63Þ

The product of three G functions can be decomposed by the second of Eqs. (A36) and the two arising terms can be written
by the first of Eqs. (A36), with ðα; βÞ ¼ ðm; 0Þ and ðα; βÞ ¼ ðm;mÞ, respectively,

2ðk · qÞ½G0ðqÞGmðqÞ�GmðkÞ ¼
p2 þm2

m2
GmðkÞG0ðqÞ −

ðp2 þ 2m2Þ
m2

GmðkÞGmðqÞ −
1

m2
ðG0ðqÞ −GmðqÞÞ: ðA64Þ

The integral then reads

Π4μνðpÞ ¼ 2
p2 þm2

m2
ðIm0

μν ðpÞ − I0mμν ðpÞÞ − 2pμpνI0mð0Þ þ Π4aμνðpÞ; ðA65Þ

where

Π4aμνðpÞ ¼
1

2

Z
k
2ðk · pÞG0ðkÞðpμpν − 3kμkν − qμqνÞ

×

�
p2 þm2

m2
GmðkÞG0ðqÞ −

ðp2 þ 2m2Þ
m2

GmðkÞGmðqÞ −
1

m2
ðG0ðqÞ −GmðqÞÞ

�
: ðA66Þ

Using the first of Eqs. (A43) with α ¼ 0 and β ¼ m; 0,

2ðk · pÞG0ðkÞ ¼ ðp2 þm2ÞG0ðkÞ þ 1 −G−1
m ðqÞG0ðkÞ ¼ p2G0ðkÞ þ 1 −G−1

0 ðqÞG0ðkÞ; ðA67Þ

and decoupling the product GmðkÞG0ðkÞ by the second of Eqs. (A36), the term Π4a can be written as

Π4aμνðpÞ ¼
1

2m2

Z
k
ðpμpν − 3kμkν − qμqνÞ

�
p4

m2
G0ðkÞG0ðqÞ þ

p2ðp2 þ 2m2Þ
m2

GmðkÞGmðqÞþ

−
ðp2 þm2Þ2

m2
G0ðkÞGmðqÞ −

p4 −m4

m2
GmðkÞG0ðqÞ þm2ðG0ðkÞGmðkÞ − G0ðqÞGmðqÞÞ

�
; ðA68Þ

so that the integral reads

Π4aμνðpÞ ¼ pμpν

�
p4

2m4
I00ðpÞ þ p2ðp2 þ 2m2Þ

2m4
ImmðpÞ − p2ðp2 þm2Þ

m4
Im0ðpÞ þ I0mð0Þ

�
þ

− 2
p4

m4
I00μνðpÞ − 2

p2ðp2 þ 2m2Þ
m4

Imm
μν ðpÞ þ 2p4 þ 3m2p2 þm4

m4
I0mμν ðpÞ þ

2p4 þm2p2 −m4

m4
Im0
μν ðpÞ: ðA69Þ

Inserting the result in Eq. (A65) the fourth polarization term in Eq. (A34) is

Π4μνðpÞ ¼ pμpν

�
p4

2m4
I00ðpÞ þ p2ðp2 þ 2m2Þ

2m4
ImmðpÞ − p2ðp2 þm2Þ

m4
Im0ðpÞ − I0mð0Þ

�
þ

− 2
p4

m4
I00μνðpÞ − 2

p2ðp2 þ 2m2Þ
m4

Imm
μν ðpÞ þ 2p4 þ 3m2p2 þm4

m4
Im0
μν ðpÞ þ

2p4 þm2p2 −m4

m4
I0mμν ðpÞ: ðA70Þ
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Finally, adding up the four polarization terms in Eqs. (A40), (A49), (A59), (A70), the total graph ð2bÞ reads

Πð2bÞ
μν ðpÞ ¼ p4

2m4
I00μνðpÞ þ

�
4þ ðp2 þ 2m2Þ2

2m4

�
Imm
μν ðpÞ − ðp2 þm2Þ2

2m4
ðIm0

μν ðpÞ þ I0mμν ðpÞÞ þ Im0
μν ð0Þ

þ ðp2 þm2Þ
m2

ðI0mμν ðpÞ − Im0
μν ðpÞÞ þ δμν

�
p2

m2
ðp2 þ 4m2ÞImmðpÞ − ðp2 þm2Þ2

m2
I0mðpÞ þ ðp2 þm2ÞI0mð0Þ

�
þ

− pμpν

�
p4

8m4
I00ðpÞ þ ðp4 þ 12m2p2 þ 44m4Þ

8m4
ImmðpÞ − ðp2 þm2Þðp2 þ 5m2Þ

4m4
Im0ðpÞ − 1

4
Im0ð0Þ

�
: ðA71Þ

The transverse projections of the graph follow by the
projected integrals in Eqs. (A14). We observed that by
Eq. (A15) the projected integrals turn out to be symmetric,
IαβL;T ¼ IβαL;T . Thus, the projection of the graph follows by
dropping the longitudinal and the antisymmetric terms, and
by replacing the integrals by the projected ones according to

pμpν → 0;

ðI0mμν ðpÞ − Im0
μν ðpÞÞ → 0;

δμν → 1

IαβμνðpÞ → IαβL;TðpÞ ¼ IβαL;TðpÞ;
Iαβμνð0Þ → IαβL;Tp ¼ IβαL;Tp: ðA72Þ

4. Graph 2a—(ghost loop)

In the Landau gauge, setting d ¼ 4 and using a free-
particle propagator, the general expression of the ghost loop
(see e.g., Ref. [41]) reads

Πð2aÞ
μν ðpÞ ¼

Z
k
ðpμ − kμÞkνG0ðkÞG0ðp − kÞ: ðA73Þ

By exchanging kμ and pμ − kμ the integral shows the
symmetry Πμν ¼ Πνμ so that, using Eq. (A53), we can
replace

pμkν→
1

2
ðpμkνþkμpνÞ¼

1

2
ðkμkν−qμqνþpμpνÞ: ðA74Þ

The first two terms on the right-hand side cancel in the
integration yielding

Πð2aÞ
μν ðpÞ ¼ 1

2
pμpνI00ðpÞ − I00μνðpÞ: ðA75Þ

The projected ghost loop is just

Πð2aÞ
L;T ðpÞ ¼ −I00L;TðpÞ: ðA76Þ

5. Total (uncrossed) one-loop polarization

Adding up the uncrossed one-loop graphs ð1bÞ, ð2bÞ and
ð2aÞ, the standard (uncrossed) projected one-loop polari-
zation of Ref. [38] is recovered by the sum of Eqs. (A30),
(A71) and (A75):

