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The production yield and angular anisotropy of prompt D+
s mesons were measured as a function of 

transverse momentum (pT) in Pb–Pb collisions at a centre-of-mass energy per nucleon pair √sNN =
5.02 TeV collected with the ALICE detector at the LHC. D+

s mesons and their charge conjugates were 
reconstructed at midrapidity (|y| < 0.5) from their hadronic decay channel D+

s →φπ+, with φ → K−K+, 
in the pT intervals 2 < pT < 50 GeV/c and 2 < pT < 36 GeV/c for the 0–10% and 30–50% centrality 
intervals. For pT > 10 GeV/c, the measured D+

s -meson nuclear modification factor RAA is consistent with 
the one of non-strange D mesons within uncertainties, while at lower pT a hint for a D+

s -meson RAA
larger than that of non-strange D mesons is seen. The enhanced production of D+

s relative to non-
strange D mesons is also studied by comparing the pT-dependent D+

s /D0 production yield ratios in 
Pb–Pb and in pp collisions. The ratio measured in Pb–Pb collisions is found to be on average higher 
than that in pp collisions in the interval 2 < pT < 8 GeV/c with a significance of 2.3σ and 2.4σ for the 
0–10% and 30–50% centrality intervals. The azimuthal anisotropy coefficient v2 of prompt D+

s mesons 
was measured in Pb–Pb collisions in the 30–50% centrality interval and is found to be compatible with 
that of non-strange D mesons. The main features of the measured RAA, D+

s /D0 ratio, and v2 as a function 
of pT are described by theoretical calculations of charm-quark transport in a hydrodynamically expanding 
quark–gluon plasma including hadronisation via charm-quark recombination with light quarks from the 
medium. The pT-integrated production yield of D+

s mesons is compatible with the prediction of the 
statistical hadronisation model.

© 2022 European Organization for Nuclear Research, ALICE. Published by Elsevier B.V. This is an open 
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Strongly-interacting matter at temperatures exceeding the
pseudo-critical value of Tpc ≈ 154–158 MeV and at vanishing 
baryon density is predicted to behave as a plasma of deconfined 
quarks and gluons (QGP) [1,2]. A QGP is formed and studied in 
ultrarelativistic heavy-ion collisions at the CERN Large Hadron Col-
lider (LHC) and existing measurements indicate that it behaves 
as a strongly-coupled liquid-like system [3]. The lifetime of the 
QGP produced at the energy densities reached at the LHC is of the 
order of 10 fm/c [4]. Heavy quarks (charm and beauty) are sen-
sitive probes to investigate the properties of the medium formed 
in these collisions. Due to their large masses, heavy quarks are 
produced predominantly in hard partonic scattering processes oc-
curring during the early stages of the collision (i.e. on timescales 
shorter than the QGP formation time) and therefore experience the 
entire evolution of the medium. Heavy quarks propagate through 
the expanding hot and dense medium, interacting and exchang-
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ing energy and momentum with its constituents via both inelastic 
and elastic quantum chromodynamic (QCD) processes. At high mo-
mentum, the main effect of these interactions is the energy loss of 
the heavy quarks in the QGP due to medium-induced gluon radia-
tion and collisional processes. On the other hand, low-momentum 
heavy quarks, including those shifted to low momentum by the 
energy loss, probe the diffusion regime dominated by elastic in-
teractions. Since the charm and beauty quark masses are large 
compared to the medium temperature, the propagation of low-
momentum heavy quarks through the fireball can be treated as a 
“Brownian motion”, characterised by many elastic collisions with 
relatively small momentum transfers [5,6]. As a consequence of 
the large number of soft collisions with the medium constituents, 
heavy quarks can acquire significant collective flow when diffusing 
through the expanding fireball. Due to their large masses, charm 
quarks have a thermalisation time which is comparable to the fire-
ball lifetime [5,7], and therefore they carry sensitive information 
on their coupling strength to the expanding medium, preserving 
memory of the thermalisation process. The process of hadronisa-
tion is also predicted to be modified in the presence of the QGP. 
Once the fireball approaches the pseudo-critical temperature for 
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the transition to a hadron gas, a significant fraction of low- and 
intermediate-momentum heavy quarks could hadronise via recom-
bination with other quarks from the medium [8–11], in competi-
tion with the fragmentation mechanism, which describes quark-
to-hadron transitions in pp, e±p, and e+e− collisions [12,13].

The effects of the interaction of heavy quarks with the medium 
are commonly quantified by two main observables: the nuclear 
modification factor RAA and the elliptic flow v2. The RAA is defined 
as the ratio of the transverse-momentum (pT) differential yields in 
nucleus–nucleus (AA) collisions and the cross section in proton–
proton collisions, scaled by the average nuclear overlap function 
〈TAA〉

RAA(pT) = 1

〈TAA〉 × dNAA/dpT

dσpp/dpT
, (1)

where the yield in nucleus–nucleus collisions dNAA/dpT is mea-
sured in a given centrality interval and the 〈TAA〉 value is propor-
tional to the average number of nucleon–nucleon collisions [14]. 
The 〈TAA〉 can be estimated via Glauber-model calculations tuned 
to match the measured multiplicity distribution of charged par-
ticles [15]. The elliptic flow v2 is the second coefficient of the 
Fourier expansion of the particle-yield distribution in the az-
imuthal direction ϕ relative to the initial-state symmetry plane 
angle �2: v2 = 〈cos[2(ϕ − �2)]〉, where 〈〉 indicates the average 
over all particles and all events [16,17].

