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Abstract. Cartesian tree matching is the problem of finding all sub-
strings in a given text which have the same Cartesian trees as that of a
given pattern. In this paper, we deal with Cartesian tree matching for
the case of multiple patterns. We present two fingerprinting methods,
i.e., the parent-distance encoding and the binary encoding. By combin-
ing an efficient fingerprinting method and a conventional multiple string
matching algorithm, we can efficiently solve multiple pattern Cartesian
tree matching. We propose three practical algorithms for multiple pattern
Cartesian tree matching based on the Wu-Manber algorithm, the Rabin-
Karp algorithm, and the Alpha Skip Search algorithm, respectively. In
the experiments we compare our solutions against the previous algorithm
[18]. Our solutions run faster than the previous algorithm as the pattern
lengths increase. Especially, our algorithm based on Wu-Manber runs
up to 33 times faster.

Keywords: Multiple pattern Cartesian tree matching ·
Parent-distance encoding · Binary encoding · Fingerprinting methods

1 Introduction

Cartesian tree matching is the problem of finding all substrings in a given text
which have the same Cartesian trees as that of a given pattern. For instance,
given text T = (6, 1, 5, 3, 6, 5, 7, 4, 2, 3, 1) and pattern P = (1, 4, 3, 4, 1) in Fig. 1a,
P has the same Cartesian tree as the substring (3, 6, 5, 7, 4) of T . Among many
generalized matchings, Cartesian tree matching is analogous to order-preserving
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(a) Cartesian tree matching (b) Left: double-top patterns. Right:
corresponding Cartesian trees.

Fig. 1. Cartesian tree matching: multiple Cartesian trees are required for the double-
top pattern.

matching [5,9,13,15] in the sense that they deal with relative order between num-
bers. Accordingly, both of them can be applied to time series data such as stock
price analysis, but Cartesian tree matching can be sometimes more appropriate
than order-preserving matching in finding patterns [18].

In this paper, we deal with Cartesian tree matching for the case of multi-
ple patterns. Although finding multiple different patterns is interesting by itself,
multiple pattern Cartesian tree matching can be applied in finding one mean-
ingful pattern when the meaningful pattern is represented by multiple Cartesian
trees: Suppose we are looking for the double-top pattern [17]. Two Cartesian
trees in Fig. 1b are required to identify the pattern, where the relative order
between S[1] and S[5] causes the difference. In general, the more complex the
pattern is, the more Cartesian trees having the same lengths are required. (e.g.,
the head-and-shoulder pattern [17] requires four Cartesian trees.)

Recently, Park et al. [18] introduced (single pattern) Cartesian tree match-
ing, multiple pattern Cartesian tree matching, and Cartesian tree indexing with
their respective algorithms. They proposed the parent-distance representation
that has a one-to-one mapping with Cartesian trees, and gave linear-time solu-
tions for the problems, utilizing the representation and existing string algorithms,
i.e., KMP algorithm, Aho-Corasick algorithm, and suffix tree construction algo-
rithm. Song et al. [19] proposed new representations about Cartesian trees, and
proposed practically fast algorithms for Cartesian tree matching based on the
framework of filtering and verification.

Extensive works have been done to develop algorithms for multiple pat-
tern matching, which is one of the fundamental problems in computer sci-
ence [11,16,20]. Aho and Corasick [1] presented a linear-time algorithm based
on an automaton. Commentz-Walter [6] presented an algorithm that combines
the Aho-Corasick algorithm and the Boyer-Moore technique [3]. Crochemore
et al. [8] proposed an algorithm that combines the Aho-Corasick automaton and
a Directed Acyclic Word Graph, which runs linear in the worst case and runs in



Fast Multiple Pattern Cartesian Tree Matching 109

O((n/m) logm) time in the average case, where m is the length of the shortest
pattern. Rabin and Karp [12] proposed an algorithm that runs linear on average
and O(nM) in the worst case, where M is the sum of lengths of all patterns.
Charras et al. [4] proposed an algorithm called Alpha Skip Search, which can
efficiently handle both single pattern and multiple patterns. Wu and Manber
[22] presented an algorithm that uses an extension of the Boyer-Moore-Horspool
technique.

