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Abstract: To reduce the plastic waste problem in agriculture, biodegradable plastic (BP) mulch films
have become of key importance thanks to their biodegradability and beneficial effects on crops.
However, at present, BPs cannot always replace conventional plastics, because biodegradation is
governed by many biotic and abiotic factors under field conditions. This research aimed at isolating
and identifying, from soil particles directly attached to the surface of BP samples, the microorganisms
responsible of degradation through a combined approach based on biodegradation and molecular
tests. For this purpose, a field trial within a Mediterranean apricot orchard was carried out to
study the biodegradation of a commercial BP mulch with respect to a no-BP, a conventional apricot
management, following the standard agricultural practices, and a subterranean clover cover cropping,
either incorporating or leaving its dead mulches on the soil surface. After BP film appeared visibly
degraded in field, we isolated from soil particles attached to the polymer surface, a mesophilic
bacterium with certain degradative potential assessed by plate and liquid assays, identified by
sequencing as Pseudomonas putida. Quantitative real time PCR analysis showed the P. putida was
significantly more abundant in PB plots than the other plot treatments. These preliminary results
are potentially applicable to accelerate the degradation of BP mulch films and decrease the plastic
pollution in agriculture.

Keywords: biodegradable plastic mulch; biodegradation; mulching; bacteria; Pseudomonas putida;
real-time PCR

1. Introduction

Agricultural plastic mulch films are commonly used for covering cultivated fields to
reduce weed pressure, preserve soil structure, maintain soil temperature, improve moisture
conservation and increase crop yields [1,2]. Most mulch films are synthetic polymers
produced from petroleum-based plastics, such as polyethylene (PE), polypropylene (PP),
polyvinyl chloride, polyethylene terephthalate (PET), etc., which are characterized by low
costs, ease of manufacture and good versatility [3]. Given the high number of benefits,
in the last twenty years, the use of plastic mulches derived from man-made long-chain
polymeric molecules has increased dramatically, mainly in the USA and Western Europe.
Furthermore, the production of plastic mulches is expected to triple by 2050, thus needing
the 20% of the annual global oil consumption for their synthesis [4]. The widespread use of
plasticulture in agriculture caused many environmental problems, not only for the high
greenhouse gas (GHG) emissions, but also for the depletion of fossil resources, as well as
for the removal and disposal of plastic films after use [5].

To address the agricultural plastic waste problem, several environmentally degradable
polymeric materials and plastics have been developed since the 1980s and have gained
in popularity. Biodegradable plastics (BPs), i.e., biopolymers synthetized by renewable
biomass or mimicking microorganisms, exhibit a significant degradation rate, so that, at the
end of their life, they can be directly integrated into the soil, thus representing a sustainable
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alternative to petroleum-based plastics [6]. BPs, in fact, can be degraded by extracellular
depolymerases secreted by microbes (bacteria, fungi or algae) into oligomeric or monomeric
units [7]. Nowadays, BPs account for about 0.5% of the total annual plastic production,
but the European Bioplastics [8] (2019) esteemed that BP production will increase to about
2.43 million tons in 2024.

The most prominent role in BPs production is played by aliphatic and aromatic
polyesters: polyhydroxyalkanoate (PHA), polylactic acid (PLA), polybutylene succinate
(PBS), polyhydroxybutyrate (PHB), etc. Commercially available BPs are often blended
with starch, natural fibers or other polymers (e.g., fillers, plasticizers and dyes) to con-
trol and increase their degradable rate after use [9]. BPs can be grouped into microbial
synthetic plastics, natural polymer plastics and synthetic biodegradable plastics [10]. The
first two typologies of BPs are completely biodegradable, while the latter are destructive
biodegradable plastics. Ideally, a PB should have excellent physicochemical and mechanical
properties, a programmed degradability and a 100% post-use biodegradability. However,
biodegradation, defined as the conversion of plastic monomers or polymers into biomass,
CH4, CO2 and H2O through biological processes, cannot be controlled in natural environ-
ments [11]. Indeed, biodegradation occurs via various mechanisms, from abiotic processes
(photolytic, thermal, mechanical and hydrolytic) to biological degradation (mineralization)
and it is governed by different factors, including polymer characteristics (mobility, tacticity,
crystallinity, molecular weight and type of functional groups), nature of pre-treatment,
type of organism and environmental conditions [10,11]. Generally, biodegradation involves
three stages [12]: (i) biodeterioration (aggregation of microorganisms on the surface of BPs
and abiotic degradation of mechanical properties), (ii) biofragmentation (fragmentation
of polymers into oligomers by depolymerases) and (iii) bioassimilation (break down of
oligomers into monomers, biomass, CO2 and H2O).

