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Abstract: Glioblastoma multiforme (GBM) is the deadliest form of brain tumors. To date, the GBM
therapeutical approach consists of surgery, radiation-therapy and chemotherapy combined with
molecules improving cancer responsiveness to treatments. In this review, we will present a brief
overview of the GBM classification and pathogenesis, as well as the therapeutic approach currently
used. Then, we will focus on the modulatory role exerted by pituitary adenylate cyclase-activating
peptide, known as PACAP, on GBM malignancy. Specifically, we will describe PACAP ability to
interfere with GBM cell proliferation, as well as the tumoral microenvironment. Considering its
anti-oncogenic role in GBM, synthesis of PACAP agonist molecules may open new perspectives for
combined therapy to existing gold standard treatment.
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1. Introduction

Gliomas represent the most frequent malignant tumor affecting the central nervous
system (CNS), including all glial cell-derived cancers. Based on World Health Organization
classification, four types of gliomas can be classified: astrocytoma of grade I and grade I,
representing astrocytic tumor, the grade III astrocytoma, consisting in anaplastic tumor,
and grade IV astrocytoma or glioblastoma multiforme (GBM) [1]. The latter represents
the deadliest brain cancer, with high cell heterogeneity and poor prognosis since it is
characterized by therapeutic resistance and relapse after surgery. To counteract this issue,
many studies have focused on identification of a new therapeutic approach consisting in
co-administration of new molecules to the existing gold-standard treatment. In this way,
the researchers have attempted to increase the therapy effectiveness, rendering tumoral
tissue more vulnerable and counteracting its chemoresistance. Among new propositions,
the inhibition of malignant cells infiltration into the surrounding parenchyma seems to be
the more promising strategy.

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic peptide
first isolated from ovine hypothalamus by Miyata and co-workers in 1989 [2]. This peptide
is widely expressed in the CNS where it exerts different effects depending on the patho-
physiological condition of tissue or organ [3–7]. Recent findings have demonstrated its
involvement in various tumors, including GBM, where it exerts different effects depending
on histopathological features of cancer [8–13]. In this review, we will first provide an
overview of the GBM classification and existing therapy, highlighting the recent insight
about the combined therapeutics approach reported in the literature. Finally, we will report
existing findings related to PACAP involvement in GBM malignancy and the molecular
mechanisms underlying its anti-oncogenic activity.
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2. Glioblastoma Multiforme: Classification, Pathogenesis and Therapeutic Approaches

GBM is a lethal form of brain cancer affecting adults with poor prognosis, since the
median survival of patients is between 14–17 months [14]. Based on different histologic
features, the World Health Organization (WHO) classifies gliomas into astrocytoma of
grades I, II, III or IV, the latter also being known as GBM [1,15]. By using genomic and
transcriptomic analyses, GBM is also classified into four molecular subtypes [16,17]. Ac-
cordingly, a recent review has listed some criteria to subtype GBM, emphasizing their
clinical relevance to develop a specific targeted therapy [18]. Based on expression of spe-
cific markers, it is possible to distinguish a Proneural, Neural, Mesenchymal or Classical
GBM subtype [17]. In 2017, Wang et al. proposed a new classification including Clas-
sical, Proneural, and Mesenschymal GBM, since Neural subtype consist of non-tumor
cells [19]. In accordance with this evidence, Teo et al. validated three robust GBM-subtypes:
Proneural/Neural, Classical, and Mesenchymal by using a gene-classifier on six different
platforms among various group population [20]. Moreover, large scale genomic studies
extrapolated from The Cancer Genome Atlas (TCGA) have revealed various mutations
on oncogene and/or onco-suppressor genes by subtyping GBM, including TP53, PTEN,
Neurofibromin-1 and epidermal growth factor receptor (EGFR). In particular, the ampli-
fication of EGFR is detected in approximately 50% of primary tumors and occurs in the
initial or recurrent stage. A specific EGFR mutation, known as EGFR variant III mutation,
was detected in glioblastoma tissue in the initial phase as well as in relapse, although
in the latter frequency was lower than in tumor tissue from the initial surgery [21,22].
Controversial findings concerning the correlation between tumor progression and EGFR
amplification or EGFRvIII mutation are reported. Accordingly, some studies associated
their alteration with an enhanced survival rate while others with bad prognosis [23–25].
Based on isocitrate dehydrogenase (IDH) enzyme mutations, it is possible to predict GBM
outcome. In fact, characterization of IDH1 and IDH2 isoforms have assumed a prognostic
value. In particular, patients carrying on mutations of these variants have a better response
to standard treatment, as well as longer survival when compared to wild-type IDH1 pa-
tients [26–28]. An additional classification is based on identification of MGMT promoter
methylation, involving 45% of GBM patients.

