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Background: Infertility affects about 7% of the general male population. The underlying
cause of male infertility is undefined in about 50% of cases (idiopathic infertility). The
number of genes involved in human spermatogenesis is over two thousand. Therefore, it is
essential to analyze a large number of genes that may be involved in male infertility. This
study aimed to test idiopathic male infertile patients negative for a validated panel of
“diagnostic” genes, for a wide panel of genes that we have defined as “pre-diagnostic.”

Methods: We developed a next-generation sequencing (NGS) gene panel including 65
pre-diagnostic genes that were used in 12 patients who were negative to a diagnostic
genetic test for male infertility disorders, including primary spermatogenic failure and
central hypogonadism, consisting of 110 genes.

Results: After NGS sequencing, variants in pre-diagnostic genes were identified in 10/12
patients who were negative to a diagnostic test for primary spermatogenic failure (n = 9) or
central hypogonadism (n = 1) due to mutations of single genes. Two pathogenic variants
of DNAH5 and CFTR genes and three uncertain significance variants of DNAI1, DNAH11,
and CCDC40 genes were found. Moreover, three variants with high impact were found in
AMELY, CATSPER 2, and ADCY10 genes.

Conclusion: This study suggests that searching for pre-diagnostic genes may be of
relevance to find the cause of infertility in patients with apparently idiopathic primary
spermatogenic failure due to mutations of single genes and central hypogonadism.
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INTRODUCTION

The increasing knowledge of male reproduction physiology, of
fertilization, and the advent of increasingly effective assisted
reproductive techniques, have led to a profound change in the
management of male infertility. Currently, the diagnostic
workflow offered to male infertile patients includes medical
history collection and physical examination, followed by a
combination of laboratory testing tailored to each case,
including an in-depth genetic laboratory analysis (1–3).
Diagnostic tests should be performed after at least 1 year of
infertility. Accordingly, a couple can be defined infertile if they
do not reach pregnancy after a year of unprotected and regular
sexual intercourses (4).

Genetic factors are found in about 15% of male infertile
patients. They include chromosomal abnormalities or single-
gene mutations (5, 6). Over 200 genetic disorders related to male
infertility are reported in the Online Mendelian Inheritance in
Man (OMIM) database (7, 8). The genetic of male infertility is
greatly complex because semen and testis histological
phenotypes are very heterogeneous and up to 2,300 genes are
involved in spermatogenesis (1, 9). Moreover, studies in male
infertility are challenging. Accordingly, genetic infertility results
in an elimination of these mutations from the gene pool, since
these are not transmitted. Furthermore, genetic and epigenetic
changes accumulate in spermatozoa with aging, and rare single
nucleotide polymorphisms and copy number variants can
contribute to idiopathic male infertility (1). It is important to
trace the non-genetic and genetic causes of male infertility since
the latter are the cause of half of the cases of non-conception (4).
Notably, to identify new genetic biomarkers of genetic infertility
deserve investigation, because the standard clinical evaluation of
infertile patients and karyotype analysis can identify the cause of
infertility only in about 50% of the cases (10). The combination
of genetic and epigenetic testing seems to identify genetic
variations and differential expression of specific genes,
providing information on the true ability of a man to
reproduce. In contrast, a semen analysis may fail to evidence
even a partial impairment of sperm parameters (9).

There are two general approaches for finding genes involved
in infertility: the candidate gene approach in model animals, and
the whole genome studies such as single-nucleotide
polymorphism microarray and next-generation sequencing
(NGS) technologies, such as exome or whole-genome
sequencing (11, 12). Despite a throughout diagnostic workup,
conventional genetic tests largely fail to reach a diagnosis (13)
and the cause of male infertility remains elusive in up to ∼70% of
cases (14). Recent research seems to address the role of NGS
technology in raising the rate of diagnosis in male infertility (15,
16). Accordingly, several diagnostic genes have already been
shown to be involved in the pathogenesis of male infertility (15).
Pre-diagnostic genes, including those reported in association
with male infertility but with no definitive evidence of a
causative role, may help to reach a diagnosis. To this end, the
present study was undertaken to evaluate a series of pre-
diagnostic genes by comparing the results with those obtained
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with our usual NGS custom-made gene panel for the diagnosis of
male infertility, including 110 genes.
METHODS