Measurements of non-strange D-meson production in heavy-ion 
collisions at RHIC [18] and LHC [19–21] energies show a sub-
stantial suppression of the D-meson yields compared to pp col-
lisions at intermediate and high pT. In central nucleus–nucleus 
collisions, the RAA exhibits a pronounced drop for pT > 4–5 GeV/c, 
reaches a minimum around pT ≈ 8 GeV/c, and slightly increases 
at higher pT. This trend is described by different state-of-the-art 
model calculations of charm-quark energy loss in the QGP [22–24]. 
A positive D-meson v2 is measured at pT > 8–10 GeV/c for semi-
central Pb–Pb collisions at the LHC [25,26], and it is understood 
as originating from the path-length dependence of the charm-
quark energy loss in the geometrically anisotropic medium cre-
ated in collisions with finite impact parameter. At lower pT, larger 
values of D-meson v2 are observed accompanied by a bump-
like structure in the RAA reflecting the radial flow of the fire-
ball [19–21]. In particular, the D-meson v2 for semicentral col-
lisions shows a maximum value at pT ≈ 3 GeV/c, a clear mass 
ordering v2(D) < v2(p) < v2(π) at low pT (pT < 3 GeV/c), and 
a similar magnitude as the v2 of charged pions at intermedi-
ate pT (3 < pT < 6 GeV/c) [25,26]. These features are consistent 
with a scenario in which low-momentum charm quarks acquire a 
significant collective flow when diffusing through the expanding 
QGP and hadronise via recombination with light quarks from the 
medium. The measured RAA and v2 in this pT region are described 
qualitatively, and to some extent also quantitatively, by transport 
models including charm-quark interactions in a hydrodynamically 
expanding QGP and hadronisation via both fragmentation and re-
combination [27–38]. However, a simultaneous description of the 
nuclear modification factor and the anisotropic flow of D mesons 
is still a challenge for theoretical models.

Studies of the production of different charm-hadron species, 
dubbed heavy-flavour hadrochemistry, can provide information on 
the hadronisation mechanism of charm quarks. In particular, an 
enhancement of the ground-state charm-strange meson yield rel-
ative to that of non-strange D mesons is expected in nucleus–
nucleus collisions at low and intermediate momenta as compared 
to pp interactions, if the dominant process for D-meson forma-
tion is the recombination of charm quarks with light quarks from 
the medium, due to the large abundance of strange quarks in the 
QGP [39–43]. It was also pointed out in Ref. [43] that the com-
parison of the v2 of D+

s mesons to that of D mesons without 

strange-quark content (D0, D+ , and D∗+) could provide sensitivity 
to the transport properties of the hadronic phase, since D+

s mesons 
are expected to decouple early from the hadron gas and therefore 
do not pick up significant additional v2 in the hadronic phase.

The production of D+
s mesons was measured at RHIC [44] and 

the LHC [20,45] in Au–Au and Pb–Pb collisions at different central-
ities. So far, the results have shown that at low and intermediate 
pT the D+

s /D0 ratio in central, semicentral, and peripheral colli-
sions is larger than the value measured in pp collisions, though 
the relatively large uncertainties do not allow firm conclusions. 
The magnitude and the pT dependence of the D+

s /D0 ratio are 
captured, at least qualitatively, by models including hadronisation 
via quark coalescence along with strangeness enhancement in the 
QGP [33,43,46,47], suggesting a relevant role of recombination pro-
cesses in the hadronisation of low-momentum charm quarks in the 
QGP.

In this Letter, we report the measurements of the pT-differential 
yield and the nuclear modification factor of prompt D+

s mesons 
in central (0–10%) and semicentral (30–50%) Pb–Pb collisions at √

sNN = 5.02 TeV, together with the measurement of the prompt 
D+

s -meson elliptic flow in semicentral collisions. D+
s mesons and 

their charge conjugates were reconstructed at midrapidity, |y| <
0.5, through their hadronic decay channel D+

s →φπ+ with a sub-
sequent decay φ → K−K+ . Prompt D+

s mesons are defined as those 
produced directly in the hadronisation of charm quarks or origi-
nating from the decays of directly-produced excited open-charm 
and charmonium states, hence excluding weak decays of beauty 
hadrons. The data sample used for the analysis reported in this 
paper was collected with the ALICE detector at the end of 2018 
and is larger by a factor of about 8 (4) for central (semicentral) 
collisions with respect to the sample collected in 2015, used for 
the previous publications of D+

s -meson RAA and v2 [20,48].

2. Experimental apparatus and data sample

The ALICE apparatus comprises a central barrel, which is com-
posed of a set of detectors for charged particle reconstruction 
and identification at midrapidity, a forward muon spectrome-
ter, and various forward and backward detectors for triggering 
and event characterisation. A detailed description of the detec-
tors and an overview of their typical performances can be found 
in Refs. [49,50].

