
Screened massive expansion of the quark propagator in the Landau gauge

Giorgio Comitini ,1,2,* Daniele Rizzo ,1,† Massimiliano Battello,1,‡ and Fabio Siringo1,2,§
1Dipartimento di Fisica e Astronomia “E. Majorana”, Università di Catania,
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The infrared behavior of the quark propagator is studied at one loop and in the Landau gauge (ξ ¼ 0)
using the screened massive expansion of full QCD and three different resummation schemes for the quark
self-energy. The shift of the expansion point of perturbation theory, which defines the screened expansion,
together with a nonstandard renormalization of the bare parameters, proves sufficient to describe the
dynamical generation of an infrared quark mass also in the chiral limit. Analytically, the scale for such a
mass is set by a mass parameter M, whose value is fixed by a fit to the lattice data for quenched QCD. The
quark mass function Mðp2Þ is shown to be in very good agreement with the lattice results. The quark Z
function, on the other hand, shows the wrong qualitative behavior in all but one of the studied resummation
schemes, where its behavior is qualitatively correct, but only at sufficiently high energies.
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I. INTRODUCTION

In the Standard Model of particle physics, the light
quarks acquire their masses dynamically through two
separate and complementary mechanisms. The first one
is the spontaneous breaking of the electroweak gauge
symmetry Uð1ÞY × SUð2ÞL, induced by a nonvanishing
vacuum expectation value (VEV) for the Higgs field. Due
to the former, a quark mass Mq is generated which is
proportional to the product of the quark-Higgs Yukawa
coupling and the Higgs field VEV. The second mechanism
is a remnant of the violation of global chiral symmetry. In
this context, the violation is caused by the strong inter-
actions and manifests itself in a nonzero VEV for the quark
mass operator ψ̄ψ, i.e., of the quark condensate, which
would be constrained to vanish in the presence of chiral
symmetry. In turn, the quark condensate triggers the
nonvanishing of the quark mass function Mðp2Þ in the
chiral limit, as can be proven by an operator product
expansion (OPE) of the quark propagator. Despite being
obeyed by the massless quarks only, limited to the light
quarks (Mq ≪ ΛQCD, where ΛQCD is the QCD scale), chiral

symmetry is still a good approximate symmetry of the QCD
Lagrangian; the mechanism that underlies its violation
leads to the dressing of the light Higgs-generated masses,
greatly enhancing their effective values in the infrared (IR)
regime.
Studying the origin of the quark effective masses in the

IR is of paramount importance for understanding the
experimentally observed hadron spectrum. This is rooted
in the fact that the measured values of the light Higgs-
generated masses—Mu ≈ 2.2 MeV, Md ≈ 4.7 MeV, Ms ≈
93 MeV for the up, down, and strange quarks, respectively,
[1]—do not compare well with the observed values of the
(unflavored) baryon masses, which are of the order of
1 GeV. The infrared enhancement, induced by the violation
of chiral symmetry, is a good candidate for filling the gap
between those masses. Unfortunately, mainly because of
the nonperturbative nature of dynamical mass generation,
no purely analytical and fully predictive description of the
latter in the framework of first principles QCD is available
to date.
In the context of the strong interactions, dynamical mass

generation has been an active field of research for decades
now. The development of chiral perturbation theory in the
1960s and 1970s offered a framework in which the large
observed masses of the hadrons could be understood to be a
consequence of chiral symmetry violation. In the gauge
sector, the hypothesis that the gluons might acquire an
infrared mass as a result of their self-interactions was
advanced by Cornwall in 1982 [2] and confirmed by lattice
studies in the 2000s [3–15]. In the continuum, considerable
progresses have been made by the numerical integration of
integral equations [16–28], by variational methods [29–39],
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and by physically motivated phenomenological models
[40–51]. For a recent review on the subject, see
Ref. [52]. The generation of a mass for the gluons is of
special interest from a theoretical point of view, since gauge
invariance in the framework of ordinary perturbation theory
(PT) forbids the gluons to acquire a mass.
While, in principle, the failure of ordinary PT to describe

the gluon’s infrared mass could be attributed to its break
down at low energies, in recent years a new approach to the
perturbation theory of pure Yang-Mills (YM) theory has
shown that most of the nonperturbative content of the
gluon dynamic—at least as far as the two-point functions
are concerned—can be absorbed into a shift of the
expansion point of the Yang-Mills perturbative series.
This approach, termed the screened massive expansion
[53–64], is a simple extension of ordinary PT, formulated in
such a way as to treat the transverse gluons as massive
already at tree level while leaving the total action of the
theory unchanged. The screened expansion has proven to
be self-consistent to one loop—since it is renormalizable
and leads to an infrared-finite and moderately small
running coupling constant [63]—and predictive when
optimized by principles of gauge invariance [60]; it yields
two-point functions which are in excellent agreement with
the lattice data in the Landau gauge [60,63].
The main objective of this paper is to extend the

formalism of the screened massive expansion to full
QCD with one flavor of quark, with the aim of studying
the infrared behavior of the quark propagator. The method
was already applied in Refs. [58,59] to describe some of
the low-energy features of the quark dynamics in the chiral
limit; here, we refine its definition, implement some of our
latest findings on the gauge sector, extend the study to
nonchiral quarks, and use a new set of lattice data as a
benchmark for comparison and in order to fix some of the
free parameters in our expressions.
Our treatment of the quark sector closely follows what

we did in pure Yang-Mills theory for the gluons; namely,
we shift the expansion point of the perturbative series by
introducing a new mass parameter M for the zero-order
quark propagator. The motivation for the shift lies in the
phenomenon of dynamical mass generation for the light
quarks. As previously discussed, due to the strong inter-
actions, at low energies the light quarks propagate with a
mass which is greatly enhanced with respect to their tree-
level (Lagrangian) value; since this effect cannot be
captured by ordinary perturbation theory, some kind of
nonordinary and nonperturbative resummation of the quark
self-energy is needed in order to successfully describe the
infrared quark dynamics. This is precisely what the shift
does; by replacing the mass contained in the standard zero-
order propagator with an enhanced mass parameter, it
optimizes the expansion point of perturbation theory so
that the quarks propagate with an effective infrared mass of
the order of the QCD scale ΛQCD, rather than with the mass

contained in the Lagrangian, which would be more relevant
to the high energy regime. The same is done for the
transverse gluons, which at tree level are set up to propagate
with a finite nonzero mass.
The shift is performed in such a way as to leave the total

action of the theory unchanged. As a result, three new two-
point interaction vertices arise which are proportional to the
quark mass parameter M and bare mass MB and to the
gluon mass parameter m2. Since the expansion cannot be
carried out exclusively in powers of the coupling constant,
the approach is nonperturbative in nature; nonetheless, the
calculations are done using standard Feynman diagram
techniques, so that the method is still perturbative in the
widest sense of the word.
As we shall see in the following sections, our analysis

still has major theoretical limitations. First and foremost,
the value of the quark mass parameterM introduced by the
shift needs to be fixed from external inputs in order to
obtain definite quantitative results. At variance with pure
Yang-Mills theory, where the method was optimized based
on principles of gauge invariance and the redundancy in the
number of free parameters was effectively eliminated (see
Ref. [60] and the discussion in Sec. II), at this moment no
such procedure is available for full QCD. Because of this,
in order to test the strength of the screened expansion of
QCD, we resort to fitting the free parameters of the
expansion using the lattice data; for reasons which are
discussed in a later section, the fit is done using a set of data
for quenched QCD.
Our study of the quark propagator makes use of three

different resummation schemes for the quark self-energy:
the minimalistic, vertex-wise, and complex-conjugate
schemes (to be defined in Sec. III). The first and second
ones are a variation on the same theme and only differ by
the number of gluon mass counterterms (i.e., two-point
mass vertices, see the next section) included in the
computation of the self-energy. The complex-conjugate
scheme, on the other hand, uses the fully dressed gluon
propagator (or, to be precise, an approximation thereof) in
place of the zero-order gluon propagator as the internal
gluon line of the self-energy. Each of these schemes has
strengths and weaknesses which are discussed. For the
moment, we anticipate that the three resulting mass
functions Mðp2Þ do not show significant differences
and are in very good agreement with the lattice data
(provided of course that the values of the free parameters
are chosen appropriately). The quark Z functions, con-
versely, show the wrong qualitative behavior in all but the
complex-conjugate scheme; when computed using the
latter, Zðp2Þ is qualitatively correct at sufficiently high
energies, but fails nonetheless at low energies.
Ultimately, we were not able to quantitatively reproduce

the lattice Z function using the method presented in this
study. However, it must be kept in mind that, in the Landau
gauge, the divergent part of the Z function is exactly zero at
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one loop, and above 1.0–1.5 GeV the finite contribution to
Zðp2Þ − 1 is quite small, yielding an almost constant
Zðp2Þ ≈ 1. Thus, the Z function seems to be very sensitive
to corrections coming from higher loops [65], thermal
effects [66], neglected nonperturbative terms, and—on the
lattice side—even artifacts which may affect the actual
result found in the numerical simulations.
This paper is organized as follows. In Sec. II, we review

the setup and results of the screened expansion of pure
Yang-Mills theory. In Sec. III, we formalize the screened
expansion of full QCD with one flavor of quark, discuss its
renormalization, and define the resummation schemes
which we use for the computation of the one-loop quark
self-energy. In Sec. IV, we present our results for the quark
propagator, fitting the free parameters of the expansion
from the lattice data. In Sec. V, we discuss our results and
present our conclusions.

II. THE SCREENED MASSIVE EXPANSION OF
PURE YANG-MILLS THEORY

The screened massive expansion for the gauge-fixed,
renormalized Faddeev-Popov Lagrangian was developed in
Refs. [53,54] and extended to finite temperature in [55–57]
to full QCD in [58,59] and to a generic covariant gauge in
[60,61]. Its renormalization in the Landau gauge was
discussed in Refs. [62,63], where different renormalization
schemes were considered and analytical expressions were
reported for its beta function. The method has proven to be
self-consistent and predictive when optimized by principles
of gauge invariance [60,63].
In what follows, we give a brief review of the setup and

main results of the screened expansion of pure Yang-Mills
theory in the Landau gauge. Both of these are functional to
our analysis of full QCD.

A. Setup of the method

The bare Faddeev-Popov (FP) Lagrangian for pure SU(N)
Yang-Mills theory in a general covariant gauge is given by

L ¼ LYM;B þ Lfix;B þ LFP;B; ð1Þ

where

LYM;B ¼ −
1

2
TrðFBμνF

μν
B Þ;

Lfix;B ¼ −
1

ξB
Trð∂μA

μ
B∂νAν

BÞ;

LFP;B ¼ ∂μc̄aBD
μ
Bc

a
B: ð2Þ

Here, we have defined the bare gauge field Aμ
B as

Aμ
B ¼ Aaμ

B Ta; ð3Þ

where the Ta’s are SU(N) generators, chosen so that

TrðTaTbÞ ¼
1

2
δab: ð4Þ

ξB is the bare gauge parameter defining the covariant gauge,
and Fμν

B is the bare field-strength tensor,

Faμν
B ¼ ∂μAaν

B − ∂νAaμ
B þ gBfabcA

bμ
B Acν

B ; ð5Þ

with

½Ta; Tb� ¼ ifcabTc: ð6Þ

The bare covariant derivative Dμ
B acting on the ghost and

antighost fields caB; c̄
a
B reads

ðDμ
BÞac ¼ δac∂μ þ gBfabcA

bμ
B : ð7Þ

L can be renormalized by introducing suitable renormaliza-
tion factors ZA, Zc, and ZAc̄c for the gauge and ghost fields
and for the coupling constant, respectively, and by defining
new, renormalized gauge and ghost fields Aa

μ, ca, and c̄a, a
renormalized coupling g and a renormalized gauge param-
eter ξ, according to

Aμ
B ¼ Z1=2

A Aμ; ξB ¼ ZAξ;

caB ¼ Z1=2
c ca; c̄aB ¼ Z1=2

c c̄a;

g2 ¼ g2B
ZAZ2

c

Z2
Ac̄c

: ð8Þ

In terms of the renormalized fields, the Faddeev-Popov
Lagrangian reads

L ¼ LYM þ Lfix þ LFP þ Lc:t:; ð9Þ

where

LYM ¼ −
1

2
TrðFμνFμνÞ;

Lfix ¼ −
1

ξ
Trð∂μAμ∂νAνÞ;

LFP ¼ ∂μc̄aDμca; ð10Þ

and Lc:t: contains the renormalization counterterms. The
renormalized field-strength tensor Fa

μν and covariant deriva-
tive Dμ are defined as

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcA

b
μAc

ν;

ðDμÞac ¼ δac∂μ þ gfabcA
b
μ: ð11Þ

We note that Lc:t: does not contain a counterterm for the
gauge-fixing term Lfix; indeed, the Slavnov-Taylor iden-
tities ensure that the bare gauge parameter ξB can be
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multiplicatively renormalized by the gauge field renorm-
alization factor ZA alone.
Ordinary perturbation theory is defined by a split of the

renormalized Lagrangian,

L ¼ L0 þ Lint þ Lc:t:; ð12Þ

where L0 ¼ limg→0 L is taken to be the noninteracting limit
of L,

L0 ¼
1

2
Aa
μ½iΔμν

0abðpÞ−1�Ab
ν þ c̄a½iG0abðp2Þ−1�cb: ð13Þ

Here, the ordinary zero-order gluon and ghost propagators
Δab

0μν and Gab
0 read

Δab
0μνðpÞ ¼

−iδab

p2
ðtμνðpÞ þ ξlμνðpÞÞ;

Gab
0 ðp2Þ−1 ¼ iδab

p2
; ð14Þ

where tμνðpÞ and lμνðpÞ are the transverse and longitudinal
projectors defined as

tμνðpÞ ¼ ημν −
pμpμ

p2
; lμνðpÞ ¼

pμpν

p2
: ð15Þ

The interaction term Lint contains a three-gluon, four-
gluon, and ghost-gluon interaction,