Patients and Samples
Twelve patients with a clinical diagnosis of male infertility and
negative to diagnostic genetic testing were selected for this study.
Eleven were suspected to have primary spermatogenic failure
and one was suspected to have central hypogonadism. More in
detail, primary spermatogenic failure was suspected for a history
of couple infertility longer than 2 years, after the exclusion of the
female factor infertility and of acquired causes of male infertility
(e.g. male accessory gland infection, varicocele, testicular trauma,
etc.). Also, patients enrolled in this study were negative for first
step genetic analysis, such as karyotype abnormalities, Y
chromosome AZF microdeletions, or CFTR conventional
gene mutations.

An informed written consent was obtained from each patient.
The study was carried out following the tenets of the Declaration
of Helsinki and it was approved by the local Ethics Committee. A
blood EDTA sample was collected from each subject. Samples of
genomic DNA of all subjects were extracted from peripheral
blood using a commercial kit (SAMAG 120 BLOOD DNA
Extraction Kit). DNA was quantified using Quant-iT Picogreen
dsDNA Assay Kit (Life Sciences) and a Varioskan LUX
(Thermo Scientific).

Gene Panel Design
A single NGS panel related to male infertility disorders
comprising a total of 175 genes was designed. Then, 110 genes
were analyzed in a diagnostic setting, and 65 genes comprising
pre-diagnostic or informative genes were analyzed in patients
who resulted negative to the diagnostic testing. The genes
included in the panel were based on their correlation with male
infertility described in Online Mendelian Inheritance in Man
(OMIM) (7), GeneReviews (17), and primary literature. Genes
were classified as “diagnostic” when they and their genetic
variants were clearly correlated to male infertility in literature.
Instead, genes were classified as “informative or pre-diagnostic”
when they were reported to be associated with male infertility, but
the causality link has not been unequivocally established. The list
of genes associated with male infertility related to the diagnostic
suspect of the considered subjects included in the two NGS panel,
is shown in Table 1.

The custom Illumina Nextera panel included genomic targets
comprising coding exons and 15 bp flanking regions of each
gene. The target length of the diagnostic panel was 314,814 bp.
Instead, the target length of the pre-diagnostic panel was 188,074
bp. Figure 1 describes the laboratory and analysis workflow.

Genetic Analysis and Variant Detection
DNA samples were processed using MiSeq personal sequencer
(Illumina, San Diego, CA, USA) using a paired-end protocol and
a 150 bp long reads, following the laboratory methods described
January 2021 | Volume 11 | Article 605237
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TABLE 1 | Diagnostic and pre-diagnostic genes associated with male infertility
included in the custom NGS panels.

Diagnostic and pre-diagnostic
genes (Male condition)

Genes
(coverage)

OMIM REFSEQ

Diagnostic genes (Defects of
primary spermatogenesis)

AURKC
CATSPER1
CFAP44
DPY19L2
KLHL10
NANOS1
PICK1
PLK4

SEPT12
SOHLH1
SUN5
SYCP3
TEX11
USP9Y
ZPBP
BRDT

CFAP43
DNAH1
HSF2
MEIOB
NR5A1
PLCZ1
RHOXF2
SLC26A8
SPATA16
SYCE1
TAF4B
TEX15

ZMYND15

*603495
*606389
*617559
*613893
*608778
*608226
*605926
*605031
*611562
*610224
*613942
*604759
*300311
*400005
*608498
*602144
*617558
*603332
*140581
*617670
*184757
*608075
*300447
*608480
*609856
*611486
*601689
*605795
*614312

NM_001015878
NM_053054
NM_018338
NM_173812
NM_152467
NM_199461
NM_012407
NM_014264
NM_144605

NM_001012415
NM_080675

NM_001177948
NM_001003811
NM_004654
NM_007009
NM_001726
NM_025145
NM_015512
NM_004506
NM_152764
NM_004959
NM_033123
NM_032498
NM_052961
NM_031955
NM_130784
NM_005640

NM_001350162
NM_001136046

diagnostic genes
(Hypogonadotropic
hypogonadism)

ANOS1 *300836 NM_000216
CCDC141 *616031 NM_173648
DUSP6 *602748 NM_001946
FGF17 *603725 NM_003867
(100.0%) *136350 NM_023110
FGFR1 *136530 NM_000510
(100.0%) *138850 NM_000406
FSHB *606807 NM_017563