The D+
s -meson decay candidates and charged conjugates were 

reconstructed and identified with the central barrel detectors, 
which cover the full azimuth in the pseudorapidity interval |η| <
0.9 and are embedded in a large solenoidal magnet providing a 
homogeneous magnetic field B = 0.5 T parallel to the beam di-
rection. Charged-particle trajectories are reconstructed from their 
hits in the Inner Tracking System (ITS) and the Time Projection 
Chamber (TPC). The ITS is the innermost detector of the ALICE 
central barrel, it consists of six cylindrical layers of silicon detec-
tors, allowing a precise determination of the track parameters in 
the vicinity of the interaction point. The TPC provides track recon-
struction with up to 159 three-dimensional space points along the 
trajectory of a charged particle and provides particle identification 
via the measurement of the specific ionisation energy loss dE/dx. 
The Time-Of-Flight (TOF) detector, positioned at a radial distance of 
about 4 m from the beam axis, extends the particle-identification 
capabilities of the TPC by measuring the flight time of the charged 
particles from the interaction point to the TOF. The V0 detector 
is used for triggering and event selection, as well as for the esti-
mation of the collision centrality and the reference plane for the 
elliptic flow measurement. It consists of two scintillator arrays, lo-
cated on both sides of the nominal interaction point and covering 
the full azimuth in the pseudorapidity intervals −3.7 < η < −1.7
(V0C) and 2.8 < η < 5.1 (V0A). The neutron Zero Degree Calorime-
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ters (ZDC), located along the beam axis on both sides of the central 
barrel at about 110 m distance from the interaction point, are used 
for event selection, along with the V0 detector.

The events used in the analysis were recorded with a minimum 
bias (MB) trigger which required coincident signals in the V0A and 
V0C detectors. Two additional trigger classes were used to enrich 
the sample of central and semicentral collisions via an online event 
selection based on the V0-signal amplitude. Background events due 
to the interaction of one of the beams with residual gas in the vac-
uum tube and other machine-induced backgrounds were rejected 
offline using the V0 and the ZDC timing information [50]. In order 
to have a uniform acceptance in pseudorapidity, only events with 
a primary vertex reconstructed within ±10 cm from the centre of 
the detector along the beam-line direction were considered in the 
analysis. Collisions were classified into centrality intervals, defined 
in terms of percentiles of the hadronic Pb–Pb cross section, based 
on the V0 signal amplitude, as described in detail in Ref. [51]. Cen-
tral and semicentral collisions were considered in the analysis of 
the D+

s -meson production. The sample of central collisions con-
sists of about 100 × 106 events in the 0–10% centrality interval, 
corresponding to an integrated luminosity Lint � 130 μb−1. For 
semicentral collisions, a sample of about 85 × 106 events in the 
30–50% interval was utilised, corresponding to Lint � 56 μb−1. 
The average values of the nuclear overlap function, 〈TAA〉, for the 
considered central and semicentral event intervals were estimated 
via Glauber-model simulations anchored to the measured charged-
particle multiplicity distribution, and are 23.26 ± 0.17 mb−1 and 
3.92 ± 0.06 mb−1 [52], respectively.

The Monte Carlo samples utilised in the analysis were obtained 
simulating Pb–Pb collisions with the HIJING 1.36 [53] event gener-
ator. In each simulated event, additional cc- and bb-quark pairs 
were injected using the PYTHIA 8.243 event generator [54,55]
(Monash-13 tune [56]) and D+

s mesons were forced to decay into 
the hadronic channel of interest for the analysis. The generated 
particles were propagated through the detector using the GEANT3 
transport package [57]. The conditions of all the ALICE detectors in 
terms of active channels, gain, noise level, and alignment, and their 
evolution with time during the data taking period, were taken into 
account in the simulations.

3. Analysis technique

D+
s mesons and their charge conjugates were reconstructed via 

the decay channel D+
s → φπ+ → K−K+π+ with branching ratio 

BR = (2.24 ± 0.08)% [58]. The analysis was based on the recon-
struction of decay-vertex topologies displaced from the interaction 
vertex. The separation induced by the weak decays of prompt D+

s
mesons is typically a few hundred of μm, cτ � 151 μm [58].

D+
s -meson candidates were built combining triplets of tracks 

with the proper charge signs, each with |η| < 0.8, at least 70 out of 
159 crossed TPC pad rows, a fit quality χ2/ndf < 1.25 in the TPC 
(where ndf is the number of degrees of freedom involved in the 
track fit procedure), and a minimum of two (out of six) hits in the 
ITS, with at least one in either of the two innermost layers, which 
provide the best pointing resolution. Moreover, at least 50 clusters 
available for particle identification (PID) in the TPC were required 
and only tracks with pT above 0.6 (0.4) GeV/c were considered for 
central (semicentral) collisions. These track-selection criteria limit 
the D+

s -meson acceptance in rapidity, which drops steeply to zero 
for |y| > 0.5 at low pT and for |y| > 0.8 at pT > 5 GeV/c. Thus, 
only D+

s -meson candidates within a pT-dependent fiducial accep-
tance region, |y| < yfid(pT), were selected. The yfid(pT) value was 
defined as a second-order polynomial function, increasing from 0.5 
to 0.8 in the transverse-momentum range 0 < pT < 5 GeV/c, and 
as a constant term, yfid = 0.8, for pT > 5 GeV/c.

Unlike previous D-meson analyses based on linear selec-
tions [20,21,26], a machine-learning (ML) approach based on 
Boosted Decision Trees (BDT) was adopted for the candidate se-
lection to reduce the large combinatorial background [59]. In par-
ticular, the implementation of the BDT algorithm provided by the 
XGBoost [60] library was employed. Signal samples of prompt D+

s
mesons for the BDT training were obtained from Monte Carlo sim-
ulations as described in Section 2. The background samples were 
obtained from the sidebands of the candidate invariant-mass dis-
tributions in the data. Before the training, loose kinematic and 
topological selections were applied to the D+

s -meson candidates 
together with the PID of decay-product tracks. Pions and kaons 
were selected by requiring compatibility with the respective parti-
cle hypothesis within three times the detector resolution between 
the measured and the expected signals for either the TPC dE/dx
or the time of flight. Tracks without TOF hits were identified us-
ing only the TPC information. In addition, the absolute difference 
between the reconstructed K+K− invariant mass and the PDG av-
erage mass for the φ meson [58] (
MKK) was required to be below 
15 MeV/c2. The candidate information provided to the BDTs, as an 
input for the models to distinguish among prompt D+