Lint ¼ L3g þ L4g þ Lc̄cg; ð16Þ

where

L3g ¼ −gfabc∂μAa
νAbμAcν;

L4g ¼ −
1

4
gfabcf

a
deA

b
μAc

νAdμAeν;

Lc̄cg ¼ gfabc∂μc̄aAb
μcc: ð17Þ

On the other hand, the term Lc:t: contains the field and
coupling renormalization counterterms,

Lc:t:¼−
1

2
δAδabp2tμνðpÞAa

μAb
νþδcδabp2c̄acbþ��� ; ð18Þ

where δA ¼ ZA − 1 and δc ¼ Zc − 1. In particular, the
gluon field renormalization counterterm is completely
transverse.
At low energies, the ordinary perturbation theory of

pure YM theory is known to be inconsistent due to the
presence of an IR Landau pole in the running of the strong
coupling constant. Moreover, constraints due to gauge
invariance—when applied in the framework of ordinary
perturbation theory–prevent the generation of an IR
dynamical mass for the gluons, a phenomenon which

by now has been well established mainly thanks to lattice
calculations [4–15]. Addressing these issues is the main
objective of the screened massive expansion.
The screened massive expansion of pure YM theory is

defined by a shift of the expansion point of the Yang-Mills
perturbative series, performed in such a way as to treat the
transverse gluons as massive already at tree level [53,54].
Explicitly, a shifting term δL is added to the zero-order
(kinetic) part of the gauge-fixed, renormalized Fadeev-
Popov Lagrangian and subtracted back from its interaction
part,

L0
0 ¼ L0 þ δL;L0

int ¼ Lint − δL: ð19Þ

δL is chosen so that the zero-order transverse gluon
propagator contained in L0

0 is replaced by a massive
one; in momentum space

δL ¼ 1

2
Aa
μðpÞi½iΔ−1μν

mab ðpÞ − iΔ−1μν
0ab ðpÞ�Ab

νð−pÞ; ð20Þ

where

Δμν
mabðpÞ ¼ δab

�
−itμνðpÞ
p2 −m2

þ ξ
−ilμνðpÞ

p2

�
ð21Þ

is the new, massive zero-order gluon propagator. Since δL
is added to and subtracted from the FP Lagrangian, the shift
does not not modify the full action of Yang-Mills theory.
Instead, it introduces a new free mass parameter m2 and
changes the Feynman rules of YM theory in two respects.
First of all, since the new zero-order Lagrangian L0

0 reads

L0
0 ¼

1

2
Aa
μ½iΔ−1μν

mab �Ab
ν þ c̄a½iG−1

0ab�cb; ð22Þ

the transverse gluons propagate with a massive propagator
rather than with a massless one, see Eq. (21). Second of all,
the interacting part of the Lagrangian, L0

int, contains a new
two-point interaction, namely,

−δL ¼ −
1

2
Aa
μðpÞiδΓμν

gabðpÞAb
νð−pÞ; ð23Þ

where the vertex δΓμν
gabðpÞ is given by

δΓμν
gabðpÞ ¼ −im2tμνðpÞδab: ð24Þ

We refer to the latter as the gluon mass counterterm, not to be
confused with the renormalization counterterms contained in
Lc:t:. Neither the remaining interaction vertices—spelled out
in Eq. (17)—nor the renormalization counterterms are
affected by the shift.
The quantities of physical interest can be computed in

the framework of the screened expansion using the
Feynman rules described above. Since the vertex δΓg is
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not proportional to the coupling constant, diagrams with an
arbitrary number of vertices—termed crossed diagrams if
they contain at least one gluon mass counterterm—coexist
at any given loop order. For this reason, the screened
expansion is intrinsically nonperturbative.
The crossed diagrams can be computed as derivatives of

noncrossed diagrams with respect to the gluon mass
parameter. This easily follows from the equality [64]

½ΔmðpÞ · ðδΓgðpÞ · ΔmðpÞÞn�μνab
¼ −ið−m2Þn

ðp2 −m2Þnþ1
tμνðpÞδab

¼ ð−m2Þn
n!

∂n

∂ðm2Þn Δ
μν
mabðpÞ; ð25Þ

which is valid for every n ≥ 1 and in any covariant gauge
and carries over to the loop integrals.
Due to the massiveness of the zero-order gluon propa-

gator in the screened expansion, new UV divergences arise
in the loop integrals which are proportional to the gluon
mass parameterm2. These divergences do not invalidate the
renormalizability of the n-point functions of the theory,
since they cancel as soon as crossed diagrams with a higher
number of crossed vertices are taken into account [54,64].
The removal of mass divergences can (and indeed must) be
adopted as a criterion for fixing the minimum number of
crossed loops to be included when computing some
quantity at a given loop order [54,64].
To one loop, the one-particle-irreducible (1PI) gluon

polarization Πab
μνðpÞ and ghost self-energy Σabðp2Þ were

computed from the diagrams in Fig. 1. The crossed vertices
in the figure represent the gluon mass counterterm δΓg.
Diagrams (1c) and (2c) in the gluon polarization are required
in order to eliminate the mass divergences that arise from
diagrams (1b) and (2b), respectively; they have a total of
three vertices. To one loop, there are two more diagrams with
the same number of vertices, namely, diagram (1d) and the
crossed diagram in the ghost self-energy (top right diagram

in Fig. 1); these were also included in the one-loop
calculation for consistency.
Since the shift that defines the screened expansion does

not change the total action of pure YM theory, the full 1PI
gluon polarization is known to be transverse by the
Slavnov-Taylor identities. Therefore, we can write

Πab
μνðpÞ ¼ Πðp2ÞtμνðpÞδab; ð26Þ

where Πðp2Þ is the gluon’s scalar polarization. After the
resummation of the 1PI diagrams, the transverse-gluon and
ghost dressed propagators Δðp2Þ and Gðp2Þ can then be
expressed as

Δðp2Þ ¼ −i½p2 −m2 − Πðp2Þ�−1;
Gðp2Þ ¼ i½p2 − Σðp2Þ�−1; ð27Þ

where Σðp2Þ is the ghost self-energy. Diagram (1a) in Fig. 1
is easily shown to contribute to the gluon polarization with
a constant term ΔΠ ¼ −m2,

Πðp2Þ ¼ −m2 þ ΠðloopsÞðp2Þ; ð28Þ

where ΠðloopsÞðp2Þ is the loop contribution to the polari-
zation—diagrams (1b)–(2c) in Fig. 1. It is then easy to see
that the tree-level mass term inherited from the shift cancels
out with ΔΠ, so that the dressed propagator itself can be
expressed as

Δðp2Þ ¼ −i½p2 − ΠðloopsÞðp2Þ�−1: ð29Þ

From the above equation it is clear that in the screened
expansion, rather than being a trivial effect of the shift of
the expansion point, the gluon mass must come from the
loops and is thus genuinely dynamical in nature; it does not
coincide with the gluon mass parameter m2, which at this
stage is just an undetermined dimensionful scale.
Quite interestingly, the existence of a finite mass-scale in

YM theory has been derived in the Gaussian approximation
from first principles [56,64], but, of course, the actual value
of that scale can only arise from the phenomenology, since
there is no energy scale in pure YM theory. The best
variational Gaussian vacuum was shown to be the vacuum
of a massive gluon, and the present screened expansion
emerged has the perturbative loop expansion around that
best massive vacuum [56]. While fermions have also been
incorporated in the Gaussian formalism in the past [67], it is
not clear if the screened expansion of full QCD, as is
discussed in the present paper, can also be regarded as a
loop expansion around a variational Gaussian vacuum
which breaks the chiral symmetry.

=Σ +

+

+= + +

++

+Π

FIG. 1. Two-point graphs with no more than three vertices and
no more than one loop. The cross is the transverse mass
counterterm of Eq. (24) and is regarded as a two-point vertex.
The renormalization counterterms are not shown in the figure.
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B. Optimization and results in the Landau gauge

In a general renormalization scheme and in the Landau
gauge, thedressedgluonpropagatorΔðp2Þ canbeexpressedas

Δðp2Þ ¼ −iZΔ

p2ðFðsÞ þ F0Þ
; ð30Þ

where s ¼ −p2=m2 and ZΔ and F0 are, respectively, a
multiplicative and an additive renormalization constant.1

The function FðsÞ was computed to one loop and third order
in the number of vertices from the diagrams in Fig. 1; its
analytical expression is reported in Ref. [54]. The zero-
momentum limit of FðsÞ reads

FðsÞ → 5

8s
ðs → 0Þ; ð31Þ

so that

Δðp2Þ → i8ZΔ

5m2
ðp2 → 0Þ; ð32Þ

implying that the screened expansion’s gluon propagator is
indeedmassive in the infrared.Wereiterate that thegluonmass,
as defined, for instance, andnonunivocally, by iΔð0Þ−1, comes
from the loops and is thus dynamical in nature.
Together with the gluon mass parameter m2, ZΔ and F0

are the only free parameters determining the gluon propa-
gator in the screened expansion. The multiplicative con-
stant ZΔ can of course be fixed by renormalizing the
propagator at some specified renormalization scale
p2 ¼ −μ2, i.e., by requiring that

Δð−μ2Þ ¼ −i
−μ2

: ð33Þ

The value of the additive renormalization constant F0, on
the other hand, was optimized and fixed in Ref. [60]

according to principles of gauge invariance. In more detail,
it was shown that there exists a value of F0 in the Landau
gauge, namely, F0 ¼ −0.876, which, when evolved to a
general covariant gauge (ξ ≠ 0), yields gauge-invariant
poles p2

0 for the gluon propagator whose residues are also
gauge invariant in phase to less than 0.3% [68–70].
In the same context (and in previous papers also, see,

e.g., [55,58]), we found that the screened expansion’s gluon
propagator has two complex-conjugate poles, whose adi-
mensional positions z20 ¼ p2

0=m
2 and z̄20 were determined in

[60] from first principles. The existence of complex-
conjugate poles has been related in the literature to the
issue of the violation of positivity of the gluon spectral
function and, more generally, to that of confinement
[71,72]. The poles and phases of the residues of the gluon
propagator, as computed in the (optimized) screened
expansion, are reported in Table I.
Of particular relevance to this paper is the fact that the

principal part of the gluon propagator, i.e., the term which
contains its poles, well-approximates the full propagator
itself [64], provided that the former is multiplied by a factor
of 0.945. This is shown in Fig. 2.
With ZΔ and F0 fixed, the gluon mass parameter m2 is

left as the only free parameter of the theory (at least as far as
the gluon two-point function is concerned). m2 sets the
energy units for the dimensionful quantities in the theory;
as such, it cannot be determined from first principles and
must be fixed from phenomenology. In this respect, the
gluon mass parameter plays the same role as the QCD scale
ΛQCD of ordinary perturbation theory.2 The propagator

TABLE I. Results of the screened massive expansion of pure
YM theory, obtained by imposing the gauge-parameter inde-
pendence of the poles and of the phases of the residues of the
gluon propagator in a general covariant gauge. From left to right:
the additive renormalization constant F0 in the Landau gauge, the
adimensional position z20 ¼ p2

0=m
2 of the poles of the gluon

propagator in the Landau gauge, the gauge-invariant phases φ of
the residues of the gluon propagator, and the gauge-invariant
dimensionful positions of the poles of the propagator, assuming
m ¼ 0.6557 GeV in the Landau gauge (the � signs are inde-
pendent from each other).

F0 z20 φ p0 (GeV)

−0.876 0.4575� 1.0130i �1.262 �0.5810� 0.3571i

 0

 0.5

 1

 1.5

 2

 0.1  1

m
2

Δ(
p)

p/m

Full propagator
Principal part (norm.)

FIG. 2. Transverse gluon propagator in the Landau gauge
(ξ ¼ 0) and in Euclidean space, computed in the screened
expansion of pure YM theory. Black line: full one-loop propa-
gator. Blue line: principal part of the one-loop propagator,
normalized by a factor of 0.945.

1The strong coupling constant αs was absorbed into the
definition of ZΔ and F0 and makes no explicit appearance in
what follows.

2For a lengthy discussion on the conceptual similarities
between the gluon mass parameter m2 and the QCD scale
ΛQCD, see Ref. [63], where the issue was addressed in the
context of the renormalization group improvement of the
screened expansion.
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defined by Eq. (30), with F0 ¼ −0.876 optimized by
principles of gauge invariance, was found to accurately
reproduce the Euclidean lattice data of Ref. [15], provided
that the energy units of the screened expansion are set by
choosing m ¼ 0.6557 GeV (see Fig. 3). Once the value of
the gluon mass parameter is determined, the dimensionful
values of the poles of the propagator can be computed; they
are reported in the last column of Table I.

III. THE SCREENED MASSIVE EXPANSION OF
FULL QCD

In this section, we extend the screened massive expan-
sion to full QCD with one flavor of quarks. As we will see,
our formalism is able to describe the nonperturbative
generation of an infrared dynamical mass both for the
chiral and the light quarks.
Our starting point is the formalism laid out in Sec. II A.

After introducing the quarks in the Faddeev-Popov
Lagrangian of pure Yang-Mills theory, we perform a
nonordinary renormalization and split of the quark
Lagrangian into a kinetic and an interaction term plus
renormalization counterterms. The procedure parallels
what we previously did for the gauge sector, but has a
new feature, namely, the nonrenormalization of the quark’s
bare mass. The motivation and consistency of such a choice
are discussed in Sec. III A. In Sec. III B, we define three
resummation schemes for the dressed quark propagator,
which differ by how the internal gluon line is treated in the
quark self-energy.

