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Abstract. Direct evaporative cooling is widely known to be an energy efficient air-conditioning 
option for arid and semi-arid climates. However, care must be taken on humidity ranges achieved 
indoors. Existing literature presents several options for integrating evaporative cooling within 
buildings for passive cooling applications. This work aims at expanding the current knowledge 
by focusing on the use of water-filled hollow bricks to implement evaporative cooling of air in 
contact with the brick’s surfaces. A prototype is built and experimentally characterized under 
controlled air velocity, air temperature and relative humidity conditions. Results on the 
psychrometric conditions achieved under different geometric arrangements (i.e., with one, two 
or three rows of four bricks each) are presented and discussed. Insights on likely building 
integration of the system for passive cooling purposes in farms and agriculture applications are 
eventually given. 

1.  Introduction 
Evaporative cooling systems are based on the natural conversion of sensible heat into latent heat 

when non-saturated air is exposed to water. Their simplicity made them the first inexpensive air 
conditioning equipment [1]. Within the current concern on the energy consumption and the uncertain 
climate change scenarios, evaporative cooling rises as an energy efficient alternative to either reach 
indoor thermal comfort or reduce the energy demand of conventional air conditioning [2]. 

Direct Evaporative Cooling (DEC) can be implemented either from wetted surface materials or with 
spray nozzles. DEC from wetted surfaces has, however, the advantage of avoiding direct generation of 
aerosols, though water entrainment may occur at high velocities [3]. Although it would not be applicable 
for indoor thermal comfort under ambient wet bulb temperatures above approximately 21 °C, it can still 
satisfactorily relieve indoor conditions in greenhouses, industrial plants and other spaces not dedicated 
to human occupation [4]. 

Ceramic materials have several advantages for wetted-media DEC not only because of their 
capability to hold large quantities of water, but also because they neither degrade when humidified nor 
suffer from chemical degradation when exposed to the outdoors [5–8]. Indeed, evaporative cooling from 
ceramic surfaces has been widely used in hot and dry locations worldwide both for improving thermal 
comfort and for food storing and conservation [9,10]. Moreover, the hygrothermal performance of 
porous construction materials have been widely studied as well [11–14]. 
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Existing research on DEC has also targeted such materials: Laknizi et al. [15] built an evaporative 
cooling pad made of clay cylinders achieving temperature drops of up to 6.4 and 7 °C with an increase 
in the air relative humidity between about 28 and 32 %. Doğramaci and Aydin [8] studied the 
performance of ceramic pipes as the wetted surface for DEC, as well as other materials. The achieved 
temperature drops  reached 10.7 °C to 4 °C for increased air velocity from 0.1 m/s to 1.2 m/s. Abdullah 
et al. [16] also used clay cylinders, but covered by jute fiber and integrated in a wind tower to enhance 
natural ventilation. They achieved temperature drops between 9.7°C and 19.8°C. 

On the other hand, some authors resorted to ceramic surfaces to achieve a semi-indirect evaporative 
cooling of treated air. Velasco-Gómez et al. [17] proposed a ceramic pipes cross-flow heat exchanger to 
be integrated as an air window system where the secondary airstream  moves inside the pipes counter 
flow to water. Similar prototypes were designed by Sun et al. [18] and Zeitoun et al. [19], though the 
latter did not aim at achieving thermal comfort but humidifying the gas turbines inlet air.. Ibrahim et al. 
[20] designed a hollowed ceramic evaporator and studied the effect that different levels of porosity had 
on the temperature drop and relative humidity increase. 

Existing literature also approaches the integration of DEC wetted ceramic surfaces within passive 
cooling strategies in both outdoor and indoor spaces. He and Hoyano [6,7] built and characterized a 
passive wall made of ceramic bricks with the aim of providing shading and evaporative cooling 
outdoors. A similar system was proposed and studied through laboratory experiments by Chen et al. 
[21]. Sudprasert and Sankaewthong [22] used rice byproducts to produce porous cylinders to be 
integrated in agricultural houses and outdoor spaces. Bagasi and Calautit [23] studied the effect of water 
pots placed in the traditional Arab-Islamic Mashrabiya, which enabled ventilation, daylight and privacy. 

Within this context, the aim of this research is to give a first insight on the applicability of DEC from 
hollow bricks filled with water in farms and agriculture buildings. To this purpose, experimental results 
conducted on three different configurations of a prototype are provided, where air velocity, air 
temperature and relative humidity conditions are controlled at the system inlet. 

2.  Experimental setup 
A DEC from wetted surface prototype has been designed and built with hollow bricks typically used for 
partition walls. A photo and schematic of the prototpye is shown in Figure 1.. 

 

 
(a) 

 
Air path 
Water filling 

(b) 

Figure 1. (a) Experimental setup using and (b) schematic of prototype DEC made of hollow bricks. 
 