Unfortunately, only few studies have been published on microbial biodegradation
of BPs in soil environments and under soil crop conditions [2,9,13]. Among these few
studies, none identified and isolated the microbial communities directly associated with
BPs. On the contrary, most studies characterized the microorganisms near BPs [14] and
were focused only on fungi [2,13,15]. Therefore, a significant knowledge gap exists in
the identification of the specific microbial taxa involved in biodegradation, especially
regarding bacteria, as well as in the microorganisms directly colonizing BPs. Given these
considerations, the present research aims at (1) evaluating the effect of biodegradable
mulching on soil microorganisms and (2) isolating and identifying the microorganisms
potentially responsible of degradation under field conditions. We tested the hypothesis
that soil microorganisms would degrade BPs and, therefore, our goal was to isolate the
microorganisms showing degradative abilities and to quantify them in the soil.

2. Materials and Methods
2.1. Site, Soil, Climate and Soil Temperature

The field trial occurred in central Sicily (37◦13′ N, 14◦05′ E, 290 m a.s.l., southern
Italy) within an apricot (Prunus armeniaca L.) field located in an area devoted to typical
Mediterranean crops. The soil at the site was a clayed textured Regosoil [16] with 18.3%
sand, 24.3% silt and 57.4% clay, 1.7% organic matter, 9.5% active limestone, an average pH
of 8.0 and 1.3‰ total N, 23 mg−1 kg−1 assimilable P2O5 and 622 mg−1 kg−1 exchangeable
K2O. The climate was semiarid Mediterranean. Daily rainfall, maximum, average and
minimum air temperatures from October 2019 to February 2021, were measured with a
meteorological station (Mod. Multirecorder 2.40; ETG, Firenze, Italy) sited at ~15 m from
the experimental site. In the same period, the soil temperature was also measured on 7-day
intervals at two depths (−10 cm and −20 cm) using a FieldScout EC 450 Meter (Spectrum
Technologies, Inc., Aurora, Illinois, U.S.A.; accuracy: ±1%). At −10 cm, compared to the
conventional management (CM, 23.6 ◦C), it was found that the average soil temperature
was −2.1 ◦C in TCC-S, −1.9 ◦C in TCC-B, +5.9 ◦C in nBP and +4.1 ◦C in BP. At −20 cm,



Agriculture 2021, 11, 782 3 of 12

compared to CM (22.0 ◦C), soil temperature was −2.3 ◦C in TCC-S, −2.0 ◦C in TCC-B,
+4.5 ◦C in nBP and +3.2 ◦C in BP.

2.2. Experimental Design and Agronomic Management

The experiment was a randomized complete block design with three replications
of five main plots treatments (20 × 10.8 m for each plot) totaling to 15 plots, 216 m2 per
treatment and 3240 m2 in total. Treatments included (1) a BP and (2) a no-BP (nBP), (3) a sub-
terranean clover (Trifolium subterraneum L.) cover cropping with soil-surface application of
dead mulches (TCC-S) (4) and a subterranean clover cover cropping with soil-incorporation
of dead mulches (TCC-B). TCC-S and TCC-B were chosen as they represent a valid agro-
nomic tool in P. armeniaca orchards to improve weed control [17], soil mineral nitrogen [18]
and the nutritional status of the trees [19]. These treatments were compared to (5) a conven-
tional management (CM) following the typical agronomic practices for the zone: a winter
shallow hoeing at 0.10 m in September, followed by two tine harrowing in February and
May to control weeds.