More recently, by following new recommendations proposed by cIMPACT-NOW
research group, the upcoming WHO classification 2021 on CNS tumors discriminates
between adult and pediatric GBM [29,30].

GBM is characterized by a heterogeneous mass, made up of infiltrating cells, stroma,
blood vessels, secreted molecules and surrounding matrix. All these factors affect cancer
development by promoting invasion and recurrence. In fact, cancer microenvironment
contributes to tumor tissue transcriptional and genetic profile by comprising genes charac-
terizing the different GBM molecular subtypes. A better understanding of tumor intrinsic
signals, microenvironment and their interplay could help to understand the pathogenetic
mechanism involved in malignancy and find a new combination for chemo- and immuno-
therapy strategies to address a more specific individual therapy.

It has been largely demonstrated that microenvironment hypoxia represents a feature
common to various solid tumors, including GBM, and it is linked to poor prognosis as well
as therapy resistance [31–33]. In 1953, Gray and co-workers first demonstrated that hy-
poxic microenvironment determines tumor radio-resistance in different animal models [34].
Subsequently, other investigators have detailed this correlation [35,36]. More specifically,
hypoxia contributes to the creation of an environmental cue directly responsible for cancer
stem cells (CSCs) maintenance [37–40]. The latter escape radiotherapy or chemotherapy
are directly responsible for cell genesis, aggressiveness, self-renewal and multipotency
leading to cancer recurrence [41,42]. Furthermore, hypoxia reduces the expression of genes
responsible for DNA repair, by inducing its mutations [43]; it also drives the transcrip-
tion of hypoxia-inducible factors (HIFs), including HIF-1α and HIF-2α in GSCs. High
HIF-1α levels were detected either in GBM GSCs or non-GSCs, whereas HIF-2α enhanced
expression were reported exclusively in GSCs [44].
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Hypoxia signaling cascade activates many downstream target genes responsible
for enhancing cell invasiveness and uncontrolled neovascularization, including vascular
endothelial growth factor (VEGF) [45]. Furthermore, it has been demonstrated that GSC
population determines a perivascular induction of VEGF, which in turn leads to new
vessel formation [46]. On the other hand, VEGF through an autocrine mechanism binds
VEGFR2 receptor present on the GSCs surface, promoting the maintenance of the stem-
like phenotype [35,47]. Another mechanism responsible for new vessel formation is the
hypoxia-driven vasculogenesis. In this case, HIF-1α induces GSCs to secrete stromal cell–
derived factor 1 (SDF-1), determining an increased attraction of heterogeneous population
of bone marrow-derived endothelial progenitor cells, including endothelial progenitor
cells (EPC), in tumoral periphery through mediation of CXC chemokine receptor type
4 (CXCR-4). The EPCs are involved in proliferation, as well as in trophic support for
endothelial cells [48,49].

The effect of the tumoral hypoxic microenvironment is not limited to angiogenesis
since it also regulates the transition of tumor epithelial cells towards the more malignant
mesenchymal phenotype. The epithelial mesenchymal transition (EMT) is a key process
involved in tumoral metastasis. Recent papers have demonstrated that the hypoxic mi-
croenvironment within tumor mass recruits circulating or residential myeloid cells (i.e.,
macrophages or microglia) into stroma, as well as triggers the activation of the EMT
process [50–52].

Overall, the key role performed by the hypoxic microenvironment to drive progression
of tumor towards malignancy by promoting different biological events is evident. Therefore,
the use of drugs targeting tumor hypoxic pathways could improve radiation response in
GBM patients [53].

Considering the structural heterogeneity of tumor mass, the actual approach consists
of a multimodal treatment combining surgery, radiation and chemotherapy with additional
molecules [15], also finalized to counteract recurrence.

Temozolomide (TMZ) is a molecule used in gold-standard treatment of GBM. This
molecule is a DNA alkylating agent capable of inducing destruction of cancer cells since
it prevents DNA replication. Usually, this drug is co-administered with radiotherapy for
a further six cycles for maintenance [54,55]. Hepatic impairment and myelosuppression
represent the most frequent side-effects [56].