A. Setup and renormalization

The Lagrangian of full QCD with one flavor of quarks is
given by

LQCD ¼ Lþ Lq;B; ð34Þ

where L is the Faddeev-Popov Lagrangian of pure Yang-
Mills theory—Eq. (1)—and Lq;B is the quark Lagrangian
expressed in terms of the bare fields, mass, and coupling,

Lq;B ¼ ψ̄Bði=DB −MBÞψB: ð35Þ

Here, MB is the quark’s bare mass, while DB is the bare
covariant derivative acting on the bare quark field ψB,

Dμ
B ¼ ∂μ − igBA

aμ
B Ta: ð36Þ

In order to renormalize the quark Lagrangian, we
introduce a quark field renormalization constant Zψ such
that

ψB ¼ Z1=2
ψ ψ ; ð37Þ

where ψ is the renormalized quark field. Then, Lq;B can be
expressed as

Lq;B ¼ ψ̄ði=D −MBZψÞψ þ Lq;c:t:; ð38Þ

where D is the renormalized covariant derivative acting on
the renormalized quark field,

Dμ ¼ ∂μ − igAa
μTa; ð39Þ

with g and Aa
μ being the renormalized coupling and gluon

field defined as in Sec. II A, while Lq;c:t: contains the
quark’s field strength and quark-gluon vertex renormaliza-
tion counterterms.
At this point, if the quark is not massless (i.e., MB ≠ 0),

one usually introduces a renormalized quark mass through
a kinetic term of the form −MRψ̄ψ and includes the
corresponding mass renormalization counterterm −δMψ̄ψ
into Lq;c:t:. In ordinary perturbation theory,MR andMB are
understood to be proportional and related to each other by
radiative corrections which can be computed perturbatively
at any given loop order. Due to dynamical mass generation,
however, in the IR the light quarks acquire a mass which is
much larger than their renormalized mass MR and non-
proportional to it; indeed, the former would be nonzero
(and of the order of the QCD scale ΛQCD) also in the case of
chiral quarks (MB ¼ 0). Clearly, choosing MR as the mass
of the zero-order propagator around which to expand the
perturbative series is not optimal for the purpose of
exploring the low-energy dynamics of the quark sector.
On the other hand, the situation could improve if an

effective mass scale, mimicking the dynamically generated
IR quark mass, was used in place of the renormalized mass
MR. Our setup, therefore, employs the following scheme.
As in ordinary perturbation theory, we add to the quark
Lagrangian a mass term of the form −Mψ̄ψ . However, we
do not interpret M as the renormalized counterpart of MB.
Instead, we regard the former as being a nonperturbative

 0

 2

 4

 6

 8

 10

 12

 0.1  1

Δ(
p)

 (
G

eV
-2

)

p (GeV)

Lattice: Duarte et al.
Screened exp.

FIG. 3. Transverse dressed gluon propagator in the Landau
gauge (ξ ¼ 0) and in Euclidean space, computed in the screened
expansion of pure YM theory by optimizing the additive
renormalization constant F0 based on principles of gauge
invariance. The lattice data are taken from Ref. [15].
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mass scale arising from the low-energy dynamics of the
theory and leaveMB unrenormalized. Explicitly, we rewrite
the quark Lagrangian as

Lq;B ¼ ψ̄ði=D −MÞψ þ ψ̄ðM −MBZψÞψ þ Lq;c:t: ð40Þ

and treat M and MB as independent mass parameters; the
difference MBZψ −M, which in ordinary perturbation
theory would correspond to the mass renormalization
counterterm δM, is not taken to be proportional to the
coupling constant (i.e., small in the perturbative sense) nor
is it regarded as fixed by the renormalization of the quark
propagator. We anticipate that an appropriate choice of the
diagrams to include in the one-loop quark propagator
preserves the renormalizability of the theory also when
using this nonstandard scheme.
The quark Lagrangian is now split into a kinetic (zero-

order) term Lq;0,

Lq;0 ¼ ψ̄ði=∂ −MÞψ ; ð41Þ

in which M appears as the mass in the zero-order quark
propagator; an interaction term Lq;int,

Lq;int ¼ ψ̄ðg=AaTa þM −MBZψÞψ ; ð42Þ

which contains the quark-gluon vertex and two new
quadratic terms, proportional to M and MB; and a renorm-
alization term Lq;c:t:,

Lq;c:t: ¼ ψ̄ðiδψ=∂ þ gδg=AaTaÞψ ; ð43Þ

which contains the quark field strength renormalization
counterterm δψ ¼ Zψ − 1 and a renormalization counter-
term δg for the quark-gluon vertex.
The addition and subtraction of the mass term −Mψ̄ψ

from the quark Lagrangian parallels what we did in the
gluon sector of pure Yang-Mills theory. This is best seen in
the chiral limit (MB → 0), where the addition of a mass
term of the form −MRψ̄ψ would be meaningless, since
MR ∝ MB ¼ 0. As a nonperturbative mass parameter not
directly related to MB, M has the same status of the gluon
mass parameter m in the screened expansion of YM theory
and is allowed to remain finite also in the chiral limit. For
this reason, we refer to M as the chiral mass of the quark.
As in the screened expansion of YM theory, the shift of

the quark Lagrangian changes the Feynman rules of the
theory. First of all, the chiral mass M now figures as the
tree-level mass in the zero-order quark propagator SMðpÞ,

SMðpÞ ¼
i

=p −M
: ð44Þ

Second of all, two new two-point vertices δΓq;1 and δΓq;2

arise in the interaction,

δΓq;1ðpÞ ¼ iM; δΓq;2ðpÞ ¼ −iMBZψ : ð45Þ

We reiterate that in our framework these are treated as
independentvertices.Thequark-gluon interactionandrenorm-
alizationvertices, on the other hand, are left unchanged, except
for the quark mass renormalization counterterm, which must
not be included in the calculation.
These Feynman rules must of course be supplied with

those of the gluon sector, which were derived in Sec. II A
in the context of pure YM theory. In particular, the
transverse gluons propagate with a massive zero-order
propagator—Eq. (21)—and a third two-point vertex, the
gluon mass counterterm of Eq. (24), is included in the
interaction.
As a consequence of the new Feynman rules, the

screened expansion of full QCD is nonperturbative in
nature. Like in pure YM theory, this is due to the two-
point vertices δΓg, δΓq;1, and δΓq;2, which are proportional
to the gluon and the quark mass parametersm2,M, andMB,
and are not taken to be proportional to the strong coupling
constant.
Let us now turn our attention to how to compute the

quark propagator in the new framework. The dressed quark
propagator SðpÞ can be expressed in terms of the 1PI quark
self-energy ΣðpÞ3 as

SðpÞ ¼ i
=p −M − ΣðpÞ : ð46Þ

Due to the shift of the expansion point, ΣðpÞ receives tree-
level contributions not only from the quark field strength
renormalization counterterm δψ ¼ Zψ − 1, but also from
the new vertices δΓq;1 and δΓq;2—diagrams (1a) and (1b) in
Fig. 4. We have

ΣðpÞ ¼ −δψ=p −M þMBZψ þ ΣðloopsÞðpÞ; ð47Þ

where ΣðloopsÞðpÞ is the self-energy contribution coming
from the loops. It follows that

FIG. 4. 1PI diagrams for the screened expansion one-loop
quark self-energy. The crosses denote insertions of the mass
counterterms. The subscripts 1 and 2 label the vertices δΓq;1 and
δΓq;2 in Eq. (45). The renormalization counterterms are not
shown in the figure.

3Not to be confused with the ghost self-energy of Sec. II A.
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½−iSðpÞ�−1 ¼ Zψ=p −MBZψ − ΣðloopsÞðpÞ: ð48Þ

As in pure YM theory, the mass M introduced by the shift
of the quark Lagrangian disappears from the propagator,
and the bare mass is restored at tree level, up to field-
strength renormalization. In order to define the quark mass
function Mðp2Þ and Z function Zðp2Þ, we first subdivide
ΣðloopsÞðpÞ into a vector and a scalar term,

ΣðloopsÞðpÞ ¼ =pΣVðp2Þ þ ΣSðp2Þ; ð49Þ

and then define two scalar functions Aðp2Þ and Bðp2Þ,

Aðp2Þ ¼ Zψ − ΣVðp2Þ;
Bðp2Þ ¼ MBZψ þ ΣSðp2Þ: ð50Þ

In terms of Aðp2Þ and Bðp2Þ, the functions Mðp2Þ and
Zðp2Þ read

Zðp2Þ ¼ 1

Aðp2Þ ; Mðp2Þ ¼ Bðp2Þ
Aðp2Þ : ð51Þ

Moreover, Eq. (46) can be rewritten as

SðpÞ ¼ iZðp2Þ
=p −Mðp2Þ : ð52Þ

From Eqs. (50) and (51), we see that in the chiral limit
(MB → 0), despite the absence of a tree-level mass for the
quark propagator, the quark mass functionMðp2Þ does not
vanish; thanks to the finiteness of the nonperturbative scale
M, one finds that ΣSðp2Þ ≠ 0, which makes Bðp2Þ ≠ 0 and
thus Mðp2Þ ≠ 0, also for vanishing MB. Since ΣSðp2Þ
comes from the loops, the mass of the quark is genuinely
dynamical, a feature that was already highlighted in Sec. II
for the gluons in pure YM theory. For nonchiral quarks the
situation is similar, the only difference being that Bðp2Þ
also contains one additional tree-level term which is
proportional to the bare mass MB of the quark. As we
will see in a moment, the fact that this term is not
renormalized poses no issue of consistency.
To one loop, an infinite number of diagrams contributes

to the 1PI quark self-energy. These have the structure of
the ordinary one-loop diagram of standard perturbation
theory—diagram (2a) in Fig. 4—with an arbitrarily large
number of insertions of the gluon mass counterterm δΓg
and of the quark mass counterterms δΓq;1 and δΓq;2. In
order to chose a truncation scheme for this infinite series,
let us have a look at the first few such diagrams.
The simplest one-loop self-energy diagram is the ordi-

nary uncrossed loop—denoted by (2a) in Fig. 4. In a
general covariant gauge, diagram (2a) has divergences in
both its vector component and in its scalar component,

Σð2aÞðpÞ ¼ ðc2aV=pþ c2aSMÞ 2
ϵ
þ � � � ; ð53Þ

where c2aV and c2aS areOðg2Þ coefficients, ϵ ¼ 4 − d is the
regulator of dimensional regularization, and the dots denote
finite self-energy terms. While the vector divergence can be
straightforwardly absorbed into the renormalization con-
stant Zψ—see the first of Eq. (50)—in order to remove the
mass divergence c2aS, we would need to define a renor-
malized mass MR in terms of which

MB ¼ Z−1
ψ

�
MR − c2aSM

2

ϵ
þ scheme-dep: consts:

�
; ð54Þ

see the second of Eq. (50). A relation like this mixes
infrared entities (namely, the chiral massM) to UV features
(the divergence and the renormalization of the bare mass)
with no apparent logic, aside from the mathematical
convenience of it. Moreover, this type of renormalization
cannot be employed in the chiral limitMB → 0, when there
is no bare mass in which to absorb the divergence. For these
reasons, it must be rejected.
We note that, having been introduced through a term

which is added and subtracted in the Lagrangian, the mass
parameter M cancels in the total action; as a consequence,
any divergence proportional to M must disappear when
diagrams with a different number of mass counterterms are
resummed at the same loop order.
In fact, diagram (2b) in Fig. 4 is easily shown to contain

the same mass divergence of diagram (2a) with an opposite
sign; since the crossed quark line in the diagram can be
expressed as a derivative with respect to the quark’s chiral
mass,

i
=p −M

ðiMÞ i
=p −M

¼ −M
∂
∂M

i
=p −M

: ð55Þ

The self-energy contribution from diagram (2b), Σð2bÞðpÞ,
can be obtained as a derivative of Σð2aÞðpÞ,

Σð2bÞðpÞ ¼ −M
∂
∂M Σð2aÞðpÞ: ð56Þ

It follows that

Σð2bÞðpÞ ¼ −c2aSM
2

ϵ
þ � � � ; ð57Þ

that is, Σð2aÞðpÞ and Σð2bÞðpÞ have opposite mass diver-
gences. As a consequence, the sum of diagrams (2a) and
(2b) only contains a divergence in the vector component,
coming entirely from Σð2aÞðpÞ. This divergence can be
shown to be the same as the one found in ordinary
perturbation theory and is to be absorbed into the definition
of Zψ , as we saw earlier.
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Now, in the Landau gauge (ξ ¼ 0), the divergence
contained in Σð2aÞðpÞ is known from ordinary perturbation
theory to vanish. Therefore, not only does the sum
Σð2aÞðpÞ þ Σð2bÞðpÞ not contain mass divergences, but in
the Landau gauge it is also fully finite. In particular, if we
truncate the perturbative series to diagrams (2a) and (2b) in
Fig. 4 and limit ourselves to the Landau gauge, then the
term MBZψ that appears in the Bðp2Þ function—see
Eq. (50)—can be taken to be a finite constant. In other
words, no renormalization of divergent constants or masses
is required in the screened expansion of the Landau gauge
quark propagator, provided that the latter is truncated to
diagrams (2a) and (2b).
On the other hand, if ξ ≠ 0, the vector divergence in

Σð2aÞðpÞ þ Σð2bÞðpÞ still needs to be absorbed into Zψ . For
nonchiral quarks (MB ≠ 0), if MB were taken to be finite,
this would leave us with a divergent MBZψ term inside
Bðp2Þ. Therefore, for ξ ≠ 0 and MB ≠ 0, a renormalized
massMR must still be introduced, even when truncating the
quark self-energy to diagrams (2a) and (2b).
It is easy to see that a renormalized mass of the form

MR ¼ MBZψ would not have the ordinary behavior of a
running mass under the renormalization group (RG).
Indeed, if the RG equations were employed in the scheme,
MR would run exclusively with the anomalous dimension
of the quark field, rather than with the full anomalous
dimension of the quark mass. This happens because we
have left out one further divergent diagram from the
calculation, namely, diagram (2c) in Fig. 4. The latter
can be obtained from diagram (2a) by using the equality

i
=p −M

ð−iMBZψÞ
i

=p −M
¼ MBZψ

∂
∂M

i
=p −M

; ð58Þ

which can be exploited to write

Σð2cÞðpÞ ¼ MBZψ
∂
∂M Σð2aÞðpÞ: ð59Þ

In particular,

Σð2cÞðpÞ ¼ c2aSMBZψ
2

ϵ
þ � � � : ð60Þ

As we can see, diagram (2c) has a scalar divergence
proportional to MBZψ . When the latter is summed to the
tree-level term in Bðp2Þ, one finds

