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1. Introduction

In the last two decades many advances have been made in the 
field of Quantum Technology (QT). QT aims at developing practical 
applications by making use of the properties of quantum mechan-
ics, such as superposition and entanglement [1]. The ability to 
precisely manipulate quantum systems is a key tool in develop-
ing quantum technologies [1–5].

Quantum Control (QC) looks at providing the user with a set of 
time-dependent control parameters in order to drive a dynamical 
quantum system such that it performs some specific task [2–5].

Optimal Control Theory (OCT) is a field of applied mathematics 
and is a powerful tool that provides methods to find controls that 
allow a dynamical system to evolve to achieve a predefined goal. 
For reference textbooks see for example [6–8]. When this theory 
is applied to quantum systems it is often referred to as Quantum 
Optimal Control (QOC) [2–5]. However there are other techniques 
such as Transitionless Quantum Driving [9] (or Shortcut to Adiabatic-
ity [10]).
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More recently the overlap between the fields of machine learn-
ing and quantum mechanics have been explored extensively [11–
15], with both machine learning algorithms used to improve the 
understanding and the control of quantum systems [16–18], and 
properties of quantum mechanics used to improve machine learn-
ing algorithms (Quantum Machine Learning) [19–21]. In particular, 
reinforcement learning (RL) has been employed in the context of 
control of multi-level systems [22–24], and for quantum sensing 
and metrology [25–27].

In this tutorial we illustrate the methods of numerical Optimal 
Control and Reinforcement Learning by applying them to the prob-
lem of population transfer in a three-level � or ladder system, 
for which a well-known solution is STIRAP [28–30]. Analytical so-
lutions to this problem via Optimal Control have been presented 
in [31,32,3] and a numerical example is given in [33,34], but, to 
our knowledge, no systematic numerical study exists. This prob-
lem has also been studied by applying Reinforcement Learning in 
[23,24]. Here we improve those results by defining the Markov 
Decision Process in a more convenient way, using a simpler Re-
inforcement Learning algorithm, reaching the solution by training 
the model for fewer episodes and reaching an overall better fi-
delity.

The paper is organized as follows: in Sec. 2 we introduce the 
problem of three-level population transfer and its solution via STI-
RAP. In Sec. 3 we introduce Optimal Control Theory and show its 
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Fig. 1. Scheme of the three-level system. (a) � structure and (b) ladder structure.

application on three-level population transfer. In Sec. 4 we intro-
duce the Reinforcement Learning paradigm and show its applica-
tion to the same problem. Finally, in Sec. 5 we draw the conclu-
sions.

We open-source1 parts of the source code we produced. It is 
easily adaptable, with minor changes, to different situations involv-
ing population transfer in three-level systems.

2. Three-level population transfer

Consider a three-level system composed of the quantum states 
{|g〉, |e〉, |r〉} with energies {h̄ωg, ̄hωe, ̄hωr}. The transition g ↔ e is 
driven by a classical field (called pump field) with frequency ωp
and Rabi frequency �p(t). The transition e ↔ r is driven by an-
other classical field (called Stokes field) at frequency ωs and Rabi 
frequency �s(t), see Fig. 1. Both Rabi frequencies �p(t) and �s(t)
can vary with time.

The process we want to achieve consists in transferring the 
population from state |g〉 to state |r〉 by suitably shaping the Rabi 
frequencies �p(t) and �s(t) in time.

In the following sections we introduce the equations that de-
scribe the dynamics of the system, and the STIRAP [28–30] proto-
col which allows an efficient transfer of population.

2.1. Master equation

In the rotating wave approximation [35,36] and in a convenient 
rotating frame the Hamiltonian reads [29]

H(t)

h̄
= �p |e〉〈e| + �3 |r〉〈r| + �p(t)

2
(|g〉〈e| + |e〉〈g|) +

+ �s(t)

2
(|e〉〈r| + |r〉〈e|)

(1)

where the detunings from the resonances are defined as �p =
ωp − (ωe − ωg), �s = ωs − |ωr − ωe|, and �3 = �p − �s for 
the � configuration, and �3 = �p + �s for the ladder configu-
ration, see Fig. 1. While single-photon resonance is not required 
in order to obtain a nearly perfect transfer, the two-photon reso-
nance is usually required [29] (apart some peculiar cases such as 
Ref. [18]). Thus we allow the single-photon detuning to be differ-
ent from zero �p �= 0, while we assume the two-photon detuning 
to be zero �3 = 0 for the rest of this manuscript. We also as-
sume the Rabi frequencies �p(t) and �s(t) to be real since their 
phase could be for example absorbed in the definition of the 
states |g〉 and |r〉 [36]. If the system under consideration is an 
atomic or molecular system, then the Rabi frequencies are given 
by �p(t) = −dgeEp(t)/h̄ and �s(t) = −derEs(t)/h̄, where dmn are 
the components of the dipole-transition moments along their re-
spective electric-field vectors, and Es/p(t) are the slowly varying 
amplitudes of the pump and Stokes electric fields [30].

1 https://www.github .com /luigiannelli /threeLS _populationTransfer.
2

In both the configurations � and ladder (see Fig. 1), the excited 
states can undergo spontaneous emission to lower-lying states. 
Those emission processes that lead to levels outside the three-
level system determine a probability loss and thus are undesirable. 
Spontaneous emission processes back to state |g〉 or |r〉 are inco-
herent and thus are also undesirable.