s mesons and 
background candidates, was mainly based on the displacement of 
the tracks from the primary vertex, the distance between the D+

s -
meson decay vertex and the primary vertex, the D+

s -meson impact 
parameter, and the cosine of the pointing angle between the D+

s -
meson candidate line of flight (the vector connecting the primary 
and secondary vertex) and its reconstructed momentum vector. 
The value of 
MKK and additional variables related to the PID of 
decay tracks were also included. Independent BDTs were trained 
in the different pT intervals of the analysis and for the different 
centrality intervals. Subsequently, they were applied to the real 
data sample in which the belonging class, i.e., prompt D+

s meson 
or combinatorial background, of particle candidates is unknown. 
Selections on the BDT output, which is related to the candidate’s 
probability to be a prompt D+

s meson, were optimised to reject a 
large fraction of the combinatorial background while maintaining 
high signal-selection efficiency.

3.1. Nuclear modification factor measurement

The raw yields of D+
s mesons, including both particles and an-

tiparticles, were extracted from binned maximum-likelihood fits 
to the invariant-mass distributions. The raw yields could be ex-
tracted in transverse-momentum intervals in the ranges 2 < pT <

50 GeV/c and 2 < pT < 36 GeV/c for the 0–10% and the 30–50% 
centrality intervals, respectively. The fit function was composed of 
a Gaussian for the description of the signal and of an exponential 
term for the background. An additional Gaussian was used to de-
scribe the peak due to the decay D+ → K−K+π+ , with a branching 
ratio of (9.68 ±0.18) ×10−3 [58], present at a lower invariant-mass 
value than the D+

s -meson signal peak. The statistical significance 
of the observed signals S/

√
S + B , where S is the raw signal yield 

obtained by integrating the Gaussian function and B is the back-
ground under the peak within 3 standard deviations, varies from 4 
to 24 depending on the pT and centrality intervals.

The pT-differential corrected yield of prompt D+
s mesons was 

computed for each pT interval according to

dN

dpT

∣∣∣∣|y|<0.5
=1

2
× 1


pT

×
fprompt(pT) × ND+D,raw(pT)

∣∣|y|<yfid(pT)

c
y(pT) × (Acc × ε)prompt(pT) × BR × Nevt
.

(2)

The raw-yield values ND+D,raw, which contain the contribution of 
non-prompt D+

s mesons from beauty-hadron decays, were divided 
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Fig. 1. Acceptance-times-efficiency factor for D+
s mesons as a function of pT. The 

(Acc × ε) factors for prompt (red) and non-prompt (blue) D+
s mesons in Pb–Pb col-

lisions for the 0–10% centrality interval are shown, together with those for prompt 
(orange) and non-prompt (green) D+

s mesons for the 30–50% centrality interval.

by a factor of two and multiplied by the prompt fraction fprompt
to obtain the charge-averaged yields of prompt D+

s mesons. Fur-
thermore, they were divided by the acceptance times efficiency 
of prompt D+

s mesons (Acc × ε)prompt, the BR of the decay chan-
nel, the width of the pT interval 
pT, the correction factor for 
the rapidity coverage c
y , and the number of analysed events 
Nevt. The correction factor for the rapidity acceptance c
y was 
computed with FONLL perturbative QCD calculations [61,62]. It 
was defined as the ratio between the generated D-meson yield 
in 
y = 2 yfid and that in |y| < 0.5. The resulting values were 
in agreement within 1% with PYTHIA 8 simulations for pp colli-
sions. To account for possible differences in Pb–Pb collisions and 
as an extreme variation, a flat rapidity distribution was also con-
sidered. The discrepancies with respect to FONLL calculations were 
negligible in comparison to other sources of systematic uncertainty 
described in Section 4.

The (Acc × ε) correction was obtained from the simulations 
described in Section 2 using samples not employed in the BDT 
training. The D+

s -meson pT distributions from simulations were 
reweighted in order to use realistic momentum distributions in 
the determination of the (Acc × ε) factor, which depends on pT. 
In particular, the weights were defined to match the shape given 
by FONLL calculations multiplied by the RAA of D+

s mesons pre-
dicted by the TAMU [33] model. The (Acc × ε) factors as a func-
tion of pT for prompt and non-prompt D+

s mesons in the 0–10% 
and 30–50% centrality intervals are shown in Fig. 1. The differ-
ence between the (Acc × ε) factor for prompt and non-prompt D+

s
mesons arises from the BDT selections applied, given the different 
decay topology of D+

s mesons coming from beauty-hadron decays. 
In particular, the non-prompt D+

s mesons are on average more dis-
placed from the primary vertex due to the large beauty-hadron 
lifetime, cτ � 500 μm [58], and therefore are more efficiently se-
lected in the low-pT region. At high pT, where the candidate decay 
length is less important to separate signal from background, the 
BDT selections are able to suppress the non-prompt efficiency with 
respect to the prompt one. The (Acc × ε) is higher for semicentral 
collisions, by up to a factor two at low pT, since less stringent 
selections can be applied thanks to the lower combinatorial back-
ground.