Bricks are kept filled with water from an upper tank, while air is forced to pass through three paths 

of four bricks each. Inlet air psychrometric conditions at each test are achieved in an air handling unit 
equipped with a steam humidifier. Experimental tests are conducted for three air volume flow levels 
(approximately V1 = 240, V2 = 370, V3 = 530 m3/h) and five dry bulb air temperatures, To (T01=20, 
T02=25, T03=30, T04=35 and T05=40 °C). Given the geometry of the device, the inlet air volume flows 
tested yield air face velocities of approximately 1, 1.5 and 2.2 m/s. 
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Inlet air humidity is uncontrolled but modified through vapor injection in three steps: no vapor 
injection, 1.2 kW vapor injection and 2.4 kW vapor injection respectively. Tests without vapor injection 
at each airflow rate and dry bulb air temperature are repeated once to check the repeatability of results. 
This design of experiments yielded 60 tests. However, three test conditions at the lowest air volume 
flow rate V1 resulted into saturation of inlet air (for 1.2 kW and 2.4 kW vapor injection at 20 °C, and for 
2.4 kW vapor injection at 25 °C in order), thus those results were not included in the present study. 

Dry bulb air temperature and relative humidity are measured at the system inlet (point 0) and after 
each bricks path (points 1, 2 and 3 of Figure 1 respectively). The temperature sensors used are 4-wire 
Pt100 from RS with accuracy of ±0.1°C and range from -50 to +250°C, while capacitive RH sensors 
from Honeywell are used for measuring the air relative humidity (accuracy ±2%, range 0-100%). Air 
volume flow (V) is determined by measuring the pressure drop (∆P) at orifice plates that were previously 
calibrated with a calibration nozzle model TG-50 from Tecner Ingenieria. The air flow 𝑉̇𝑉(m3·s-1) is thus 
determined at the system’s inlet (0) according to equation 1: 

𝑉̇𝑉 = 𝐾𝐾𝑉𝑉 ∙ √∆𝑃𝑃 (1) 
Where the constant KV is equal to 0.0065 and ∆P is the inlet/outlet pressure difference in Pa.  
The performance of the system is evaluated using its saturation effectiveness, defined in Equation 2 

as follows: 

 0 1

0 WB0

T T 100
T T

−
ε = ⋅

−
 (2) 

Here, T (°C) refers to dry bulb air temperature and TWB (°C) corresponds to the wet bulb air 
temperature, while 0 identifies the inlet air conditions and 1 the air conditions measured after the first 
four-bricks row.To further substantiate the performances of the proposed system, the cooling capacity 
(CC) of the system is calculated according to equation 3: 

 
 p 0 1CC m C (T T )= ⋅ ⋅ −  (3) 

Being Cp the specific heat of humid air (J·kg-1·K-1). 

3.  Results 
Figure 2 shows the average dry bulb air temperature drops achieved during steady-state operation for 

each airflow level with respect to the inlet dry bulb air temperature. Results measured at points 1, 2 and 
3 during each test are thus plotted to analyze the effects of driving the air through just one, two or three 
rows of bricks respectively. Average values and standard deviations obtained are gathered in Table 1. 
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(c) 

Figure 2. Temperature drop measured at point 1, 2 and 3 for (a) airflow level V1, (b) airflow level 
V2, and (c) airflow level V3. 

 

Table 1. Average and standard deviation of measured temperature drops. 
 

  V1 V2 V3 
  ∆T1 ∆T2 ∆T3 ∆T1 ∆T2 ∆T3 ∆T1 ∆T2 ∆T3 

T01=20°C Average 2.7 1.8 2.8 4.1 2.5 3.7 3.9 3.9 3.8 
Standard dev. 1.0 0.1 0.4 4.0 2.0 2.9 3.3 2.5 2.4 

T02=25°C Average 4.3 3.6 4.5 3.9 2.5 4.0 3.0 3.7 3.3 
Standard dev. 2.1 0.6 1.8 0.7 0.2 0.5 0.2 0.4 0.2 

T03=30°C Average 5.1 5.3 5.8 5.5 4.1 5.7 5.5 5.5 5.1 
Standard dev. 1.3 0.9 1.7 1.0 0.8 0.4 1.1 0.4 0.6 

T04=35°C Average 7.4 7.6 8.4 7.2 4.7 7.2 8.4 6.8 6.2 
Standard dev. 1.3 1.0 1.9 1.1 0.3 0.5 1.7 0.8 0.9 

T05=40°C Average 10.7 10.5 11.7 9.0 5.8 8.7 10.1 8.2 8.3 
Standard dev. 0.9 1.2 1.9 1.1 0.6 1.0 2.1 0.8 1.3 

 
It appears that the maximum temperature drops achieved after the first path are 11.7 °C, 10.1 °C and 

13.2 °C for airflow levels V1, V2 and V3, respectively, while it can also be seen that the temperature 
drop achievable increases for warmer inlet air conditions and decreases for larger airflows due to the 
lower residence times. However, there are no clear differences between the temperature drops achieved 
after one, two or three paths through bricks (∆T1, ∆T2 and ∆T3); consequently, one single brick row 
would be enough. This can be explained by the fact that relative humidity measurements taken after 
each row of bricks show that the air does not get further humidified when passing through the second 
and third groups of bricks. For instance, at the highest airflow rate V3, T05 and no vapor injection, the 
air relative humidity values after the first, second and third group of bricks (points 1, 2 and 3) are 42%, 
37% and 41% respectively, which falls within the uncertainty introduced by the accuracy of the sensors. 
Figure 3 reports such information at both the inlet (panel a) and after the first row of bricks (point 1) 
with varying to the inlet dry bulb air temperature and air flow rate values.  
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(a) (b) 

Figure 3. Air Relative Humidity at (a) the system inlet (point 0) and (b) outlet after one path 
through bricks (point 1) for different airflows and air inlet air dry bulb temperatures. 