Placement of BP and nBP films occurred in May 2020. BP film was a commercial
biodegradable plastic mulch, Agribio® (Agriplast, Vittoria, Italy), according to the norma-
tive reference EN 17033, with a thickness of 15 µm and a total visible light emission ≤3%.
A no-biodegradable commercial film (nBP) was placed as control, Black 35® (Agriplast,
Vittoria, Italy), which was a conventional low-density PE mulch film with a thickness of
35 µm. Apricot cv. Kioto® was planted on January 2018 with a 4.5 × 4.0 m layout, while
subterranean clover cv. Mintaro was seeded in October 2019 by adopting a seeding rate of
22.2 kg ha−1. In TCC-S and TCC-B, Rhizobium inoculation was not applied due to previous
cultivations of Trifolium spp. These plots received an irrigation up to the field capacity to
promote T. subterraneum germination. “Mintaro” is a mid-season Australian cultivar of
T. subterraneum var. brachycalycinum with high adaptability in Mediterranean environments,
clay and neutral to alkaline soils, good N-fixation and self-reseeding capacity. The total
length of the subterranean clover biological cycle was ~210 days, with the emergence
occurring in December 2019, the highest vegetative development (~30 cm in height) in
March 2020, flowering in April 2020 and total drying of the plants in the first decade of
July 2020.

No post-emergence soil tillage was carried out in BP, nBP, TCC-SB and TCC-GM. In
all the plots, a self-compensating drip irrigation was used, replacing 100% of the maximum
evapotranspiration. About fertilization, N and P2O5 were soil-applied through 50 kg ha−1

Hergoton Plus® (8% total organic N, 26% biologic C and 44.45% total organic matter) and
50 kg ha−1 simple perphosphate, respectively, while Ca was foliar-applied with 150 g hL−1

Biocal® (12% CaO, two times, in April and May 2021). Fungi and insects were controlled
with the following commercial organic products, applied as foliar sprays: Cupravit 35 WG®

(copper oxychloride 35%, twice in winter at 15 days interval), Thiovit® Jet (80% sulphur,
four times at 3 kg ha−1) and LaserTM 240 SC (240 g L−1 spinosad).

2.3. Biodegradation in Plate Assay

In order to identify the soil microbial communities directly associated with biodegrad-
able mulching, several tests were carried out with the aim of isolating and identifying the
microorganisms potentially responsible of the degradation process. Figure 1 shows the
general experimental sequence of the activities of our study.
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Figure 1. Graphical scheme of the experimental activities. RCBD, randomized complete block design;
CM, conventional apricot management; TCC-S, Trifolium subterraneum L. cover cropping leaving
dead mulch on the soil surface; TCC-B, T. subterraneum cover cropping burying dead mulch in the
soil; nBP, no-biodegradable plastic; BP, biodegradable plastic.

BP samples, which, in the field, appeared partially degraded, were taken from the soil
and washed with M9 medium [20] to recover the microorganisms adhering to the surface
and potentially responsible for degradation. An aliquot of the M9 culture broth was used
to inoculate NB (Nutrient Broth; Oxoid, Milan, Italy) and YPD (Yeast Extract-Peptone-
Dextrose; Oxoid, Milan, Italy), respectively, to allow bacterial and fungal growth. In NB,
cycloheximide was added to inhibit fungal growth (100 µg L−1 added after sterilization);
in YPD, chloramphenicol was added to inhibit bacterial growth (100 µg L−1). Bacterial and
fungal broths were incubated at 32 ◦C for 24 h and 25 ◦C for 48 h, respectively.

Serial dilutions were made with sterile solution and aliquots of all samples were plated
for microbial growth using the spread plate method and distributing 0.1 mL dilutions
directly over the surface of the plates. PCA (Plate Count Agar; Oxoid, Milan, Italy) and
SDA (Sabouraud Dextrose Agar; Oxoid, Milan, Italy) were respectively used as media
for growth of aerobic mesophilic bacteria and fungi. The plates were incubated at the
optimum growth temperature for 24 and 48 h, respectively. When microorganism growth
was visible on the plates, the streak plate method was used in order to isolate different
colony types from the mixed culture and, then, the pure cultures were stored at −80 ◦C
with the addition of 20% sterile glycerol.