(100.0%) *604161 NM_032551
GNRHR *608137 NM_015537
(100.0%) *607002 NM_021935
IL17RD *603961 NM_006080
(100.0%) *610224 NM_001012415
KISS1R *607984 NM_030964
(84.84%) *603819 NM_001035235
NSMF *162332 NM_001059

(95.03%) *109135 NM_021913
PROK2 *608892 NM_017780
(97.67%) *613301 NM_001024613
SEMA3A *600483 NM_033163
(100.0%) *604808 NM_198391
SOHLH1 *152760 NM_001083111
(100.0%) *604846 NM_004807
SPRY4 *603286 NM_002256
(98.25%) *152780 NM_000894
SRA1 *607002 NM_001126128

(100.0%) *607123 NM_144773
TACR3 *608166 NM_012431
(100.0%) *602229 NM_006941

AXL *607984 NM_001293290
(100.0%) *162330 NM_013251

(Continued)
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TABLE 1 | Continued

Diagnostic and pre-diagnostic
genes (Male condition)

Genes
(coverage)

OMIM REFSEQ

CHD7 *606417 NM_018117
(99.54%)
FEZF1

(96.46%)
FGF8

(93.16%)
FLRT3
(100.0%)
GNRH1
(100.0%)
HS6ST1
(96.3%)
KISS1

(100.0%)
LHB

(100.0%)
PROK2
(97.67%)
PROKR2
(100.0%)
SEMA3E
(100.0%)
SOX10
(100.0%)
SPRY4
(98.25%)
TAC3

(100.0%)
WDR11
(100.0%)

Pre-diagnostic genes ADGRG2
CFTR

NLRP14
RBMXL2
INHBB
INSL6
FKBPL
KLK12
KLK14
KLK15
KLK3
KLK4
KLK6
SEMG1
TSPY1
PRM1
PRM2
NPAS2
CFAP65
DNAH6
TDRD9
RSPH1
CCDC40
CCDC39
SPAG17
DNAH10
CCDC103
GAS8
DNAH5
DNAI1
AURKB

*300572
*602421
*609665
*605444
*147390
*606414
*617076
*605539
*606135
*610601
*176820
*603767
*602652
*182140
*480100
*182880
*182890
*603347
*614270
*603336
*617963
*609314
*613799
*613798
*616554
*605884
*614677
*605178
*603335
*604366
*604970

NM_001079858
NM_000492
NM_176822
NM_014469
NM_002193
NM_007179
NM_022110
NM_019598
NM_022046
NM_017509
NM_145864
NM_004917
NM_002774
NM_003007
NM_003308
NM_002761

NM_001286356
NM_002518
NM_194302
NM_001370
NM_153046

NM_001286506
NM_001243342
NM_181426
NM_206996

NM_001372106
NM_213607

NM_001286205
NM_001369
NM_012144
NM_004217

(Continued)
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elsewhere (18, 19). Fastq (forward-reverse) files were obtained
after sequencing. Reads alignment was done by the BWA (0.7.17-
r1188) software. Duplicates were removed using the
SAMBAMBA (0.6.7) program and GATK (4.0.0.0) were used
for re-alignment. We used international databases dbSNP (www.
ncbi.nlm.nih.gov/SNP/) and Human Gene Mutation Database
professional (HGMD; https://apps.ingenuity.com/ingsso/login)
for all nucleotide changes. In silico evaluation of the
pathogenicity of nucleotide changes in exons was performed
using Polymorphism Phenotyping v2 (PolyPhen-2, http://
genetics.bwh.harvard.edu/pph2/), Sorting Intolerant
from Tolerant (SIFT, https://sift.bii.a-star.edu.sg/), and
MutationTaster (http://www.mutationtaster.org). Minor allele
frequencies (MAF) were checked in the Genome Aggregation
Database gnomAD (http://gnomad.broadinstitute.org/). Sanger
sequencing was performed for confirmation when target
region coverage was less than 15 reads. Nucleotide alterations
were analyzed and validated by Sanger sequencing. After
confirmation, each variant was classified as a pathogenic, likely
pathogenic, variant of unknown significance (VUS), likely benign,
or benign, according to the American College of Medical Genetics
(ACMG) guidelines (20). Coding genomic regions (CDS) that
were sequenced with coverage less than 15X were eventually
re-sequenced using Sanger technology.
RESULTS