In this paper we present practically fast algorithms for multiple pattern
Cartesian tree matching. We present three algorithms based on Wu-Manber,
Rabin-Karp, and Alpha Skip Search. All of them use the filtering and veri-
fication approach, where filtering relies on efficient fingerprinting methods of a
string. Two fingerprinting methods are presented, i.e., the parent-distance encod-
ing and the binary encoding. By combining an efficient fingerprinting method
and a conventional multiple string matching algorithm, we can efficiently solve
multiple pattern Cartesian tree matching. In the experiments we compare our
solutions against the previous algorithm [18] which is based on the Aho-Corasick
algorithm. Our solutions run faster than the previous algorithm. Especially, our
algorithm based on Wu-Manber runs up to 33 times faster.

2 Problem Definition

2.1 Notation

A string is a sequence of characters drawn from an alphabet Σ, which is a set
of integers. We assume that a comparison between any two characters can be
done in constant time. For a string S, S[i] represents the i-th character of S,
and S[i..j] represents the substring of S starting from i and ending at j.

A Cartesian tree [21] is a binary tree derived from a string. Specifically, the
Cartesian tree CT (S) for a string S can be uniquely defined as follows:

– If S is an empty string, CT (S) is an empty tree.
– If S is not empty and S[i] is the minimum value in S[1..n], CT (S) is the tree
with S[i] as the root, CT (S[1..i− 1]) as the left subtree, and CT (S[i+ 1..n])
as the right subtree. If there is more than one minimum value, we choose the
leftmost one as the root.

Given two strings T [1..n] and P [1..m], where m ≤ n, we say that P matches
T at position i if CT (T [i − m + 1..i]) = CT (P [1..m]). For example, given
T = (6, 1, 5, 3, 6, 5, 7, 4, 2, 3, 1) and P = (1, 4, 3, 4, 1) in Fig. 1a, P matches T
at position 8. We also say that T [4..8] is a match of P in T .

Cartesian tree matching is the problem of finding all the matches in the text
which have the same Cartesian trees as a given pattern.

Definition 1. (Cartesian tree matching [18]) Given two strings text T [1..n]
and pattern P [1..m], find every m ≤ i ≤ n such that CT (T [i − m + 1..i]) =
CT (P [1..m]).
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2.2 Multiple Pattern Cartesian Tree Matching

Cartesian tree matching can be extended to the case of multiple patterns. Mul-
tiple pattern Cartesian tree matching is the problem of finding all the matches
in the text which have the same Cartesian trees as at least one of the given
patterns.

Definition 2. (Multiple pattern Cartesian tree matching [18]) Given a text
T [1..n] and patterns P1[1..m1], P2[1..m2], ..., Pk[1..mk], find every position in the
text which matches at least one pattern, i.e., it has the same Cartesian tree as
that of at least one pattern.

3 Fingerprinting Methods

Fingerprinting is a technique that maps a string to a much shorter form of
data, such as a bit string or an integer. In Cartesian tree matching, we can use
fingerprints to filter out unpromising matching positions with low computational
cost.

In this section we introduce two fingerprinting methods, i.e., the parent-
distance encoding and the binary encoding, for the purpose of representing infor-
mation about Cartesian tree as an integer. The two encodings make use of the
parent-distance representation and the binary representation, respectively, both
of which are strings that represent Cartesian trees.

3.1 Parent-Distance Encoding

In order to represent Cartesian trees efficiently, Park et al. proposed the parent-
distance representation [18], which is another form of the all nearest smaller
values [2].