Bðp2Þ ¼ MBZψ

�
1þ c2aS

2

ϵ

�
þ � � � : ð61Þ

By simple dimensional arguments, it is easy to show that
the remaining one-loop diagrams in the quark self-energy
are finite. Therefore, the above expression spells out the
complete divergent term of the scalar component of the

one-loop self-energy, obtained by summing the divergences
of diagrams (2a) to (2c) in Fig. 4. Such a term can indeed be
equated, modulo finite constants, to a renormalized mass
MR which would run like an ordinary quark mass if the RG
equations were to be used, leaving us with

Bðp2Þ ¼ MR þ finite terms: ð62Þ

Beyond the Landau gauge, then, consistency with the
renormalization group requires us to include diagram
(2c) in the calculation. In the Landau gauge, on the other
hand, diagram (2c) is not needed, in principle, since to one
loop the sum of diagrams (2a) and (2b) already results in a
finite quark 1PI self-energy.
Despite being necessary for theoretical consistency, if

the renormalized quark mass MR is much smaller than the
chiral mass M, the inclusion of diagram (2c) in the quark
self-energy turns out not to be essential from a quantitative
point of view. This is easily seen as follows. Let

Σð2a;2b;2cÞ
f ðpÞ be the finite parts of the self-energy diagrams

(2a), (2b), and (2c). Using Eqs. (56) and (59),

Σð2bÞ
f ðpÞ þ Σð2cÞ

f ðpÞ ¼ −ðM −MBZψÞ
∂
∂M Σð2aÞ

f ðpÞ: ð63Þ

Modulo higher-order corrections, we can set MB ¼ MR,
Zψ ¼ 1 in the above equation, so that

Σð2bÞ
f ðpÞ þ Σð2cÞ

f ðpÞ ¼ −ðM −MRÞ
∂
∂M Σð2aÞ

f ðpÞ: ð64Þ

It is then clear that, as long as MR ≪ M, the contribution
of diagram (2c) is completely negligible with respect to
that of diagram (2b). In other words, for the light quarks,
diagram (2c) can be taken to contribute only to the
divergent part of the self-energy, i.e., to the renormaliza-
tion of the bare mass.4

To summarize, in every linear covariant gauge, diagram
(2b) in Fig. 4 is needed in order to remove the mass
divergence in diagram (2a). This mass divergence has no
counterpart in ordinary perturbation theory, since it is
proportional to the quark chiral mass M. Diagram (2c) is
essential to renormalize the bare mass MB in compliance
with the standard RG equations. Nonetheless, its finite part
is completely negligible in the case of light quarks. Finally,
in the Landau gauge the sum of diagrams (2a) and (2b)

4For the sake of completeness, we note that there is one catch
in this argument; at high energies, the scalar part of the sum of
diagrams (2a) and (2b) can be shown to vanish, see, e.g., Sec. IV
A, so that, instead of being negligible, diagram (2c) actually
makes up for the whole scalar self-energy. As long as we limit
ourselves to low and moderate energies, this issue does not arise.
At large energies, however, diagram (2c) and appropriate RG
techniques are needed to account for the correct asymptotic
behavior of the quark mass function.
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results in a finite self-energy. Since for the light quarks
diagram (2c) is quantitatively negligible, in the Landau
gauge one can simply exclude it from the self-energy and
interpret the free parameters MB and Zψ as bare but finite
quantities.
In the next section, we carry on with our analysis of the

resummation of the one-loop quark propagator. Our main
focus is on exploring different ways to treat the finite
diagrams in Fig. 4.

B. Resummation schemes for the quark propagator

Up to this point, we have discussed the self-energy
diagrams which contribute to the divergent part of the one-
loop quark propagator, namely, diagrams (2a) to (2c) in
Fig. 4. Using simple dimensional arguments, it is easy to
show that, to one loop, other insertions of the gluon and
quark two-point mass counterterms indeed yield conver-
gent diagrams. As an example, consider diagram (2d)
in Fig. 4. This diagram has a superficial degree of
divergence D

D ¼ d − 1 − 2 − 2 → −1 < 0; ð65Þ
where the −1 and the −2’s come from the internal quark
and gluon lines, respectively, making diagram (2d) UV-
finite in the limit d → 4. Equivalently, observe that diagram
(2d) can be expressed as a derivative of diagram (2a) with
respect to the gluon mass parameterm2; using Eq. (25) with
n ¼ 1, we find that

Σð2dÞðpÞ ¼ −m2
∂

∂m2
Σð2aÞðpÞ: ð66Þ

Since the divergent part of Σð2aÞðpÞ does not depend onm2,
Σð2dÞðpÞ is again shown to be finite.
While divergent diagrams are included in the one-loop

calculation based on principles of renormalizability, assess-
ing which finite diagrams should be included as well is far
more tricky. One option could be to adopt a minimalistic
point of view and limit oneself to the one-loop diagrams
needed for consistency, i.e., diagrams (2a) to (2b) or (2c) in
Fig. 4. Yet another option could be to retain all the one-loop
diagrams with a maximum of three vertices, as we did for
the gluon propagator in Sec. II; in practice, this amounts to
also including diagram (2d) in the self-energy. These two
resummation schemes differ by how the internal gluon line
is treated—explicitly, by whether the internal zero-order
gluon propagator is corrected with its own mass counter-
term or not. We refer to them as the minimalistic and the
vertex-wise schemes, respectively. Schemes with a larger
number of crossed diagrams (not shown in Fig. 4) are not
considered in this paper.
In the next section, we fit and compare the results obtained

in the minimalistic and vertex-wise schemes with the
quenched lattice data of Ref. [73]. The reason for using

quenched rather than unquenched lattice data is to exploit
our previous results for pure YM theory and fix ab initio the
value of the gluon mass parameter m2 that appears in the
quark propagator—thus reducing the number of free param-
eters to be fitted. Indeed, observe that, to one loop, the quark
self-energy diagrams for the quenched and unquenched
theories coincide. Hence, in principle, our results could be
used for comparisons with both quenched and unquenched
data. However, in the framework of the screened massive
expansion, the value of the gluonmass parameterm2 running
in diagrams (2a)–(2d) (Fig. 4) can receive corrections from
the quark loop in the gluon polarization (Fig. 5), which is
only present in the unquenched theory. Thus, we expect the
value of m2 to be different depending on which theory
(quenched or unquenched) we are trying to fit. In order to
reduce the freedom in the choice of free parameters, we
decide not to make a new determination of the gluon mass
parameter, but rather to use the quenched lattice data for our
fits. The value m ¼ 0.6557 GeV was obtained in [60] by a
fit of the lattice data of Ref. [15] for pure YM theory. Withm
fixed, the remaining free parameters of the quark propagator
are the chiral mass M, the quark bare mass MB or
renormalized mass MR, and the renormalization constants.
As we will see, the minimalistic and vertex-wise schemes

are practically equivalent from the point of view of the fit, the
only difference being in the values of the parameters needed
to achieve the match with the lattice data. Both of them
succeed in quantitatively reproducing the lattice mass
function Mðp2Þ with very good precision. On the other
hand, in none of the two the Z function has the behavior
displayed by the lattice data; Zðp2Þ is found to be a
decreasing function of momentum, at variance with the
lattice. To one loop, such a mismatch is not unseen, having
been reported for another massive model, namely, the Curci-
Ferrari model of Ref. [45].
One interesting question to ask is whether higher-order or

nonperturbative corrections to the internal gluon line in the
quark self-energy can sensibly change the behavior of the Z
function. Indeed, as we noted in the Introduction, in the
Landau gauge, to one loop and at sufficiently high energies,
Zðp2Þ ≈ 1, making the Z function sensitive to all kinds of
contributions beyond the leading perturbative order. The
near vanishing of the perturbative contribution makes the Z
function a valid benchmark for investigating the role of
condensates by the OPE. Indeed, the slightly increasing
behavior which is observed on the lattice has been modeled

FIG. 5. Quark loop in the unquenched gluon polarization. To
one loop, its inclusion affects the value of the gluon mass
parameter m2 and the position and residue of the poles of the
gluon propagator.
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by OPE [74–76] and shown to be consistent with the
existence of a dimension-2 gluon condensate of the form
hA2i. In order to explore these issues, we introduce a third
resummation scheme, which we term the complex-conjugate
(CC) scheme for reasons that will become apparent in a
moment.
In the CC scheme, instead of only summing the zero-

order gluon propagator (minimalistic scheme) or its coun-
terterm-corrected counterpart (vertex-wise scheme), we use
the fully dressed gluon propagator as the internal gluon line
of the one-loop quark self-energy (see Fig. 6). Switching to
the dressed gluon propagator allows us to account for the
full nonperturbative dynamics of the gluon, when comput-
ing the quark propagator.
While, in principle, using the dressed propagator would

require us to resum and integrate an infinite number of
higher-order diagrams, in practice we know that—in pure
Yang-Mills theory—the principal part of the screened
expansion’s one-loop gluon propagator provides a very
good approximation to the dressed propagator, modulo a
multiplicative factor (see Sec. II B, in particular, Figs. 2 and
3). Therefore, in the CC scheme, we use a zero-order gluon
propagator which—in Euclidean space and in the Landau
gauge—reads

Δðc:c:Þ
μν ðpÞ ¼

�
R

p2 þ p2
0

þ R̄

p2 þ p2
0

�
tμνðpÞ: ð67Þ

Here, p2
0 and p2

0 are the complex-conjugate poles of the
dressed gluon propagator (hence, the name CC scheme) in
the complexified Minkowski space, and R and R̄ are their
normalized residues. The value of the modulus jRj—which
depends both on the renormalization conventions for the
dressed gluon propagator and on a multiplicative factor that
converts between the full propagator and its principal part
—does not actually affect the results for the quark propa-
gator, provided that the free parameters are suitably
redefined. Indeed, to one loop, the internal gluon line in
the quark self-energy is multiplied by a factor of the strong
coupling constant αs, so that jRj can be absorbed into the
definition of the latter. Our convention for the definition of
jRj (and thus also αs in the CC scheme) is discussed in

Sec. IV C. As for p2
0 and the phase of R, we use the values

reported in Table I (Sec. II B). These were obtained in pure
Yang-Mills theory and are thus suitable for calculations in
the quenched theory, in line with our discussion on the
gluon mass parameter m2 in the minimalistic and vertex-
wise schemes.
As we show in Appendix B, despite the poles p2

0 and p2
0

being complex, as long as the external momentum p2 ∈ R,
the loop integrals in the CC scheme can be computed by
employing the usual machinery of Feynman parameter
integrals and gamma functions. In particular, if we denote

with ΣðloopsÞ
m: ðpÞ the loop contribution to quark self-energy

computed in the minimalistic scheme—diagrams (2a) to
(2c) in Fig. 4—then we can express the corresponding self-

energy term ΣðloopsÞ
c:c: ðpÞ in the CC scheme as

ΣðloopsÞ
c:c: ðpÞ¼RΣðloopsÞ

m: ðpÞjm2¼p2
0
þR̄ΣðloopsÞ

m: ðpÞj
m2¼p2

0

ð68Þ

or equivalently

ΣðloopsÞ
c:c: ðpÞ ¼ 2RefRΣðloopsÞ

m: ðpÞjm2¼p2
0
g: ð69Þ

As we will see, the Z function computed in the CC
scheme indeed turns out to have a qualitatively different
behavior than those computed in the minimalistic or vertex-
wise scheme, closer to the one displayed by the quenched
lattice data at moderately large momenta.

IV. THE QUARK PROPAGATOR
IN THE LANDAU GAUGE

In this section, we report our results for the quark
propagator in the Landau gauge using the screened massive
expansion of full QCD in the minimalistic, vertex-wise, and
complex-conjugate resummation schemes introduced in
Sec. III B. As previously discussed, we use the lattice data
of Ref. [73] for quenched QCD in order to test the validity of
the expansion and fit the free parameters that appear in the
propagator. These parameters are defined in what follows.
In general, see Eqs. (50) and (51), the quark mass and Z

function can be expressed as

Mðp2Þ ¼ MBZψ þ ΣSðp2Þ
Zψ − ΣVðp2Þ ;

Zðp2Þ ¼ ½Zψ − ΣVðp2Þ�−1: ð70Þ

Here, ΣVðp2Þ and ΣSðp2Þ are the vector and scalar
components of the loop contribution to the quark self-
energy,MB is the quark bare mass, and Zψ is the quark field
renormalization constant. In the Landau gauge and to one
loop, as we saw in Sec. III, ΣVðp2Þ is UV convergent. As a
consequence, we can write

FIG. 6. 1PI diagrams for the quark self-energy in the
complex-conjugate (CC) scheme. The double lines represent
the fully dressed gluon propagator, which in the CC scheme is
approximated by the principal part of the one-loop gluon
propagator (Sec. II).
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ΣVðp2Þ ¼ αs
3π

σVðp2Þ; ð71Þ

where σVðp2Þ is a finite function. Nonetheless, the value
of Zψ still needs to be fixed. We decide to do so by
renormalizing the Z function in the momentum-subtraction
(MOM) scheme at a specified renormalization scale μ2.
Namely, we set

Zðμ2Þ ¼ 1 ⇔ Zψ − ΣVðμ2Þ ¼ 1; ð72Þ

or, equivalently,

Zψ ¼ 1þ αs
3π

σVðμ2Þ; ð73Þ

where we take μ to be equal to 4 GeV. As we will see in a
moment, as far as the fits are concerned, this choice is
inessential to our results.
At variance with ΣVðp2Þ, the scalar component ΣSðp2Þ

can be either UV divergent or UV convergent depending on
whether diagram (2c) in Figs. 4 and 6 is included or not in
the self-energy, respectively. In the absence of diagram
(2c), ΣSðp2Þ can be expressed as

