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Abstract: Elementary problems as the evaluation of repeated derivatives of ordinary transcendent
functions can usefully be treated with the use of special polynomials and of a formalism borrowed
from combinatorial analysis. Motivated by previous researches in this field, we review the results
obtained by other authors and develop a complementary point of view for the repeated derivatives
of sec(.), tan(.) and for their hyperbolic counterparts.
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1. Introduction

The problem of finding closed forms for the repeated derivatives of trigonometric functions as
tangent and secant, even though being an apparently elementary issue, has been solved in relatively
recent times in ref. [1]. Inspired by this work, a significant amount of research has been subsequently
developed. In ref. [2] the proof of the results of [1] was reformulated in terms of a procedure exploiting
the “Zeons” Algebra [3]. In [4,5] the authors addressed this study by employing a class of polynomials
(the derivative polynomials (DP) introduced in refs. [6,7]) to reformulate the derivation and eventually
get a set of fairly simple formulae, providing the successive derivatives of tan, cot, sec, csc, . . . along
with those of their hyperbolic counterparts.

In this note we develop a point of view not dissimilar from that of ref. [4,5]. We provide
straightforward results in terms of a single family of Legendre like polynomials and comment on the
two forms of DP introduced in [3–5].

The repeated derivatives of composite functions F(x) = f (g(x)) is a well-established topic in
calculus. The formulation of a procedure allowing the derivation of a formula comprising all the
possible cases was established in the XIX century [8] and opened important avenue of research in
combinatorics [9] and umbral calculus [10,11] as well.

The problem is particularly interesting, encompasses different topics in analysis, including special
polynomials like those belonging to the Touchard family [12] and special numbers like the generalized
Stirling forms [13,14] of crucial importance in combinatorial analysis. The repeated derivatives of the
Gaussian function are those of a composite function in which f (.) is an exponential and g(.) a quadratic
function. The relevant expression leads to the Hermite polynomials as auxiliary tool, to get a synthetic
expression for any order of the derivative [15]. Within the same context, Bell polynomials emerge
whenever one is interested in the derivatives of F(x) = eg(x) [9,16,17]. The generalization to the case
of f (.), provided by a generic infinitely differentiable function, and g(.), a quadratic form, has been
discussed in refs. [18,19] where the problem has been solved by the use of generalized nested forms of
Hermite polynomials.
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The hyperbolic secant is a composite function too in which f (.) = (.)−1, g(.) = cosh(.).
In refs. [2,4,5,20] interesting speculations have been presented on the study of the relevant repeated
derivatives and of the associated auxiliary polynomials. In this paper we address the same problem,
within a different context. Before entering the specific elements of the discussion we review the
formalism we are going to exploit in this paper.

A pivotal role within the context of repeated derivatives is played by the Stirling number of
second kind [13,14]. They will be introduced using the Touchard polynomials which are defined
through the Rodriguez type formula [15,21] where, for n ≥ 0, we set

Tn(x) = e−x(xD̂x)
nex (1)

where D̂x is the derivative operator d
dx . They can be written in explicit form by the use of the following

expression [13]

(xD̂x)
n =

n

∑
r=0

S2(n, r)xrĈr
x , (2)

with S2(n, r) being the Stirling number of second kind (we introduce the notation S2(l, m) instead of
the usually symbol

{
l
m

}
; to indicate functions domains, we will use conventional symbols as N,Z,R

for Natural, Integer or Real numbers respectively including the zero). Ref. [9,12] defined as

S2(l, m) =
1

m!

m

∑
j=0

(−1)m−j
(

m
j

)
j l . (3)

According to Equations (1) and (2), the Touchard polynomials are explicitly given by

Tn(x) =
n

∑
r=0

S2(n, r)xr (4)

and the numbers S2(n, k) are therefore the coefficients of the polynomials.
A fairly straightforward application of the previous computational tool is provided by the

evaluation of a closed expression for higher order derivatives.

Theorem 1. We have that, ∀m ∈ N,

D̂m
x f (ex) =

m

∑
r=0

S2(m, r) exr f (r)(ex) (5)

where f (r)(ξ) denotes the r-order derivative .

