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Abstract. G protein-coupled receptors (GPCRs) are cell surface proteins mainly involved in signal
transmission; however, they play a role also in several pathophysiological conditions. Chemically
heterogeneous molecules like peptides, hormones, lipids, and neurotransmitters activate second
messengers and induce several biological responses by binding to these seven transmembrane receptors,
which are coupled to heterotrimeric G proteins. Recently, additional molecular mechanisms have been
involved in GPCR-mediated signaling, leading to an intricate network of transduction pathways. In this
regard, it should be mentioned that diverse GPCR family members contribute to the adaptive cell
responses to low oxygen tension, which is a distinguishing feature of several illnesses like neoplastic and
cardiovascular diseases. For instance, the G protein estrogen receptor, namely G protein estrogen
receptor (GPER)/GPR30, has been shown to contribute to relevant biological effects induced by hypoxia
via the hypoxia-inducible factor (HIF)-1α in diverse cell contexts, including cancer. Likewise, GPER has
been found to modulate the biological outcome of hypoxic/ischemic stress in both cardiovascular and
central nervous systems. Here, we describe the role exerted by GPCR-mediated signaling in low oxygen
conditions, discussing, in particular, the involvement of GPER by a hypoxic microenvironment.
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INTRODUCTION

G protein-coupled receptors (GPCRs) are seven
transmembrane-spanning receptors that regulate many cellu-
lar functions upon ligand activation (1). The biological
responses mediated by GPCRs involve the recruitment of
proteins prompting the receptor internalization and desensi-
tization, like arrestins and GPCR kinases (GRKs) as well as
membrane-bound partners, namely heterotrimeric G proteins
(1,2). In the inactive state, G proteins consist of a Gβγ
monomer which maintains a high affinity for a guanine
diphosphate (GDP)-bound Gα subunit (1,2). On the basis of
the sequence identity, four subtypes of Gα subunit (Gαs, Gαi,
Gαq, and Gα12) have been extensively characterized (1,2).
Ligand binding promotes conformational modifications that
result in the exchange of GDP for GTP on the Gα subunit,
leading to a decreased affinity of Gα for the Gβγ subunit.
The dissociation of the heterotrimer allows that both GTP-

bound Gα and free Gβγ activate numerous transduction
pathways like mitogen-activated protein kinase (MAPK),
phosphatidylinositol 3-kinase (PI3-K), small GTP-binding
proteins (Ras and Rho GTPases), and other mediators that
contribute to various physiopathological responses (1,2). For
instance, an aberrant expression of GPCRs and/or their
activation have been associated to several types of tumors
(3,4). Consequently, the pharmacological manipulation of
certain GPCR-mediated signaling may represent a promising
anti-cancer strategy (3,4). As demonstrated for many GPCRs
(3,4), the G protein estrogen receptor (GPER, also known as
GPR30) may trigger oncogenic signaling (5,6). GPER binds
to estrogens, phyto- and xenoestrogens, and also estrogen
receptor (ER) antagonists that may act as GPER agonists
(7–12). GPER mediates the activation of a network of
transduction pathways; however, the actual role elicited by
GPER in tumorigenesis is still controversial. Previous studies
have shown that GPER may induce cell cycle arrest and
inhibition of cancer cell growth (13–16). Nevertheless, other
in vitro and in vivo studies have revealed that GPER triggers
cancer cell migration and proliferation (5,17). In addition,
GPER expression was associated to inflammatory breast
tumor (18), was found reduced during breast cancer tumor-
igenesis (19), and was related to a poor relapse-free survival
in breast cancer patients treated with tamoxifen (20). The
lack of GPER in the plasma membrane was linked to a
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favorable prognosis in breast cancer (21), whereas its
expression was associated with aggressive features of breast,
endometrial, and ovarian tumors (22–24). In this context, we
have demonstrated that GPER is upregulated by EGF,
insulin-like growth factor (IGF)-I, insulin, and a main factor
contributing to tumor aggressiveness like hypoxia (25–31). A
low oxygen tension characterizes the growth of solid tumors,
where it promotes adaptive responses like anaerobic glycol-
ysis, reduction of macromolecule synthesis, and angiogenesis
(32). In addition, hypoxia is critical for the pathogenesis of
heart disease and stroke, the major causes of human mortality
(33). The effects of hypoxia are mainly mediated by hypoxia-
inducible factor (HIF) family members, which orchestrate the
complex responses to low oxygen tension (34). In particular,
HIF-1α regulates the expression of several pro-angiogenic
factors involved in tumor angiogenesis progression (34,35).
Many signaling cascades are engaged by hypoxia toward HIF-
1α activation such as receptor tyrosine kinases (RTKs) and
GPCRs (30,31,36). Here, we discuss the involvement of
certain GPCRs, including GPER, in hypoxia-mediated sig-
naling toward cancer development and cardiovascular
diseases.