Π1-loop
L;T ðpÞ ¼

�
p4

2m4
− 1

�
I00L;TðpÞ þ

�
4þ ðp2 þ 2m2Þ2

2m4

�
Imm
L;TðpÞ −

ðp2 þm2Þ2
m4

Im0
L;TðpÞ

þ p2ðp2 þ 4m2Þ
m2

ImmðpÞ − ðp2 þm2Þ2
m2

I0mðpÞ þ ðp2 þm2ÞI0mð0Þ − 2Jm: ðA77Þ

6. Ghost self-energy

In this work, the total one-loop ghost self energy is the sum of the standard one-loop graph and the crossed one, which
contains the insertion of a mass counterterm,

ΣtotðpÞ ¼
�
1 −m2

∂
∂m2

�
ΣðpÞ ðA78Þ

where ΣðpÞ is the standard one loop integral [19,41] in the Landau gauge,
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ΣðpÞ ¼ −
Z
k

k2p2 − ðk · pÞ2
k2ðk − pÞ2ðk2 þm2Þ ¼ −

Z
k
½p2GmðkÞG0ðqÞ − ðk · pÞ2G0ðkÞGmðkÞG0ðqÞ�: ðA79Þ

Using the last of Eqs. (A43) with α ¼ m and β ¼ 0, and decoupling the product GmðkÞG0ðkÞ by the second of Eqs. (A36),
we can write

4ðk · pÞ2G0ðqÞGmðkÞG0ðkÞ ¼
ðp2 −m2Þ2

m2
½G0ðkÞG0ðqÞ −GmðkÞG0ðqÞ�

þ ðp2 −m2Þ½G0ðkÞG0ðqÞ − GmðkÞG0ðkÞ� þ 2ðp · kÞ½G0ðqÞG0ðkÞ −GmðkÞG0ðkÞ�: ðA80Þ

Then using the second of Eqs. (A43) with α ¼ β ¼ 0 and dropping the vanishing integrals

Z
k
½G0ðqÞ −G0ðkÞ� ¼ 0;

Z
k
ðp · kÞGmðkÞG0ðkÞ ¼ 0; ðA81Þ

the second term of Eq. (A79) reads

Z
k
ðk · pÞ2G0ðkÞGmðkÞG0ðqÞ ¼ −

ðp2 −m2Þ2
4m2

Z
k
GmðkÞG0ðqÞ þ

p4

4m2

Z
k
G0ðkÞG0ðqÞ −

ðp2 −m2Þ
4

Z
k
GmðkÞG0ðkÞ ðA82Þ

and the (uncrossed) one-loop self energy can be written as

ΣðpÞ ¼ −
ðp2 þm2Þ2

4m2
Im0ðpÞ þ p4

4m2
I00ðpÞ þ ðp2 −m2Þ

4m2
ðJm − J0Þ; ðA83Þ

as derived in Ref. [38] by the same method.

7. Crossed graphs and total polarization

The crossed graphs ð1cÞ, ð2cÞ, ð1dÞ and the crossed one-
loop ghost self energy can be obtained by simple deriv-
atives. The sum of all graphs gives a total one-loop
polarization that can be written as

Πtot
L;TðpÞ ¼ Πða−cÞ

L;T ðpÞ þ Πð1dÞ
L;T ðpÞ; ðA84Þ

where Πða−cÞ
L;T ðpÞ is the sum of graphs ð2aÞ, ð1bÞ, ð2bÞ,

ð1cÞ, ð2cÞ and can be evaluated as

Πða−cÞ
L;T ðpÞ ¼

�
1 −m2

∂
∂m2

�
Π1-loop

L;T ðpÞ: ðA85Þ

Here Π1-loop
L;T ðpÞ is the projected one-loop polarization of

Eq. (A77) andΠð1dÞ
L;T is the doubly crossed tadpole, with two

counterterm insertions.
The derivative acts on the coefficients of the integrals

according to
�
−m2

∂
∂m2

�
½m2� ¼ −m2;

�
−m2

∂
∂m2

��
1

m2

�
¼ 1

m2
;

�
−m2

∂
∂m2

��
1

m4

�
¼ 2

m4
: ðA86Þ

The function Πða−cÞ
L;T then reads

Πða−cÞ
L;T ðpÞ ¼ Π1-loop

L;T ðpÞ þ
�
−m2

∂
∂m2

Π1-loop
L;T ðpÞ

�
I
−m2ðΠ1-loop

L;T ðpÞÞI→∂I; ðA87Þ

where the derivative of the coefficients is taken in the second term while the derivative of the integrals is considered in the
third term. Using Eqs. (A86) and (A77),

�
−m2

∂
∂m2

Π1-loop
L;T ðpÞ

�
I
¼

�
p4

m4

�
I00L;TðpÞ þ

�
p4 þ 2m2p2

m4

�
Imm
L;TðpÞ −

�
2p4 þ 2m2p2

m4

�
Im0
L;TðpÞ

þ
�
p4

m2

�
ImmðpÞ −

�
p4 −m4

m2

�
I0mðpÞ − ½m2�I0mð0Þ; ðA88Þ
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while replacing the integrals I by their derivatives ∂I, Eq. (A77) reads

−m2ðΠ1-loop
L;T ðpÞÞI→∂I ¼ −

�
8m2 þ ðp2 þ 2m2Þ2

m2

�
∂Imm

L;TðpÞ þ
ðp2 þm2Þ2

m2
∂Im0

L;TðpÞ − 2p2ðp2 þ 4m2Þ∂ImmðpÞ

þ ðp2 þm2Þ2∂Im0ðpÞ −m2ðp2 þm2Þ∂Im0ð0Þ þ 2m2∂Jm: ðA89Þ

Summing up the contributions of Eqs. (A77), (A88) and (A89) in Eq. (A87) and using Eq. (A26) we obtain