The fprompt fraction in each pT interval was obtained follow-
ing the procedure employed in Refs. [20,21,63]. The calculation 
was based on the beauty-hadron production cross sections in pp 
collisions at 

√
s = 5.02 TeV from FONLL calculations, the beauty 

hadron to D + X decay kinematics from the PYTHIA 8 decayer, the 

(Acc × ε) correction factor for non-prompt D+
s mesons, and the 

〈TAA〉 for the corresponding centrality interval. In addition, the nu-
clear modification factor of D+

s mesons from beauty-hadron decays 
was accounted for and Rprompt

AA = Rnon-prompt
AA was assumed as in 

Ref. [20]. The values of fprompt range between 0.86 and 0.91 de-
pending on the pT interval and the centrality interval.

The prompt D+
s -meson nuclear modification RAA factor was 

computed following Eq. (1). The measurement of the
pT-differential cross section of prompt D+

s mesons with |y| < 0.5
in pp collisions at 

√
s = 5.02 TeV from Ref. [64], which reaches 

up to pT = 24 GeV/c, was used as a reference for the RAA com-
putation. At higher D+

s -meson pT, 24 < pT < 50 GeV/c, FONLL 
calculations were used as a reference by scaling the predictions 
to match the measured values at lower pT. The pT-extrapolation 
procedure is the same as in Ref. [63]. As an example, the total sys-
tematic uncertainty of the pp reference in the 36 < pT < 50 GeV/c
interval is +42

−33%.

3.2. Elliptic flow measurement

The elliptic flow of prompt D+
s mesons was measured for semi-

central events in transverse-momentum intervals in the range 2 <
pT < 24 GeV/c. The same ML models trained for the RAA measure-
ment in the 30–50% centrality interval were used and the same 
selections on the BDT output were applied. The analysis procedure 
for the v2 determination followed closely with what was done in 
Ref. [26] for the measurement of the non-strange D-meson ellip-
tic flow. The D+

s -meson v2 coefficients were measured using the 
Scalar Product (SP) method [65,66] and can be expressed as

v2{SP} = 〈〈uuu2 · QQQ A∗
2

MA
〉〉

/√√√√√ 〈 QQQ A
2

MA · QQQ B∗
2

MB 〉〈 QQQ A
2

MA · QQQ C∗
2

MC 〉
〈 QQQ B

2
MB · QQQ C∗

2
MC 〉

, (3)

where u2 = ei2ϕD is the unit flow vector of the D-meson candi-
date with azimuthal angle ϕD, QQQ k

2 is the subevent 2nd-harmonic 
flow vector for the subevent k, and Mk represents the subevent 
multiplicity. The SP denominator was calculated with the formula 
introduced in Ref. [66], where the three subevents, indicated as A, 
B, and C, are defined by the particles measured in the V0C, V0A, 
and TPC detectors, respectively. For the TPC detector, the QQQ 2 vector 
was computed from the azimuthal angles of charged tracks recon-
structed with |η| < 0.8 and M was the number of measured tracks. 
For the V0A and V0C detectors, the QQQ 2 vectors were calculated 
from the azimuthal distribution of the energy deposition in the 
detector sectors and M was the sum of the amplitudes measured 
in each channel [26]. The QQQ 2 vectors were corrected for detector 
effects arising from the non-uniform acceptance [67]. The single 
bracket 〈〉 in Eq. (3) refers to an average over all the events, while 
the double brackets 〈〈〉〉 denote the average over all particles in 
the considered pT interval and all events. The SP denominator was 
obtained as a function of the collision centrality.

The elliptic flow of D+
s mesons cannot be directly measured us-

ing Eq. (3) as signal candidates cannot be identified on a particle-
by-particle basis. The measured anisotropic flow coefficient vtot

2
can be written as a weighted sum of the v2 of candidates re-
constructed from true D+

s -meson decays (vsig
2 ) and that of the 

background (vbkg
2 ) [68]

vtot
2 (MD) = 1

Nsig + Nbkg + ND+ (MD)

×
[

Nsig(MD)vsig
2 + Nbkg(MD)vbkg

2 (MD) + ND+
(MD)vD+

2

]
, (4)

4



ALICE Collaboration Physics Letters B 827 (2022) 136986

Fig. 2. Simultaneous fit to the invariant-mass spectrum and v2(MD) of D+
s -meson 

candidates in the 4 < pT < 6 GeV/c interval for the 30–50% centrality interval. 
The solid blue and the dotted red curves represent the total and combinatorial-
background fit functions, respectively.

where Nsig and Nbkg are the raw signal and background yields, 
respectively. An additional vD+

2 free parameter and the cor-

responding raw yield ND+
were included to account for the 

D+ → K−K+π+ contribution to the measured vtot
2 distribution. A 

simultaneous fit to the invariant-mass spectrum and the vtot
2 dis-

tribution as a function of the invariant mass was performed in 
each pT interval to extract the elliptic flow coefficients. The fit 
function for the invariant-mass distributions was composed of 
two Gaussian terms to describe the signal and the peak due to 
the decay D+ → K−K+π+ , and an exponential distribution for the 
background, as for the RAA measurement of Section 3.1. The vsig

2
was measured from a fit to the vtot

2 distribution with the func-

tion of Eq. (4), where vbkg
2 (MD) was described by a linear function. 

Fig. 2 shows the simultaneous fit to the invariant-mass spectrum 
and vtot

2 (MD) of D+
s mesons in the 4 < pT < 6 GeV/c interval for 

the 30–50% centrality interval.
The reconstructed D+

s -meson signal is a mixture of prompt 
D+

s mesons and non-prompt D+
s mesons from beauty-hadron de-

cays. Therefore, the vsig
2 can be expressed as a linear combina-

tion of prompt (vprompt
2 ) and non-prompt (vnon-prompt

2 ) contribu-
tions weighted by the fraction of prompt ( fprompt) and non-prompt 
(1 − fprompt) D+

s mesons in the extracted signal, respectively. The 
fraction of promptly produced D+

s mesons was estimated as a 
function of pT with the theory-driven method described in Sec-
tion 3.1. The v2 coefficients of prompt D+

s mesons were obtained 
assuming vnon-prompt

2 = vprompt
2 /2. This hypothesis is based on the 

v2 measurements of the non-prompt J/ψ performed by ATLAS and 
CMS [69,70], and on the available model calculations [71–73] that 
indicate 0 < vnon-prompt

2 < vprompt
2 .