Since VEGF overexpression is commonly found in GBM [57,58], targeting this factor
is considered a promising therapeutic approach to counteract tumor progression [59,60].
Among the antiangiogenic proposed therapy, Bevacizumab (BV) has been approved by the
US Food and Drug Administration (FDA) to treat GBM in adult [61]. It is a monoclonal
antibody recognizing vascular endothelial growth factor (VEGF) and then capable of
counteracting uncontrolled neovascularization. However, response to BV treatment seems
to depend on the GBM molecular subtype [62]. A previous study demonstrated that BV
was efficacious in patients with IDH1 wild type proneural glioblastoma [63], whereas it
failed in some other treated patients [64]. Moreover, it has been reported that BV showed
limited benefit on recurrent GBM, whereas it has no effects on the survival of patients
with primary GBM [65,66]. This effect could be related to cells’ epithelial-mesenchymal
transition (EMT), responsible of drug-resistance and tumor relapse [67,68]. Accordingly,
Huang et al., 2017 [69], demonstrated in an in vitro study that BV is capable of increasing
cell migration and EMT markers expression.

Recently, the effect of natural compounds, including cannabinoid [70] and an active
natural bioflavonoid, Chrysin, have also been tested in GBM. The latter has been shown
to exert an antiproliferative effect on glioblastoma cells [71]. Many other molecules have
shown promising therapeutic effects, such as the inhibitor of epidermal growth factor
receptor (EGFR), known as erlotinib. Unfortunately, many of these drugs do not cross
the blood-brain barrier and, consequently, did not show any efficacy on patients’ survival
during phase II of the clinical trial [72,73].
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More recently, in an open-label phase 2 trial, known as REGOMA, researchers tested
regorafenib, an oral multikinase inhibitor of angiogenic and oncogenic receptor tyrosine
kinases, to treat recurrent glioblastoma [74–77]. It is noteworthy that Detti et al. reported
an excellent response in a patient after three months of treatment with regorafenib [78].

3. PACAP and Its Related Receptors in Cancer

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a peptide that belongs
to the secretin/glucagon/growth hormone-releasing hormone/vasoactive intestinal pep-
tide (VIP) family members, widely expressed in the CNS and in peripheral organs where
it exerts different roles in a tissue-specific manner [79–84]. This peptide was isolated in
1989 from ovine hypothalamus [2]. It exists in two isoforms derived from the same pre-
cursor: PACAP-38, constituted of 38 amino acids, and PACAP-27 truncated in C-terminal
domain, including 27 amino acids [85,86]. PACAP- 38 represents the predominant form in
mammalian tissues. The various effects of PACAP are mediated by binding three different
G-protein coupled receptors: PAC1 and VPAC receptors (VPAC1 and VPAC2). PAC1 shows
higher affinity with PACAP rather than VIP, whereas both peptides show the same affinity
to bind VPAC1 and VPAC2 receptors [87,88]. Different PAC1 receptor splice variants exist:
Null, Hip, Hop1, Hop2, Hiphop1, Hiphop2, short and very short isoforms [89]. To date,
several papers have summarized the distribution of PACAP and its receptors in different
organs, including stomach, kidney, articular cartilage, human corneal endothelium, as well
as in the CNS [90–94].

By binding to its receptors, PACAP can trigger different signaling pathways down-
stream adenylate-cyclase (AC) or phospholipase-C (PLC) activation, as well as calcium-
regulated mechanisms [95]. In particular, PAC1 receptor is coupled either to G-protein
alpha subunits Gs and Gq transmembrane receptors that mediate adenylyl cyclase/cAMP
and phospholipase C (PLC)/DAG/IP3 signaling cascades, respectively [88,96]. More
specifically, the PAC1 isoforms Null, Hop1, and Hop2 induce both pathways AC and
PLC, whereas Hip isoform induces exclusively AC activation. The variants Hiphop1 and
Hiphop2 represent an intermediate phenotype [97–99]. On the other hand, the VPAC
subtypes are coupled predominantly to the Gαs transmembrane receptor that modulates
cAMP signaling cascade [100,101].