Πða−cÞ
L;T ðpÞ ¼

�
3p4

2m4
− 1

�
I00L;TðpÞ þ

�
4þ 3p4 þ 8m2p2 þ 4m4

2m4

�
Imm
L;TðpÞ −

�
3p4 þ 4m2p2 þm4

m4

�
Im0
L;TðpÞ

þ 2p2ðp2 þ 2m2Þ
m2

ImmðpÞ − 2p2ðp2 þm2Þ
m2

I0mðpÞ −
�
2p2 þ 3m2

m2

�
Jm þ

�
2p2 þm2

m2

�
J0

þ −
�
8m2 þ ðp2 þ 2m2Þ2

m2

�
∂Imm

L;TðpÞ þ
ðp2 þm2Þ2

m2
∂Im0

L;TðpÞ − 2p2ðp2 þ 4m2Þ∂ImmðpÞ

þ ðp2 þm2Þ2∂Im0ðpÞ þ ðp2 þ 3m2Þ∂Jm: ðA90Þ

Finally, the doubly crossed tadpole ð1dÞ in Eq. (A84) can
be written as [19,41]

Πð1dÞ
L;T ðpÞ ¼

m4

2

∂2

∂ðm2Þ2Π
ð1bÞ
L;T ðpÞ; ðA91Þ

and using Eq. (A31)

Πð1dÞ
L;T ðpÞ ¼ −m4∂2Jm −

m4

2
∂2Im0

L;Tp: ðA92Þ

By Eqs. (A28) the derivative ∂2Im0
L;Tp can be expressed in

terms of the integrals JL;Tm and their derivatives ∂JL;Tm ,
yielding

Πð1dÞ
L;T ðpÞ ¼ −m4∂2Jm þ 1

m2
ðJL;Tm;p − JL;T0;p Þþ

− ∂JL;Tm;p þm2

2
∂2JL;Tm;p; ðA93Þ

where

JTm;p ¼ JTm;

JLm;p ¼ ðJLm − JTmÞ
p2

p2 þ ω2
þ JTm: ðA94Þ

8. Crossed graphs and total ghost self energy

The total ghost self-energy ΣtotðpÞ can be derived by the
same method, as shown in Eq. (A78),

ΣtotðpÞ ¼ ΣðpÞ þ
�
−m2

∂
∂m2

ΣðpÞ
�

I
−m2½ΣðpÞ�I→∂I;

ðA95Þ
where the derivative of the coefficients is taken in the
second term, while the derivative of the integrals is
considered in the third term.
Replacing the integrals I by their derivatives ∂I,

Eq. (A83) gives

−m2½ΣðpÞ�I→∂I ¼
ðp2 þm2Þ2

4
∂Im0ðpÞ − ðp2 −m2Þ

4
∂Jm;
ðA96Þ

while, using Eq. (A86), the derivative of the coefficients in
Eq. (A83) gives

�
−m2

∂
∂m2

ΣðpÞ
�

I
¼ ðm4 − p4Þ

4m2
Im0ðpÞ þ p4

4m2
I00ðpÞ þ p2

4m2
ðJm − J0Þ: ðA97Þ

The total ghost self energy then follows, adding up the contributions of Eqs. (A83), (A97) and (A96) in Eq. (A95)

ΣtotðpÞ ¼ −
p2ðp2 þm2Þ

2m2
Im0ðpÞ þ p4

2m2
I00ðpÞ þ ð2p2 −m2Þ

4m2
ðJm − J0Þ þ

ðp2 þm2Þ2
4

∂Im0ðpÞ− ðp2 −m2Þ
4

∂Jm: ðA98Þ

FABIO SIRINGO and GIORGIO COMITINI PHYS. REV. D 103, 074014 (2021)

074014-24



APPENDIX B: THERMAL INTEGRALS

By general arguments, the thermal integral IðTÞ of a
function fðkÞ ¼ fðk; k4Þ can be written as

IðTÞ ¼
Z
k
fðkÞ ¼ T

X
n

Z
d3k
ð2πÞ3 fðk;ωnÞ ¼ IV þ IThðTÞ

ðB1Þ

where, setting k4 ¼ ωn ¼ −ik0,

IV ¼ 1

2πi

Z þi∞

−i∞
dk0

Z
d3k
ð2πÞ3 fðk;−ik0Þ ¼

Z
d4k
ð2πÞ4 fðkÞ

ðB2Þ

is the Euclidean integral at T ¼ 0, denoted vacuum part
IV ¼ Ið0Þ, while the thermal part IThðTÞ is

IThðTÞ ¼ −
Z

d3k
ð2πÞ3

X
Resid:

�
2Rfðk; ik0Þ
eβk0 − 1

�
Rek0>0

ðB3Þ

where the sum is over the residues in the right complex
plane of k0 and the symbol Rf is defined as

Rfðk; ik0Þ ¼
fðk; ik0Þ þ fðk;−ik0Þ

2
: ðB4Þ

We observe that if fðkÞ is a complex function, then RfðkÞ
is not the true real part RefðkÞ. The thermal part vanishes in
the limit T → 0.
Many of the thermal integrals were evaluated in great

detail in Ref. [38]. In the next sections we collect the same
results and, by the same method, we add the explicit
evaluation of all the remaining integrals that are required in
the present work.

1. Vacuum integrals

The vacuum parts of all the one-loop graphs were
evaluated in Ref. [19]. They can be made finite by wave
function renormalization. After subtraction, the sum of all
the gluon polarization graphs in Eq. (A84) and of all ghost
self-energy graphs in Eq. (A98) give the following vacuum
terms at T ¼ 0:

Πtot
V ðsÞ ¼ −

3m2s
ð4πÞ2 ½π1ðsÞ þ π0�;

Σtot
V ðsÞ ¼ 3m2s

ð4πÞ2 ½σ1ðsÞ þ σ0�; ðB5Þ

where s ¼ p2=m2, the constants π0, σ0 are arbitrary
renormalization constants, depending on the subtraction
point, and π1ðsÞ, σ1ðsÞ are the explicit analytical functions

π1ðxÞ ¼
5

8x
þ 1

72
½La þ Lb þ Lc þ Ra þ Rb þ Rc�;