Based on the different colony morphology, 6 of the isolated colonies (4 bacteria and
2 fungi) were tested individually on BP samples to understand if they were responsible
for degradation. For this purpose, 1.8 × 1.8 cm biodegradable plastic samples were
sterilized under UV light, put in the middle of Petri dishes and contaminated with the pure
cultures. For the contamination, each pure culture was previously grown in 10 mL of liquid
medium (NB for bacteria; YPD for fungi); then, 20 mL of the same medium, with an agar
concentration of 30 g L−1, was added to obtain a final agar concentration of 20 g L−1 and,
finally, poured into Petri dishes. Samples were placed in a thermostat at 25 ◦C for fungi
and 32 ◦C for bacteria to favor the growth of microorganisms and verify whether polymer
biodegradation occurred. A sterile control was performed to verify if the degradation
was only due to microorganism activity. The polymer samples were sterilized under UV
light, put in the middle of Petri dishes without any inoculum and incubated in the same
conditions as above.
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2.4. Biodegradation in Liquid Assay

In order to verify if the 4 bacteria and 2 fungi, isolated as mentioned above, were able
to grow using the polymer as sole carbon source, biodegradation tests were performed in
M9 and YNB (Yeast Nitrogen Based; Oxoid, Italy) liquid media, where the only carbon
source was represented by the presence of polymer samples.

A volume of 50 mL of sterile M9 and YNB media for the bacterial and fungal growth,
respectively, was poured in Erlenmeyer flasks and inoculated with the pure culture of the
microorganism previously isolated, ranging from 5.1 to 5.4 log CFU mL−1, in presence of
plastic film 1.8 × 1.8 cm, previously sterilized under UV light. The samples were incubated
aerobically at 32 ◦C and 25 ◦C, for bacterial and fungal growth, respectively, in the dark, on
a rotary oscillator at 120 rpm. Tests were carried out for 4 weeks. At the end of every week,
colony counts were made to verify the microbial growth. Four sampling were totally made,
one for each week. Analyses were carried out in triplicate for each material. Population
densities were expressed as log10 CFU mL−1 of culture broth.

2.5. Real-Time Quantitative PCR Assay of Pseudomonas putida in Soil

In relation to the obtained results regarding the identification of the “bacterium 4”
as Pseudomonas putida, which was able to degrade BP films, we decided to quantify, by
RT-PCR, the above-mentioned bacterium in soil samples in order to monitor its presence
over time among the treatments. Prior to RT-PCR, the soil DNA was extracted following
Scavo et al. [21]. The obtained pure DNA was stored at −20 ◦C until RT-PCR amplification,
then it was spectrophotometrically quantified (all with 260:280 ratios above 1.7).

The qRT-PCR is widely used to quantify the PCR product. Data from RT-quantitative
PCR experiments were analyzed with the absolute quantification method, which deter-
mines the input copy number of the gene of interest by relating the PCR signal to a standard
curve [22]. The qRT-PCR was carried out in accordance with Scavo et al. [18]. The obtained
cycle threshold (Ct) is the number of cycles required for the fluorescent signal to cross the
threshold (i.e., to exceed background level). Ct levels are inversely proportional to the
amount of target nucleic acid in the sample.

Real-time PCR of P. putida was performed on soil DNA extracts for each treatment
at different sampling times (May 2020, October 2020, December 2020 and February 2021)
to monitor its abundance. PCR amplification conditions, using SYBR GREEN technology,
were 94 ◦C for 2 min, 40 cycles of 94 ◦C for 15 s, 55 ◦C for 40 s, 72 ◦C for 40 s. Reactions
were 25 µL volumes using Platinum Quantitative PCR Supermix-UDG (Invitrogen). For
testing the primers, designed as described below, P. putida DNA (DSM 291) was directly
used as a source of DNA template in a 25 µL reaction.

The same strain was used as standard for the calibration curve and subsequent cal-
culation of its amount. Standard curves were derived using known amounts of DNA
corresponding to 0.001–100 ng of genomic DNA. Threshold cycle (Ct) values were deter-
mined, in triplicate, using 2 µL samples of each soil DNA extract per PCR reaction. Ct
values were converted to ng of DNA using the equation derived from the standard curve.