Table 1
Relative systematic uncertainties of the prompt D+

s -meson corrected yield in Pb–Pb 
collisions for central and semicentral events in representative pT intervals.

Centrality interval 0–10% 30–50%
pT (GeV/c) 2–3 12–16 2–3 12–16

Yield extraction 8% 2% 8% 3%
Tracking efficiency 12% 12% 10% 8%
Selection efficiency 9% 4% 5% 3%
Prompt fraction +8

−16% +9
−18% +8

−16% +8
−17%

MC pT shape 5% negl. 3% negl.
Centrality limits < 0.1% 2%

Branching ratio 4%

Total syst. unc. +20
−24% +16

−23% +17
−22% +13

−20%

4. Systematic uncertainties

4.1. Nuclear modification factor measurement

The measurement of the D+
s -meson corrected yield is affected 

by the following sources of systematic uncertainties: (i) the raw-
yield extraction from the invariant-mass distributions, (ii) the 
track-reconstruction efficiency, (iii) the PID and selection efficiency, 
(iv) the generated D+

s -meson pT shape in the simulation, and 
(v) the prompt fraction estimation. In addition, the uncertainty due 
to the branching ratio of 3.6% [58], and that due to the centrality-
interval definition were considered. This last contribution arises 
from the uncertainty of the fraction of the hadronic cross section 
used in the Glauber fit to determine the centrality, and was esti-
mated to be < 0.1% and 2% for the 0–10% and 30–50% centrality 
intervals, respectively [63]. A procedure similar to that described 
in Refs. [20,21] was used to estimate the uncertainties as a func-
tion of the pT interval and the centrality interval. The estimated 
values of the systematic uncertainties are summarised in Table 1
for representative pT intervals, together with the total systematic 
uncertainty obtained from the sum in quadrature of the different 
contributions.

The systematic uncertainty of the raw-yield extraction was 
evaluated by repeating the fit of the invariant- mass distribution 
varying the lower and upper limits of the fit range, the bin width, 
and the functional form of the background fit function. The sys-
tematic uncertainty was defined as the RMS of the distribution of 
the signal yields obtained from all these variations and ranges from 
2% to 8% depending on the centrality interval and the pT interval.

The systematic uncertainty of the track-reconstruction effi-
ciency was estimated by varying the track- quality selection cri-
teria and by comparing the prolongation probability of the TPC 
tracks to the ITS hits in data and simulation. The comparison was 
performed after weighting the relative abundances of primary and 
secondary particles in the simulation to match those observed in 
data [74]. The estimated uncertainty ranges from 5% to 14%.

The systematic uncertainty of the selection efficiency originates 
from imperfections in the description of the detector resolutions 
and alignments in the simulation. It was estimated by comparing 
the corrected yields obtained by repeating the analysis with dif-
ferent selections on the BDT output, which resulted in up to 50% 
higher and lower efficiencies with respect to the central values. 
The assigned systematic uncertainty ranges from 3% to 9%. Possible 
systematic effects due to the loose PID selection, applied prior to 
the machine-learning one, were investigated comparing pion and 
kaon PID selection efficiencies in data and in simulations. A pure 
sample of pions was selected from K0

S and � decays, while sam-
ples of kaons in the TPC (TOF) were obtained applying a strict PID 
selection using the TOF (TPC) information. Since no significant dif-
ferences were observed, no systematic uncertainty was assigned.

An additional contribution to the systematic uncertainty of the 
efficiency originates from possible differences between the real 
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Table 2
Systematic uncertainties of the prompt D+

s -meson v2 in Pb–Pb collisions for the 
30–50% centrality interval in representative pT intervals. The uncertainties of the 
fitting procedure and non-prompt contribution subtraction are quoted as absolute 
uncertainties, while that of the SP denominator as relative uncertainty.

pT (GeV/c) 2–4 12–16

M and v2 fits 0.01 0.02
Non-prompt contribution +0.031

−0.007
+0.028
−0.006

SP denominator 0.5%

and simulated D+
s -meson pT distributions. It was estimated by 

calculating the efficiency using alternative D+
s -meson pT shapes 

obtained by re-weighting the pT distribution from MC simulations 
to match those predicted by theoretical models. The pT distribu-
tions from FONLL calculations including or not hot-medium effects, 
parametrised using the pT-differential RAA from the LGR [34], 
PHSD [75], TAMU [33], and Catania [35] models, were considered. 
The resulting uncertainty was estimated to be about 5% and 3% for 
the 0–10% and 30–50% centrality intervals, respectively, in the low-
est pT intervals where the efficiency varies steeply with pT, and to 
decrease to zero above 12 GeV/c.

The systematic uncertainty of the prompt fraction was esti-
mated by varying the FONLL parameters (b-quark mass, factori-
sation, and renormalisation scales, according to the prescription 
reported in Ref. [76]) in the calculation of the pT-differential pro-
duction cross section of non-prompt D+

s mesons. In addition, the 
ratio of the non-prompt and prompt D+

s -meson RAA was varied 
in the range 1

3 < Rnon-prompt
AA /Rprompt

AA < 3 as done in Ref. [20]. The 
resulting uncertainty ranges between +8

−16% and +12
−23%.