σ1ðxÞ ¼
1

12
½Lg þ Rg�; ðB6Þ

written in terms of the logarithmic functions Lx

LaðxÞ ¼
3x3 − 34x2 − 28x − 24

x

×

ffiffiffiffiffiffiffiffiffiffiffi
4þ x
x

r
log

� ffiffiffiffiffiffiffiffiffiffiffi
4þ x

p
−

ffiffiffi
x

p
ffiffiffiffiffiffiffiffiffiffiffi
4þ x

p þ ffiffiffi
x

p
�
;

LbðxÞ ¼
2ð1þ xÞ2

x3
ð3x3 − 20x2 þ 11x − 2Þ logð1þ xÞ;

LcðxÞ ¼ ð2 − 3x2Þ logðxÞ;

LgðxÞ ¼
ð1þ xÞ2ð2x − 1Þ

x2
logð1þ xÞ − 2x logðxÞ ðB7Þ

and of the rational parts Rx

RaðxÞ ¼ −
4þ x
x

ðx2 − 20xþ 12Þ;

RbðxÞ ¼
2ð1þ xÞ2

x2
ðx2 − 10xþ 1Þ;

RcðxÞ ¼
2

x2
þ 2 − x2;

RgðxÞ ¼
1

x
þ 2: ðB8Þ

2. Thermal part of Jm and JL;Tm

The integral Jm is defined in Eq. (A13) and has the
general form of Eq. (B1) with

fðk; ik0Þ ¼ Gmðk; ik0Þ ¼
1

ϵ2k;m − k20
; ðB9Þ

having denoted by ϵk;m the positive square root

ϵk;m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
: ðB10Þ

The thermal part, Eq. (B3), takes a contribution at the pole
k0 ¼ ϵk;m, yielding

ðJmÞTh ¼ −
Z

d3k
ð2πÞ3

��
−2

ϵk;m þ k0

��
1

eβk0 − 1

��
k0¼ϵk;m

;

ðB11Þ

and denoting by nðϵÞ the Bose distribution,

nðϵÞ ¼ ½eβϵ − 1�−1; ðB12Þ

we obtain
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ðJmÞTh ¼
Z

d3k
ð2πÞ3

nðϵk;mÞ
ϵk;m

¼
Z

∞

0

x2dx
2π2

nðϵx;mÞ
ϵx;m

; ðB13Þ

with the obvious notation ϵx;m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þm2

p
.

In the special case m ¼ 0,

ðJ0ÞTh ¼
Z

∞

0

xdx
2π2

nðxÞ: ðB14Þ

The thermal parts of the integrals JLm, JTm, as defined in
Eq. (A27), follow immediately by replacing fðkÞ →
−k20fðkÞ and fðkÞ → 1

3
k2fðkÞ, respectively, in Eq. (B9).

Following the same steps as before, the thermal parts read

ðJLmÞTh ¼ −
Z

∞

0

x2dx
2π2

ϵx;mnðϵx;mÞ;

ðJTmÞTh ¼
Z

∞

0

x4dx
6π2

nðϵx;mÞ
ϵx;m

: ðB15Þ

3. Thermal part of IαβðpÞ
The integral IαβðpÞ is also defined in Eq. (A13) and has

the general form of Eq. (B1) with

fðkÞ ¼ GαðkÞGβðp − kÞ

¼ 1

ðϵ2k;α − k20Þ½ϵ2p−k;β − ðp0 − k0Þ2�
; ðB16Þ

where ϵp−k;β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − kÞ2 þ β2

p
and −ip0 ¼ p4 is the

external frequency. The poles are at k0 ¼ �ϵk;α and
k0 ¼ p0 � ϵp−k;β. The residues are readily evaluated:

R�
α ¼ ∓ 1

2ϵk;α
Gβðp − k; ip0 ∓ iϵk;αÞ;

R�
β ¼ ∓ 1

2ϵp−k;β
Gαðk; ip0 � iϵp−k;βÞ; ðB17Þ

and we can write

fðk; ik0Þ ¼
X
�

R�
α

k0 ∓ ϵk;α
þ
X
�

R�
β

k0 − p0 ∓ ϵp−k;β
¼ Aαβðk;p − k; ik0; ip0Þ þ Aβαðp − k;k; ip0 − ik0; ip0Þ; ðB18Þ

where

Aαβðk;p − k; ik0; ip0Þ ¼
1

2ϵk;α

�
Gβðp − k; ip0 þ iϵk;αÞ

k0 þ ϵk;α
−
Gβðp − k; ip0 − iϵk;αÞ

k0 − ϵk;α

�
: ðB19Þ

It can be easily shown that for any external frequency ω0
n ¼ −ip0 ¼ 2πTn0 and momentum p, the integral over k and the

sum over ωn ¼ −ik0 ¼ 2πTn have the property

T
X
n

Z
d3k
ð2πÞ3 Aαβðk;p − k; ik0; ip0Þ ¼ T

X
n

Z
d3k
ð2πÞ3 Aαβðp − k;k; ip0 − ik0; ip0Þ; ðB20Þ

which follows by replacing k → p − k and k0 → p0 − k0 in the integral and in the sum. Thus, we can replace in Eq. (B3)

Rfðk; ik0Þ ¼ fR½Aαβðk;p − k; ik0; ip0Þ� þ α ↔ βg: ðB21Þ
Moreover, since Gmðp; ip0Þ ¼ Gmðp;−ip0Þ, by inspection of Eq. (B19), we observe that Aαβðk;p − k;−ik0; ip0Þ ¼
Aαβðk;p − k; ik0;−ip0Þ, so that

R½Aαβðk;p − k; ik0; ip0Þ� ¼
1

2
½Aαβðk;p − k; ik0; ip0Þ þ Aαβðk;p − k; ik0;−ip0Þ�: ðB22Þ

Hereafter, the last equation is taken as the definition of the symbol R for any generic function of ip0.
In Eq. (B3), the poles at k0 ¼ ϵk;α, ϵk;β have the residues ½−nðϵk;αÞ=ϵk;α�RGβðp − k; ip0 − iϵk;αÞ and

½−nðϵk;βÞ=ϵk;β�RGαðp − k; ip0 − iϵk;βÞ, respectively, yielding in terms of the external frequency ω ¼ p4 ¼ −ip0