ΣSðp2Þ ¼ αs
π
σSðp2Þ; ð74Þ

where σSðp2Þ is a finite function. In particular, it follows
from the first of Eq. (70) thatMB must be taken to be finite.
If we now define two finite constants h0 and k0,

h0 ¼
3π

αs
Zψ ;

k0 ¼
π

αs
MBZψ ; ð75Þ

then the mass function Mðp2Þ reads

Mðp2Þ ¼ 3½k0 þ σSðp2Þ�
h0 − σVðp2Þ : ð76Þ

Here, αs and MB have been absorbed into the definition of
h0 and k0.
While the exact propagator should not depend on the

scale μ, apart from a renormalization factor, the approxi-
mate one-loop function Mðp2Þ still has an implicit
spurious dependence on μ through the parameters h0, k0,
according to Eqs. (75) and (73). Thus, the one-loop result
can be optimized by a wise choice of the parameters; fixing
h0 and k0 amounts to choosing an optimal renormalization
—together with the corresponding coupling and bare mass
—for the quark mass function.
As discussed in Sec. II B, for the gluon propagator such

an optimization can be achieved from first principles in
pure YM theory. Here, we just assume the existence of an

optimal value of the parameters and determine them by a
comparison with the lattice data. Thus, h0 and k0 are
regarded as free parameters which depend on the scale
ambiguity of the loop expansion.
For our fits, we use h0, k0 and the chiral mass M as the

primary free parameters. It follows that our choice of the
MOM scheme with μ ¼ 4 GeV as the renormalization
scale has no impact on the results of the fit. What the
renormalization scheme actually determines is the value of
αs, which can be computed at fixed h0 and M by using
Eq. (73) and the first of Eq. (75),

αs ¼ 3π½h0 − σVðμ2Þ�−1: ð77Þ

From the above equation, αs could be interpreted as the
strong coupling constant defined at the renormalization
scale μ ¼ 4 GeV. However, it must be kept in mind that the
renormalization prescription we chose is fully arbitrary.
Actually, if the Z function computed in the screened
expansion is not well behaved, which is the case here as
we have anticipated, then taking Zðμ2Þ ¼ 1 as the starting
point for measuring αs could lead to meaningless values for
the coupling constant. For the same reason, while, in
principle, the lattice data for the Z function could be used
to fit at least some of the parameters of the expansion, we
instead fully rely on the lattice data for the quark mass
function to perform the fit.
For completeness, we also report our results in terms of

the renormalized mass MR. As we saw in Sec. III A, the
latter must be introduced as soon as diagram (2c) is
included in the quark self-energy. This is due to the fact
that, in the presence of said diagram, ΣSðp2Þ contains a
divergence proportional to MBZψ . Namely, for N ¼ 3, in
the minimalistic and vertex-wise schemes,5

ΣSðp2Þ ¼ αs
π

�
σSðp2Þ þMBZψ

2

ϵ

�
: ð78Þ

Since, when MR ≪ M, the finite part of diagram (2c) is
negligible—see the discussion in Sec. III—the function
σSðp2Þ in Eq. (78) can be taken to be very same as the one
in Eq. (74).6 A renormalized mass MR can then be defined
by absorbing the mass divergence of diagram (2c) intoMB,

MR ¼ MBZψ

�
1þ αs

π

2

ϵ

�
: ð79Þ

With MR as above, Eq. (76) still holds in the presence of
diagram (2c), with the constant k0 defined as

5For the complex-conjugate scheme see ahead, Sec. IV C.
6The same goes for Eq. (71); ΣVðp2Þ is the same function both

in the presence and in the absence of diagram (2c), with σVðp2Þ
unchanged.
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k0 ¼
π

αs
MR ð80Þ

and h0 defined in the first of Eq. (75). Of course, whether
we express our results in terms of MB or of MR has no
quantitative impact on our fits, since these are performed
using h0 and k0, which as free parameters are more general
than the masses and coupling themselves.
In the next sections, our focus is on quarks whose lattice

masses Mlat ¼ 18, 36, 54, 72, 90 MeV are small with
respect to the QCD scale. Nonetheless, we also present
some results for heavier quarks.

A. Minimalistic scheme

In the minimalistic resummation scheme, the loop
diagrams included in the quark self-energy are those
denoted by (2a), (2b), and, for the purpose of defining a
renormalized mass MR, (2c) in Fig. 4. The quark mass
function Mðp2Þ can be expressed as

Mðp2Þ ¼ 3½k0 þ σðm:Þ
S ðp2Þ�

h0 − σðm:Þ
V ðp2Þ

; ð81Þ

where the analytic expressions for the scalar functions

σðm:Þ
S ðp2Þ and σðm:Þ

V ðp2Þ are reported in Appendix A. By

fixing m ¼ 655.7 MeV as discussed in Sec. III B and
fitting the quenched lattice mass functions of Ref. [73]
for the lattice masses Mlat ¼ 18, 36, 54, 72, 90 MeV, we
obtained the values of h0 and k0 reported in Table II. In
Table III, we list the corresponding values of αs, MB, and
MR, computed by employing the definitions in Eqs. (73),
(75), and (80).
As we can see from Fig. 7, the mass functions computed

in the minimalistic scheme show a very good agreement
with the lattice data. For all but one of the considered lattice
masses—namely, Mlat ¼ 18 MeV, which we discuss sep-
arately in a moment—the fitted values of the chiral massM
are found to be in the range 320–337 MeV, while the bare
massesMB are found to increase withMlat, always keeping
close to the latter.
The fact that MB ≈Mlat can be easily explained by

looking at the high-momentum limit of the functions

σðmÞ
V ðp2Þ and σðmÞ

S ðp2Þ. For p2 ≫ m2;M2 we have

σðmÞ
V ðp2Þ → −1 −

3m2

4p2
þ 3m2

2p2
ln

p2

m2
→ −1;

σðmÞ
S ðp2Þ → 2M2

p2
ln

p2

M2
→ 0: ð82Þ

Therefore, in terms of MB and αs,

Mðp2Þ → MBZψ

Zψ þ αs
3π

≈MBðp2 ≫ m2;M2Þ; ð83Þ

where the approximation holds provided that the coupling
is sufficiently small. The above equation shows that the
scale of the high-momentum limit of the mass function is
set by the bare massMB; since on the lattice the same role is
played by the lattice mass Mlat, we expect MB ≈Mlat as
long as our function fits well the lattice data.

TABLE II. Fit parameters for the quark mass function Mðp2Þ
in the minimalistic scheme.Mlat,M, and k0 are expressed in MeV.
The lattice data are taken from Ref. [73]. The asterisked row was
obtained at fixed MB, see Table III.

Mlat M h0 k0

18 368.6 2.132 −10.3
18⋆ 318.1 1.791 6.0
36 330.8 1.967 14.1
54 320.0 2.073 38.1
72 330.7 2.341 62.4
90 336.9 2.504 88.6

TABLE III. Fit parameters for the quark mass function Mðp2Þ
in the minimalistic scheme, in terms of αs and MB or MR
(renormalization scale: μ ¼ 4 GeV). Mlat, M, MB, and MR are
expressed in MeV. The lattice data are taken from Ref. [73]. The
asterisked row was obtained at fixed MB.

Mlat M αs MB MR

18 368.6 3.139 −14.4 −10.2
18⋆ 318.1 3.542 10 6.7
36 330.8 3.322 21.5 14.9
54 320.0 3.202 55.2 38.9
72 330.7 2.935 79.9 58.3
90 336.9 2.793 106.1 78.8
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FIG. 7. Quark mass functionMðp2Þ in the Euclidean space and
in the Landau gauge for different values of the lattice mass Mlat.
Points: quenched lattice data from Ref. [73]. Curves: one-loop
mass functions computed in the minimalistic resummation
scheme using the parameters in Table II (equivalently, Table III).
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In the limit of vanishing momenta, regardless of the
lattice mass, the data saturate to a finite value of about 350–
450 MeV.7 The approximate independence of the saturation
value fromMlat is expected on the basis that, in the infrared,
the light quarks acquire most of their mass through the
strong interactions, whose scale is much larger than the
quark mass contained in the Lagrangian, and thus domi-
nates over the latter. The mass function computed in the
minimalistic scheme does reproduce this feature, provided
that the chiral massM is comparable in value for the lattice
masses under consideration (as is the case in our fits).
In Table III, the value of the bare mass MB fitted for

Mlat ¼ 18 MeV stands out for being negative (this is a direct
consequence of k0 < 0 in Table II). Presumably, this
physically meaningless result is an artifact of the fit caused
by the highly oscillatory tail of the MB ¼ 18 MeV lattice
mass function; the oscillations themselves are most likely
due to discretization errors, as suggested by the large error
bars in the original data (see Ref. [73]). A constrained fit
forcing MB ≥ 0 is not able to fix this issue, since, in the
presence of the constraint, the fitting routine still tries to push
MB to negative values, which implies that the lower
boundary of the fitting interval, namely, MB ¼ 0, is inevi-
tably hit. Thus, no meaningful result for MB is obtained by
constraining the latter to be non-negative. Cutting the data at
large momenta in order to avoid the oscillations (which
begin at approximately 2.5–3 GeV), as well, would not
improve the situation; since at low momenta the quark mass
function is not very sensitive to the value ofMB (provided, of
course, that we assume MB ≪ M), employing a cut dataset
would make it impossible to meaningfully establish the
value of the bare mass by a fit. As an alternative, to test our
results, we checked that fixing the value of MB by hand,
instead of fitting it from the lattice data, still yields a mass
function which—modulo oscillations—is in good agreement
with the lattice. Some examples are shown in Fig. 8, where
we plot the data for Mlat ¼ 18 MeV together with our
minimalistic scheme mass function. Here, MB is set to
0,10,18 MeV, while the rest of the free parameters (reported
in Table IV) are still obtained by fitting the data.
Remarkably, as soon as the bare mass is fixed to small
but positive values, the values of the parameters M and αs
obtained from the constrained fit get closer to those found for
Mlat ¼ 36–90 MeV (Table III), further evidence that MB >
0 is a more consistent choice when compared to the raw
result of the fit.
Being in possession of analytic expressions which give a

good description of the quark mass function in the
Euclidean space, we are in a position to extend the quark
propagator to the complexified Minkowski space and look
for its poles p2

0. These are defined as the solutions to the
equation

p2
0 −M2ðp2

0Þ ¼ 0; ð84Þ

where the argument p2 of the function Mðp2Þ is a
complexified Minkowski momentum squared, at variance
with the convention used in this section, where we used the
Euclidean momentum. For all the considered lattice
masses, using the parameters in Tables II and III, we found
that the quark propagator has a pair of complex-conjugate
poles in the variable p2 (equivalently, two pairs in the
variable p ¼

ffiffiffiffiffi
p2

p
); their positions p0 are reported in

Table V. In the literature, the existence of complex-con-
jugate poles has been interpreted as proof of confinement,
since the imaginary part of the poles has the effect of
removing the particles from the asymptotic states of the
theory [55,60,71]. In the minimalistic scheme, the real part
of the poles was found to be between 388 and 424 MeV,
while their imaginary part is roughly half these values,
having been found in the range from 174 to 194 MeV.
Fixing MB ¼ 10 MeV by hand for the lattice mass Mlat ¼
18 MeV yields p0 ¼ �373.7� 202.3i MeV, a result
which is more consistent with those of the other lattice
masses, when compared with the one obtained from the raw
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FIG. 8. Mlat ¼ 18 MeV quark mass function in the Euclidean
space and in the Landau gauge. Points: quenched lattice data from
Ref. [73]. Curves: one-loop mass functions computed in the
minimalistic resummation scheme. The parameters for the curves
with MB ¼ 0, 10, 18 MeV are reported in Table IV; those for the
curve labeled as “full fit” are reported in Table III.

TABLE IV. Fit parameters for the quark mass function Mðp2Þ
in the minimalistic scheme, in terms of αs and MB or MR
(renormalization scale: μ ¼ 4 GeV), given Mlat ¼ 18 MeV and
MB fixed to three different values. Mlat, MB, M, and MR are
expressed in MeV. The lattice data are taken from Ref. [73].

Mlat MB M αs MR

18 0 338.1 3.373 0.0
18 10 318.1 3.542 6.7
18 18 302.7 3.679 11.9

7Note that this value is larger for the heavy quarks, as we show
later on in Fig. 10.
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fit. Indeed, we note that jReðp0Þj increases withMlat, while
jImðp0Þj decreases with it. We checked that using small but
positive values of MB for Mlat ¼ 18 MeV yields similar
poles to those reported above.
In Fig. 9, we show an example of the Z function

computed in the minimalistic scheme using the parameters
in Table III, compared with the lattice data for a quark with
mass Mlat ¼ 54 MeV. As we can see, the behavior of
Zðp2Þ is the complete opposite of that found on the lattice;
while on the lattice the Z function increases with momen-
tum, in the minimalistic scheme it decreases. This behavior
is independent of the considered lattice mass, and we
checked that it does not change if the parameters are fixed
by fitting the Z function itself rather than the mass function.
We believe that the mismatch with the lattice data may be
due to the fact that, at least at sufficiently high energies,
Zðp2Þ ≈ 1, making the Z function very sensitive to higher-
order and even nonperturbative corrections. This is sup-
ported by the results we obtained in the complex-conjugate
resummation scheme, which show an improved agreement
at large momenta (see Sec. IV C) and by recent findings
reported in Ref. [65], where the Z function is computed in

the context of the Curci-Ferrari model and shown to change
its behavior at two loops.
While up to this point our main focus has been on the

light quarks, it may be interesting to see what happens if we
try to apply the screened expansion to heavier quarks.
Therefore, to end this section, we compare the minimalistic
scheme mass function with the lattice data for quarks of
mass Mlat ¼ 126, 181, 271 MeV. The outcome is shown in
Fig. 10; as in Fig. 7, the free parameters are fitted from the
data themselves. It should be noted that whenMB becomes
of the same order as M, as is the case in these fits, the
approximation that we employed throughout this paper,
namely, to neglect the finite part of diagram (2c) in Fig. 4,
becomes less justifiable, and the diagram should be fully
included in the quark self-energy. Nevertheless, it appears
that the mass functions in the minimalistic scheme still
manage to fit well the lattice data. As for the light quarks,
the Z functions computed in the minimalistic scheme for
the heavier quark do not match the lattice data and are thus
not reported.