Definition 3. (Parent-distance representation) Given a string S[1..n], the
parent-distance representation of S is an integer string PD(S)[1..n], which is
defined as follows:

PD(S)[i] =

{
i − max1≤j<i{j : S[j] ≤ S[i]} if such j exists
0 otherwise

(1)

Intuitively, PD(S)[i] stores the distance between S[i] and the parent of S[i]
in CT (S[1..i]). For example, the parent-distance representation of string S =
(11, 14, 13, 15, 12) is PD(S) = (0, 1, 2, 1, 4), where PD(S)[3] = 3 − 1 = 2 stores
the distance between S[3] and S[1] (S[1] is the parent of S[3] in CT (S[1..3])). The
parent-distance representation has a one-to-one mapping to the Cartesian tree
[18], and so if two strings have the same parent-distance representations, the two
strings also have the same Cartesian trees. The parent-distance representation
of a string can be computed in linear time [18]. Note that PD(S)[i] holds a value
between 0 to i − 1 by definition, and PD(S)[1] = 0 at all times.
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With the parent-distance representation, we can define a fingerprint encoding
function that maps a string to an integer, using the factorial number system [14].

Definition 4. (Parent-distance Encoding) Given a string S[1..n], the encoding
function f(S), which maps S into an integer within the range [0..n! − 1], is
defined as follows:

f(S) =
n∑

i=2

(PD(S)[i]) · (i − 1)!. (2)

The parent-distance encoding maps a string into a unique integer according to its
parent-distance representation. That is, given two strings S1 and S2, CT (S1) =
CT (S2) if and only if f(S1) = f(S2). This is because if PD(S1) #= PD(S2)
then f(S1) #= f(S2) due to the fact that PD(S)[i] < i. The encoding function
f(S[1..n]) can be computed in O(n) time, since PD(S) can be computed in
linear time. For a long string, the fingerprint may not fit in a word size, so we
select a prime number by which we divide the fingerprint, and use the residue
instead of the actual fingerprint. A similar encoding function was used to solve
the multiple pattern order-preserving matching problem [10].

3.2 Binary Encoding

For order-preserving matching, the representation of a string as a binary string
is first presented by Chhabra and Tarhio [5]. Recently, Song et al. make use of
the binary representation for Cartesian tree matching as follows [19].

Definition 5. (Binary representation) Given an n-length string S, binary rep-
resentation β(S) of length n − 1 is defined as follows: for 1 ≤ i ≤ n − 1,

β(S)[i] =

{
1 if S[i] ≤ S[i+ 1]
0 otherwise.

(3)

Given two strings S1[1..n] and S2[1..n], the binary representations β(S1) and
β(S2) are the same if the Cartesian trees CT (S1) and CT (S2) are the same
[19]. Obviously, the Cartesian tree has a many-to-one mapping to the binary
representation. Thus, two strings whose binary representations are the same
may not have the same Cartesian trees, but two strings whose Cartesian trees
are the same have the same binary representations.

A fingerprint encoding function f(S) can be defined using the binary repre-
sentation.

Definition 6. (Binary Encoding) Given a string S[1..n], encoding function
f(S), which maps S into an integer within the range [0..2n−1 − 1], is defined
as follows:

f(S) =
n−1∑

i=1

(β(S)[i] · 2n−1−i). (4)



112 G. Gu et al.

Since f(S) is a polynomial, it can be efficiently computed in linear time using
Horner’s rule [7]. Moreover, a fingerprint computed by the binary encoding can
be reused when two strings overlap, which is discussed in the full version of this
paper. Like the parent-distance encoding, in case the fingerprint does not fit in
a word size, we select a prime number by which we divide the fingerprint, and
use the residue instead of the actual fingerprint.

4 Fast Multiple Pattern Cartesian Tree Matching
Algorithms

In this section we introduce three algorithms for multiple pattern Cartesian tree
matching. Each of them consists of preprocessing and search. In the prepro-
cessing step, hash tables are built using fingerprints of patterns. In the search
step, the filtering and verification approach is adopted. To filter out unpromising
matching positions, a fingerprinting method is applied to either length-m sub-
strings of the text, where m is the length of the shortest pattern, or much shorter
length-b substrings of the text (we will discuss how to set b in Sect. 4.4). Then
each candidate pattern is verified by an efficient comparison method (which is
described in the full version of this paper).