Twelve infertile patients were analyzed with two NGS custom-
made panels. They had a median age of 38 years (range 24–55).
Clinical details, including testicular histology and responsiveness
to FSH therapy (when available), are reported in Table 2.
TABLE 1 | Continued

Diagnostic and pre-diagnostic
genes (Male condition)

Genes
(coverage)

OMIM REFSEQ

CAMK4
DPP6

HORMAD1
MAGEB4
PIWIL1
PYGO2
SPINK2
TNP1

TSPYL1
E2F1
USP26
FKBP6
NR0B1
WT1

NSUN7
DNAH11
GALNTL5
GAPDHS
TEKT2
ADCY10
PLA2G6

CATSPER2
CATSPER4
CATSPER3
BSCL2
NXF3
PRMT7
ANKS1A
TSPAN7
SPANXN5

SSX7
AMELY
EPHA3
H2BFWT

*114080
*126141
*609824
*300153
*605571
*606903
*605753
*190231
*604714
*189971
*300309
*604839
*300473
*607102
*617185
*603339
*615133
*609169
*608953
*605205
*603604
*607249
*609121
*609120
*606158
*300316
*610087
*608994
*300096
*300668
*300542
*410000
*179611
*300507

NM_001744
NM_130797
NM_032132
NM_002367

NM_001190971
NM_138300
NM_021114
NM_003284
NM_003309
NM_005225
NM_031907
NM_003602
NM_000475
NM_000378
NM_024677
NM_003777
NM_145292
NM_014364
NM_014466
NM_018417

NM_001004426
NM_054020
NM_198137
NM_178019
NM_032667
NM_022052
NM_019023
NM_015245
NM_004615

NM_001009616
NM_173358
NM_001143
NM_005233

NM_001002916
FIGURE 1 | Laboratory and analysis workflow.
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Unpredictably, after genetic testing and a more than a 2 year-
long history of couple infertility, patients 5 (despite mild
oligozoospermia) and 8 (despite oligozoospermia and testicular
hypotrophy) spontaneously impregnated their wives, fathering
healthy children.

Our gene panel design generated a mean sequencing depth of
359X, whereas 98% of the target regions had a sequencing depth
of at least 25X. Variants in the pre-diagnostic genes were
identified in 10/12 subjects negative to diagnostic testing with
suspected defects of primary spermatogenesis (83%). Seventeen
filtered variants were detected in 12 of the 65 genes analyzed
(18%): DNAH11, DNAH10, DNAH5, DNAI1, CCDC40, CFTR,
GALNTL5, AMELY, KLK4, KLK14, CATSPER2, and ADCY10. In
particular, two heterozygous variants (p.Lys1853*, rs748618094,
in DNAH5 and p.Asp1152His, rs75541969, in CFTR) already
reported as pathogenic were detected. Three variants with
uncertain significance: p.Arg654Cys, rs140820295 in DNAI1
(heterozygous); p.Pro3935Leu, rs72658814 in DNAH11
(homozygous); and p.Asp284His, rs201042940 in CCDC40
(heterozygous) were also found. All of them were predicted to
be disease-causing by MutationTaster, Damaging by SIFT, and
Probably Damaging by Polyphen-2.

Moreover, three variants with high impact were identified: the
hemizygous splice variant c.574-1G>A (rs760519968) in AMELY
affects the acceptor splice site of the last exon and may cause the
activation of a cryptic splice site and consequently a stop-loss
mutation. This variant is predicted to be disease-causing by
MutationTaster. The heterozygous variant c.842+1G>C
(rs199516208) in CATSPER2 affects a donor splice site. This
may cause the activation of a cryptic splice site and the
introduction of a premature stop codon and is considered
disease-causing by MutationTaster. The heterozygous
truncating variant c.90T>A; p.Cys30* in ADCY10. This variant
is considered pathogenic for the autosomal dominant inherited
condition of susceptibility to absorptive hypercalciuria
(OMIM #143870).