In this work we only consider radiative decay from the excited 
state |e〉 to states outside the three-level system. We model this 
phenomenon by a Born-Markov process described by the super-
operator Lγ such that the master equation describing the time 
evolution of the density matrix ρ(t) reads [37]

ρ̇(t) = − i

h̄
[H(t),ρ(t)] +Lγ ρ(t), (2)

with

Lγ ρ(t) = γ

2
(2 |s〉〈e|ρ(t) |e〉〈s| − |e〉〈e|ρ(t) − ρ(t) |e〉〈e|) . (3)

Here |s〉 is an auxiliary state where the population losses at rate γ
from state |e〉 are collected.

The figure of merit we use to quantify the performance of a 
protocol is the fidelity defined as

F = lim
t→∞ Tr {ρ(t) |r〉〈r|} . (4)

It is clear that a perfect protocol would have fidelity F = 1.

2.2. Review of the STIRAP protocol

STImulated Raman Adiabatic Passage (STIRAP) [28–30] is an adi-
abatic protocol that allows population transfer from state |g〉 to 
state |r〉 with fidelity close to one by keeping the population on 
the lossy state |e〉 very low during the evolution. In order to 
explain the STIRAP protocol we first introduce the adiabatic the-
orem [38,39].

2.2.1. Adiabatic theorem
Given a time-dependent Hamiltonian H0(t), its instantaneous 

eigenstates |n(t)〉 and its instantaneous eigenenergies En(t) are 
given by

H0(t)|n(t)〉 = En(t)|n(t)〉, (5)

i.e., they are obtained by diagonalizing the Hamiltonian H0(t) at 
each time step t . For simplicity lets assume all the states |n(t)〉 to 
be non-degenerate for any t . The solution of the time-dependent 
Schrödinger equation

ih̄
∂|ψ(t)〉

∂t
= H0(t)|ψ(t)〉, (6)

is in general a linear combination of all the instantaneous eigen-
states

|ψ(t)〉 =
∑

n

cn(t)|n(t)〉, (7)

where cn(t) are time-dependent complex amplitudes and∑
n |cn(t)|2 = 1.
If the Hamiltonian H0(t) is slowly varying2 and the initial state 

is one of the instantaneous eigenstates, then the adiabatic theorem 
guarantees that the system will follow that instantaneous eigen-
state closely: during the time evolution of the system, the tran-
sition amplitudes to instantaneous eigenstates different from the 

2 the meaning of slowly is specified later in the text and summarized by eq. (9).

https://www.github.com/luigiannelli/threeLS_populationTransfer
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Fig. 2. Artistic view of adiabatic following of an instantaneous eigenstate. The boxes 
represent the transition probabilities which are approximately zero in an adiabatic 
process.

starting one are approximately to zero (see Fig. 2 for an artistic rep-
resentation of this concept). If the initial state is |ψ(ti)〉 = |m(ti)〉, 
then

|ψ(t)〉 	 eiαm(t)|m(t)〉, (8)

i.e., cn(t) 	 eiαm(t)δmn , where α(t) is a global phase3 which is not 
important for our discussion.

The condition for the Hamiltonian H0(t) to be considered 
slowly varying can be obtained by imposing that the probability 
of finding the system in a state |m(t)〉 different from the initial 
state |n(ti)〉 is small. This can be written as [39]

h̄ |〈n(t)|∂tm(t)〉| 
 |En(t) − Em(t)| ,∀m �= n. (9)

We proceed by calculating the instantaneous eigenenergies and 
eigenstates (i.e., the eigensystem) of Hamiltonian H(t) reported in 
eq. (1).

2.2.2. Eigensystem of H(t)
The analysis of the three-level dynamics can be written in a 

simpler form by defining

�0(t) =
√

�p(t)2 + �s(t)2, (10a)

tan θ(t) = �p(t)

�s(t)
, (10b)

tanφ(t) = �0(t)

�p +
√

�2
p + �0(t)2

. (10c)

The instantaneous eigenvalues of Hamiltonian H(t), eq. (1) (with 
�3 = 0) are [29]

λ0(t) = 0, (11a)

λ−(t) = − h̄

2
�0(t) tanφ(t), (11b)

λ+(t) = h̄

2
�0(t) cot φ(t), (11c)

and the relative instantaneous eigenstates are

|a0(t)〉 = cos θ(t)|g〉 − sin θ(t)|r〉, (12a)

|a−(t)〉 = sin θ(t) cosφ(t)|g〉 − sinφ(t)|e〉 +
+ cos θ(t) cos φ(t)|r〉, (12b)

|a+(t)〉 = sin θ(t) sin φ(t)|g〉 + cosφ(t)|e〉 +
+ cos θ(t) sin φ(t)|r〉. (12c)

3 α(t) is the sum of the dynamic phase factor and the geometric phase.
3

As the three-level key feature, the |a0〉 eigenstate with eigenvalue 
zero is a dark state [40] with zero projection on state |e〉.

2.2.3. STIRAP
The STIRAP protocol allows for an efficient population transfer 

from state |g〉 to state |r〉 by adiabatically following the dark state 
|a0〉. Since the state |a0〉, eq. (12a), does not have any component 
along the excited state |e〉, the population losses at rate γ from 
that state have very little impact on the evolution of the system 
and thus on the fidelity F of the process.

In order to achieve population transfer from state |g〉 to state 
|r〉 by following |a0(t)〉 we need

|a0(ti)〉 ∝ |g〉, (13a)

|a0(tf)〉 ∝ |r〉, (13b)

where ti and tf are the initial and final time, respectively. This is 
obtained if the Stokes and pump pulses satisfy

lim
t→ti

tan θ(t) = lim
t→ti

�p(t)

�s(t)
= 0, (14a)

lim
t→tf

cot θ(t) = lim
t→tf

�s(t)

�p(t)
= 0, (14b)

and, equivalently limt→ti θ(t) = 0, limt→tf θ(t) = ±π/2.
In order for the evolution to be adiabatic, the pulses must also 

satisfy the condition [29,41]

|θ̇ (t)| 
 1

2

∣∣∣�p ±
√

�2
p + �0(t)2

∣∣∣ , (15)

which is obtained by applying eq. (9) to the eigensystem given in 
eqs. (11) and (12). Eq. (15) is a local adiabaticity condition and 
must be valid for every time t .