Design of Pseudomonas putida-Specific Amplicon

An alignment of the P. putida 16S rRNA gene was analyzed to identify conserved
regions suitable for developing an RT-PCR assay for detection of gene sequences specific
to this bacterium. Specific forward Pptf (20-mer (5′-AAGCTAGAGTACGGTAGAGG-3′))
and reverse Pptr (20-mer (5′-ACCAGGGTATCTAATCCTGT-3′)) primers were designed to
amplify a 154-bp amplicon from the P. putida 16S rRNA gene to allow its quantification.

2.6. Statistical Analysis

An analysis of variance (ANOVA) was conducted using the CoStat® computer package
version 6.003 (CoHort Software, Monterey, CA, USA) to statistically analyze qRT-PCR
data. The Bartlett’s and Shapiro–Wilk tests were performed to verify the ANOVA basic
assumptions of homoscedasticity and normality, respectively. Prior to ANOVA, qRT-PCR
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data and populations densities needed a log10(x + 1)-transformation (untransformed data
are reported and discussed), in accordance with Lombardo et al. [23]. A generalized linear
model (GLM) was performed considering the ‘field treatment’ and ‘soil sampling time’
as fixed factors. Means were separated through the Fisher’s protected Least Significant
Difference (LSD) test with α = 0.05.

3. Results
3.1. Weather Trend

During the field experiment, weather trend was consistent with the climate of the
zone (Figure 2). Most of rainfall experienced in autumn–winter, with the sum of November
2019 (249.6 mm), March 2020 (111.4 mm) and December 2020 (113.8 mm) accounting for
57% of the total precipitation fell in the period October 2019–February 2021 (837.8 mm). On
the contrary, a very drought summer occurred, with only 7.2 mm of rainfall between May
and August. In addition, the mean air temperatures followed the typical climatic trend.
The highest maximum air temperature was recorded in August (~35 ◦C) and the lowest
minimum one in January 2020 (4.7 ◦C).
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Figure 2. Total rainfall and average monthly maxima and minima air temperatures in the experimen-
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3.2. Assessment of Biodegradation in Plate Assay

In order to isolate microorganisms potentially responsible for BP degradation in soil,
polymer degraded samples were taken from the field and used to recover the microorgan-
isms present in soil particles attached to the surface of the sample. All BP samples used for
this test exhibited a considerable surface deformation. Besides biodegradation studies, we
screened and isolated microorganisms potentially responsible for BP degradation. Totally,
four bacteria and two fungi were isolated with the streak plate method in relation to the dif-
ferent colony morphology visible in Petri dishes. Each pure culture was used as inoculum
in plate assay in the presence of BP film to verify if its biodegradation occurred. Among
the six tested pure cultures, only one bacterium was recognized with certain potential to
degrade the film. After 14 days of bacterial contamination, the degradation level of BP
samples was evaluated due to certain visual physical changes detected in the inoculated
samples and a consistent microbial growth on the surface and all around the films, as
compared to the blank (Figure 3). In fact, in the blank (sterile control) no microbial growth
was detected on the surface and all around the sample. The same results were also obtained
for the other three isolated bacteria and two fungi and none halo of growth was observed
around the plastic film in the Petri dishes.
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Figure 3. (a) BP film not inoculated as control and (b) BP film 14 days after the inoculation with Pseudomonas putida.

3.3. Assessment of Biodegradation in Liquid Assay

This test was performed to confirm the results of the biodegradation in plate assay and
to verify if the six isolated microorganisms were able to grow in a liquid medium using the
polymer film as the only carbon source. The test was carried out for 4 weeks. The two-way
interaction ‘treatment × incubation time’ was significant at p ≤ 0.001 (Figure 4), with the
latter factor providing the largest source of variance (54%, F = 10202). At the beginning of
the experiment, the initial contamination by each pure culture was in a range from 5.1 to
5.4 log CFU mL−1. The trend for three bacteria and two fungi was similar, since bacterial
and fungal growth decreased after the first week, until we detected microbial counts after
3 weeks for “bacterium 2” and “fungus 1” and after 4 weeks for “bacteria 1 and 3” and
“fungus 2”. “Bacterium 4” showed an opposite trend, since its growth increased during the
4 weeks (from 5.2 log CFU mL−1 at T0 to 7.9 log CFU mL−1 after 4 weeks), demonstrating
that this microorganism was able to use the polymer as energy and carbon source for its
metabolism. “Bacterium 4” is the same microorganism that showed a visible growth on the
surface and around the polymer in plate assay. This bacterium was DNA-sequenced and
identified by using the NCBI library as P. putida (98%, Accession number MT604992.1).
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Figure 4. Population densities (log10 CFU mL−1) of the six isolated pure cultures in liquid media with
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deviation of the mean. F, F of Fisher.