Algorithm 1. Algorithm based on Wu-Manber
1: input: text T [1..n] and patterns P1[1..m1], P2[1..m2], ..., Pk[1..mk]
2: output: every position in T that matches at least one of the patterns
3: procedure Preprocessing
4: m ← min(m1,m2, ...,mk)
5: b ← log2(km)
6: Initialize each entry of SHIFT to m − b+ 1
7: for i ← 1 to k do
8: for j ← b to m − 1 do
9: fp ← f(Pi[j − b+ 1..j])
10: if SHIFT[fp] > m − j then
11: SHIFT[fp] ← m − j

12: fp ← f(Pi[m − b+ 1..m])
13: HASH[fp].add(i)

14: procedure Search
15: index ← m
16: while index ≤ n do
17: fp ← f(T [index − b+ 1..index])
18: for i ∈ HASH[fp] do
19: if Pi matches T [index − m+ 1..index − m+mi] then
20: output index − m+mi

21: index ← index+ SHIFT[fp]
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4.1 Algorithm Based on Wu-Manber

Algorithm 1 shows the pseudo-code of an algorithm for multiple pattern Carte-
sian tree matching based on the Wu-Manber algorithm [22]. The algorithm uses
two hash tables, HASH and SHIFT. Both tables use a fingerprint of length-b
string, called a block. Either the parent-distance encoding or the binary encod-
ing is used to compute the fingerprint. Given patterns P1, P2, ..., Pk, let m be
the length of the shortest pattern. HASH maps a fingerprint fp of a block to the
list of patterns Pi such that the fingerprint of the last block in Pi’s length-m
prefix is the same as fp. For a block B[1..b] and a fingerprint encoding function
f , HASH is defined as follows:

HASH[f(B)] = {i : f(Pi[m − b+ 1..m]) = f(B), 1 ≤ i ≤ k} (5)

SHIFT maps a fingerprint fp of a block to the amount of a valid shift when
the block appears in the text. The shift value is determined by the rightmost
occurrence of a block in terms of the fingerprint among length-(m − 1) prefixes
of the patterns. For a block B[1..b] and a fingerprint encoding function f , we
define the rightmost occurrence rB as follows:

rB =

{
maxb≤j≤m−1{j : f(Pi[j − b+ 1..j]) = f(B), 1 ≤ i ≤ k} if such j exists
0 otherwise

(6)
Then SHIFT is defined as follows:

SHIFT[f(B)] = m − rB (7)

In the preprocessing step, we build HASH and SHIFT (as described in
Algorithm 1). In the search step, we scan the text from left to right, comput-
ing the fingerprint of a length-b substring of the text to get a list of patterns
from HASH. Let index be the current scanning position of the text. We compute
fingerprint fp of T [index − b + 1..index], and get a list of patterns in the entry
HASH[fp]. If the list is not empty, each pattern is verified by an efficient compari-
son method (see the full version). Consider Pi[1..mi] in the list. The comparison
method verifies whether Pi matches T [index − m + 1..index − m + mi]. After
verifying all patterns in the list, the text is shifted by SHIFT[fp].

The worst case time complexity of Algorithm 1 is O((M + b)n), where M
is the total pattern length, b is the block size, and n is the length of the text
(consider T = 1n and the patterns of which prefixes are 1m). On the other hand,
the best case time complexity of Algorithm 1 is O( bn

m−b ).

4.2 Algorithm Based on Rabin-Karp

The second algorithm for multiple pattern Cartesian tree matching is based
on the Rabin-Karp algorithm [12]. The algorithm uses one hash table, namely
HASH. HASH is similarly defined as in Algorithm 1 except that we consider
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length-m prefixes instead of blocks and we use only binary encoding for fin-
gerprinting. For a string S[1..m] and the binary encoding function f , HASH is
defined as follows:

HASH[f(S)] = {i : f(Pi[1..m]) = f(S), 1 ≤ i ≤ k} (8)

In the preprocessing step, we build HASH. In the search step, we shift one
by one, and compute the fingerprint of a length-m substring of the text to get
candidate patterns by using HASH. Again, each candidate pattern is verified by
an efficient comparison method.