Eqs. (14) and (15) mathematically formalize the concept of 
counter-intuitive pulse sequence peculiar to the STIRAP protocol: 
the Stokes pulse (which couples the initially empty states |e〉 and 
|r〉) is applied first, then it gets slowly turned off while the pump 
pulse is turned on, having an overlap with the Stokes pulse. Being 
and adiabatic protocol, STIRAP is very robust against noise in the 
control fields [30].

Typically used pulses are of the form

�p(t) = �max

(
t − τ

T

)
, �s(t) = α�max

(
t + τ

T

)
, (16)

where f (t) is a pulse envelope having unit maximum value, �max
is the peak Rabi frequency, 2τ is the delay between the pulses, T
is the pulse width, and α is a scaling parameter usually equal to 
1. The counter-intuitive sequence condition imposes τ > 0.

By assuming �p 
 �p(t), �s(t), a global adiabaticity condition 
is derived by time averaging eq. (15) over the characteristic time 
τ of the �p(t) and �s(t) overlap. For the pulses of eq. (16) using 
eqs. (14) the global adiabaticity condition becomes4 �maxτ  1.

An example of STIRAP pulses is plotted in Fig. 3. For a list of 
various pulse shapes used in literature and the relative superadia-
batic solution we refer to [42,43].

Finding new STIRAP-like protocols is important in solid-state 
systems where often one must operate with reduced control re-
sources [44,45] since they provide new tools for coherently prob-
ing [46,47] or for processing [48] in quantum architectures.

4 Often the condition used [29] is �maxτ ≥ 10.
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Fig. 3. Counter-intuitive sequence of pulses peculiar to the STIRAP protocol. (a) 
Pump and Stokes gaussian pulses of the type �p/s(t) ∝ e−[(t∓τ )/T ]2

, and (b) time 
dependence of θ(t) given by eq. (10b) with the Rabi frequencies of (a).

3. Optimal control

In this section we introduce the Optimal Control problem and one 
way to approach its solution numerically. For a more rigorous and 
general treatment we refer the reader to the classical books [7,6]
and the introductory reviews [3–5].

3.1. Formulation of the optimal control problem

Consider a system described by the (non-linear) set of differen-
tial equations

ρ̇(t) = f (ρ(t), u(t), t) , t ∈ [0, T ],
u(t) = (u1(t), u2(t), . . . , uM(t)) ,

(17)

where ρ(t) represents the state of the system, f is a smooth func-
tion which describes the dynamics of the state ρ(t) and depends 
on the M control functions u(t). The objective of optimal control is 
to find some control functions u(t) such that the dynamics of the 
system is as close as possible to the desired dynamics (examples 
of what this means will be explicitly given later). This is done by 
introducing a cost functional

J (ρ(t), u(t), T ) (18)

whose minimization corresponds to the desired dynamics.

3.1.1. Quantum optimal control
Quantum Control consists in the control of the evolution of a 

quantum system. We can formulate the quantum control problem 
as

ρ̇(t) = L(t, u(t))ρ(t), (19)

i.e., by identifying in eq. (17) ρ(t) with the density matrix, f with 
a super-operator that acts on the space of density matrices and 
that describes the time evolution of the system, and u(t) with 
some external controls. The time evolution of the system can be 
expressed as
4

ρ(t) = R(t, u(t))ρ(0), (20)

where with R(t, u(t)) we indicate the time-evolution superopera-
tor (or quantum map) which does not need to be unitary since it 
can describe both the coherent and incoherent dynamics [49].

The Quantum Optimal Control problem consists in determining 
the control amplitudes u(t) that will perform the quantum oper-
ation of interest, e.g. drive the system from the given initial state 
ρ(0) at time t = 0 to the target state ρtarg at time t = T (this pro-
cess is called state transfer), or that implements a transformation 
Rtarg in the time interval [0, T ] (gate synthesis).5

To quantify how close the evolution given by R(t, u(t)) is to 
the target evolution we define a cost functional J (as in eq. (18)) 
that we seek to minimize, with respect to the controls u(t). 
J (ρ(t), u(t), T ) being minimal should correspond to the ideal pro-
cess we want to perform. Commonly used functionals for quantum 
processes are of the form

J (ρ(t), u(t), T ) = 1 −F (21)

where F is the transfer fidelity [54,4,5]

F = Tr
{
ρ

†
targρ(T )

}
, (22)

for the case of state transfer, and the gate fidelity [55–57,51,4,5,58]

F = d−1
∣∣∣Tr

{
R†

targ R(T , u(t))
}∣∣∣ , (23)

where d is the dimension of the Hilbert space of the system, for 
the case of gate synthesis.

Notice that the final time T can be fixed, or can be included in 
the functional in order to minimize also the duration of a quantum 
process.

Constraints on the controls can also be included in the defini-
tion of the cost functional J [3–5,59] but we do not consider them 
here.