In the RAA calculation, the BR uncertainty of the D+
s -meson 

yield in Pb–Pb collisions and of the pp reference cross section can-
cels out in the ratio. The contribution due to the prompt fraction 
uncertainty, estimated by the variation of the parameters of the 
FONLL calculation, was considered to be fully correlated and the 
remaining systematic uncertainties were propagated as uncorre-
lated. The uncertainties of the RAA normalisation are the quadratic 
sum of the pp normalisation uncertainty, 2.1% [77], the 〈TAA〉
uncertainty, 0.7% (1.5%) for the 0–10% (30–50%) centrality inter-
val [52], and the one related to the centrality-interval definition 
described above.

4.2. Elliptic flow measurement

The systematic uncertainties of the measurement of the D+
s -

meson v2 coefficients were estimated with procedures similar to 
those detailed in Ref. [26]. They include the following sources: 
(i) the signal extraction from the invariant-mass and vtot

2 distribu-
tions, (ii) the non-prompt D+

s contribution, and (iii) the centrality 
dependence of the SP denominator. The selection efficiency was 
observed to be independent of the D+

s -meson azimuthal direction, 
therefore no contribution to the systematic uncertainty was as-
signed. The non-flow effects are naturally suppressed due to the 
pseudorapidity gap of at least 0.9 units between the pseudorapid-
ity interval used for the D+

s -meson reconstruction, and the V0C 
used for the QQQ 2-vector determination. The estimated values of the 
systematic uncertainties are summarised in Table 2 for representa-
tive pT intervals.

The uncertainty due to the simultaneous fit was estimated by 
repeating the fit several times with different configurations, as 
done for the RAA measurement. The RMS of the v2 distribution ob-
tained from the different trials, separately for each pT interval, was 
assigned as systematic uncertainty. The absolute systematic uncer-
tainty values due to the signal extraction range between 0.01 and 
0.03 depending on pT.

The systematic uncertainty related to the correction for the 
contribution of non-prompt D+

s to the measured v2 has two main 

Fig. 3. pT-differential production yields of prompt D+
s mesons in the 0–10% and 

30–50% centrality intervals in Pb–Pb collisions at √sNN = 5.02 TeV compared to the 
pp reference [64] scaled by the average nuclear overlap function 〈TAA〉 of the cor-
responding centrality interval. The open markers indicate where the pp reference is 
extrapolated using FONLL calculations. The pT-differential yields in the 30–50% cen-
trality interval and the corresponding pp reference are scaled by a factor of 10−1 for 
better visibility. Statistical uncertainties (bars) and systematic uncertainties (boxes) 
are shown.

sources. The first one is due to the fprompt calculation and it 
was treated as described in Section 4.1 for the RAA measure-
ment. The second source is due to the assumption of vnon-prompt

2

= vprompt
2 /2. This was estimated by considering a flat distribution 

of vnon-prompt
2 between 0 and vprompt

2 and by varying the central 
value of vnon-prompt

2 by ±vprompt
2 /

√
12, corresponding to one stan-

dard deviation. The values of the absolute systematic uncertainty 
from the non-prompt correction range between +0.020

−0.005 and +0.039
−0.009

for the different pT intervals.
The contribution of the SP denominator to the systematic un-

certainty is due to the centrality dependence. The uncertainty was 
evaluated as the difference of the centrality integrated value, com-
puted from the events in the 30–50% interval, with that obtained 
as weighted average of SP-denominator values in narrow central-
ity intervals using the D+

s -meson yields as weights. A systematic 
uncertainty of 0.5% was assigned.

5. Results

The pT-differential production yields dN/dpT of prompt D+
s

mesons measured in the 0–10% and 30–50% centrality intervals are 
shown in Fig. 3. For the semicentral class of events, the measure-
ments are scaled by 10−1 for better visibility. The results are com-
pared with the pp reference cross section multiplied by the cor-
responding average nuclear overlap function 〈TAA〉. The larger data 
sample and the improved analysis technique enable an extended 
pT coverage and finer pT intervals in the measured dN/dpT of 
prompt D+

s mesons compared to the previous measurement by the 
ALICE Collaboration in Pb–Pb collisions at 

√
sNN = 5.02 TeV [20]. 

A strong suppression of the D+
s yields compared to the binary-

scaled pp reference is observed for both centrality intervals for 
pT > 3–4 GeV/c, similarly as for the non-strange D mesons [21]. 
This suppression is understood in terms of modification of the 
charm-quark momentum spectra due to the interactions within the 
QGP.

The nuclear modification factor RAA of prompt D+
s mesons 

is compared with the average RAA of prompt D0, D+ , and D∗+
mesons in Fig. 4 for the 0–10% and 30–50% centrality intervals, in 
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Fig. 4. Nuclear modification factor RAA of prompt D+
s mesons in the 0–10% (left panel) and 30–50% (right panel) centrality intervals in Pb–Pb collisions at √sNN = 5.02 TeV

compared with the one of prompt non-strange D mesons (average of D0, D+ , and D∗+) [21]. The empty (filled) boxes represent the species uncorrelated (correlated) 
systematic uncertainties. The normalisation uncertainty is represented by a filled box at RAA = 1.

the left and right panels, respectively. The systematic uncertainties 
related to the tracking efficiency and the prompt-fraction estima-
tion are considered as fully correlated between the different D-
meson species, and are reported separately from the other sources 
of systematic uncertainty which are uncorrelated. The RAA of D+

s
and non-strange D mesons show a minimum value of about 0.2 
(0.4) around pT ≈ 10 GeV/c in the 0–10% (30–50%) centrality in-
terval. For lower pT, the RAA increases with decreasing pT reaching 
about unity around pT ≈ 2–3 GeV/c. In both centrality intervals, 
the RAA of prompt D+

s and non-strange D mesons are compati-
ble within uncertainties for pT � 10 GeV/c. In this pT region, the 
hadronisation is expected to occur mainly via fragmentation and 
the dominant effect leading to the observed suppression is the 
charm-quark energy loss in the QGP. For lower pT, the measured 
RAA of prompt D+

s mesons is systematically higher than that of 
non-strange D mesons but compatible within about one standard 
deviation of the combined statistical and systematic uncertainties.