GPCR INVOLVEMENT IN HYPOXIA-MEDIATED
SIGNALING

A low oxygen tension characterizes relevant pathophys-
iological conditions like cancer and cardiovascular diseases
(32–34). Multiple mechanisms for oxygen sensing have been
developed and conserved in both prokaryotic and eukaryotic
organisms (32–34). In particular, HIF-1 acts as a master
regulator of the adaptive cell response to limited oxygen
availability mainly by activating the transcription of genes
that regulate physiological processes as glycolysis, survival,
and angiogenesis (34–37). HIF-1 is a heterodimer of two
helix-loop-helix-PAS proteins, namely HIF-1α and HIF-1β or
ARNT (38). Upon hypoxia, HIF-1α and HIF-1β dimerize
and bind to the hypoxia-responsive elements (HREs) located
within the promoter region of target genes (38). Several
factors contribute to HIF-1α-mediated action in hypoxic
conditions, including diverse GPCRs (30,39). For instance,
GPR41 was shown to be a hypoxia-induced receptor that
drives p53-dependent apoptosis in rat cardiomyocytes sub-
jected to ischemia and reoxygenation injury (40) whereas
GPR22 was involved in cardioprotection as its ablation
increased the susceptibility to functional decompensation
following hemodynamic stress (41). The adrenergic signaling
axis, consisting of catecholamines and their adrenergic
receptors, has been included among GPCRs that play a
primary role in oxygen-related diseases like hypertension,
cardiac hypertrophy, and heart failure (42). Moreover, the
adrenoreceptors have been shown to functionally interact
with opioid receptors (43), which elicit protective actions in
response to pre- and post-conditioning stimuli upon cardiac
and cerebral damages (44,45). It is worth noting that certain
ligand-activated GPCRs induce HIF-1 expression and func-
tion (46–48), thus mimicking hypoxic conditions. For instance,
the recruitment of transcription factors to the promoter
sequence of HIF-1 as well as the stabilization of HIF-1
protein levels may occur upon activation of GPCRs by

endothelin-1 (ET-1), β-adrenoceptor agonists, and
lysophosphatidic acid (46–48).