3.1.2. Hamiltonian control
A typical situation encountered in quantum control is when 

each control amplitude u j(t) in u(t) corresponds to an external 
tunable parameter which can be described by Hermitian operator 
in the Hamiltonian. For the purpose of this tutorial we assume that 
the dynamics of the system can be described by the Lindblad mas-
ter equation [60,61]

ρ̇(t) = L(t)ρ(t) = −i[H(t),ρ(t)] +Ldisρ(t), (24)

where the Hamiltonian H(t) describes the coherent dynamics and 
Ldis the incoherent dynamics. The Hamiltonian can be written as

H(t) = H0 +
M∑

k=1

uk(t)Hk, (25)

where H0 is the free evolution Hamiltonian (often called drift
Hamiltonian), Hk for k = 1, . . . , M are the available control Hamil-
tonians corresponding to operations on the system we can control, 
and uk(t) are the time-varying amplitude functions for their rela-
tive control. The solution of eq. (24) can be written as

ρ(t) = R(t, u(t))[ρ(0)], (26a)

R(t, u(t)) = T exp

t∫
0

L(t′)dt′ (26b)

u(t) = (u1(t), u2(t), . . . , uM(t)) , (26c)

5 Other possibilities are maximizing the entanglement generation [50–52], or 
state distinguishability [53], to name a few.
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and T is the time-ordering operator.
To summarize, we now want to find a set of controls u(t) such 

that the evolution of the system given by eqs. (26) is the target 
evolution. To quantify how close the system evolution is to the 
target one, we need to minimize the cost functional in eq. (21)
with eqs. (22) or (23).

Once the problem has been defined, a method for minimizing 
the cost functional J is required. Various strategies exist to solve 
this problem, both analytical methods based on calculus of varia-
tions and the Pontryagins minimum principle [3], and numerical 
methods. In this tutorial we focus exclusively on numerical meth-
ods.

3.2. Numerical solution of the quantum optimal control problem

The numerical solution of the Quantum Optimal Control prob-
lem requires the mapping of the cost function J , eq. (18), to a 
multivariate real function J̄ , and then numerically minimize J̄ .

The mapping is done by parametrizing each control amplitude 
uk(t) with Nk real numbers, i.e. with a vector αk ∈ RN

k . This is 
done by approximating6 each uk(t) as an expansion on a finite set 
of functions as in

uk(t) =
N ′

k∑
j=1

ckjχkj(t,dkj), (27)

where χkj(t, dkj) are time-dependent functions which depend on 
the parameters dkj , and

αk = {� (
ckj

)
,� (

ckj
)
,� (

dkj
)
,� (

dkj
)} j=1,...,N ′

k

are the Nk parameters representing the function uk(t). Notice that 
we can choose a different set of function χkj for each control uk(t).

A useful and simple set of functions which can be used to ex-
pand the control amplitudes are piecewise functions: we split the 
time interval [0, T ] in N ′ smaller intervals I j of length �t = T /N ′
as in the following:

I j = [t j−1, t j), j = 1, . . . , N ′, (28)

such that t0 = 0, tN ′ = T , and t j = t j−1 + �t . With this time dis-
cretization we can define

χkj(t,dkj) =
{

fkj(t,dkj) t ∈ I j

0 otherwise
(29)

where fkj are some (possibly) time-dependent functions.7 The 
functions χkj(t, dkj) are different from zero only in the interval I j , 
such that the function uk is equal to the function fkj(t, dkj) in the 
interval I j .

An important set of functions often used are step functions
(or piecewise constant functions): In some problems (such as state 
transfer and gate synthesis as described above) they decrease the 
computational cost of calculating the gradient [54] and thus speed 
up the numerical minimization using gradient-based algorithms. 
They are obtained by choosing fkj(t, dkj) = 18 in eq. (29), then 
uk(t) can be easily written as

6 The parametrization reduces the space of functions in which we look for a 
solution, so it is important to have a good parametrization if we want to find a 
quasi-optimal solution.

7 Here we assume that we use the same number of time steps for each control 
amplitude uk(t), thus N ′

k = N ′ .
8 With this choice each control amplitude is expanded on the same set of func-

tion and thus is represented by the same number of parameters Nk = N .
5

Fig. 4. Artistic view of piecewise (a) constant and (b) linear functions that can ap-
proximate the real control amplitude uk(t).

uk(t) =
{

ckj t ∈ I j

0 otherwise.
(30)

The N = 2N ′ real parameters representing the function uk(t) can 
be chosen to be

αk = (� (ck1) , . . . ,� (ckN ′) ,� (ck1) , . . . ,� (ckN ′)).

If we assume the function uk(t) to be real, then N = N ′ and αk =
(ck1, ck2, . . . , ckN ′ ). Notice that eq. (30) is the nearest-neighbor 
constant interpolation of the points αk = (ck1, ck2, . . . , ckN ′), see 
Fig. 4(a).

If fkj are linear functions and we impose uk(t) to be continu-
ous, then

fkj(t,dkj) = ck( j−1)

ckj
+ ckj − ck( j−1)

ckj�t
(t − t j−1), (31)

with dkj = {ck( j−1), ckj}. In this case the control function uk(t) can 
be easily written as

uk(t) =
{

ck( j−1) + ckj−ck( j−1)

�t (t − t j−1) t ∈ I j

0 otherwise.
(32)

If we assume that the function uk(t) is real,9 then it can be 
parametrized by N = N ′ +1 real parameters αk=(ck0, ck1, . . . , ckN ′ ). 
Notice that eq. (32) is the linear interpolation of the points αk =
(ck0, ck1, . . . , ckN ′), see Fig. 4(b).

3.2.1. Final minimization
Once we have chosen a parametrization of the functions u(t)10

we collect all the parameters αk ∈RN of all the functions uk(t) for 
k = 1, . . . , M into a single vector α ∈ RN×M so that we can write 
the cost functional as

9 Every discussion can be easily extended to complex functions by considering 
each complex parameter as two real parameters.
10 In general we can choose a different parametrization for each function u j(t) in 

u(t), also with a different number of parameters N j for each function. For the sake 
of presentation we report the case in which the number of parameters N j = N is 
the same for each function.
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J (ρ(t), u(t), T ) = J̄ (ρ(t),α, T ) (33)

where in J̄ the evolution of ρ(t) is computed with the control 
amplitudes parametrized by α. Now it is possible to minimize 
J̄ (ρ(t), α, T ) with respect to the N × M real parameters using any 
of the numerical methods developed to minimize multivariate real 
functions.