Given a fingerprint at position i of the text, the next fingerprint at position
i + 1 can be computed in constant time if we use the binary encoding as a
fingerprinting method. Let the former fingerprint be fpi = f(T [i−m+1..i]) and
the latter one be fpi+1 = f(T [i − m+ 2..i+ 1]). Then,

fpi+1 = 2(fpi − 2m−2β(T )[i − m+ 1]) + β(T )[i] (9)

Subtracting 2m−2β(T )[i−m+1] removes the leftmost bit from fpi, multiplying
the result by 2 shifts the number to the left by one position, and adding β(T )[i]
brings in the appropriate rightmost bit.

The worst case time complexity of the algorithm is O(Mn) (consider T = 1n
and patterns of which prefixes are 1m). The best case time complexity is O(n)
since fingerprint fi at position i, m+ 1 ≤ i ≤ n, can be computed in O(1) time
using Eq. (9).

4.3 Algorithm Based on Alpha Skip Search

The third algorithm for multiple pattern Cartesian tree matching is based on
Alpha Skip Search [4]. Recall that a length-b string is called a block. The algo-
rithm uses a hash table POS that maps the fingerprint of a block to a list of
occurrences in all length-m prefixes of the patterns. Either the parent-distance
encoding or the binary encoding is used for fingerprinting. For a block B[1..b]
and a fingerprint encoding function f , POS is defined as follows:

POS[f(B)] = {(i, j) : f(Pi[j − b+ 1..j]) = f(B), 1 ≤ i ≤ k, b ≤ j ≤ m} (10)

In the preprocessing step, we build POS. In the search step, we scan the
text from left to right, computing the fingerprint of a length-b substring of the
text to get the list of pairs (i, j), meaning that the fingerprint of Pi[j − b+ 1..j]
is the same as that of the substring of the text. Verification using an efficient
comparison method is performed for each pair in the list. Note that the algorithm
always shifts by m − b+ 1.

The worst case time complexity of the algorithm is O((M + b)n), where M
is the total pattern length, b is the block size, and n is the length of the text
(consider T = 1n and patterns of which prefixes are 1m). On the other hand,
the best case time complexity of the algorithm is O( bn

m−b ) since the algorithm
always shifts by m − b+ 1.
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4.4 Selecting the Block Size

The size of the block affects the running time of the presented algorithms based
on Wu-Manber and Alpha Skip Search. A longer block size leads to a lower
probability of candidate pattern occurrences, so it decreases verification time.
On the other hand, a longer block size increases the overhead required for com-
puting fingerprints. Thus, it is important to set a block size appropriate for each
algorithm.

In order to set a block size, we first study the matching probability of two
strings, in terms of Cartesian trees. Assume that numbers are independent and
identically distributed, and there are no identical numbers within any length-n
string.

Lemma 1. Given two strings S1[1..n] and S2[1..n], the probability p(n) that S1

and S2 have the same Cartesian tree can be defined by the recurrence formula,
where p(0) = 1 and p(1) = 1, as follows:

p(n) =
p(0)p(n − 1) + p(1)p(n − 2) + · · ·+ p(n − 1)p(0)

n2
(11)

We have the following upper bound on the matching probability.

Theorem 1. Assume that numbers are independent and identically distributed,
and there are no identical numbers within any length-n string. Given two strings
S1[1..n] and S2[1..n], the probability that the two strings match, in terms of
Cartesian trees, is at most 1

2n−1 , i.e., p(n) ≤ 1
2n−1 .

We set the block size b = log2(km) if log2(km) ≤ m; otherwise we set b = m,
where k is the number of patterns and m is the length of the shortest pattern,
in order to get a low probability of match and a relatively short block size with
respect to m. By Theorem 1, if we set b = log2(km), p(b) ≤ 2

km .