3.4. Quantification of P. putida in Soil

Based on the above-mentioned results, we decided to monitor the behavior of and
quantify the bacterium P. putida in soil DNA extracts of the apricot orchard in the five
treatments under study by qRT-PCR. Specific primers were designed to amplify an am-
plicon of 154 bp from the P. putida 16S rRNA gene to allow its quantification. ANOVA
demonstrated that the presence of P. putida in the soil was significantly affected by treat-
ment (F = 199.5, p ≤ 0.001), sampling time (F = 3.8, p ≤ 0.05) and their interaction
(F = 38.0, p ≤ 0.001), with the treatment accounting for 82.7% of the total variance. Consid-
ering the inverse relationship between Ct levels and the amount of target nucleic acids in
the sample, BP plots were highly colonized by P. putida in all the sampling times, with Ct
values ranging from 14.7 in T4 to 24.3 in T1 (Figure 5a). Averaged over sampling times, the
amount of P. putida nucleic acids was the highest in BP (20.0) and the lowest in nBP (27.0),
while no significant differences were observed between CM and subterranean clover plots
(Figure 5b). Regarding the effect of sampling time, P. putida was significantly higher in T3
(25.5) and T4 (25.4), while T1 showed the lowest amount (24.7) (Figure 5c).



Agriculture 2021, 11, 782 9 of 12

Agriculture 2021, 11, x FOR PEER REVIEW  9  of  12 
 

 

 

(a) 

 

(b) 

 

(c) 

Figure 5.  (a) Amount of Pseudomons putida detected by qRT‐PCR over  five different  field  treatments  (b) and  four soil 

sampling times (c). The Least Significant Difference (LSD) interaction was calculated with the Fisher’s protected LSD test 

at α = 0.05. Each bar indicates means ± standard deviation. Ct levels are inversely proportional to the amount of target 

nucleic acids in the soil sample. CM, conventional apricot management; TCC‐S, Trifolium subterraneum L. cover cropping 

leaving dead mulch on the soil surface; TCC‐B, T. subterraneum cover cropping burying dead mulch in the soil; nBP, no‐

biodegradable plastic; BP, biodegradable plastic; T1, May 2020; T2, October 2020; T3, December 2020; T4, February 2021. 

Figure 5. (a) Amount of Pseudomons putida detected by qRT-PCR over five different field treatments
(b) and four soil sampling times (c). The Least Significant Difference (LSD) interaction was calculated
with the Fisher’s protected LSD test at α = 0.05. Each bar indicates means ± standard deviation.
Ct levels are inversely proportional to the amount of target nucleic acids in the soil sample. CM,
conventional apricot management; TCC-S, Trifolium subterraneum L. cover cropping leaving dead
mulch on the soil surface; TCC-B, T. subterraneum cover cropping burying dead mulch in the soil; nBP,
no-biodegradable plastic; BP, biodegradable plastic; T1, May 2020; T2, October 2020; T3, December
2020; T4, February 2021.



Agriculture 2021, 11, 782 10 of 12

4. Discussion

To evaluate the effect of biodegradable mulching on soil microflora and with the
aim of isolating and identifying the microorganisms responsible for degradation, a com-
bined approach, based on biodegradation and molecular tests, was herein described to
obtain an overview.