Proof. Let
Im(x) = D̂m

x f (ex), (6)

by setting ex = ξ, we find

D̂m
x f (ex) = (ξD̂ξ)

m f (ξ) =
m

∑
r=0

S2(m, r) ξr f (r)(ξ) (7)

and in conclusion we obtain

D̂m
x f (ex) =

m

∑
r=0

S2(m, r) exr f (r)(ex)

in which it is understood that f (r)(ex) = D̂r
ξ f (ξ) |ξ=ex .

We next define a family of auxiliary polynomials Pn(x, y) and show how they can be very useful for
the computation of the repeated derivatives of tan−1(x) (we use the notation tan−1(x) for arctan(x)).
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Theorem 2. For any x, y ∈ R, n ∈ N,

Pn(x, y) = n!
b n

2 c

∑
r=0

xn−2ryr(n− r)!
(n− 2r)!r!

, (8)

a family of two variable polynomials loosely ascribed to the Legendre [22,23] family, then

D̂n
x

(
tan−1(x)

)
=

1
1 + x2 Pn−1

(
− 2x

1 + x2 ,− 1
1 + x2

)
, ∀n ∈ N0. (9)

Proof. We start from the computation of the quantity

Kn(x) = D̂n
x

(
1

1 + x2

)
, ∀x ∈ R, ∀n ∈ N (10)

which upon the use of the Laplace transform method can be written as

Kn(x) = D̂n
x

∫ ∞

0
e−s(1+x2)ds =

∫ ∞

0
e−sD̂n

x e−sx2
ds. (11)

The n-th order derivative inside the integral sign can be explicetely worked in terms of two variable
Hermite polynomials [15]

Hn(x, y) = n!
b n

2 c

∑
r=0

xn−2ryr

(n− 2r)!r!
, (12)

namely the auxiliary polynomials for the repeated derivatives of Gaussian functions according to
the identity

D̂n
x e−ax2

= Hn(−2ax,−a) e−ax2
. (13)

Accordingly we find

Kn(x) =
∫ ∞

0
e−sHn(−2xs,−s)e−sx2

ds =
∫ ∞

0
e−σ Hn

(
−2

xσ

1 + x2 ,− σ

1 + x2

)
1

1 + x2 dσ =

=
n!

1 + x2

b n
2 c

∑
r=0

(
−2x
1+x2

)n−2r ( −1
1+x2

)r

(n− 2r)!r!

∫ ∞

0
e−σσn−rdσ =

1
1 + x2 Pn

(
− 2x

1 + x2 ,− 1
1 + x2

)
.

(14)

The proof of the identity (9) is readily achieved by noting that

D̂x

(
tan−1(x)

)
=

(
1

1 + x2

)
, (15)

which eventually provides

D̂n
x

(
tan−1(x)

)
= Kn−1(x) =

1
1 + x2 Pn−1

(
− 2x

1 + x2 ,− 1
1 + x2

)
, ∀n ∈ N0.

Corollary 1. If we introduce the further notation

Kν
n(x) := D̂n

x

(
1

(1 + x2)
ν

)
, (16)

an extension of the procedure we have just envisaged allows the further results



Axioms 2019, 8, 138 4 of 9

Kν
n(x) =

1
(1 + x2)

ν Pν
n

(
− 2x

1 + x2 ,− 1
1 + x2

)
,

Pν
n (w, z) =

n!
Γ(ν)

b n
2 c

∑
r=0

wn−2rzr Γ(ν + n− r)
(n− 2r)!r!

, ∀ν ∈ R.

(17)

Proof. ∀ν ∈ R

Kν
n(x) = D̂n

x

(
1

(1 + x2)
ν

)
= D̂n

x
1

Γ(ν)

∫ ∞

0
sν−1e−s(1+x2)ds =

1
Γ(ν)

∫ ∞

0
sν−1e−sD̂n

x e−sx2
ds =

=
1

Γ(ν)

∫ ∞

0
sν−1e−s Hn(−2xs,−s)e−sx2

ds =

=
1

Γ(ν)

∫ ∞

0

(
σ

1 + x2

)ν−1
e−σ Hn

(
−2

xσ

1 + x2 ,− σ

1 + x2

)
1

1 + x2 dσ =

=
n!