½Iαβðp;ωÞ�Th ¼
Z

d3k
ð2πÞ3

�
nðϵk;αÞ
ϵk;α

RGβðp − k;ωþ iϵk;αÞ þ α ↔ β

�
: ðB23Þ

Finally, we observe that since Gmðp; ip0Þ ¼ Gmðp;−ip0Þ, then

RGβðp − k; ip0 − iϵk;αÞ ¼
1

2
½Gβðp − k;ωþ iϵk;αÞ þ Gβðp − k;ω − iϵk;αÞ�: ðB24Þ
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The angular integral in Eq. (B23) can be evaluated exactly
by writing

Gαðp − k; zÞ ¼ 1

gαðz;p2;k2Þ − 2p · k
; ðB25Þ

where, denoting x ¼
ffiffiffiffiffiffi
k2

p
and y ¼

ffiffiffiffiffi
p2

p
, the function

gαðz; x2; y2Þ is given by

gαðz; y2; x2Þ ¼ z2 þ α2 þ x2 þ y2 ðB26Þ

and does not depend on the angles. Moreover, we observe
that

gαðz; y2; x2Þ � 2xy ¼ z2 þ ϵ2y�x;α; ðB27Þ

where

ϵy�x;α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy� xÞ2 þ α2

q
; ðB28Þ

so that the integral over the angles can be written in terms of
the function

Lαðz; y; xÞ ¼ log
z2 þ ϵ2yþx;α

z2 þ ϵ2y−x;α
ðB29Þ

and an elementary integration gives

½Iαβðy;ωÞ�Th ¼
Z

∞

0

xdx
8π2y

�
nðϵx;αÞ
ϵx;α

RLβðωþ iϵx;α; y; xÞ þ α ↔ β

�
: ðB30Þ

It might be useful to evaluate the leading behavior in the long wavelength limit p → 0 (i.e., y → 0):

z2 þ ϵ2y�x;β ¼ ðz2 þ ϵ2x;βÞ
�
1� 2xy

z2 þ ϵ2x;β
þ y2

z2 þ ϵ2x;β

�
; ðB31Þ

Lβðz; y; xÞ ¼
4xy

z2 þ ϵ2x;β
−

4xy3

ðz2 þ ϵ2x;βÞ2
þ 16x3y3

3ðz2 þ ϵ2x;βÞ3
þOðy5Þ; ðB32Þ

½Iαβðy → 0;ωÞ�Th ≈
Z

∞

0

x2dx
2π2

�
nðϵx;αÞ
ϵx;α

R
1

ðωþ iϵx;αÞ2 þ ϵ2x;β
þ α ↔ β

�
: ðB33Þ

Moreover, in the limit ω → 0, using Eq. (B13),

lim
ω→0

lim
y→0

½Iαβðy;ωÞ�Th ¼
Z

∞

0

x2dx
2π2

�
nðϵx;αÞ
ϵx;α

1

β2 − α2
þ α ↔ β

�
¼ ðJαÞTh − ðJβÞTh

β2 − α2
; ðB34Þ

in agreement with the first of Eqs. (A26). The same limit is
obtained by setting ω ¼ 0 from the beginning and explor-
ing the leading behavior when y → 0.

4. Thermal part of IαβL;TðpÞ
The projected integrals IαβL;TðpÞ were defined in

Eq. (A14) and have the general form of Eq. (B1) with

fðkÞ ¼ GαðkÞGβðp − kÞ kμkν
cL;T

PL;T
μν ðpÞ; ðB35Þ

where cL ¼ 1 and cT ¼ 2. The function fðkÞ is the same
found for the integral IαβðpÞ in Eq. (B16), multiplied by a
factor

fðkÞ → fðkÞ
�
kμkν
cL;T

PL;T
μν ðpÞ

�
: ðB36Þ

The new factor has no poles in the complex k0 plane and
does not depend on the masses α, β. Thus, fðkÞ has the
same pole structure of Eq. (B18) with residues multiplied
by the same factor. Moreover, we observe that because of
Eq. (A15), we can still exchange k and p − k in the integral
without affecting the multiplied factor. Then, Eq. (B21) still
holds with the function Aαβ just multiplied by the same
factor of Eq. (B36), which by an explicit calculation reads

½kμkνPL
μνðpÞ� ¼

½ðk · pÞωþ ik0p2�2
ðp2 þ ω2Þp2

ðB37Þ

THERMAL EXTENSION OF THE SCREENED MASSIVE … PHYS. REV. D 103, 074014 (2021)

074014-27



and

�
kμkν
2

PT
μνðpÞ

�
¼ 1

2

�
k2 −

ðk · pÞ2
p2

�
; ðB38Þ

to be evaluated at the poles k0 ¼ ϵk;α and k0 ¼ ϵk;β, yielding

½IαβL ðp;ωÞ�Th ¼
Z

d3k
ð2πÞ3

�
nðϵk;αÞ
ϵk;α

R

�ððk · pÞωþ iϵk;αp2Þ2
ðp2 þ ω2Þp2

Gβðp − k;ωþ iϵk;αÞ
�
þ α ↔ β

�
;

½IαβT ðp;ωÞ�Th ¼
1

2

Z
d3k
ð2πÞ3

�
k2 −

ðk · pÞ2
p2

��
nðϵk;αÞ
ϵk;α

RGβðp − k;ωþ iϵk;αÞ þ α ↔ β

�
; ðB39Þ

where the symbol R denotes an average over �ω or, equivalently, an average over �iϵk;α.
The angular integrals can be evaluated exactly [38]. In the transverse projection, we can write