5 Experiments

We conduct experiments to evaluate the performances of the proposed algorithms
against the previous algorithm. We compare algorithms based on Aho-Corasick
(AC) [18], Wu-Manber (WM), Rabin-Karp (RM), and Alpha Skip Search (AS).
By default, all our algorithms use optimization techniques described in the full
version of this paper, except the min-index filtering method which is evaluated
in the experiments. Particularly, in order to compare the fingerprinting methods
and see the effect of min-index filtering method, we compare variants of our
algorithms. The following algorithms are evaluated.

– AC: multiple Cartesian tree matching algorithm based on Aho-Corasick [18].
– WMP: algorithm based onWu-Manber that uses the parent-distance encoding
as a fingerprinting method.

– WMB: algorithm based on Wu-Manber that uses the binary encoding as
a fingerprinting method. The algorithm reuses fingerprints when adjacent
blocks overlap b − 1 characters (i.e., when the text shifts by one position),
where b is the block size.
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– WMBM: WMB that exploits additional min-index filtering.
– RK: algorithm based on Rabin-Karp that uses the binary encoding as a fin-
gerprinting method.

– ASB: algorithm based on Alpha Skip Search that uses the binary encoding
as a fingerprinting method. The algorithm reuses fingerprints when adjacent
blocks overlap b − 1 characters.

All algorithms are implemented in C++. Experiments are conducted on a
machine with Intel Xeon E5-2630 v4 2.20GHz CPU and 128GB memory running
CentOS Linux.

The total time includes the preprocessing time for building data structures
and the search time. To evaluate an algorithm, we run it 100 times and measure
the average total time in milliseconds.

We randomly build a text of length 10,000,000 where the alphabet size is
1,000. A pattern is extracted from the text at a random position.

5.1 Evaluation on the Equal Length Patterns

We first conduct experiments with sets of patterns of the same length.
Figures 2a, 2c, and 2e show the results, where k is the number of patterns and
x-axis represents the length of the patterns, i.e., m. As the length of the patterns
increases, WMB, WMBM, and ASB become the fastest algorithms due to a long
shift length, low verification time, and light fingerprinting method. WMBM and
WMB outperforms AC up to 33 times (k = 100 and m = 256). ASB outperforms
AC up to 28 times (k = 10 and m = 256). RK outperforms AC up to 3 times
(k = 50, 100 and m = 16). When the length of the patterns is extremely short,
however, AC is the clear winner (m = 4). In this case, other algorithms näıvely
compare the greatest part of patterns for each position of the text. WMP works
visibly worse when m = 8 due to the extreme situation and overhead of the
fingerprinting method. Since short patterns are more likely to have the same
Cartesian trees, the proposed algorithms are sometimes faster when m = 4 than
when m = 8 due to the grouping technique described in the full version of this
paper. Comparing WMB and WMBM, the min-index filtering method is more
effective when there are many short patterns (k = 100 and m = 4, 8).

5.2 Evaluation on the Different Length Patterns

We compare algorithms with sets of patterns of different lengths. Figures 2b,
2d, and 2f show the results. The length is randomly selected in an interval, i.e.,
[8, 32], [16, 64], [32, 128], and [64, 256]. After a length is selected, a pattern
is extracted from the text at a random position. When there are many short
patterns, i.e., k = 100 and patterns of length 8–32, AC is the fastest due to the
short minimum pattern length.

When the length of the shortest pattern is sufficiently long, however, the
proposed algorithms outperform AC. Specifically WMB outperforms AC up to
20 times (k = 10, 50, 100 and patterns of length 64–256). ASB outperforms AC
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(a) k = 10 (b) k = 10

(c) k = 50 (d) k = 50

(e) k = 100 (f) k = 100

Fig. 2. Evaluation on the length of pattern. Left: patterns of equal length. Right:
patterns of different lengths.

up to 14 times (k = 10 and patterns of length 64–256). RK outperforms AC
up to 4 times (k = 100 and patterns of length 16–64).