Γ(ν)(1 + x2)ν

b n
2 c

∑
r=0

(
−2x
1+x2

)n−2r ( −1
1+x2

)
(n− 2r)!r!

∫ ∞

0
e−σσν+n−r−1dσ =

=
1

(1 + x2)ν
Pν

n

(
− 2x

1 + x2 ,− 1
1 + x2

)
.

Remark 1. Corollary 1 can be exploited to write the repeated derivatives of cos−1(x) in the form

D̂n
x cos−1(x) = −D̂n−1

x

(
1√

1− x2

)
= − 1√

1− x2
P

1
2

n−1

(
2x

1− x2 ,
1

1− x2

)
, ∀n ∈ N0. (18)

The previous examples have shown the interplay between special polynomials of the Pn(x, y) and
the derivatives of the inverse of trigonometric functions.

In the following we will see that the same polynomials are of central importance for the evaluation
of the repetead derivatives of trigonometric functions. They play the role of auxiliary polynomials for
the lorentzian type functions and inverse trigonometric functions as well. The relevant elements of
contact with the DP will be discussed in the final section of the paper.

2. Higher Order Derivatives of Trigonometric Functions

The starting point of the discussion of this section is the derivation of a closed form for the
quantity D̂m

x (sech(x)), ∀m ∈ N0.

Proposition 1. ∀m ∈ N0, ∀x ∈ [0, 2π],

D̂m
x (sech(x)) = sech(x)

m

∑
k=0

S2(m, k) e(k−1)x
(

ex Pk

(
− sech(x),− 1

2ex sech(x)
)
+

+ k Pk−1

(
− sech(x),− 1

2ex sech(x)
))

.

(19)

Proof. Let
sech(x) =

2
ex + e−x (20)

then, after setting ex = ξ, we obtain ∀m ∈ N0
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D̂m
x (sech(x)) = D̂m

log ξ

(
2ξ

1 + ξ2

)
= 2

(
ξD̂ξ

)m
(

ξ

1 + ξ2

)
. (21)

The straightforward applications of the proof of the Theorem 1 yields (we omit the argument of
the Pn polynomials for simplicity)

2
(
ξD̂ξ

)m
(

ξ

1 + ξ2

)
=

2
1 + ξ2

m

∑
k=0

S2(m, k) ξk (ξPk(., .) + kPk−1(., .)) (22)

which, eventually, leads to

D̂m
x (sech(x)) = sech(x)

m

∑
k=0

S2(m, k) e(k−1)x
(

ex Pk

(
− sech(x),− 1

2ex sech(x)
)
+

+ k Pk−1

(
− sech(x),− 1

2ex sech(x)
))

.

We can go even further and obtain a closed form for D̂m
x (sech(x))ν, ∀m ∈ N, ∀ν ∈ R.

Corollary 2. ∀m ∈ N, ∀ν ∈ R

D̂m
x (sechν(x)) = sechν(x)∑m

r=0 S2(m, r) exr ∑r
s=0 (

r
s)

n!
(n− r + s)!

e−x(r−s) Pν
s

(
− sech(x),− 1

2ex sech(x)
)

(23)

where Pk
m(. , .) are the polynomials in Equation (17).

By using the same techniques of the Proposition 1, Corollary 2 and the opportune identity
sec(x) = 2

eix+e−ix , we can move on and provide the higher order derivatives for other trigonometric
circular functions.

Example 1. ∀m ∈ N0, ∀x ∈ [0, 2π]

D̂m
x (sec(x)) = im sec(x)

m

∑
r=0

S2(m, r) eix(r−1)
(

eixPr

(
− sec(x),− 1

2eix sec(x)
)
+

+ r Pr−1

(
− sec(x),− 1

2eix sec(x)
))

.