An issue that is often encountered in the minimization process 
consists in the algorithm being stuck in a local minimum: usually 
the numerical algorithms will find the local minimum which is the 
closest to the starting point (called initial guess). While increasing 
the number of parameters can potentially solve this problem [62], 
several methods have also been developed in order to address this 
issue, see for example [63–65]. A simple approach is to try dif-
ferent initial guesses and chose the minimization which gives the 
minimum value of J̄ .

Several methods have been developed in order to speed up the 
minimization of the cost function J̄ . They use properties of the 
dynamics of the systems in order to decrease the computational 
cost of calculating its gradient, or choose a suitable set of func-
tions χkj in order to speed up the convergence of the minimiza-
tion algorithm, or to reduce the dimensionality of the optimization 
problem [66]. Here we list some of the most common algorithms, 
while we refer the reader to the original paper or the recent re-
views [4,5] for a deeper explanation: GRAPE [54], Krotov [67–70], 
GOAT [71], CRAB [72–74], dCRAB [75].

3.3. Three-level population transfer

We now formulate the three-level population transfer process 
introduced in section 2 as an Optimal Control problem and solve 
it numerically.

Following eq. (25) we identify in eq. (1) the drift Hamiltonian
(h̄ = 1) as

H0 = �p |e〉〈e| + �3 |r〉〈r| (34)

and the control Hamiltonians as

H1 = |g〉〈e| + |e〉〈g|
2

(35)

H2 = |e〉〈r| + |r〉〈e|
2

(36)

with u1(t) = �p(t) and u2(t) = �s(t). We assume the controls 
�p(t) and �s(t) to be real constant piecewise functions and 
parametrize each of them with N parameters corresponding to the 
value they assume on each time interval, see sec. 3.2 and in partic-
ular eqs. (28) and (30). We collect the 2N parameters in the vector 
α ∈R2N .

Our goal is to find the control amplitudes �p(t) and �s(t) that 
maximize the population on the state |ψtarg〉 = |r〉 at time t = T
starting from the state |ψ(0)〉 = |g〉 at time t = 0. Thus we define 
the cost function J (ρ(t), u(t), T ) as in eqs. (21) and (22), i.e.:

J̄ (ρ(t),α, T ) = J (ρ(t), u(t), T ) = 1 − Tr
{
ρ

†
targρ(T )

}
, (37)

where ρtarg = ∣∣ψtarg
〉〈
ψtarg

∣∣ = |r〉〈r| with ρ(T ) obtained from the 
evolution following the master equation (2) (equivalently eq. (24)) 
with the initial density matrix being ρ(0) = |g〉〈g|.

3.3.1. Results
We minimize J̄ (ρ(t), α, T ) with respect to α numerically, with 

N = 30. Since the problem is easy (it consists in solving numer-
ically a system of 16 coupled linear differential equations, which 
we do numerically with QuTiP [76]) we do not use any advanced 
method. We have tried the Powell method [77], the Nelder-Mead 
algorithm [78], and the limited memory BFGS bounded (L-BFGS-B) 
6

Fig. 5. Inefficiency 1 −F , eq. (22) of the optimized protocol, as a function of T �max, 
for various values of Tγ . For each point we have optimized with 4 different initial 
guesses and chosen the best one. The 3 red empty circles refer to the parameters 
used in Fig. 6.

method11 [79] as implemented by SciPy [80]. We present the re-
sults obtained with L-BFGS-B since we have found that it is the 
fastest (with Nelder-Mead being the slowest).

The maximum efficiency of the protocol depends on the con-
straints given by the time of the transfer T , the decay rate γ , and 
the maximum allowed Rabi frequency �max. However, since there 
is a freedom on the choice of the unit of time (or equivalently the 
unit of frequency), the system is invariant under a transformation 
that keeps Tγ and T �max constant, i.e., if⎧⎪⎨
⎪⎩

T ′ = αT ,

γ ′ = γ /α,

�′
max = �max/α,

(38)

then the system with parameters (T , γ , �max) is mathematically 
equivalent to the system with (T ′, γ ′, �′

max). In particular the fi-
delities F(T , γ , �max) = F(T ′, γ ′, �′

max) = F(Tγ , T �max) are the 
same. Thus in the following we will report the results as a function 
of Tγ and T �max.

Fig. 5 reports the inefficiency of the optimized protocol with 
respect to T �max for various values of the decay rate Tγ . The 
red circles on the Tγ = 5 line refer to the points represented in 
Fig. 6. For all values of T �max the optimized pulses recall the 
typical counter-intuitive pulse sequence of STIRAP: for values of 
T �max � 40 the optimized pulses present an initial and final max-
imum interleaved by the counter-intuitive sequence. The area of 
this initial and final short bumps decreases with increasing T �max. 
For T �max � 40 the pulses are exactly counter-intuitive and they 
tend to maximize the area at their disposal and their overlap still 
meeting the condition of being counter-intuitive and the constraint 
�p,s ≤ �max. They do so by being symmetric with respect to the 
central time t = T /2 and linearly increasing (�p) or decreasing 
(�s).

In circuit quantum electrodynamic systems, microwave pulses 
with these shapes can be realized experimentally by using pro-
grammable arbitrary waveform generators and mixers; this has 
been used already for example to demonstrate STIRAP [81] and 
superadiabatic STIRAP [82,83].