Many studies have pointed out the role exerted by PACAP in some physiological
conditions such as ageing, as well as in different pathologies, including neurodegenera-
tive diseases, such as ischemia, traumatic brain injury, amyotrophic lateral sclerosis and
retinopathy [102–115]. During the last decade, a lot of investigations have also reported the
involvement of PACAP in different tumors, such as testicular, lung, breast, prostate, colon
and pancreatic cancer, as well as neuroblastoma and glioblastoma [8,10,116–118]. However,
its controversial role has been emphasized since it triggers different effects depending
on the histopathological hallmarks of the tumor, the stage of disease as well as peptide
concentration and time of treatment [119,120]. It is noteworthy that it has also been demon-
strated that PACAP is capable of interfering with cancer progression even though it shows
contrasting effects [87,121]. In fact, it promoted cell proliferation in some cases, whereas, in
others, it reduced cell growth by inducing apoptotic cell death. Its endogenous expression,
as well as the levels of its receptors seems to be dysregulated in the different neoplasms.
More specifically, overexpression of PAC1 and VPAC1 receptors was detected in lung
cancer, breast cancer, colon cancer, prostate adenocarcinoma, and pancreas tumor, whereas
VPAC 2 receptor upregulation was detected in lung adenocarcinomas and neuroendocrine
cancers [122–124]. However, reduced expression of both PACAP and its specific PAC1
receptor was described in pancreas adenocarcinoma samples [118] and reduced expression
was measured with radioimmunoassay in lung, kidney and colon cancer samples in con-
trast to elevated levels in prostate cancer [125,126]. An altered staining pattern could be
observed in other types of cancer, such as thyroid carcinoma and testicular cancer [117,127].
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4. PACAP Involvement in GBM Malignancy

The presence of PACAP and related receptors was shown in human gliomas [128–132].
Recently, we have analyzed the peptide expression in human GBM samples by detecting
lower endogenous PACAP concentration as compared to its receptors level [9].

The functional role of PACAP has been investigated by using several in vitro models
of glioblastoma cells. In particular, an immunohistochemical study demonstrated that
VPAC1 and VPAC2 are expressed in normal brain and glioma tissues by revealing a high
cytoplasmatic expression related to grade of malignancy. The authors have also reported
the differential nuclear localization of VPAC1, which increased with glioma grades, in
contrast to weak nuclear staining of VPAC2 [133]. In 1996, Vertongen et al. [134] reported
that PACAP significantly decreased proliferation of T98G human glioma cells; conversely,
Sokolowska and Nowak (2008) [135] demonstrated that this peptide enhanced mouse C6
glioma cell proliferation after its exogenous administration. Considering these contrasting
results, it has been hypothesized that the effect of the peptide depends on the origin species
of studied cell lines. It has also been reported that PACAP treatment enhanced C6 glioma
cell proliferation already at low concentration, ranging between 10−15 to 10−13 M [136].
Accordingly, our research group showed that PACAP increased C6 glioma cell viability
already at 100 nM concentration after 48 h treatment [13]. By using two human glioblastoma
cell lines isolated from different parts of a single tumor (known as M059K and M59j cells),
it has also been proved that PACAP agonists reduced cancer cell migration, even though
they did not affect their proliferation. Furthermore, these authors have shown that PACAP
regulated cell invasion by acting through AKT signaling pathway [137,138]. Considering
the highly invasive nature of GBM, these findings demonstrated that the potential anti-
oncogenic property of this peptide is mediated through PAC1/VIPAC receptors activation.
A recent study further characterized the molecular mechanism underling PACAP anti-
invasive effect on GBM cells demonstrating that it acts by blocking PI3K/Akt and sonic
hedgehog-GLI1 (Shh/GLI1) pathways [139]. The latter are the main signaling cascades
responsible of GBM progression [140]. Furthermore, PI3K/Akt overactivation induced
upregulation of MMP-2 and MMP-9, which in turn conferred to tumor cells the proteolytic
capability to infiltrate normal tissue [141].

As mentioned above, the tumoral microenvironment plays a key role in cancer malig-
nancy. It has been demonstrated that calorie restriction (CR) is efficacious in preventing
cancer progression by increasing lifespan. In fact, it has been demonstrated that CR re-
duced cell proliferation by interfering with microenvironmental levels of several anabolic
hormones, growth factors, inflammatory cytokines and oxidative stress agents [142]. We
have investigated the effect of PACAP in C6 glioma cells cultured in serum free media,
mimicking the microenvironmental tumoral condition under CR. Results have demon-
strated that peptide treatment exacerbated CR-derived effects by leading to reduction of cell
proliferation, as well as expression of nestin, a marker of cellular malignancy. This evidence
allowed us to hypothesize that the effect of PACAP also depends on microenvironmental
conditions [13].