B. Vertex-wise scheme

In the vertex-wise resummation scheme, the loop dia-
grams included in the quark self-energy are those denoted
by (2a), (2b), (2d), and, for defining a renormalized mass
MR, (2c) in Fig. 4. The quark mass functionMðp2Þ can be
expressed as

Mðp2Þ ¼ 3½k0 þ σðv:ÞS ðp2Þ�
h0 − σðv:ÞV ðp2Þ

; ð85Þ

where the analytic expressions for the scalar functions

σðv:ÞS ðp2Þ and σðv:ÞV ðp2Þ are reported in Appendix A. As in
Sec. IVA, we fixed m ¼ 655.7 MeV and performed a fit to
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FIG. 9. Quark Z function Zðp2Þ in the Euclidean space and in
the Landau gauge for Mlat ¼ 54 MeV, renormalized at
μ ¼ 4 GeV. Points: quenched lattice data from Ref. [73]. Curve:
one-loop Z function computed in the minimalistic resummation
scheme using the parameters in Table III.
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FIG. 10. Quark mass function Mðp2Þ in the Euclidean space
and in the Landau gauge for larger lattice masses Mlat. Points:
quenched lattice data from Ref. [73]. Curves: one-loop mass
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The chiral masses M are in the range 366–518 MeV, while the
bare masses MB are in the range 147–301 MeV.

TABLE V. Poles p0 of the quark propagator derived in the
minimalistic scheme, using the parameters in Tables II and III.
Both Mlat and p0 are in MeV; the � signs in p0 are independent
from one another. The asterisked row was obtained at fixed MB.

Mlat p0

18 �404.9� 187.5i
18⋆ �373.7� 202.3i
36 �388.0� 194.2i
54 �390.7� 185.6i
72 �407.7� 174.9i
90 �424.4� 177.3i
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the quenched lattice mass functions of Ref. [73] for the
lattice massesMlat ¼ 18, 36, 54, 72, 90 MeV. The results of
the fit are reported in Table VI, while in Table VII we list
the corresponding values of αs, MB and MR.
No significant change was found in the behavior of the

mass and Z functions computed in the vertex-wise scheme
when compared to the minimalistic scheme, the main
difference between the two being the fitted values of the
free parameters. For this reason, in what follows we keep
the discussion to a minimum and limit ourselves to
reporting our results. We refer to Sec. IVA for details.
In Fig. 11, we show the mass functionMðp2Þ computed

in the vertex-wise scheme together with the lattice data. As
we can see, the mass functions have the same behavior as in
the minimalistic scheme and fit very well the data. Like in
the former scheme, the fitted values of the bare masses MB
are close to Mlat, as expected upon inspection of the high-
momentum limit p2 ≫ m2;M2, which in the case of the
vertex-wise scheme reads

σðvÞV ðp2Þ → −1þ 3m2

2p2
→ −1;

σðvÞS ðp2Þ → m2

p2
ln

p2

m2
þ 2M2

p2
ln

p2

M2
→ 0; ð86Þ

again yielding

Mðp2Þ → MBZψ

Zψ þ αs
3π

≈MBðp2 ≫ m2;M2Þ: ð87Þ

In the vertex-wise scheme, the fitted values of the chiral
mass M turn out to be smaller than those reported in
Sec. IVA, being found in the range 221–249 MeV.
Together with the values of the coupling constant αs,
which are larger in the minimalistic scheme, this is by
far the biggest difference between the two schemes.
Like in the minimalistic scheme, the bare massMB fitted

from the lattice dataset Mlat ¼ 18 MeV is negative. Again,
as shown in Fig. 12, small but positive values ofMB yield a
mass function which fits well the lattice data and whose
parameters M, αs, and MR are closer to those extracted
from the other fits (Table VII).

TABLE VI. Fit parameters for the quark mass function Mðp2Þ
in the vertex-wise scheme.Mlat,M, and k0 are expressed in MeV.
The lattice data are taken from Ref. [73]. The asterisked row was
obtained at fixed MB, see Table VII.

Mlat M h0 k0

18 268.0 2.656 −16.9
18⋆ 197.6 2.051 6.8
36 228.7 2.418 11.5
54 221.4 2.577 40.0
72 238.4 2.977 70.1
90 249.0 3.207 102.5

TABLE VII. Fit parameters for the quark mass functionMðp2Þ
in the vertex-wise scheme, in terms of αs and MB or MR
(renormalization scale: μ ¼ 4 GeV). Mlat, M, MB, and MR are
expressed in MeV. The lattice data are taken from Ref. [73]. The
asterisked row was obtained at fixed MB.

Mlat M αs MB MR

18 268.0 2.605 −19.1 −14.0
18⋆ 197.6 3.128 10 6.8
36 228.7 2.788 14.3 10.2
54 221.4 2.663 46.6 33.9
72 238.4 2.393 70.7 53.4
90 249.0 2.261 95.9 73.8
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FIG. 11. Quark mass function Mðp2Þ in the Euclidean space
and in the Landau gauge for different values of the lattice mass
Mlat. Points: quenched lattice data from Ref. [73]. Curves: one-
loop mass functions computed in the vertex-wise resummation
scheme using the parameters in Table VI (equivalently,
Table VII).
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FIG. 12. Mlat ¼ 18 MeV quark mass function in the Euclidean
space and in the Landau gauge. Points: quenched lattice data from
Ref. [73]. Curves: one-loop mass functions computed in the
vertex-wise resummation scheme. The parameters for the curves
withMB ¼ 0, 10, 18 MeVare reported in Table VIII; those for the
curve labelled as “full fit” are reported in Table VII.
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In Table IX, we report the position of the poles of the
vertex-wise scheme quark propagator, obtained by using the
parameters in Table VII. These have real parts in the range
from 371 to 410 MeVand imaginary parts between 167 and
185 MeV, slightly less than their minimalistic scheme
analogues. At variance with the minimalistic scheme, we
found that jImðp0Þj is smaller for Mlat ¼ 72 MeV than for
Mlat ¼ 90 MeV, the difference being of few MeVs. Given
the generally decreasing behavior of jImðp0Þj with Mlat, we
believe that this result maybe a glitch of the fit. Indeed, we
checked that slightly changing the values of the free
parameters for either of the two quark masses yields both
a decreasing jImðp0Þj and mass functions which still fit well
the lattice data. As for the Mlat ¼ 18 MeV quark, if we fix
MB to 10MeV likewe did in Sec. IVA, the poles are found at
p0 ¼ �349.2� 193.1i MeV. Again, this result is consistent
with the increasing (respectively, decreasing) behavior of
jReðp0Þj (respectively, jImðp0Þj) with Mlat, and choosing
other small but positive values for MB does not change the
picture.
The Z function computed in the vertex-wise scheme,

displayed in Fig. 13 for the lattice mass Mlat ¼ 54 MeV,
shows the same behavior as its minimalistic scheme
counterpart, being a decreasing function of momentum.
In particular, the change of scheme does not manage to
solve the mismatch with the lattice data.
Finally, as in Sec. IVA, the mass functions obtained from

a fit of the heavier quarks, Mlat ¼ 126, 181, 271 MeV, see
Fig. 14, are in good agreement with the lattice data, despite
having neglected the finite part of diagram (2c) in Fig. 4.

We conclude that, when used to compute the quark
propagator in the Landau gauge, the minimalistic and
vertex-wise resummation schemes are practically equiva-
lent; albeit with different values of the free parameters, they
both yield mass functions which are found to be in good
agreement with the lattice, while not being able to repro-
duce the correct behavior of the lattice Z function. As we
shall see in the following section, the complex-conjugate
scheme offers a partial solution to the latter issue.

C. CC scheme

Before reporting the results of the fits in the complex-
conjugate resummation scheme, let us address one final
aspect of its definition. Recall that in the CC scheme the
free gluon propagator (internal gluon line) Δðc:c:Þ

μν ðpÞ is
defined modulo the absolute value of the residue R of the

TABLE VIII. Fit parameters for the quark mass function
Mðp2Þ in the vertex-wise scheme, in terms of αs and MB or
MR (renormalization scale: μ ¼ 4 GeV), given Mlat ¼ 18 MeV
and MB fixed to three different values. Mlat, MB, M, and MR are
expressed in MeV. The lattice data are taken from Ref. [73].

Mlat MB M αs MR

18 0 220.9 2.931 0.0
18 10 197.6 3.128 6.8
18 18 179.7 3.300 11.9

TABLE IX. Poles p0 of the quark propagator derived in the
vertex-wise scheme, using the parameters in Tables VI–VII. Both
Mlat and p0 are in MeV; the � signs in p0 are independent from
one another. The asterisked row was obtained at fixed MB.

Mlat p0

18 �387.4� 180.9i
18⋆ �349.2� 193.1i
36 �371.7� 185.4i
54 �375.2� 177.2i
72 �392.9� 167.6i
90 �410.8� 170.2i
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FIG. 13. Quark Z function Zðp2Þ in the Euclidean space and in
the Landau gauge for Mlat ¼ 54 MeV, renormalized at
μ ¼ 4 GeV. Points: quenched lattice data from Ref. [73]. Curve:
one-loop Z-function computed in the vertex-wise resummation
scheme using the parameters in Table VII.
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corresponding dressed propagator at its poles. As discussed
in Sec. III B, since to one loop jRj is multiplied to the
coupling constant αs, a change in the former can be always
compensated by a change in the latter. Therefore, fixing the
value of jRj actually amounts to choosing a definition for
the coupling. In order to choose our conventions for R and
αs, let us inspect the divergences of the CC scheme. From
Eq. (68) we know that, to one loop and in the Landau
gauge, the only divergence that arises in the CC scheme
comes from the scalar part of the quark self-energy and, in
particular, from diagram (2c) in Fig. 6. Using Eq. (78), it is
easy to show that in the presence of diagram (2c),

Σðc:c:Þ
S ðp2Þ¼αs

π

�
σðc:c:ÞS ðp2ÞþMBZψðRþ R̄Þ2

ϵ

�
; ð88Þ

where Σðc:c:Þ
S ðp2Þ is the scalar part of the loop self-energy in

the CC scheme and

σðc:c:ÞS ðp2Þ ¼ Rσðm:Þ
S ðp2Þjm2¼p2

0
þ R̄σðm:Þ

S ðp2Þj
m2¼p2

0

; ð89Þ

where σðm:Þ
S ðp2Þ is the minimalistic scheme scalar function

defined in Sec. IVA. As we can see, for general values of

R ¼ jRjeiθ, the divergence in Σðc:c:Þ
S ðp2Þ is not the standard

one-loop divergence of QCD; a factor of ðRþ R̄Þ ¼
2jRj cos θ appears in front of the ordinary result. This is
not an inconsistency by itself. As explained in Sec. III B,
the CC scheme is to be interpreted as a resummation of
higher-order gluon polarization diagrams, so that the
structure of its divergent part does not need to coincide
with what we would expect from one-loop standard
perturbation theory. Nonetheless, we can exploit the free-
dom in the choice of jRj to make the scalar divergence look
like a standard one-loop divergence. This can be achieved
by setting

Rþ R̄ ¼ 2jRj cos θ ¼ 1: ð90Þ

With R normalized as such, we have that

Δðc:c:Þ
μν ðpÞ → −itμνðpÞ

p2
ð91Þ

in the UV (p2 ≫ m2), as in standard perturbation theory.
We remark that this choice is not dictated by any profound
principle that needs to be satisfied in order for the scheme to
be consistent. It must be interpreted as a convention by
which we fix the value of the strong coupling constant αs.
Having fully defined the CC scheme, let us now turn to

the results of the fit. As in Secs. IVA and IV B, the quark
mass function Mðp2Þ computed in the complex-conjugate
scheme can be expressed as

Mðp2Þ ¼ 3½k0 þ σðc:c:ÞS ðp2Þ�
h0 − σðc:c:ÞV ðp2Þ

; ð92Þ

where σðc:c:ÞS ðp2Þ is given by Eq. (89) and

σðc:c:ÞV ðp2Þ ¼ Rσðm:Þ
V ðp2Þjm2¼p2

0
þ R̄σðm:Þ

V ðp2Þj
m2¼p2

0

; ð93Þ

where σðm:Þ
V ðp2Þ has been defined in Sec. IVA. In order to

fix the value of the free parameters k0 and h0, we fitted the
quenched lattice mass functions of Ref. [73] for the quark
masses Mlat ¼ 18, 36, 54, 72, 90 MeV, using m ¼
655.7 MeV as the gluon mass parameter. The results of
the fit are reported in Tables X and XI.
In Fig. 15, we show the complex-conjugate scheme mass

functions Mðp2Þ together with the lattice data. As in the
minimalistic and vertex-wise schemes, our analytic func-
tions are in very good agreement with the data. The chiral
massM is found in the range from 405 to 450 MeV, and the
values of MB increase with Mlat, having set 2jRj cos θ ¼ 1
makes Eqs. (82) and (83) hold also in the CC scheme. For
the Mlat ¼ 18 MeV quark, which by a raw fit, as in the
previous schemes, is found to have negative bare mass,
fixingMB to small but positive values still results in a mass
function which fits well the lattice data—see Table XII
and Fig. 16.

TABLE X. Fit parameters for the quark mass function Mðp2Þ
in the complex-conjugate scheme. Mlat, M, and k0 are expressed
in MeV. The lattice data are taken from Ref. [73]. The asterisked
row was obtained at fixed MB, see Tab. XI.