GPCR INVOLVEMENT IN TUMOR ANGIOGENESIS
UPON HYPOXIA

Tumor microenvironment is often characterized by
hypoxia, which is a distinguishing feature of an aggressive
cancer phenotype and disease recurrence (32). The metabolic
changes occurring in rapidly growing cells, the increasing
diffusion distances between the blood vessels and certain
tumor areas, and the compressive action elicited by the
expanding mass on local blood vessels may cumulatively
account for low intra-tumor oxygenation (32). The effects of
hypoxia on the malignant progression are mediated by
complex mechanisms that allow tumor cells to survive and/
or escape their oxygen-deficient environment (32,34). More-
over, the adaptive responses to hypoxic stress in the tumor
microenvironment trigger the formation of new blood vessels
stimulated by pro-angiogenic factors (35,37). Along with the
activation of endothelial cells (ECs) and the subsequent
degradation of the basement membrane, the angiogenic
response leads to the migration and proliferation of ECs,
which then form tubes generating new blood vessels (49).
Moreover, tumor angiogenesis prompts cancer cells to grow,
evade the host surveillance, form the pre-metastatic niche,
and invade distant sites (49); hence, the molecular players
driving this complex process are intensively investigated
toward effective anti-tumor strategies (49). To date, the major
growth factors involved in the formation of blood vessels are
members of the vascular endothelial growth factor (VEGF)
family (50). It includes placental growth factor (PlGF),
VEGF-AVEGF-B, VEGF-C, VEGF-D, and VEGF-E, which
bind to the tyrosine kinase receptors, namely VEGF receptor
(VEGFR)-1, VEGFR-2, and VEGFR-3 (50). VEGF-A
mainly mediates new blood vessel formation within the tumor
mass as its binding to VEGFR-2 promotes EC proliferation,
migration, and vascular permeability (50). Hormones, cyto-
kines, and growth factors have been shown to boost VEGF-
dependent tumor angiogenesis; however, hypoxia represents
the primary stimulus for VEGF production and release in the
tumor microenvironment (50). Diverse members of the
GPCR family are involved in the angiogenic action induced
by thrombin, prostaglandins, lysophosphatidic acid,
chemokines, and sphingosine 1-phosphate in different patho-
physiological conditions, suggesting that certain GPCRs
contribute to the development of blood vessels (51–54). In
addition, the heterotrimeric G proteins Gαq and Gα11 may
contribute to angiogenic responses by interacting with
VEGFR-2 (55) and the G protein-coupled receptor kinase 2
(GRK2) has recently emerged as an integrative node toward
the development of cancer-associated vascularization (56). In
the tumor microenvironment, chemokines and their receptors
elicit relevant paracrine actions, as suggested by the ability of
CCL2, CCL5, and CXCL8/IL-8 to recruit within the tumor
mass leukocytes and macrophages, which release VEGF and
other angiogenic factors (57). Furthermore, cytokines may
stimulate the production of prostaglandin E2 (PGE2), which
increases the secretion of VEGF, CXCL8, and CXCL5 by
tumor and stromal cells (57). Overall, these data suggest that
GPCR-mediated signaling may modulate the angiogenic
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process together with the VEGF/VEGFR axis. Further
corroborating these observations, the anti-tumor activity
exhibited by several GPCR antagonists has been correlated
with their anti-angiogenic properties and anti-proliferative
effects (58). Among the GPCRs contributing to the formation
of new blood vessels in hypoxic conditions, the chemokine
receptor CXCR4 that binds to the stromal cell-derived factor-
1 (SDF-1)/CXCL12 has been shown to stimulate tumor
outgrowth and metastasis as well as angiogenesis upon
hypoxia (59). The angiogenic factor named adrenomedullin
(ADM) signals through the calcitonin receptor-like receptor
(CRLR), which is a GPCR expressed in several tumors like
the high-vascular clear renal cell carcinoma (RCC) (60,61). A
functional consensus HRE was identified within the promoter
region of the human CRLR gene, thus corroborating the role
of CRLR in the formation of new blood vessels upon hypoxic
conditions (60,61). Among the vasoactive pro-angiogenic
molecules, ET-1 and the cognate receptors (ETRs) are
aberrantly activated in diverse malignancies and regulated
by low oxygen tension through HIF-1α (62). In this
regard, HIF-1α/VEGF signaling has been considered as a
downstream transduction pathway activated by the ET-1
axis (62). For instance, in human chondrosarcoma cells,
ET-1 promoted the expression of VEGF, angiogenesis,
and cell migration by activating integrin-linked kinase
(ILK), Akt, and HIF-1α-mediated signaling cascades
(63). In ovarian carcinoma, in both normoxic and hypoxic
conditions, ET-1 induced the transcription and accumula-
tion of HIF-1α and the upregulation of VEGF, suggesting
that ET-1 action may be linked to hypoxia and HIF-1α-
dependent angiogenesis (64). In our recent study (65), we
also found that ET-1 may trigger GPER expression and
function leading to angiogenic responses. Recently, the
adrenergic system has been shown to boost tumor
angiogenesis and aggressive features through the upregu-
lation of diverse angiogenic factors like VEGF, IL-6, IL-8,
matrix metalloproteinase (MMP)-2, and MMP-9 (66,67).
The involvement of HIF-1α in the aforementioned bio-
logical responses to catecholamine-mediated stress was
also evidenced in other studies showing that the β2-
adrenergic receptor (AR)/HIF-1α axis regulates angiogen-
esis and stress-induced pancreatic tumor growth in mouse
models (68). In hypoxic melanoma cells, β3-ARs have
been found to be upregulated and involved in the increase
of VEGF, as evidenced by using two β3-AR blockers
(69). Additionally, in ovarian cancer cells, the α1-AR
blocker doxazosin prevented VEGF-mediated cell migra-
tion, proliferation, and capillary-like structure tube forma-
tion (70). These effects were dependent on the activation
of VEGFR-2 and downstream signaling including HIF-1α
(70). Altogether, these observations may suggest that the
adrenergic system plays a role in tumor angiogenesis and
progression, in particular through HIF-1α-mediated re-
sponses and VEGF expression in hypoxic conditions.
Virally encoded GPCRs may also contribute to cancer
angiogenesis and progression as evidenced by the human
herpesvirus-8 (HHV-8 or Kaposi’s sarcoma-associated
herpesvirus (KSHV))-encoded G protein-coupled receptor
(vGPCR) (71). In this regard, it has been demonstrated
that KSHV stimulates the expression of the angiogenic
factor angiopoietin-like 4 (71) as well as the production of