 
The calculated saturation effectiveness is shown in Figure 4. As expected, it decreases for higher 

airflows due to the lower air residence times and is not affected that much by the inlet air psychrometric 
conditions. 

 

 
Figure 4. Saturation effectiveness after one path for different airflows and air inlet conditions. 

 
Results reported in Figure 5 show instead the cooling capacity of the system. As it is possible to 

observe, higher airflows imply larger cooling despite the decrease in the temperature drop achievable.  
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Figure 5. Cooling capacity after one path for different airflows and air inlet conditions. 

4.  Discussion of the results and prospective applications 
Results from this study showed that the saturation effectiveness of the proposed DEC system 

decreases with increasing airflows: e.g., for an inlet air temperature of 40 °C, it drops down from around 
90% to less than 70 % when passing from 240 m3/h to 530 m3/h. On the other hand, the effectiveness is 
not affected significantly by the inlet humid air conditions, and this aligns with previous research [6-7]. 
Nonetheless, the higher air flow rates strongly benefit the cooling capacity of the system, which passes 
from 200 W for an air flow rate of 240 m3/h to 1400 W for an air flow rate of 530 m3/h under the same 
inlet air temperature of 40 °C.  
More interestingly, this research showed that the simplest configuration made up of a single row of clay 
bricks continuously filled with water from the top provides dry bulb air temperature drops similar to 
those obtainable when two or three rows of bricks are implemented. In fact, the maximum temperature 
drop has been achieved for the highest inlet air temperature of 40 °C and the lowest air flow rate of 240 
m3/h tested, and ranged between 10 °C and 12 °C for the one row and three rows configurations, 
respectively.  

Potential applications of the proposed DEC system may take place in farms, e.g. in breeding batteries 
to relieve animals from excessively high air temperatures while also improving the working conditions 
of farmers, or in other production or transformation activities where indoor air conditions do not need 
to be strictly controlled (as already reported by Sudprasert and Sankaewthong  [22] for a silkworm 
rearing house). A further utilization of the system may be envisaged for improving comfort conditions 
outdoors by creating sort of “cool islands”, i.e. semi-open precincts closed on three sides by water-filled 
bricks and shaded on top for avoiding direct sunlight on people. Such a system would bring the benefits 
of typical evaporative cooling systems [24,25], but without the issues linked to the use of active systems 
such as nozzles and spray devices. Implementation of the system in such constructions do not necessarily 
need mortar joints (i.e., a wet joint), but can be safely constructed with dry joints (e.g., metallic brackets 
or punctual joints) to avoid the issues you highlighted while also speeding up the building process. 
Further research on this configuration would be needed. 

These findings, and the precise applicability of the system, need to be confirmed in a real-scale 
experimental setup in order to assess: 

- The role played by the extension of water-filled bricks; 
- The water consumption rate under different inlet dry bulb air temperature and relative humidity 

values; 
- The role played by direct solar radiation impinging on the system;  
- Integration of the system within the target constructions. 
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5.  Conclusions 
The experiments conducted on the hollow bricks filled with water prototype have provided useful 
insights on the capacity and prospective applications of Direct Evaporative Cooling that suggest further 
detailed investigations: 

- No significant differences in the cooling capacity of the system have been detected under 
laboratory conditions when implementing one, two or three brick rows for the air to pass through 
and cool down. Consequently, the simplicity and affordability of a unique path is preferred. 

- Saturation effectiveness does not depend on the inlet air psychrometric conditions, but the 
temperature drop achieved strongly does. The maximum temperature drop achieved for a single 
air path through the water-filled bricks amounts to 11.7 °C, 10.1 °C and 9.1 °C for air flow rates 
of 240 m3/h, 370 m3/h and 530 m3/h respectively and an inlet air temperature of 40 °C. The 
corresponding cooling capacities amount to 0.8, 1.1 and 1.5 kW, in order. 

- Potential applications of the DEC system, to be investigated in real-scale mock-ups, may range 
from agricultural and production buildings in the form of external walls to small precincts 
outdoor in order to relief workers and pedestrians respectively from harsh conditions. 

- Hollow clay bricks are widespread and more affordable than the ceramic prototypes specifically 
designed and typically studied in the literature for evaporative cooling purposes. Moreover, water 
filling from an upper tank instead of capillary soaking ensures the entire brick being wet and thus 
higher cooling capacities. 
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