The genetic variants identified in the 12 infertile patients
enrolled in this study using an NGS pre-diagnostic genes panel
are reported in Table 3. Almost half of the variants identified by
NGS in the 12 patients included in this study belong to the
cytoplasmic dynein genes. The distribution of pre-diagnostic
genes variants is shown in Figure 2.
DISCUSSION

Male infertility is a condition with highly heterogeneous
phenotypic representation and a complex multifactorial
etiology including environmental and genetic factors. The
elevated number of candidate genes makes it hard to find a
genetic cause of infertility in the majority of the cases (22–24).
Anyway, a multi-disease gene panel can improve the
identification of the etiology of male infertility (3, 25, 26). In
several cases, idiopathic infertility has a genetic origin, therefore
a correct phenotyping and medical history of the infertile patient
may represent an initial basis for the genetic interpretation of the
disorder (27), especially for the genetic variants of uncertain
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significance (VUS). To classify genetic variants, a prior likelihood
of pathogenicity, based on in silico analysis, can be associated
with the available genetic and epidemiological data to calculate
the probability that a variant is pathogenic, in a multifactorial
likelihood model.

Based on references of the American College of Medical
Genetics and Genomics, genetic variants can be distinguished
into five classes: pathogenic, likely pathogenic, variant of
uncertain significance, likely benign, or benign (28). A VUS is
a genetic change with unclear implications for gene function.
Interpretation of VUS represents a difficult challenge for genetic
counseling and clinical management of infertile male patients. It
is fundamental to identify VUS and to evaluate them since, at
moment, they are not clearly associated with a phenotype but
may be classified as pathogenic in the future (29–31).

We have successfully developed a genetic test based on NGS
that covers the main male infertility indications (9, 32, 33). We
developed a custom-made panel of 65 additional pre-diagnostic
genes that we tested in 12 infertile patients who were negative to
a diagnostic panel consisting of 110 genes. Eleven patients had a
primary spermatogenic failure and one patient had
central hypogonadism.

In our analysis, 17 filtered variants were found in the
following 12 out of the 65 genes analyzed (18%): DNAH11,
DNAH10, DNAH5, DNAI1, CCDC40, CFTR, GALNTL5,
AMELY, KLK4, KLK14, CATSPER2, and ADCY10. Some
reports have described the involvement of the mutations of
these genes in the pathogenesis of male infertility. As an
example, DNAH11, DNAH5, DNAI1, and CCDC40 genes have
been linked to primary ciliary dyskinesia (34, 35). Similarly, the
GALNTL5 and the KLK genes may be involved in the
pathogenesis of asthenozoospermia (36, 37).

Almost half of the variants identified by NGS belong to the
cytoplasmic dynein genes (Figure 2). Dynein genes are known to
be involved in the syndromic forms of asthenozoospermia,
including primary ciliary dyskinesia/Kartagener syndrome
(38–40). A possible association between variants of dynein genes
and isolated non-syndromic asthenozoospermia has also been
reported (41).
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FIGURE 2 | Pre-diagnostic gene variants distribution.
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Two pathogenic variants in two patients with primary
spermatogenic failure were identified: p.Lys1853*, rs748618094
in DNAH5, and p.Asp1152His, rs75541969 in CFTR (42).
DNAH5 (Dynein Axonemal Heavy Chain 5), mapping on the
chromosome 5p15.2, encodes an axonemal heavy chain dynein
protein. Variations in this gene mainly cause primary ciliary
dyskinesia type 3 and Kartagener syndrome, which are diseases
due to ciliary defects. Truncating variants in DNAH5 results in
the absence of the outer dynein arm of the cilia, leading to
abnormal ciliary structure and motor function (43, 44). In this
specific case, Subject 2 has azoospermia and carries this variant
in a heterozygous state, a trait that may be associated with
mutations in DNAH5. However, pathologic phenotype
associated with mutations in DNAH5 is inherited in a recessive
manner. We cannot exclude the presence of a large deletion/
insertion in the other allele or the contribution of other genes.
CFTR (CF Transmembrane Conductance Regulator), mapping
on chromosome 7q31.2, encodes a membrane protein and
chloride channel. Notoriously, mutations in this gene cause
cystic fibrosis (45). CFTR is important for spermatogenesis
(46). Genetic variants of the CFTR gene are a relatively
frequent cause of male infertility, due to obstructive
azoospermia, or in atypical forms of CF such as the congenital
absence of the vas deferens, bilateral ejaculatory duct obstruction, or
bilateral obstructions (47, 48). However, the patient studied here
(Subject 8) has oligo-astheno-teratozoospermia, a trait never
associated with this gene. We cannot exclude the presence of a
large deletion/insertion in the other allele or the contribution of
other genes.