5.3 Evaluation on the Real Dataset

We conduct experiment on a real dataset, which is a time series of Seoul tem-
peratures. The Seoul temperatures dataset consists of 658,795 integers referring
to the hourly temperatures in Seoul (multiplied by ten) in the years 1907–2019
[19]. In general, temperatures rise during the day and fall at night. Therefore,
the Seoul temperatures dataset has more matches than random datasets when
patterns are extracted from the text. Figure 3 shows the results on the Seoul
temperatures dataset with sets of patterns of the same length. As the pattern
length grows, the proposed algorithms run much faster than AC. For short pat-
terns (m = 4, 8), AC is the fastest algorithm, and AC is up to twice times faster
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(a) k = 10 (b) k = 50 (c) k = 100

Fig. 3. Evaluation on the Seoul temperatures dataset.

than WMBM (m = 4 and k = 100) and 1.7 times faster than RK (m = 8 and
k = 100). For moderate-length patterns (m = 16, 32), RK is up to 2.8 times
faster than AC (m = 16 and k = 10), and WMB is up to 4 times faster than
AC (m = 32 and k = 10). For relatively long patterns (m = 64, 128, 256), all
the proposed algorithms outperform AC. Specifically, WMB, WMBM, ASB, and
WMP outperform AC up to 28, 26, 11, and 10 times, respectively (m = 256 and
k = 10), and RK outperforms AC up to 2.9 times (m = 256 and k = 100).

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.
Commun. ACM 18(6), 333–340 (1975)

2. Berkman, O., Schieber, B., Vishkin, U.: Optimal doubly logarithmic parallel algo-
rithms based on finding all nearest smaller values. J. Algorithms 14(3), 344–370
(1993)

3. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Commun. ACM 20(10),
762–772 (1977)

4. Charras, C., Lecroq, T., Pehoushek, J.D.: A very fast string matching algorithm
for small alphabets and long patterns. In: Farach-Colton, M. (ed.) CPM 1998.
LNCS, vol. 1448, pp. 55–64. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0030780

5. Chhabra, T., Tarhio, J.: Order-preserving matching with filtration. In:
Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 307–314.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07959-2 26

6. Commentz-Walter, B.: A string matching algorithm fast on the average. In: Maurer,
H.A. (ed.) ICALP 1979. LNCS, vol. 71, pp. 118–132. Springer, Heidelberg (1979).
https://doi.org/10.1007/3-540-09510-1 10

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms
second edition. The Knuth-Morris-Pratt Algorithm (2001)

8. Crochemore, M., Czumaj, A., Gasieniec, L., Lecroq, T., Plandowski, W., Rytter,
W.: Fast practical multi-pattern matching. Inf. Process. Lett. 71(3–4), 107–113
(1999)

9. Ganguly, A., Hon, W.K., Sadakane, K., Shah, R., Thankachan, S.V., Yang, Y.:
Space-efficient dictionaries for parameterized and order-preserving pattern match-
ing. In: 27th Annual Symposium on Combinatorial Pattern Matching (CPM), pp.
2:1–2:12. LIPIcs (2016)



Fast Multiple Pattern Cartesian Tree Matching 119

10. Han, M., Kang, M., Cho, S., Gu, G., Sim, J.S., Park, K.: Fast multiple order-
preserving matching algorithms. In: Lipták, Z., Smyth, W.F. (eds.) IWOCA 2015.
LNCS, vol. 9538, pp. 248–259. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-29516-9 21

11. Hua, N., Song, H., Lakshman, T.: Variable-stride multi-pattern matching for scal-
able deep packet inspection. In: IEEE INFOCOM 2009, pp. 415–423. IEEE (2009)

12. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
J. Res. Dev. 31(2), 249–260 (1987)

13. Kim, J., et al.: Order-preserving matching. Theor. Comput. Sci. 525, 68–79 (2014)
14. Knuth, D.E.: The Art of Computer Programming, volume 2: Seminumerical algo-

rithms. Addison-Wesley Professional, Boston (2014)
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