Z
d3k
ð2πÞ3

�
k2 −

ðk · pÞ2
p2

�
Gαðp − k; zÞ ¼

Z
∞

0

x4dx
4π2

Z
1

−1
d cos θ

1 − cos2θ
gαðz; y2; x2Þ − 2xy cos θ

¼
Z

∞

0

x2dx
8π2y2

�
gαðz; y2; x2Þ −

ð½gαðz; y2; x2Þ�2 − 4x2y2Þ
4xy

Lαðz; y; xÞ
�
: ðB40Þ

Then, denoting by LT
α the transverse logarithmic function

LT
αðz; y; xÞ ¼ ðz2 þ ϵ2yþx;αÞðz2 þ ϵ2y−x;αÞLαðz; y; xÞ ðB41Þ

and using Eq. (B27), we can write

½IαβT ðy;ωÞ�Th ¼ −
Z

∞

0

xdx
64π2y3

�
nðϵx;αÞ
ϵx;α

½RLT
β ðωþ iϵx;α; y; xÞ − 4xyðω2 þ y2 þ β2 − α2Þ� þ α ↔ β

�
: ðB42Þ

In the longitudinal projection, the angular integration reads

Z
d3k
ð2πÞ3

�ððk · pÞωþ ðz − ωÞp2Þ2
p2

�
Gαðp − k; zÞ

¼
Z

∞

0

x2dx
4π2

Z
1

−1
d cos θ

½xω cos θ þ yðz − ωÞ�2
gαðz; y2; x2Þ − 2xy cos θ

¼
Z

∞

0

ω2xdx
32π2y3

��
gαðz; y2; x2Þ þ 2y2

�
z
ω
− 1

��
2

Lαðz; y; xÞ − 4xygαðz; y2; x2Þ −
16xy3ðz − ωÞ

ω

�
: ðB43Þ

Denoting by LL
α the longitudinal logarithmic function

LL
α ðz; y; xÞ ¼

�
z2 þ ϵ2x;α þ y2

�
2z
ω

− 1

��
2

Lαðz; y; xÞ; ðB44Þ

using Eq. (B26) and observing that Rðz − ωÞ vanishes when evaluated at z ¼ ω� iϵx;α, we can write

½IαβL ðy;ωÞ�Th ¼
ω2

ðy2 þ ω2Þ
Z

∞

0

xdx
32π2y3

�
nðϵx;αÞ
ϵx;α

½RLL
β ðωþ iϵx;α; y; xÞ − 4xyðω2 þ y2 þ β2 − α2Þ� þ α ↔ β

�
: ðB45Þ
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5. Thermal part of ∂Jm, ∂JL;Tm , ∂2Jm and ∂2JL;Tm

The thermal parts of ∂Jm and ∂JL;Tm can be obtained by a
simple derivative of the thermal parts of Jm and JL;Tm ,
respectively, according to the definition of the integrals in
Eq. (A24). For a function of ϵx;m

∂
∂m2

¼ 1

2ϵx;m

∂
∂ϵx;m ¼ 1

2x
∂
∂x ; ðB46Þ

so that it might be useful to integrate by parts, using
Eq. (B13):

ð∂JmÞTh ¼ ∂
∂m2

Z
∞

0

x2dx
2π2

nðϵx;mÞ
ϵx;m

¼
Z

∞

0

xdx
4π2

∂
∂x

�
nðϵx;mÞ
ϵx;m

�

¼ −
Z

∞

0

dx
4π2

nðϵx;mÞ
ϵx;m

: ðB47Þ

A plain further derivative gives

ð∂2JmÞTh ¼
Z

∞

0

dx
8π2

nðϵx;mÞ
ϵ3x;m

−
1

T
Jnn=ϵϵm ; ðB48Þ

where

Jnn=ϵϵm ¼
Z

∞

0

dx
8π2

�
nðϵx;mÞnð−ϵx;mÞ

ðϵx;mÞ2
�
: ðB49Þ

By the same method, using Eq. (B15),

ð∂JLmÞTh ¼
Z

∞

0

dx
4π2

ϵx;mnðϵx;mÞ;

ð∂JTmÞTh ¼ −
Z

∞

0

x2dx
4π2

nðϵx;mÞ
ϵx;m

¼ −
1

2
ðJmÞTh; ðB50Þ

and by a plain further derivative

ð∂2JLmÞTh ¼ −
1

2
ð∂JmÞTh þ 1

T
Jnnm ;

ð∂2JTmÞTh ¼ −
1

2
ð∂JmÞTh; ðB51Þ

where

Jnnm ¼
Z

∞

0

dx
8π2

nðϵx;mÞnð−ϵx;mÞ: ðB52Þ

6. Thermal part of ∂IαβðpÞ
The thermal part of ∂IαβðpÞ can be obtained by a

derivative of the thermal part of IαβðpÞ, using the explicit
expression of Eq. (B30)

½∂Iαβðy;ωÞ�Th ¼
Z

∞

0

xdx
8π2y

� ∂
∂α2Aþ ∂

∂α2 B
�
; ðB53Þ

where

A ¼ nðϵx;αÞ
ϵx;α

RLβðωþ iϵx;α; y; xÞ;

B ¼ nðϵx;βÞ
ϵx;β

RLαðωþ iϵx;β; y; xÞ: ðB54Þ

Using ϵx;α as independent variable, with ϵx;αdϵx;α ¼ xdx,

we can write x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2x;α − α2

q
and eliminate the explicit

dependence on x in the function A. The total derivative of
A reads

dA
dϵx;α

¼
� ∂A
∂ϵx;α

�
x
þ
�∂A
∂x

�
ϵx;α

�
dx
dϵx;α

�
; ðB55Þ

and observing that

� ∂A
∂ϵx;α

�
x
¼ 2ϵx;α

�∂A
∂α2

�
;

�
dx
dϵx;α

�
¼ ϵx;α

x
; ðB56Þ

it can be written as

dA
dϵx;α

¼ 2ϵx;α

�∂A
∂α2

�
þ ϵx;α

x

�∂A
∂x

�
ϵx;α

; ðB57Þ

so that the first derivative in Eq. (B53) follows as

∂A
∂α2 ¼

1

2ϵx;α

dA
dϵx;α

−
1

2x

�∂A
∂x

�
ϵx;α

: ðB58Þ

Moreover, observing that

�∂A
∂x

�
ϵx;α

¼ 2x

� ∂A
∂ϵ2yþx;β

þ ∂A
∂ϵ2y−x;β

�

þ 2y

� ∂A
∂ϵ2yþx;β

−
∂A

∂ϵ2y−x;β
�
; ðB59Þ

we find, explicitly,

1

2x

�∂A
∂x

�
ϵx;α

¼ nðϵx;αÞ
ϵx;α

R

�
1

z2α þ ϵ2yþx;β

−
1

z2α þ ϵ2y−x;β

�

þ
�
y
x

�
nðϵx;αÞ
ϵx;α

R

�
1

z2α þ ϵ2yþx;β

þ 1

z2α þ ϵ2y−x;β

�

ðB60Þ
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where zα ¼ ωþ iϵx;α. On the other hand, a simple derivative gives