Moreover, in our analysis three VUS were found: p.Arg654Cys,
rs140820295 in DNAI1, p.Pro3935Leu, rs72658814 in DNAH11,
and p.Asp284His, rs201042940 in CCDC40.

DNAI1 (Dynein Axonemal Intermediate Chain 1), mapping on
the chromosome 9p13.3, and DNAH11 (Dynein Axonemal Heavy
Chain 11), mapping on the chromosome 7p15.3, are other genes of
the dynein family related to primary ciliary dyskinesia and involved
in male infertility (48), especially in isolated non-syndromic
asthenozoospermia (32). The variant in DNAI1 is heterozygous;
however primary ciliary dyskinesia caused by mutations in DNAI1
is inherited in an autosomal recessive manner. We cannot exclude
that heterozygous variants in DNAI1 may cause a milder
phenotype characterized only by infertility. In this specific case,
Subject 1 showed oligo-astheno-teratozoospermia. Variants of
DNAH11 are found also in primary ciliary dyskinesia patients
with normal ciliary ultrastructure. Interestingly, we found a patient
(Subject 7) that carries the p.Pro3935Leu variant in a homozygous
state. In gnomAD this variant is always reported in a heterozygous
state. CCDC40 (Coiled-Coil Domain Containing 40) mapping on
the chromosome 17q25.3, is another gene associated with ciliary
dyskinesia. The coiled-coil domain-containing protein CCDC40 is
essential for motile cilia function and left-right axis formation (49).
The variant p.Asp284His was found in compound heterozygosity
with p.Phe649Leu, therefore we may speculate that both variants
cannot cause major developmental defects like primary ciliary
dyskinesia but they can cause oligo-astheno-teratozoospermia as
observed in Subject 3. Interestingly, other variants with high impact
Frontiers in Endocrinology | www.frontiersin.org 7
requiring further functional and family segregation studies were
identified. For instance, the splice variants rs760519968 in AMELY
and rs199516208 in CATSPER2, and the stop gained variant
p.Cys30* in ADCY10. To date, no loss-of-function mutations
have been reported in the AMELY (Amelogenin Y-linked) gene
in association with infertility. Structural rearrangements involving
AMELY, mapping on the chromosome Yp11.2, have been found in
patients with hypogonadism (50), although a direct link between
the phenotype and the rearrangement has not been proven.
CATSPER2 (Cation Channel Sperm Associated 2) mapping on
the chromosome 15q15.3 is the main Ca2+ channel mediating
extracellular Ca2+ influx into spermatozoa. CATSPER-related
infertility is associated with azoospermia. This is consistent with
the phenotype reported in Subject 9 (51). ADCY10 (Adenylate
Cyclase 10) mapping on the chromosome 1q24.2, encodes for
soluble adenylyl cyclase, which is the predominant adenylate
cyclase in sperm crucial to sperm motility regulation, and it is
associated with severe recessive asthenozoospermia (52). Subject 10
shows oligo-astheno-teratozoospermia, therefore his phenotype is
partially overlapping with asthenozoospermia. Although
truncating variants in ADCY10 are recessively inherited when
associated with infertility, we cannot exclude the presence of a
large insertion/deletion in the other allele that was not detected
with NGS.

Therefore, an NGS custom-made panel test including pre-
diagnostic genes can give an improvement to genetic diagnostic
testing and can influence male infertility clinical management.
The precise prevalence of male infertility is not known and, at
present, there are not complete systematic reviews or meta-
analyses on the epidemiology of male infertility (53, 54).
Making the diagnosis of genetic infertility is of relevance, also
because the available epidemiological observations indicate
lower life expectancy and higher morbidity in infertile
patients (55, 56).

In conclusion, we showed the efficacy of NGS-based
approaches also employing pre-diagnostic genes. This panel of
genes may help to identify the etiology underlying the disorder
and guide clinical management.
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