(24)

Example 2. ∀m ∈ N, ∀x ∈ [0, 2π] : x 6= π
2 + kπ, k ∈ Z

D̂m
x (tan(x)) =

m

∑
s=0

(
m
s

)
sin
(

x + (m− s)
π

2

)
D̂s

x(sec(x)). (25)

Example 3. ∀m ∈ N, ∀x ∈ [0, 2π] : x 6= kπ, k ∈ Z

D̂m
x (cot(x)) =

m

∑
s=0

(
m
s

)
cos

(
x + (m− s)

π

2

)
D̂s

x

(
sec
(

x− π

2

))
. (26)

Remark 2. The use of the Leibniz rule in Equations (25) or (26) can be avoided by setting

tan(x) = i
1− ξ2

1 + ξ2 = i
(

2
1 + ξ2 − 1

)
, ξ = eix (27)
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and eventually ending up with

D̂m
x (tan(x)) = im+1

(
sec(x)

m

∑
r=0

S2(m, r) eix(r−1)Pr

(
− sec(x),− 1

2eix sec(x)
)
− δm,0

)
, (28)

where δm,0 is Kronecker’s delta, indeed

D̂m
x (tan(x)) = im (ξD̂ξ

)m
(

i
(

2
1 + ξ2 − 1

))
= 2 im+1 (ξD̂ξ

)m
(

1
1 + ξ2 −

1
2

)
=

= 2 im+1
m

∑
r=0

S2(m, r) ξr
(

1
1 + ξ2 −

1
2

)(r)
=

= 2 im+1
m

∑
r=0

S2(m, r) ξr

((
1

1 + ξ2

)(r)
+

(
−1

2

)(r)
)

=

= 2 im+1

((
m

∑
r=0

S2(m, r) ξr 1
1 + ξ2 Pr(., .)

)
+

(
m

∑
r=0

S2(m, r) ξr
(
−1

2

)(r)
))

=

= im+1

(
sec(x)

m

∑
r=0

S2(m, r) eix(r−1)Pr

(
− sec(x),− 1

2eix sec(x)
)
− δm,0

)
.

In the forthcoming section we will discuss the comparison with previous papers and present
possible developments along the lines we have indicated.

3. Final Comments

In the previous two sections we have dealt with a general procedure useful to derive closed
formulae for the repeated derivatives of circular and hyperbolic functions and of their inverse. We have
underscored the importance of the polynomials Pn(x, y) which play a role analogous to the DP
introduced in refs. [6,7] and used in [4,5] for analogous occurrences.

The Pn(x, y) are two variable polynomials defined in terms of the Laplace transform of the Hermite
Kampé dé Fériét family [24]. They have been loosely defined Legendre-like and can be reduced to
more familiar forms, by noting that

Pn(x, y) = y
n
2 Pn

(
x√−y

)
,

Pn(z) = n!
b n

2 c

∑
r=0

(−1)rzn−2r(n− r)!
(n− 2r)!r!

(29)

with Pn(z) satisfying the generating function

∞

∑
n=0

tn

n!
Pn(z) =

1
1− tz + t2 , ∀t, z ∈ R :| t2 − t z |< 1 (30)

and

1
n!

Pn(2x,−1) =
b n

2 c

∑
k=0

(−1)k(n− k)!(2x)n−2k

(n− 2k)!k!
= Un(x). (31)

The link with previous papers addressing the same problem treated here, in particular with that
developed in refs. References [4,5] can be obtained by using the same steps suggested by Cvijović or
Boyadzhiev. We assume that an identity of the type
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D̂n
x (tan(x)) = Πn(tan(x)) (32)

with ∏n(.) being not yet specified polynomials, (in refs. [4,5] they are denoted by Pn(x), we have
used the capital Greek letter to avoid confusion with the Pn(x, y) polynomials defined in this paper)
does holds. The polynomials Πn(.) can be determined by the change of variable tan(x) = ξ which
allows to transform Equation (32) into[(

1 + ξ2
)