VEGF through HIF-1α (72). Accordingly, the expression
of vGPCR in human umbilical vein endothelial cells
(HUVECs) triggered cell immortalization together with a
constitutive expression and activation of VEGFR-2, thus
proposing a role for vGPCRs in the acquisition of the KS-
angiogenic phenotype in the model system used (73).

GPER IS INVOLVED IN HYPOXIA-MEDIATED
SIGNALING

GPER has been recently characterized toward its ability
to mediate estrogen action in reproductive, immune, skeletal,
cardiovascular, and central nervous systems (5). In addition,
our and other studies have largely demonstrated the involve-
ment of GPER in the stimulatory effects elicited by estrogens
in cancer cells and tumor microenvironment (6,9–11). Signif-
icantly, several studies performed in different cell and animal
models have ascertained the role exerted by GPER in certain
pathological conditions characterized by oxygen deficiency
(30,31,74–78). In this regard, it has been demonstrated that
GPER activation may decrease myocardial damage and
increase functional recovery after ischemia-reperfusion (I/R)
injury, which often induces dangerous complications like
arrhythmia in patients with myocardial infarction (74–78).
Likewise, in rat hearts of both sexes exposed to I/R injury, the
activation of GPER reduced myocardial inflammation and
infarct size as well as improved immunosuppression and
myocardial mechanical performance (79–81). Interestingly,
the expression levels of both GPER and HIF-1α were found
to be increased in spontaneously hypertensive rat hearts
compared to normotensive controls, suggesting that HIF-1α/
GPER signaling may represent a transduction mediator in
certain conditions characterized by elevated blood pressure
(74), which is tightly linked to hypoxia (82). Of note, the
selective GPER agonist G-1 markedly lowered blood pres-
sure in normotensive and hypertensive rats (83,84), thus
supporting the hypothesis that GPER may be a valuable
pharmacological target for the prevention/treatment of cer-
tain cardiovascular diseases. Further supporting the role
elicited by GPER in hypoxic conditions, previous studies
have reported that its activation may attenuate the detrimen-
tal effects induced by oxygen deficiency in some areas of the
central nervous system like the hypothalamic-pituitary axis,
hippocampal formation, brainstem autonomic nuclei, and
spinal cord (85,86). For instance, GPER activation promoted
neuronal survival after global ischemia through the activation
of pro-survival and anti-apoptotic signaling cascades (86). An
improvement in cerebral microvascular function upon
hypoxia/reoxygenation injury was also observed upon GPER
activation in male and female rats (87), although sex-
dependent protective effects mediated by GPER have been
also shown to influence the outcome of ischemic stroke (88).
In this regard, it has been demonstrated that GPER
expression increases after stroke in the brain of male but
not female mice, thus suggesting that a gender-specific
regulation of GPER may occur and influence the recovery
from cerebral I/R (88). The regulation of GPER expression
following hypoxia has been evaluated in breast cancer cells as
well as in cancer-associated fibroblasts (CAFs) obtained from
breast malignancies (30,31). In these cells, hypoxia-stimulated
HIF-1α was found recruited to the HRE sequences located
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within the promoter region of the human GPER gene (30,31).
Accordingly, HIF-1α was required for both the
transactivation of a GPER promoter reporter gene as well
as for the upregulation of GPER expression upon hypoxia
(30,31). These observations were further corroborated by the
involvement of HIF-1α/GPER signaling in VEGF expression
toward tumor angiogenesis and progression (31,89). In
addition, HIF-1α/GPER/VEGF transduction pathway was
triggered in cancer cells upon exposure to copper, which
showed the ability to mimic the hypoxia-mediated signaling
(90). Interestingly, the copper-chelating agent TEPA exerted
an inhibitory action on the activation of the aforementioned
pathway (90), in accordance with previous studies demon-
strating that copper-chelating agents can exert anti-tumor
effects (91). Altogether, these results indicate that diverse
stimuli including hypoxia may trigger relevant biological
responses through GPER, which was recently shown to be
also involved in the stimulatory effects exerted by aldosterone
in breast cancer cells and breast tumor-derived endothelial
cells (92) as well as in pregnancy-induced vasodilation of rat
uterine arteries (93).