4. Reinforcement learning

Due to their wide range of applicability and their recent over-
whelming success when used in combination with Deep Neu-
ral Networks [84], Reinforcement Learning (RL) techniques have 
gathered significant interest at both the academic and industrial 

11 With the gradient computed numerically.
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Fig. 6. Example of optimized pulses and evolution for Tγ = 5. The top panels (a-c) report the optimized pulses �p(t) and �s(t), the lower panels (d-f) report the population 
of the states of the system when driven by the pulses in (a-c), respectively. For (a) and (d) T �max = 7.4, for (b) and (e) T �max = 13.8, and for (c) and (f) T �max = 100. We 
have also chosen �p(t) and �s(r) to be real and N = 30.
Fig. 7. Agent-Environment interface.

level across a multitude of disciplines. Deep Reinforcement Learn-
ing (DRL) has already provided several outstanding results such 
as solving complex continuous control tasks [85], video game 
play [86,87] and mastering the game of Go [88] to highlight only a 
small handful. More recently, DRL has emerged as a useful tool for 
quantum technologies and in particular has provided a viable al-
ternative strategy for solving Quantum Optimal Control problems. 
RL has thus far been applied to quantum systems in the context of 
state preparation [89–91], circuit architecture design [92], quantum 
control [93–96], state transfer [24,23,22], quantum noise detection 
and correction [97,98,93], quantum compiling [99] and entropy 
production in non-equilibrium quantum thermodynamics [18].

In a typical RL setting, an agent dynamically interacts with an 
environment with the goal of performing a certain task. A set 
of discrete interactions between the agent and the environment 
is usually assumed. During each of these interactions, the agent 
observes the state of the environment and, based on this observa-
tion, performs a certain action. The state of the environment for 
the next interaction will depend on this action while the agent 
is provided with a feedback (called reward) based on how well it 
is performing the assigned task. The reward can then be used to 
update the agent’s behavior in order to improve its performance. 
A sketch of this interaction is reported in Fig. 7.

The process of sequential decision making that underpins RL is 
mathematically formulated using so called Markov Decision Pro-
cesses (MDPs). A full treatment of MDPs does not fall in the remit 
of this tutorial, however in the following section we will provide 
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a condensed treatment which will be sufficient to then introduce 
the specific RL algorithms of interest in a somewhat self contained 
manner.12

4.1. Markov decision processes

Consider a general learning agent that is able to repeatedly in-
teract with an environment at discrete time-steps by first observing 
its state, then taking actions that change this state. At the next 
time step the new state and a reward are fed to the agent.

We define the state space S , containing all conceivable states of 
the environment, and an action space A(s), for all possible states 
s ∈ S . The reward is a scalar r ∈R ⊂R and represents the perfor-
mance of the agent. This interaction gives rise to a trajectory

S0, A0, R1, S1, A1, R2, . . . , St, At, Rt, . . . , (39)

where S0 is the initial state of the environment, and St , At and 
Rt are the state, the action and the reward, respectively, at time 
step t . The above decision process is said to be a Markov Decision 
Process (MDP) if the state St and reward Rt at step t depend only 
on the state St−1 and action At−1 at step t − 1.13 The dynamics of 
the MDP is defined by the dynamic function14 [100]

p(s′, r|s,a) = Pr{St = s′, Rt = r|St−1 = s, At−1 = a}, (40)

which is the probability that at step t the values of the state and 
reward are St = s′ ∈ S and Rt = r ∈ R, given that at step t − 1 the 
values of the state and actions are St−1 = s ∈ S and At−1 = a ∈
A(s)15 [100].

12 For a full treatment of Markov Decision Processes in the context of Reinforce-
ment Learning see the famed book of Sutton and Barto [100].
13 This property is called Markov property. Notice that this is not a restriction on 

the dynamics or the decision process, but a requirement on the representation of 
the state.
14 Equation (40) refers to a finite MDP, i.e. to the case when S , A(s) are finite sets. 

The formalism can be easily generalized to infinite state and action spaces.
15 Notice that, since the MDPs considered in the review will model quantum sys-

tem dynamics which in our case is deterministic, these probabilities can only take 
values 0 or 1 and the reward will be simply a real function of s and a.
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The rewards prescription must be representative of the desired 
goal (and thus be sufficiently informative in that respect) whilst 
not including any information about how the agent should go 
about achieving this goal (to avoid biasing learning with already 
known strategies). In the case of quantum control as defined in 
section 3.2, the agent could be embodied by the control mecha-
nism employed in an experiment with the actions defined as the 
choice of piecewise constant values of u(t) at each discrete time-
step. The state of the MDP’s environment would then be described 
by the state of the quantum system at each time-step, for example 
via the density matrix. This reformulation of the quantum control 
problem as an MDP is used in [23,24,22,18]

If the agent-environment interaction is interrupted after a ter-
minal state SN (enforced either by a maximum time or termination 
criteria) is reached, then we will need to reset the environment 
state and start a new episode so that the learning process may 
continue. In this case, the agent’s task is said to be episodic. Other-
wise, if the agent-environment interaction goes on without limit, 
the task is referred to as continuing task. Here we exclusively con-
sider episodic tasks.

The behavior of a RL agent can be described with a conditional 
probability distribution

π(a|s) = Pr{At = a|St = s}, (41)

usually referred as Policy or Policy function, that is, the probability 
that the agent takes the action At = a if the environment is found 
in state St = s.

Consider now the trajectory of an episode for a MDP, as in (39). 
The return for each time-step t is defined as

Gt =
(N−t−1)∑

k=0

�k Rt+k+1 =

= Rt+1 + �Rt+2 + �2 Rt+3 · · · + �N−t−1 R N ,

(42)

which represents the “discounted” sum of future rewards. In equa-
tion (42) the discount factor � modulates the relative importance 
of immediate versus future reward. For example, for � = 0: Gt =
Rt+1 which describes the situation where only immediate rewards 
are important. On the other hand, for � = 1: Gt = ∑

t Rt , so this 
return places equal importance on immediate and future rewards.