D̂ξ

]n
(ξ) = Πn(ξ) (33)

which is a kind of Rodrigues type relation [25] defining the polynomials Πn(ξ).
The relevant generating function can be obtained by multiplying both sides of Equation (33) by

tn

n!
, by summing up over the index n and ending up with

et[(1+ξ2)D̂ξ ]ξ =
∞

∑
n=0

tn

n!
Πn(ξ). (34)

The use of the Lie derivative identity [26]

et[(1+ξ2)D̂ξ ] f (ξ) = f
(

ξ cos(t) + sin(t)
cos(t)− ξ sin(t)

)
(35)

finally yields

∞

∑
n=0

tn

n!
Πn(ξ) =

ξ + tan(t)
1− ξ tan(t)

(36)

which is the generating function given in [4,5].
The second family of DP can be defined by the use of the same procedure. According to refs. [4,5]

they are implicitly defined by the condition

D̂n
x (sec(x)) = sec(x)Qn(tan(x)) (37)

which, by the use of the same change of variable leading to Equation (33), yields

Qn(ξ) =
1√

1 + ξ2

(
(1 + ξ2) D̂ξ

)n√
1 + ξ2 (38)

which can be straightforwardly exploited to derive the relevant properties. The use of the identity (35)
eventually yields the associated generating functions

∞

∑
n=0

tn

n!
Qn(ξ) =

sec(t)
1− ξ tan(t)

(39)

which is the same reported in refs. [4,5].
By recalling that the Hoppe formula writes

D̂m
t f (g(t)) =

m

∑
k=0

1
k!

f (k)(σ) |σ=g(t) Am,k,

Am,k =
k

∑
j=0

(
k
j

)
(−1)k−jg(t)k−jD̂m

t (g(t)j), ∀m, k ∈ N,
(40)

for the case of sec(x), we find

D̂m
x sec(x) =

m

∑
k=0

seck+1(x)
k

∑
j=0

(
k
j

)
(−1)j cosk−j(x) D̂m

x (cosj(x)) (41)
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which appears impractical since it needs the repeated derivatives of an integer power of the
cosine function.

Before closing the paper we consider worth to underscore the possible use of DP to evaluate the
derivatives of the type

λm,j(x) = D̂m
x (cosj(x)). (42)

Making the ansatz that

D̂m
x (cosj(x)) = (−1)jΛm,j(tan(x)) (43)

and, by using the same procedure leading to Equation (33), we can identify the function

Λm,j(ξ) =
[(

1 + ξ2
)

D̂ξ

]m

 1(√
1 + ξ2

) j

 (44)

which is specified by the generating function

∞

∑
m=0

tm

m!
Λm,j(ξ) =

[1− ξ tan(t)]j[
(1 + ξ2)

(
1 + tan2(t)

)] j
2

. (45)

It is worth to consider the alternative assumption

D̂m
x (cosj(x)) = (−1)m∆m,j(cos(x)) (46)

which, after the change of variable ξ = cos(x), yields for the function ∆m,j(.) the operational definition

∆m,j(ξ) =

(
−
√

1− ξ2 D̂ξ

)m
ξ j (47)

The use of the Lie derivative identity [26]

e−t
(√

1−ξ2 D̂ξ

)
f (ξ) = f

(
ξ cos(t)−

√
1− ξ2 sin(t)

)
(48)

yields, for ∆m,j(ξ), the generating function

∞

∑
m=0

tm

m!
∆m,j(ξ) =

(
ξ −

√
1− ξ2 tan(t)

)j
cosj(t). (49)

The two methods we have discussed in this paper, namely the procedure based on the DP
of refs. [4,5] or on the support polynomials Pn(x, y), are complementary. There are no prevailing
reasons to prefer one or the other method. The formulae associated with the first are more synthetic
but Πn(ξ), Qn(ξ) are not given explicitly and should be evaluated recursively (which becomes
cumbersome for larger order of the derivative). On the other side, the use of the other procedure leads
to less appealing formulae in terms of polynomials which are, however, explicitly given.
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