∂B
∂α2 ¼

nðϵx;βÞ
ϵx;β

R

�
1

z2β þ ϵ2yþx;α
−

1

z2β þ ϵ2y−x;α

�
; ðB61Þ

where zβ ¼ ωþ iϵx;β. Finally, inserting Eq. (B58) in Eq. (B53) and changing the integration variable xdx ¼ ϵx;αdϵx;α in the
first term, the integral of the total derivative gives a vanishing contribution at x ¼ ∞ and x ¼ 0, since Lβ → 0. Collecting
the other terms, we find

½∂Iαβðy;ωÞ�Th ¼ −
Z

∞

0

dx
8π2

nðϵx;αÞ
ϵx;α

R

�
1

ðωþ iϵx;αÞ2 þ ϵ2yþx;β

þ 1

ðωþ iϵx;αÞ2 þ ϵ2y−x;β

�
þ

þ
Z

∞

0

xdx
8π2y

�
nðϵx;βÞ
ϵx;β

R

�
1

ðωþ iϵx;βÞ2 þ ϵ2yþx;α
−

1

ðωþ iϵx;βÞ2 þ ϵ2y−x;α

�
− ðα ↔ βÞ

�
; ðB62Þ

where the second integral is zero if α ¼ β.

7. Thermal part of ∂IαβL;TðpÞ
The thermal part of the projected integrals ∂IαβL;TðpÞ can be obtained by a derivative of the thermal part of IαβL;TðpÞ, using

the explicit expressions of Eqs. (B45) and (B42):

½∂IαβL ðy;ωÞ�Th ¼
ω2

ðy2 þ ω2Þ
Z

∞

0

xdx
32π2y3

� ∂
∂α2 AL þ ∂

∂α2 BL

�
;

½∂IαβT ðy;ωÞ�Th ¼ −
Z

∞

0

xdx
64π2y3

� ∂
∂α2AT þ ∂

∂α2 BT

�
; ðB63Þ

where

AL;T ¼ nðϵx;αÞ
ϵx;α

½RLL;T
β ðωþ iϵx;α; y; xÞ − 4xyðω2 þ y2 þ β2 − α2Þ�;

BL;T ¼ nðϵx;βÞ
ϵx;β

½RLL;T
α ðωþ iϵx;β; y; xÞ − 4xyðω2 þ y2 þ α2 − β2Þ�: ðB64Þ

Because of the explicit dependence on α, Eq. (B58) is modified as

∂AL;T

∂α2 ¼ 4xy
nðϵx;αÞ
ϵx;α

þ 1

2ϵx;α

dAL;T

dϵx;α
−

1

2x

�∂AL;T

∂x
�

ϵx;α

; ðB65Þ

while Eq. (B61) becomes

∂BL

∂α2 ¼ nðϵx;βÞ
ϵx;β

�
R

��
1

z2β þ ϵ2yþx;α
−

1

z2β þ ϵ2y−x;α

��
z2β þ ϵ2x;α þ y2

�
2zβ
ω

− 1

��
2

þ

þ 2

�
z2β þ ϵ2x;α þ y2

�
2zβ
ω

− 1

��
Lαðzβ; y; xÞ

�
− 4xy

�
;

∂BT

∂α2 ¼ nðϵx;βÞ
ϵx;β

fR½ð2z2β þ ϵ2y−x;α þ ϵ2yþx;αÞLαðzβ; y; xÞ� − 8xyg; ðB66Þ

where zβ ¼ ωþ iϵx;β. Moreover, an explicit calculation gives
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−
1

2x

�∂AL

∂x
�

ϵx;α

¼ −
1

2x
nðϵx;αÞ
ϵx;α

�
R

�
4x

�
z2α þ ϵ2x;β þ y2

�
2zα
ω

− 1

��
Lβðzα; y; xÞ

þ 2

�
z2α þ ϵ2x;β þ y2

�
2zα
ω

− 1

��
2
�

xþ y
z2α þ ϵ2yþx;β

−
x − y

z2α þ ϵ2y−x;β

��
− 4yðω2 þ y2 þ β2 − α2Þ

�
;

−
1

2x

�∂AT

∂x
�

ϵx;α

¼ −
nðϵx;αÞ
ϵx;α

fR½ð2z2α þ ϵ2y−x;β þ ϵ2yþx;β − 4y2ÞLβðzα; y; xÞ� − 4xyg; ðB67Þ

where zα ¼ ωþ iϵx;α.
Inserting Eqs. (B65) and (B66) in Eq. (B63) and dropping the integral of the total derivative which gives a vanishing

contribution, we find

½∂IαβL ðy;ωÞ�Th ¼−
ω2

y2ðy2þω2Þ
Z

∞

0

dx
32π2

nðϵx;αÞ
ϵx;α

R

��
1

z2αþ ϵ2yþx;β

þ 1

z2αþ ϵ2y−x;β

��
z2αþ ϵ2x;βþy2

�
2zα
ω

−1

��
2
�
þ

þ ω2

y2ðy2þω2Þ
Z

∞

0

dx
16π2

nðϵx;αÞ
ϵx;α

½ω2þy2þβ2−α2�þ ω2

y2ðy2þω2Þ
Z

∞

0

x2dx
8π2

�
nðϵx;αÞ
ϵx;α

−
nðϵx;βÞ
ϵx;β

�
þ

þ ω2

y3ðy2þω2Þ
�Z

∞

0

xdx
16π2

nðϵx;βÞ
ϵx;β

R

��
z2βþ ϵ2x;αþy2

�
2zβ
ω

−1

��
Lαðzβ;y;xÞ

�
− ðα↔ βÞ

�
þ

þ ω2

y3ðy2þω2Þ
�Z

∞

0

xdx
32π2

nðϵx;βÞ
ϵx;β

R

��
z2βþ ϵ2x;αþy2

�
2zβ
ω

−1

��
2
�

1

z2βþ ϵ2yþx;α
−

1

z2βþ ϵ2y−x;α

��
− ðα↔ βÞ

�
;