The agent’s performance can be evaluated from a certain state 
by looking at the expected return. The expected return starting 
from the state s and following the policy π (i.e., the remaining 
actions in the trajectory are selected according to the policy π ) is

vπ (s) = Eπ [Gt |St = s]. (43)

It is known as the state-value function and satisfies the following 
consistency condition (Bellman expectation Equation)

vπ (s) =
∑

a

π(a|s)
∑
s′,r

p(s′, r|s,a)[r + �vπ (s′)]. (44)

The expected return starting from the state s, taking the action 
a and following the policy π

qπ (s,a) = Eπ [Gt |St = s, At = a], (45)

is known as the action-value function. A corresponding consistency 
condition holds also for qπ (s, a).

Any MDP admits one or more optimal policies π∗ with optimal 
value functions v∗ = maxπ vπ (s), q∗ = maxπ qπ (s, a). Special con-
sistency conditions, known as Bellman Optimality Equations [100], 
can be derived for the optimal value functions
8

v∗(s) = max
a

∑
s′,r

p(s′, r|s,a)[r + �v∗(s′)]. (46)

q∗(s) =
∑
s′,r

p(s′, r|s,a)[r + �max
a′ q∗(s′,a′)]. (47)

In principle, one can find the exact solution of the Bellman 
Optimality Equation (46) to reconstruct the best policy with a one-
step search. However this is not usually possible for real world 
problems: even when we have a complete model of the envi-
ronment, it is usually not computationally feasible to solve such 
equation.

Many successful iterative solution methods have been devel-
oped based on Equation (47). However, as we will show in the 
next section, one can also approach the MDP from a different per-
spective without directly computing any value function.

4.2. Policy gradient and REINFORCE

Giving an exhaustive overview of the various algorithms de-
veloped to approach a generic MDP would be an extremely hard 
task which goes beyond the scope of this work. Here we will in-
stead introduce a specific technique and we will directly apply it 
to the physical problem introduced in section 2. This technique is 
extremely simple and it is by no means the state of the art of RL. 
Nonetheless, we will show that it allows to address our physical 
problem.

Recalling the previous section, our final goal is to find the 
best policy function π(a|s). We can formalize the problem by 
parametrizing the policy with a set of parameters θ so that these 
parameters can be changed to find the best policy based on the 
expected performance. To do this, we can introduce a performance 
measure J (θ) and make use of an approximated gradient ascent 
technique to update the parameters θ . Algorithms based on this 
approach are referred as policy gradient techniques.

For episodic learning, it can be proven [100] that if we de-
fine the performance as the value function starting from the initial 
state and following the policy πθ , we get the following estimate
for the gradient of J (θ)

∇ J (θ) = Eπ [Gt∇θ logπθ(At |St)]. (48)

We hence come up with a stochastic gradient ascent rule for the θ
updates

θt+1 = θt + ηGt∇θ logπθ(At |St), (49)

where the learning parameter η is a real number.
We can then train our agent by (i) initiating an episode follow-

ing the policy πθ and taking track of states, actions and rewards, 
(ii) use Equation (49) to update θ and (iii) repeating (i) and (ii) for 
multiple episodes. This algorithm is known as REINFORCE [100].

There are no constraints on the choice of the function used to 
parametrize the policy. However, since we do not have in gen-
eral prior informations on the shape of the policy function, the 
most common choice is to make use of Artificial Neural Networks 
due their ability to approximate arbitrarily complex non-linear 
function [84], which makes them very versatile. Moreover, Neu-
ral Networks are usually trained via gradient-based techniques. To 
be more specific, a cost function C is minimized with respects 
to weights and biases of the Neural Network (i.e. its internal pa-
rameters) via stochastic gradient descent or other more advanced 
gradient based techniques. Hence, we can implement the policy 
gradient updates with the right choice of the cost function.

In general, the Neural Network will take as input a represen-
tation of the state. If, at each step, the agent has to choose over a 
discrete set of possible actions (lets say n), we can build our Neural 
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Network in such a way that its output consists in n normalized real 
numbers that represents the probabilities for the agent to take one 
of the n possible actions. The action will then be randomly chosen 
with these corresponding probabilities.

However, for many physical problems the action space is con-
tinuous. In this case, rather than parametrizing the policy directly 
with a Neural Network, we can assume a specific probability dis-
tribution and use a Neural Network to model some or all of its 
parameters.

In the following, we will assume a Gaussian policy

πθ(a|s) = 1√
2πσ

e
− (a−μθ (s))2

2σ2 , (50)

where we fix the standard deviation σ as an external parameter 
and we use a Neural Network to parametrize the mean μ(s).

4.3. Numerical solutions of the RL problem

Let us now apply the above technique to the physical problem 
introduced in Sec. 2. Our goal is again to find �P (t), �S (t) such 
that near perfect population transfer from |g〉 to |r〉 for a system 
evolving according to Equation (2) is achieved with minimal losses, 
during the interval [0, T ].

To formalize the problem, we consider our control terms to be 
described by piecewise constant functions (see Sec. 3.2). We di-
vide the time interval in Nsteps smaller intervals [t j, t j+1[ of equal 
length. During each of these intervals �P (t) and �S (t), take con-
stant values �P (t j), �S(t j).

We can now define our MDP. At each step j, corresponding to 
the time interval [t j, t j+1[, the agent observation will be given by a 
representation of the quantum state of the three-level system plus 
the sink (i.e. 9 independent terms of the density matrix of the 
system) while the action will give us the values of �P (t j), �S(t j).