High cell proliferation produces in tumor mass hypoxic areas responsible for its
malignant progression [143]. In these regions, we have demonstrated that PACAP acts
by modulating the hypoxic pathway. Specifically, peptide treatment significantly reduced
HIF-1α and HIF-2α levels in glioblastoma cells by inducing a drastic inhibition of PI3K/Akt
and ERK1/2 signaling cascades, involved in uncontrolled cell proliferation. The hypoxic
microenvironment also promotes the oncogenic program by inducing EGFR transactivation.
This receptor is recognized as a prognostic marker of an advanced tumor stage since its
anomalous expression is usually linked to reduced patient survival [144,145]. In our
investigations, we found that PACAP also abrogated the aberrant EGFR transactivation
occurring in GBM cells cultured in hypoxia, probably through inhibition of PI3K/Akt and
MAPK/ERK pathway (Figure 1).
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Recently, it has also been demonstrated that PACAP causes EGFR transactivation in
non-small cell lung cancer in an oxygen-dependent manner that involves phospholipase
C but not protein kinase A. Therefore, it could be hypothesized that the peptide’ effect in
GBM may be mediated through a similar mechanism [146–148].

By using confocal laser scanning microscopy, we recently investigated the expression
of PACAP and its high affinity related receptor, PAC1R, in hypoxic areas visualized on
human GBM sections. PACAP co-localized only with HIF-1α, while PAC1R was present in
hypoxic regions, as well as in tumoral stroma. Furthermore, PACAP or PAC1R co-localized
with HIF1α in the cytoplasm or in the nucleus of tumor cells. This evidence confirmed a
strict correlation between peptides and the hypoxic area in GBM. In this study, we have
also demonstrated that PACAP interfered with uncontrolled neovascularization occurring
in hypoxic niche. By using U87MG cells exposed to hypoxia, we observed that the peptide
decreased VEGF intracellular expression, as well as its release in the growth medium.
Culturing H5V endothelial cells in conditioned medium derived from GBM cells treated
with PACAP under hypoxic condition, we observed a significant reduction in the num-
ber of tube-like structures, representing a model in vitro of micro-vessels formation. It
is noteworthy that we have provided the first evidence demonstrating that the peptide
interferes with the hypoxia-induced EMT process. As revealed by immunolocalization
analyses, PACAP and PAC1R are expressed either in mesenchymal or in epithelial cells
of GBM samples. Precisely, PACAP and its receptor co-localized in areas of human GBM
expressing vimentin and MMP-2, two markers of mesenchymal phenotype, as well as in
cells expressing ZO-1, a marker of epithelial phenotype. Moreover, in U87MG cells exposed
to hypoxia, PACAP significantly reduced the mesenchymal phenotype markers, vimentin
and matrix metalloproteinases MMP-2 and MMP-9, and, on the other hand, it increased
ZO-1 expression [149]. This demonstrated that the exogenous administration of PACAP
interfered with the EMT process by counteracting the epithelial cell differentiation towards
mesenchymal phenotype. It has been recently reported that increased protein levels of
MMP-2 and MMP-9 are responsible of extracellular matrix and basement membrane degra-
dation allowing cancer cells to spread toward surrounding tissue [150]. In this regard, we
have demonstrated that PACAP was able to counteract migration of U87MG cells exposed
to hypoxia by interfering with the EMT event. In fact, it significantly reduced the number
of Vimentin and CD44 immuno-positive migrating cells in the wounded area by using
a model in vitro invasion assay. In accord, CD44 immunoreactivity is detected in about
55.55% of GBM, where its increased levels are related to shorter patients’ survival [151–153].
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5. Conclusions

To date, data reported in the literature suggest that PACAP acts on GBM malignancy
by interfering with cell proliferation as well as the tumoral microenvironment. In this
study, we have highlighted its effect on modulation of HIFs pathway triggered in the
hypoxic niches of tumor mass. The current therapeutical approach for GBM has many
limits in terms of survival benefit. Therefore, the identification of new molecules capable of
increasing glioma cell sensitivity to therapy might be desirable. Considering that PACAP
does not cross the blood brain barrier, it could be helpful to synthetize new molecules
targeting a peptide-driven signaling system to use in combination treatment with the
existing therapeutic approach.
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