Mlat M h0 k0

18 449.9 6.294 −4.6
18⋆ 405.9 5.467 18.2
36 406.6 5.701 49.0
54 405.2 6.166 108.0
72 431.9 7.216 176.3
90 449.8 7.801 248.3

TABLE XI. Fit parameters for the quark mass function Mðp2Þ
in the complex-conjugate scheme, in terms of αs and MB or MR
(renormalization scale: μ ¼ 4 GeV). Mlat, M, MB, and MR are
expressed in MeV. The lattice data are taken from Ref. [73]. The
asterisked row was obtained at fixed MB.

Mlat M αs MB MR

18 449.9 1.252 −2.2 −1.8
18⋆ 405.9 1.407 10 8.2
36 406.6 1.359 25.8 21.2
54 405.2 1.273 52.6 43.8
72 431.9 1.115 73.3 62.6
90 449.8 1.043 95.5 82.4
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The CC quark propagator has a pair of complex-
conjugate poles, whose positions are reported in
Table XIII. With MB fixed to example value of 10 MeV,

jReðp0Þj is found in the range from 423 to 478 MeV,
increasing with Mlat, while jImðp0Þj lies between 186 and
157 MeV, decreasing with it. The former are quite larger
than those of the minimalistic and vertex-wise schemes,
while the latter are somewhat smaller. In other words, the
ratio jImðp0Þ=Reðp0Þj tends to be smaller in the CC
scheme in comparison to the other schemes.
Along with some differences in the fitted values of the

free parameters and in the position of the quark poles, the
mass functions computed in the CC scheme also show a
small change in shape, when compared to their analogues
in the minimalistic and vertex-wise schemes. This is
displayed in Fig. 17, where we plot the mass functions
obtained in the three schemes for the example value of
Mlat ¼ 54 MeV. As a result of the change, the CC scheme
mass function is somewhat more suppressed in the p → 0
limit. The effect, however, is very small and might not be
meaningful.
The radical departure of the complex-conjugate scheme

from the minimalistic and vertex-wise schemes concerns
the Z function. In Fig. 18, we plot Zðp2Þ for the example
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TABLE XII. Fit parameters for the quark mass functionMðp2Þ
in the complex-conjugate scheme, in terms of αs and MB or MR
(renormalization scale: μ ¼ 4 GeV), given Mlat ¼ 18 MeV and
MB fixed to three different values. Mlat, MB, M, and MR are
expressed in MeV. The lattice data are taken from Ref. [73].

Mlat MB M αs MR

18 0 441.6 1.279 0.0
18 10 405.9 1.407 8.2
18 18 379.5 1.519 14.4

TABLE XIII. Poles p0 of the quark propagator derived in the
complex-conjugate scheme, using the parameters in Tables X and
XI. Both Mlat and p0 are in MeV; the � signs in p0 are
independent from one another. The asterisked row was obtained
at fixed MB.

Mlat p0

18 �448.8� 167.9i
18⋆ �423.8� 186.0i
36 �428.5� 182.4i
54 �434.2� 172.5i
72 �457.1� 155.7i
90 �477.7� 157.6i
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FIG. 17. Quark mass function Mðp2Þ in the Euclidean space
and in the Landau gauge for Mlat ¼ 54 MeV. Points: quenched
lattice data from Ref. [73]. Curves: one-loop mass functions
computed in the minimalistic, vertex-wise, and complex-
conjugate resummation schemes.
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value of Mlat ¼ 54 MeV together with the lattice data. As
we can see, at variance with the previous two schemes and
consistent with the lattice, the CC scheme Z function
increases with momentum for p⪆1 GeV. Moreover, above
this cutoff value, our analytical expression is also in fair
quantitative agreement with the lattice data.8 At low
momenta, on the other hand, the agreement is lost, since
Zðp2Þ changes behavior and starts to increase with decreas-
ing p. This picture holds for any of the lattice masses
considered in this section.
It appears that, at sufficiently large momenta, computing

the quark Z function with the fully dressed gluon propa-
gator (or, to be more precise, its CC scheme approximation)
as the internal gluon line of the quark self-energy solves the
mismatch between the screened expansion and the lattice
data. As discussed in Sec. III B, this may be due to the
dressed gluon propagator containing nonperturbative con-
tributions (e.g., from the condensates, consistent with the
OPE studies [74–76]) which a bare massive propagator
does not.
To end this section, as we did in Secs. IVA and IV B, in

Fig. 19 we compare the mass function with the lattice data
for heavier quarks,Mlat ¼ 126, 181, 271 MeV. We see that
also in the CC scheme our analytic expressions fit well
the data.

V. DISCUSSION

The present work was motivated by the ambitious aim of
developing a reliable analytical approach to nonperturba-
tive QCD from first principles. In this paper, important
progresses have been made by the inclusion of quarks in the

successful framework of the screened expansion, which
was first introduced for pure YM theory in [53,54]. Here,
we have shown that, without any change to the gauge-fixed
Faddeev-Popov Lagrangian, by a wise choice of the
expansion point and by a reasonable setting of the scheme
and parameters, perturbation theory gives a quantitative
agreement with the available lattice data for the quark mass
function—albeit in the quenched case until now. This
constitutes an improvement over the results of a previous
analysis, which led to an only qualitative description of the
quark sector [58].
Because of the agreement which is reached with the lattice

in the Euclidean space, we believe that the analytic proper-
ties of the mass function might be reliable in the whole
complex plane up to moderately high energies. Thus, the
explicit one-loop analytical expressions are not just good
interpolation formulas, but they also unveil important
analytic features of the propagators, like the existence of
complex-conjugate poles, pointing to a confinement scenario
which is rooted in those peculiar features which make quarks
and gluons unobservable, yielding a dynamical mechanism
for their exclusion from the asymptotic states.
While the existence of complex-conjugated poles might

not be a direct proof of confinement [72], their existence
would be ruled out if quarks were present in the asymptotic
states. Actually, the usual Källen-Lehmann relations do not
hold if there are complex poles, and the relative spectral
densities do not satisfy the usual positivity conditions.
We must note that in Ref. [58]—which used the same

formalism of the present paper, albeit in a different scheme, to
study the chiral limit of QCD—the quark propagator was
found to have a unique pole on the real axis. In that work, as
we said, the agreement with the lattice data was only
qualitative: the data themselves showed large error bars
and fluctuations, so that any comparison with the analytic
result could not be conclusive. Having attained a much better
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FIG. 18. Quark Z function Zðp2Þ in the Euclidean space and in
the Landau gauge for Mlat ¼ 54 MeV, renormalized at
μ ¼ 4 GeV. Points: quenched lattice data from Ref. [73]. Curve:
one-loop Z-function computed in the complex-conjugate resum-
mation scheme using the parameters in Table XI.
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FIG. 19. Quark mass function Mðp2Þ in the Euclidean space
and in the Landau gauge for larger lattice masses Mlat. Points:
quenched lattice data from Ref. [73]. Curves: one-loop mass
functions computed in the complex-conjugate resummation
scheme. The chiral masses M are in the range 503–738 MeV,
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8Observe that in Fig. 18 the Z-function is plotted on an
enlarged scale: for p > 1.0–1.5 GeV the difference between the
function computed in the CC scheme and the lattice data is at
most around 10–20%.

SCREENED MASSIVE EXPANSION OF THE QUARK … PHYS. REV. D 104, 074020 (2021)

074020-21



match with the lattice now leads us to revisit our previous
results.
Unfortunately, our main aim is far from being fully

achieved yet, and, despite the good quantitative description
of the quark mass function, many aspects must still be
addressed. First of all, we must still find a way to fix from
first principles the two spurious parameters which arise
from the approximation, namely, an arbitrary additive
constant which emerges from the renormalization of the
one-loop quark self-energy and the ratio M=m between the
quark and the gluon mass scales, which are arbitrary up to
an overall choice for the energy units.
In pure YM theory, by enforcing some constraints of

Becchi-Rouet-Stora-Tyutin (BRST) symmetry, like the
Nielsen identities [68–70], the expansion can be optimized
yielding a fully predictive method which does not require any
external input and does not contain any spurious parameter
[60]. In the quark sector, we still have to fix the spurious
parameters by a fit of the available lattice data. While it is
encouraging to see that an optimal choice of the parameters
does exist which describes the quark mass function data very
well for any given lattice mass, we still expect that the
spurious parameters might be fixed by enforcing some
constraints from first principles, like we did for pure YM
theory.
Of course, if carried out by employing the Nielsen

identities or similar exact methods, this program would
require a fully consistent calculation for the interacting
quark-gluon theory. In the present approach, we instead
used the optimized parameters of pure YM theory and
investigated the quark sector in a quenched approximation.
Even at one loop, the existence of quarks modifies the
gluon polarization by a quark loop which was not included
in the gluon optimization. Thus, we expect that the removal
of all spurious parameters by first principles like in [60] will
require a fully consistent, unquenched calculation.
Another important issue is the truncation of the expansion,

which, in the absence of a unique smallness parameter, like
the coupling in ordinary perturbation theory, might appear
quite arbitrary. In principle, the method allows us to carry out
the calculations perturbatively, by adding higher-order cor-
rections; however, in order to do so, a general criterion for the
order-by-order truncation of the expansion is required. In this
work, we have shown that the ambiguity can only arise for
finite graphs, since the cancellation of spurious divergences
requires a well defined set of graphs to be retained at each
order. Moreover, at one loop, the residual ambiguity seems to
be compensated by a change in the values of the spurious free
parameters, with basically no residual effect on the quark
propagator. Even in the complex plane, the pole position is
quite robust, with only a few percent change when going
from a truncation scheme to the other. In this respect, the
weak dependence of the pole position on the resummation
scheme can be regarded as an estimate of the accuracy of the
method.

Despite the difficulties, the available data for light
quarks remain the most important benchmark for our
predictions, since the nonperturbative effects, like
dynamical mass generation and chiral symmetry breaking,
become less evident for heavier quarks. Nonetheless, we
checked that the agreement with the data is very good
even for lattice masses in the range 100–300 MeV.
A nonperturbative feature which is not captured by

either the minimalistic or the vertex-wise scheme is the
slightly increasing tail of the Z function shown by the
lattice data. This behavior can be understood by the OPE,
which predicts a powerlike behavior for Zðp2Þ, with a
coefficient proportional to the dimension-2 gluon con-
densate hA2i [77]. It is a pure nonperturbative effect
which the present one-loop expansion fails to predict,
unless some kind of resummation is performed; the same
mismatch has been observed in other massive models,
like the Curci-Ferrari model [45]. We note that, in the tail,
the effects of the interactions on the lattice Z function are
very small, so that Zðp2Þ ≈ 1. Thus, the observed devia-
tions are not very relevant for the overall description of
the quark propagator, which at moderately high energies
is basically determined by the mass function alone.
Actually, the one-loop contribution to Zðp2Þ, too, is
finite and very small, explaining why the Z function is
so sensitive to higher-order corrections [65] and thermal
effects [66]. In the context of the Curci-Ferrari model
[65], it has been shown that the two-loop self-energy is
enough to correct the behavior of the Z function over the
whole momentum range.
On the other hand, the almost vanishing perturbative

contributions make Zðp2Þ a very interesting benchmark
for investigating nonperturbative effects and the role of
the gluon condensate through the OPE at large energies. It
is remarkable that, if the gluon line is resummed inside
the one-loop quark self energy, replacing the free-gluon
propagator with the dressed one-loop gluon line, an
increasing Z function is found at large momenta, just
where the OPE result should hold. Since the main feature
of the nonperturbative resummation is the existence of
complex-conjugated poles in the dressed gluon propaga-
tor, instead of the real pole of the undressed propagator,
we argue that the complex gluon poles might be related
with the existence of a nonvanishing gluon conden-
sate [78].
Overall, we can say that, when optimized, the screened

massive expansion provides a quantitative and analytical
tool for investigating the infrared limit of the full QCD,
at least in the quenched approximation. The results are
very encouraging and suggest that in a fully consistent
unquenched calculation, even the residual free parameters
might be fixed by the general constraints of BRST
symmetry, yielding a more complete analytical descrip-
tion of nonperturbative QCD from first principles.
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APPENDIX A: QUARK SELF-ENERGY

In this Appendix, we report the relevant functions for the
screened expansion’s quark propagator in the minimalistic
and vertex-wise resummation schemes. As discussed in
Sec. III B, the corresponding complex-conjugate scheme
functions are easily derived from the minimalistic scheme;
this is proven in Appendix B.