Placement of BP and nBP films in the experimental field occurred in May 2020. The
plastic materials were monitored over time. In September 2020, they appeared visibly
degraded, with strong evidence of cracks and thinning. It was therefore decided to collect
samples from plastics to isolate the microorganisms attached to the surface of the materials.
The adopted procedure represents a first-pass technique for isolating potential BP degraders
from soil and was successfully used to isolate, from BP, a mesophilic bacterium able to
grow using the polymer as the sole carbon source. This microorganism was identified,
by sequencing, as P. putida. Pseudomonas putida are ubiquitous bacteria frequently present
in water, in soils and, especially, in the plant rhizosphere [24,25]. These aerobic, Gram-
negative Pseudomonas show diverse spectra of metabolic versatility and niche-specific
adaptations [26,27]. Some of them may also be involved in the biodegradation of natural
or man-made toxic chemical compounds [28,29].

Kasirajan and Ngouajio et al. [1] reviewed a list of BP-degrading microorganisms. How-
ever, only few studies report so far the use of microorganisms, in particular fungal strains
belonging to Aspergillus and Penicillium genera and spore forming bacteria belonging to
Bacillus and Clostridium genera, to enhance the degradation of used BP mulch films in soil
environment [30]. Indeed, Koitabashi and coauthors [2] reported a study about the potential
of using BP-degrading microorganisms, such as phylloplane fungi isolated from Poaceae
members, for accelerating the degradation of used BP mulch films in agricultural fields. The
authors isolated the strain B47-9 from healthy leaves of barley, that could be safely utilized for
acceleration of degradation of BP mulch film after use. Furthermore, Fukushima et al. [31,32]
found that the bacterium B. licheniformis was among those responsible for the biodegradation
of poly(lactic acid) and poly(ε-caprolactone) and their nanocomposites in a mature compost.
Recently, Bandopadhyay et al. [9] combined the amplicon sequencing and the qPCR to study
the soil microbial communities associated with BPs and nBPs in two locations. They found a
higher presence of Methylobacterium, Arthrobacter and Sphingomonas in BP soils than nBP ones,
also reporting these microbial consortia were able to degrade the plastics.

In our research, we found that the isolate P. putida showed a high ability to use BP
film both in plate and liquid assays. In the plate assay, the isolated bacterium colonized BP
sample with a strong evidence of a growth halo surrounding the polymer. In the liquid
assay, its ability to use BP as carbon and energy sources was confirmed with an increase
in the population density from the initial contamination of 5.1 to 7.9 log CFU mL−1 after
4 weeks. In order to understand if the in vitro obtained results reflected the behavior of
P. putida in the experimental field and to assess the effect of biodegradable mulching on
this microorganism, its quantification by RT-PCR was performed in soil samples over the
time periods in between treatments. The qRT-PCR technology has been recently used to
rapidly quantify microorganisms associated with biodegradable plastic mulch films in
soil [9]. In our work, a higher amount of P. putida in BP plots was detected, compared to
the other treatments. This was probably due to carbon availability, on one hand, and to the
increase of soil temperature, on the other. Indeed, it is well-known that soil temperature
is one of the most important factors affecting microorganism growth. Here, BP caused
a +4.1 ◦C in the 0–10 cm soil depth and a +3.2 ◦C in the 0–20 cm layer, in respect to CM.
Brodhagen and coauthors [7] have fully reported that temperature is one of the factors
driving microbial metabolism and affecting the biodegradation rate. Biologically, the
enhancement of enzymatically catalyzed reactions by warmer temperatures results in an
increase in the overall metabolic rate of microbial communities, which implies increased
production of cells and enzymes. Overall, our results indicate the ability of the mesophilic
P. putida to proliferate and actively degrade the commercial BP film in agricultural soils.
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5. Conclusions

In this study, we isolated and identified the mesophilic bacterium P. putida from soil
particles attached to the surface of BP mulching film, which was found to be a microor-
ganism responsible for the biodegradation. The same bacterium was also found to be
significantly more abundant in BP plots than the other treatments. Only little information
on the role of mesophilic bacteria in the biodegradation of plastic mulch films in agricultural
soils has been reported; for this reason, our preliminary results are scientifically relevant.
The isolation of plastic-degrading microorganisms could lead to their use for amendments
to soil where plastics need to be degraded or to accelerate the degradation process, thus
reducing the plastic disposal problem in agriculture. However, it is important to perform
further specific studies in order to identify and characterize the enzymes responsible for
the degradation of BP film and the biochemical processes involved.
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