GPCRS AND HYPOXIA: IMPLICATIONS FOR DRUG
DISCOVERY

The multifaceted mechanisms of oxygen sensing mainly
orchestrated by HIF-1 represent an essential response to cope
with hypoxic stress, which often occurs in cancer, heart
disease, and stroke (32,33). As many members of the GPCR
family elicit a role in the intricate cell adaptation to oxygen
deficiency, a cross talk between HIF-1 and GPCR-mediated
pathways may be involved in the biological responses to
hypoxia in the aforementioned pathological conditions. In
recent years, the discovery and development of several
different strategies to block HIF-1 action directly or indirectly
has been suggested as a promising tool to overcome the
resistance to conventional chemotherapeutic agents in hyp-
oxic microenvironment (34,94). In this vein, HIF-1 inhibitors
may be regarded as golden candidates in combination
treatment targeting the molecular mediators activated by
hypoxia. For instance, a further approach toward new
therapeutic strategies may combine the pharmacological
manipulation of both HIF-1- and GPCR-mediated signaling.
In addition to the therapeutic purposes, GPCRs along with
HIF-1 may be regarded as further hallmarks of hypoxia
signature in different pathophysiological conditions. As it
concerns GPER, on the basis of its involvement in biological
responses to low oxygen tension, new GPER-targeted
therapies might pioneer for innovative drug discovery strat-
egies aimed to improve the efficacy of HIF blockers and
conventional angiogenic inhibitors.

CONCLUSIONS

A significant progress has been made in the past few
years toward the characterization of the molecular mecha-
nisms involved in GPCR action. In particular, many members
of the GPCR family have been shown to contribute to the
adaptive cell responses to low oxygen tension, which is a
distinguishing feature of tumor development and certain
cardiovascular diseases. In this regard, GPER may be

included among the HIF-1α target genes that drive cancer
cell survival and malignant progression. In addition, HIF-1α/
GPER signaling may play a relevant role toward VEGF
stimulation, angiogenesis, and cancer development. Further-
more, the role elicited by GPER in heart failure, stroke, and
hypertension has been largely elucidated, paving the way for
novel therapeutic approaches in these relevant illnesses that
are characterized by hypoxia and ischemia.
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