1. Diagrams (2a), (2b), and (2d)

In Euclidean space, the self-energy contribution Σð2aÞðpÞ
due to the uncrossed quark loop, i.e., diagram (2a) in Fig. 4,
can be divided into a vector and a scalar component,

Σð2aÞ
V ðp2Þ and Σð2aÞ

S ðp2Þ, as

Σð2aÞðpÞ ¼ i=pΣð2aÞ
V ðp2Þ þ Σð2aÞ

S ðp2Þ: ðA1Þ

The two components can be expressed in terms of two

scalar functions σð2aÞV ðp2Þ and σð2aÞS ðp2Þ as

Σð2aÞ
V ðp2Þ ¼ αs

3π
σð2aÞV ðp2Þ;

Σð2aÞ
S ðp2Þ ¼ αs

π
M
�
2

ϵ
− ln

M2

μ̄2
þ σð2aÞS ðp2Þ

�
; ðA2Þ

where ϵ ¼ 4 − d and μ̄ is an arbitrary scale introduced by
dimensional regularization. If we define two adimensional
variables s and x, representing the Euclidean momentum p2

and the quark chiral mass M,

s ¼ p2=m2; x ¼ M2=m2; ðA3Þ

then, the functions σð2aÞV and σð2aÞS can be put in the form

σð2aÞV ¼ CR lnRþ Cx ln xþ Cxs ln
x

xþ s
þ C0;

σð2aÞS ¼ t
s
lnR −

t − s − xþ 1

2s
ln x; ðA4Þ

where the coefficient functions CR; Cx; Cxs, and C0 read

CR ¼ t
2s2

½ðxþ sÞ2 þ ðx − sÞ − 2�;

Cx ¼ −
1

2
CR þ 1

4s2
½ðxþ sÞ3 − 3ðx − sÞ þ 2�;

Cxs ¼ −
ðxþ sÞ3
2s2

;

C0 ¼
x − 2

2s
−
1

2
; ðA5Þ

while R is defined as

R ¼ t − sþ x − 1

tþ sþ x − 1
: ðA6Þ

In Eqs. (A4)–(A6), t is itself a function of s and x, defined
as

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ sÞ2 þ 2ðs − xÞ þ 1

q
: ðA7Þ

The expressions reported above agree with those computed
in the one-loop Curci-Ferrari model [45].
As discussed in Sec. III, diagrams (2b) and (2d) in Fig. 4

can be computed as derivatives of diagram (2a),

Σð2bÞðpÞ ¼ −M
∂
∂M Σð2aÞðpÞ;

Σð2dÞðpÞ ¼ −m2
∂

∂m2
Σð2aÞðpÞ: ðA8Þ

Once split into a vector and a scalar component,

Σð2bÞðpÞ ¼ i=pΣð2bÞ
V ðp2Þ þ Σð2bÞ

S ðp2Þ;
Σð2dÞðpÞ ¼ i=pΣð2dÞ

V ðp2Þ þ Σð2dÞ
S ðp2Þ; ðA9Þ

Σð2bÞðpÞ and Σð2dÞðpÞ can be expressed in terms of four

scalar functions, σð2bÞV;S ðp2Þ and σð2dÞV;S ðp2Þ,

Σð2bÞ
V ðpÞ ¼ αs

3π
σð2bÞV ðp2Þ;

Σð2bÞ
S ðpÞ ¼ αs

π
M

�
−
2

ϵ
þ ln

M2

μ̄2
þ σð2bÞS ðp2Þ

�
;

Σð2dÞ
V ðpÞ ¼ αs

3π
σð2dÞV ðp2Þ;

Σð2dÞ
S ðpÞ ¼ αs

π
Mσð2dÞS ðp2Þ: ðA10Þ

Using Eqs. (A8) and (A2), it is easy to compute these

functions as derivatives of σð2aÞV and σð2aÞS ; for diagram (2b),
we have
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σð2bÞV ¼ −M
∂
∂M σð2aÞV ;

σð2bÞS ¼ −
∂
∂M ½Mσð2aÞS � þ 2

¼ −σð2aÞS −M
∂
∂M σð2aÞS þ 2; ðA11Þ

whereas for diagram (2d)

σð2dÞV ¼ −m2
∂

∂m2
σð2aÞV ;

σð2dÞS ¼ −m2
∂

∂m2
σð2aÞS : ðA12Þ

Note that the 2 on the right-hand side of σð2bÞS comes from
the derivative of lnM2 inside the brackets in Eq. (A2).
In what follows, we report the explicit self-energy

functions computed in the minimalistic and vertex-wise
resummation schemes.

2. Self-energy in the minimalistic and vertex-wise
resummation schemes

Recall that in the minimalistic scheme we only keep the
self-energy diagrams (2a) and (2b), whereas in the vertex-
wise schemewe also include diagram (2d). Let us start from
the first one.
In the minimalistic scheme, the loop contribution

ΣðmÞðpÞ to the quark self-energy is given by

ΣðmÞðpÞ ¼ Σð2aÞðpÞ þ Σð2bÞðpÞ: ðA13Þ

If we split ΣðmÞðpÞ into a vector and a scalar component,

ΣðmÞðpÞ ¼ i=pΣðmÞ
V ðp2Þ þ ΣðmÞ

S ðp2Þ; ðA14Þ

then, ΣðmÞ
V ðp2Þ and ΣðmÞ

S ðp2Þ can be expressed in terms of

two scalar functions σðmÞ
V ðp2Þ and σðmÞ

S ðp2Þ, as

ΣðmÞ
V ðp2Þ ¼ αs

3π
σðmÞ
V ðp2Þ;

ΣðmÞ
S ðp2Þ ¼ αs

π
MσðmÞ

S ðp2Þ: ðA15Þ

Here,

σðmÞ
V ¼ σð2aÞV þ σð2bÞV ;

σðmÞ
S ¼ σð2aÞS þ σð2bÞS : ðA16Þ

Going back to Eq. (A11), the derivatives with respect to M
can be traded with derivatives with respect to x ¼ M2=m2,

M
∂
∂M ¼ 2x

∂
∂x : ðA17Þ

Then, σð2bÞV;S can be expressed as the following derivatives of

σð2aÞV;S :

σðmÞ
V ¼

�
1 − 2x

∂
∂x

�
σð2aÞV ;

σðmÞ
S ¼ −2x

∂
∂x σ

ð2aÞ
S þ 2: ðA18Þ

A straightforward albeit tedious calculation leads to the
result

σðmÞ
V ¼CðmÞ

R lnRþCðmÞ
x lnxþCðmÞ

xs ln
x

xþs
þCðmÞ

0 ;

σðmÞ
S ¼−

2xðxþs−1Þ
st

lnR−
xðt−x−sþ1Þ

st
lnx; ðA19Þ

where the coefficient functions CðmÞ
R ; CðmÞ

x ; CðmÞ
xs , and CðmÞ

0

read

CðmÞ
R ¼ 1

2s2t
fðs − 5xÞ½ðsþ xÞ3 þ ðs2 − x2Þ� − 3ðs2 − x2Þ

− 4sx − 5s − x − 2g;

CðmÞ
x ¼ −

1

2
Cðm:Þ
R þ 1

4s2
½ðs − 5xÞðxþ sÞ2 þ 3ðxþ sÞ þ 2�;

CðmÞ
xs ¼ −

ðxþ sÞ2
2s2

ðs − 5xÞ;

CðmÞ
0 ¼ −

5xþ 2

2s
−
1

2
: ðA20Þ

Similarly, in the vertex-wise scheme, by including
diagram (2d) to obtain the loop contribution Σðv:ÞðpÞ to
the self-energy,

ΣðvÞðpÞ ¼ Σð2aÞðpÞ þ Σð2bÞðpÞ þ Σð2dÞðpÞ; ðA21Þ

we can write

ΣðvÞðpÞ ¼ i=pΣðvÞ
V ðp2Þ þ ΣðvÞ

S ðp2Þ; ðA22Þ

and express ΣðvÞ
V ðp2Þ and ΣðvÞ

S ðp2Þ in terms of two scalar

functions σðvÞV ðp2Þ and σðvÞS ðp2Þ,

ΣðvÞ
V ðp2Þ ¼ αs

3π
σðvÞV ðp2Þ;

ΣðvÞ
S ðp2Þ ¼ αs

π
MσðvÞS ðp2Þ: ðA23Þ

Clearly,

σðvÞV ¼ σð2aÞV þ σð2bÞV þ σð2dÞV ;

σðvÞS ¼ σð2aÞS þ σð2bÞS þ σð2dÞS : ðA24Þ
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Using the previous results for σð2bÞV;S , together with Eq. (A12)
and

m2
∂

∂m2
¼ −s

∂
∂s − x

∂
∂x ; ðA25Þ

it is easy to show that the scalar functions σðvÞV;S can be

computed as the following derivatives of σð2aÞV;S :

σðvÞV ¼
�
1 − x

∂
∂xþ s

∂
∂s

�
σð2aÞV ;

σðvÞS ¼
�
−x

∂
∂xþ s

∂
∂s

�
σð2aÞS þ 2: ðA26Þ

A lengthy calculation yields [58]

σðvÞV ¼ CðvÞ
R lnRþ CðvÞ

x ln xþ CðvÞ
xs ln

x
xþ s

þ CðvÞ
0 ;

σðvÞS ¼ −
sð2xþ 1Þ þ ð2x − 1Þðx − 1Þ

st
ln

Rffiffiffi
x

p þ 1 − 2x
2s

ln x;

ðA27Þ

where the coefficient functions CðvÞ
R ; CðvÞ

x ; CðvÞ
xs , and CðvÞ

0

read

CðvÞ
R ¼ 1

s2t
fðs − 2xÞ½ðxþ sÞ3 þ ðs2 − x2Þ�

þ ðs − xþ 1Þð1 − 3xÞ þ 2sxg;

CðvÞ
x ¼ −

1

2
Cðv:Þ
R þ 1

2s2
½ðxþ sÞ2ðs − 2xÞ þ 3x − 1�;

CðvÞ
xs ¼ −

ðs − 2xÞðxþ sÞ2
s2

;

CðvÞ
0 ¼ 1 − 2x

s
: ðA28Þ

APPENDIX B: LOOP INTEGRALS IN THE CC
SCHEME

The complex-conjugate (CC) scheme for the quenched
one-loop quark propagator is defined by the internal gluon
lines in Fig. 6 being set equal to the principal part of the
fully dressed gluon propagator; in Euclidean space,

Δðc:c:Þ
μν ðpÞ ¼

�
R

p2 þ p2
0

þ R̄

p2 þ p̄2
0

�
tμνðpÞ; ðB1Þ

where the values of p2
0, R, and of their complex conjugates

p2
0 and R̄ are derived in the framework of the screened

expansion of pure Yang-Mills theory9 (see Sec. III B and
Table I in Sec. II B).
The loop diagrams (2a) to (2c) in Fig. 6 can be computed

by employing the usual machinery of Feynman parameter
integrals and gamma functions. In order to see this, first
note that the Feynman parameter formula

1

AB
¼

Z
1

0

dx
1

½xAþ ð1 − xÞB�2 ðB2Þ

remains valid for complex A and B. As a consequence, in
Euclidean space, all the loop integrals can be expressed in
terms of double integrals I of the form

I ¼
Z

1

0

dx
Z

ddq
ð2πÞd

ðq2Þn
ðq2 þ ΔÞ2 ; ðB3Þ

where n is equal to either 0 or 1. In the above equation, at
variance with the standard case,

Δ ¼ xp2
0 þ ð1 − xÞM2 þ xð1 − xÞp2 ðB4Þ

is a complex, nonreal quantity due to p2
0 itself being

complex with Imðp2
0Þ ≠ 0 (here, we are assuming that

the external momentum p2 ∈ R). The angular integration
in Eq. (B3) can be readily performed, yielding

I ¼ Ωd−1

ð2πÞd
Z

1

0

dx
Z þ∞

0

dqqd−1
ðq2Þn

ðq2 þ ΔÞ2

¼ Ωd−1

2ð2πÞd
Z

1

0

dx
Z þ∞

0

dy
yd=2−1þn

ðyþ ΔÞ2 ; ðB5Þ

where Ωd−1 is the volume of the (d − 1)-dimensional unit
sphere, and on the last line, we have changed the variable of
integration to y ¼ q2. The integrand in Eq. (B5) has a
complex pole outside of the domain of integration, i.e., the
positive real axis, at y ¼ −Δ. The integral over the y
variable can be expressed as the limit

Z þ∞

0

dy
yd=2−1þn

ðyþ ΔÞ2 ¼ lim
Λ→þ∞

Z
Λ

0

dy
yd=2−1þn

ðyþ ΔÞ2 : ðB6Þ

We can now change the contour of integration of the
definite integral on the right-hand side by setting

9The value of jRj is actually inessential in our calculation, see
Sec. III B.
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Z
Λ

0

dy
yd=2−1þn

ðyþ ΔÞ2 ¼
I
γ
dy

yd=2−1þn

ðyþ ΔÞ2 þ

−
Z
γ2

dy
yd=2−1þn

ðyþ ΔÞ2 −
Z
γΛ

dy
yd=2−1þn

ðyþ ΔÞ2 ;

ðB7Þ
where γ ¼ γ1 þ γΛ þ γ2 and the contours γ1; γΛ, and γ2 are
displayed in Fig. 20. In particular, γ2 is chosen so that y ∈ γ2
is opposite to −Δ with respect to the origin of the complex
plane. Since the integral over the closed contour γ in Eq. (B7)
is zero by analyticity, we have

Z þ∞

0

dy
yd=2−1þn

ðyþ ΔÞ2 ¼ lim
Λ→þ∞

Z
−γ2

dy
yd=2−1þn

ðyþ ΔÞ2 ; ðB8Þ

where the integral over γΛ drops out in the limit Λ → þ∞.10

Moreover, by construction, the argument of y ∈ −γ2 satisfies
argðyÞ ¼ argðΔÞ. Therefore, we can write

Z þ∞

0

dy
yd=2−1þn

ðyþ ΔÞ2 ¼ ðei argðΔÞÞd=2−2þn

Z þ∞

0

dy
yd=2−1þn

ðyþ jΔjÞ2 :

ðB9Þ

One last change of integration variables from y to y=jΔj
leaves us with

Z þ∞

0

dy
yd=2−1þn

ðyþ ΔÞ2 ¼ ðjΔjei argðΔÞÞd=2−2þn

Z þ∞

0

dy
yd=2−1þn

ðyþ 1Þ2
¼ Δd=2−2þnΓðd=2þ nÞΓð2 − d=2 − nÞ:

ðB10Þ

The latter is the very same result found for Δ ∈ R. Hence the
integral I can be computed as if Δ were a real number or,
equivalently, as if p2

0 were real.
Finally, since the diagrams for the CC scheme (Fig. 6)

are identical to those of the minimalistic scheme [Fig. 4,
diagrams (2a) to (2c)] except for the fact that the internal
gluon propagator is made up of two terms, each multiplied
by a factor of R or R̄, by considering each of these two
terms separately we find that

ΣðloopsÞ
c:c: ðpÞ
¼ RΣðloopsÞ

m: ðpÞjm2¼p2
0
þ R̄ΣðloopsÞ

m: ðpÞj
m2¼p2

0

; ðB11Þ

where ΣðloopsÞ
c:c: ðpÞ and ΣðloopsÞ

m: ðpÞ are the loop contributions
to the 1PI quark self-energies computed, respectively, in the
CC scheme and in the minimalistic scheme, and m2 is the
gluon mass parameter introduced by the screened
expansion.
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