½∂IαβT ðy;ωÞ�Th ¼−
1

y

Z
∞

0

xdx
16π2

nðϵx;αÞ
ϵx;α

RLβðzα;y;xÞþ
1

y2

Z
∞

0

x2dx
8π2

�
nðϵx;βÞ
ϵx;β

−
nðϵx;αÞ
ϵx;α

�
þ

þ 1

y3

�Z
∞

0

xdx
32π2

nðϵx;αÞ
ϵx;α

R½ðz2αþβ2þx2þy2ÞLβðzα;y;xÞ�− ðα↔ βÞ
�
; ðB68Þ

where, as before, zα ¼ ωþ iϵx;α and zβ ¼ ωþ iϵx;β. We
observe that most of these integrals are antisymmetric in the
mass arguments α, β and their contribution is zero
if α ¼ β ¼ m.
It is instructive to explore the leading behavior in the

limit p → 0. According to Eq. (A20), the longitudinal
projection ∂IαβL tends to the value ∂IαβL;0 if ω is set to zero
first and the limit y → 0 is studied afterwards. Setting
ω → 0 in Eq. (B68), the only terms of ∂IαβL that do not
vanish are those containing the factor ð2z=ωÞ2. Observing
that z2α → −ϵ2x;α and that, in the limit y → 0,

1

z2α þ ϵ2yþx;β

þ 1

z2α þ ϵ2y−x;β
→

2

β2 − α2
;

1

z2α þ ϵ2yþx;β

−
1

z2α þ ϵ2y−x;β
→

−4xy
ðβ2 − α2Þ2 ; ðB69Þ

we obtain the leading behavior

½∂IαβL;0�Th ¼
ð∂JLα ÞTh
β2 − α2

þ ðJLα ÞTh − ðJLβ ÞTh
ðβ2 − α2Þ2 ; ðB70Þ

having made use of the explicit expressions of ðJLmÞTh,
ð∂JLmÞTh as reported in Eqs. (B15) and (B50). The result is
in agreement with the general relations of Eq. (A28).
The transverse projection, ∂IαβT , tends to a different

value, ∂IαβT;0, in the same limit. Using Eq. (B32),

ðz2 þ ϵ2x;β þ y2ÞLβðzα; y; xÞ ≈ 4xyþ 16x3y3

3ðz2 þ ϵ2x;βÞ2
þOðy5Þ

Lβðzα; y; xÞ ≈
4xy

ðz2 þ ϵ2x;βÞ
þOðy3Þ; ðB71Þ

and inserting the expansions in ∂IαβT , in Eq. (B68), the
terms y−2 cancel exactly while the leading term is of order
∼y0, so that we can safely take the limit y → 0. The leading
term reads

½∂IαβT ð0;ωÞ�Th
¼−

Z
∞

0

x2dx
4π2

nðϵx;αÞ
ϵx;α

R
1

ðz2αþϵ2x;βÞ

þ
Z

∞

0

x4dx
6π2

�
nðϵx;αÞ
ϵx;α

R
1

ðz2αþϵ2x;βÞ2
−ðα↔βÞ

�
: ðB72Þ
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The expansion holds for any value of ω, even ω ¼ 0,
so that we can exchange the limits for the transverse
projection. Setting ω ¼ 0 and z2α ¼ −ϵ2x;α, we can simply
write ðz2α þ ϵ2x;βÞ ¼ ðβ2 − α2Þ and the leading term
reads

½∂IαβT;0�Th ¼
ð∂JTαÞTh
β2 − α2

þ ðJTαÞTh − ðJTβ ÞTh
ðβ2 − α2Þ2 ; ðB73Þ

having made use of the explicit expressions of ðJTmÞTh,
ð∂JTmÞTh as reported in Eqs. (B15) and (B50). Again,
the result is in agreement with the general relations of
Eq. (A28).
On the other hand, the limits cannot be interchanged for

the longitudinal projection ∂IαβL which tends to the same
limit of the transverse projection, ∂IαβT;0, if y is set to zero
first and the limit ω → 0 is taken afterwards. Taking ω
finite, we can write in the limit y → 0

R

��X
�

1

z2α þ ϵ2y�x;β

��
z2α þ ϵ2x;β þ y2

�
2zα
ω

− 1

��
2
�
≈ 2ðω2 þ y2 þ β2 − α2Þ þ 8x2y2R

1

ðz2α þ ϵ2x;βÞ
þOðy4Þ; ðB74Þ

then, using the expansion

�
1

z2β þ ϵ2yþx;α
−

1

z2β þ ϵ2y−x;α

�
≈ −

4xy
ðz2β þ ϵ2x;αÞ2

þ 8xy3

ðz2β þ ϵ2x;αÞ3
−

16x3y3

ðz2β þ ϵ2x;αÞ4
þOðy5Þ; ðB75Þ

we can write

R

��
z2βþ ϵ2x;αþy2

�
2zβ
ω

−1

��
2
�

1

z2βþ ϵ2yþx;α
−

1

z2βþ ϵ2y−x;α

��
≈R

�
−4xy−

16xy3ðzβ−ωÞ
ωðz2βþ ϵ2x;αÞ

−
16x3y3

ðz2βþ ϵ2x;αÞ2
þOðy5Þ

�
; ðB76Þ

and finally, using Eq. (B32),

R

�
2

�
z2β þ ϵ2x;α þ y2

�
2zβ
ω

− 1

��
Lαðzβ; y; xÞ

�
≈R

�
8xyþ 16xy3ðzβ − ωÞ

ωðz2β þ ϵ2x;αÞ
þ 32x3y3

3ðz2β þ ϵ2x;αÞ2
þOðy5Þ

�
: ðB77Þ

Inserting the expansions in ∂IαβL , in Eq. (B68), again the negative powers of y cancel exactly. We can safely set y ¼ 0 and
the same identical expression of Eq. (B72) is recovered, yielding

½∂IαβL ð0;ωÞ�Th ¼ ½∂IαβT ð0;ωÞ�Th ðB78Þ

for any finite ω, as expected in the long wavelength limit, where no special direction in space is defined, in agreement with
Eq. (A20).
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