Specifically, the Neural Network we use to approximate the 
agent policy will take as input the 9-dimensional vector

s j = (
ρgg(t j),ρrr(t j),ρee(t j),

�(ρge(t j)),�(ρge(t j)),�(ρgr(t j)),

�(ρgr(t j)),�(ρer(t j)),�(ρer(t j))
)
,

(51)

and will give as output two real number

μ j = (μS(t j),μ
P (t j)) ∈ [−1,1]2

from which we will sample our agent actions

a j = (aS(t j),aP (t j))

and hence our control terms

�P ,S(t j) = �0/(1 + e−3aP ,S (t j)). (52)

We define the reward Rt at time step t to be Rt = 0, ∀t = 1, N −
1, and R N = ρrr(T ). While this is the correct choice in order to 
represent our goal (maximizing population on the state |r〉 at final 
time T ), this also simplifies the REINFORCE algorithm, as we can 
assign a reward Gt = R N = ρrr(T ) ≡ R to all the actions taken by 
the agent [14] in each trajectory. Equation (48) is then satisfied 
if we train our Neural Network with stochastic gradient descent 
minimizing the cost function

C j = 1

2σ 2
R|a j − μθ(s j)|2. (53)

Learning is further enhanced by training the Neural Network in 
parallel with a batch of agents (following the same policy πθ ).
9

Fig. 8. Pulses found by the agent (a) and corresponding population transfer for γ =
5/T (b). Subplot (c) reports the population history if we set the decay rate γ = 0
with the same pulses as in subplot (a). The fidelity in this last case is F = 0.996.

Since we are interested in the best �P ,S (t) rather than in 
the overall performance of our agents after the training episodes, 
we continuously take track of the highest reward reached by the 
agents and the corresponding actions.

Numerical results for �0T = 20 are shown in Fig. 8. It can 
be seen that the agents seem to learn some noisy version of 
STIRAP-like counterintuitive sequences to achieve efficient popu-
lation transfer. In Fig. 9 we show the corresponding learning curve 
by plotting the average final reward of the agents in the batch for 
each episode.

We also applied the Reinforce algorithm using the TF-Agents 
library [101]. In this case we can easily use some advanced meth-
ods to stabilize and speed up the convergence of the stochastic 
gradient descend. In particular we used the Adam algorithm [102]
and a replay buffer. We do not intend to discuss those methods, 
but instead just show how they can improve the learning pro-
cess, and provide a simple code that can be easily adapted to new 
situations. Fig. 10 reports the return as function of the iteration 
number, while Fig. 11 reports the control pulses and the evolu-
tion of the system for the last iteration of Fig. 10. Again the pulses 
resemble the counter-intuitive pulse sequence peculiar of STIRAP. 
SubFig. 11(c) reports the evolution of the system without decay 
from the intermediate state, but still drive with the pulses ob-
tained for Tγ = 5.



L. Giannelli, P. Sgroi, J. Brown et al. Physics Letters A 434 (2022) 128054
Fig. 9. Average final reward of the RL agents in the batch as a function of the num-
ber of episodes. Here γ = 5/T , σ = 0.5, batchsize = 200 and η = 0.05. The Neural 
Network has two hidden layers of 100 and 50 neurons, respectively, with ReLu acti-
vation function [F. Chollet et al., “Keras,” https://keras .io (2015)] while the activation 
function of the last layer is a hyperbolic tangent. The final oscillations are mostly 
due to the choice of the learning rate and they can be shrinked at the cost of a 
bigger number of epochs with a smaller learning rate.

Fig. 10. Return as a function of the iteration number for the agent trained with TF-
Agents [101] for T �max = 20 and Tγ = 5. The neural network used has 3 hidden 
layers with 100, 50 and 30 neurons, respectively. The activation function is reLU in 
each layer except the last one which has a hyperbolic secant. The batchsize is 2 and 
the replay buffer can contain 7 episodes.

5. Conclusions

In this tutorial we have introduced the basic concepts of Quan-
tum Optimal Control and Reinforcement learning. We have shown 
explicitly how those methods could be applied to solve a control 
problem in quantum technology taking as a reference the process 
of population transfer in a three-level system, whose one well-
known solution is STIRAP.

A rigorous and thorough comparison between Quantum Opti-
mal Control and Reinforcement Learning is beyond the scope of 
this tutorial.16 In fact we did not use the most advanced or effi-
cient algorithm in either case, for the sake of keeping the tutorial 
accessible to a wider audience. However here we highlight some 
differences and similarities in our implementations and in our re-
sults. The number of free parameters for QOC is 60, while for RL 
is 7644. The computational time is also lower for QOC by a factor 
around 100, but this varies greatly in dependence of the available 
hardware (CPU and/or GPU). Notice that we also did not optimize 
the hyperparameters and we suppose that the RL computational 
time could improve with a better set of hyperparameters. Both 
OCT and RL easily solve the problem by giving STIRAP-like pulses, 
i.e. overlapping counterintuitively ordered pulses which tend to 
occupy the maximal area at their disposal. The pulses obtained 
with QOC have a larger area with respect to the pulses obtained 
with RL, giving overall a slightly better efficiency. We also think 

16 An heuristic account has been given in [103].
10
Fig. 11. Evolution of the system with the pulses optimized via Reinforcement Learn-
ing with TF-Agents [101] for T �max = 20 and Tγ = 5. (a) Pulses and (b) population 
of the states of the system, referring to the last iteration in Fig. 10. Subplot (c) re-
ports the population history if we set the decay rate γ = 0 with the same pulses as 
in subplot (a). The transfer fidelity in this case is F > 0.998.

that with a better set of hyperparameters this difference would be 
smaller.

Part of the source code developed is open-source and available 
online17 as a learning tool and can be easily modified to approach 
similar problems.
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