In the left and right panels of Fig. 5, the RAA of prompt D+
s

and non-strange D mesons in the 0–10% centrality interval are 
compared with theoretical calculations implementing charm-quark 
transport in the QGP [78]. All the models include an enhancement 
of the strangeness content of the QGP and the hadronisation of 
charm quarks is implemented either via fragmentation, which is 
dominant at high pT, or via coalescence with light quarks in the 
QGP. In the Catania [35,47] and LGR [34] models the coalescence 
occurs instantaneously at the phase boundary and is implemented 
through the Wigner formalism [79]. In the PHSD model [38,75], 
the hadronisation in heavy-ion collisions is described via a Monte 
Carlo simulation of the coalescence process in competition to frag-
mentation. In the TAMU [33] model, the hadronisation via coales-
cence proceeds via formation of resonant states when approaching 
the (pseudo)critical temperature within the formalism of a Res-
onance Recombination Model [11]. For the description of the D-
meson pT spectra in pp collisions, all the models use as starting 
point FONLL calculations [61,62,76]. Charm quarks are hadronised 
in pp collisions with fragmentation in the PHSD and LGR mod-
els, while in the Catania model the charm-quark hadronisation 
via coalescence is also implemented in addition to that via frag-
mentation [80]. In pp collisions, the hadronisation in the TAMU 
model is instead determined with a statistical hadronisation ap-
proach, in which the strangeness production is suppressed in pp 
with respect to heavy-ion collisions. This is described with a sup-
pression factor for strange particles of γs = 0.6 [81], which is 
instead unity in heavy-ion collisions. All the models reproduce 
qualitatively the measured RAA of prompt D+

s and non-strange D 

mesons. The Catania model underestimates both measurements for 
2 < pT < 5 GeV/c by about 2 σ of the combined statistical and 
systematic uncertainties of the measured points, while it overes-
timates the non-strange D-meson RAA for pT < 1.5 GeV/c, where 
no measurement is available for strange mesons. In contrast, the 
PHSD model describes well the measured nuclear modification fac-
tors for pT < 5 GeV/c and underestimates them by about 2 σ for 
higher pT. The TAMU model describes the measurements within 
uncertainties, with a tension of about 2 σ of the combined sta-
tistical and systematic uncertainties of the D+

s -meson measure-
ment in 2 < pT < 3 GeV/c. These three models do not include 
charm-quark interactions with medium constituents via radiative 
processes, hence are not expected to describe the RAA of strange 
and non-strange D mesons for pT > 6–8 GeV/c. The LGR model, 
which instead includes gluon-radiation processes, provides a good 
description of the RAA up to high pT. All the models predict 
a smaller suppression of the D+

s -meson RAA compared to non-
strange D mesons at low and intermediate pT.

The possible enhancement of the yield of D mesons with 
strange-quark content with respect to that of non-strange D 
mesons was further investigated by computing the ratio between 
the pT-differential production yields of prompt D+

s mesons and 
those of prompt D0 mesons [21]. The systematic uncertainty re-
lated to the determination of the tracking efficiency and the 
contribution due to the subtraction of the component from beauty-
hadron decays were propagated as fully correlated in the ratios, 
while all the other sources of systematic uncertainties were con-
sidered as uncorrelated between the measurements of D+

s and D0

mesons. The top row of Fig. 6 shows the D+
s /D0 yield ratios in 

the 0–10% (left panel) and 30–50% (middle panel) centrality inter-
vals compared to the same quantity measured in minimum-bias 
pp collisions [64] (right panel) and to theoretical calculations. The 
D+

s /D0 yield ratios in Pb–Pb collisions divided by those measured 
in pp collisions are shown in the bottom row of the same figure. 
The average values of the D+

s /D0 ratios in the 2 < pT < 8 GeV/c
interval are higher in Pb–Pb collisions than those in pp collisions 
by about 2.3σ and 2.4σ of the combined statistical and system-
atic uncertainties, for the 0–10% and 30–50% centrality intervals, 
respectively. In central collisions, the measured D+

s /D0 ratio is 
compatible with the one measured by the STAR Collaboration in 
Au–Au collisions at 

√
sNN = 200 GeV [44]. The D+

s /D0 ratios in 
pp and in central (central and semicentral) Pb–Pb collisions are 
described within uncertainties by the Catania (PHSD) model. The 
TAMU model significantly overestimates the measured D+

s /D0 by a 
similar amount in the two colliding systems, leading to a good de-
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Fig. 5. Nuclear modification factor RAA of prompt D+
s mesons (left panel) and non-strange D mesons [21] (right panel) in the 0–10% centrality interval in Pb–Pb collisions at √

sNN = 5.02 TeV compared with theoretical calculations based on charm-quark transport in a hydrodynamically expanding QGP implementing strangeness enhancement and 
hadronisation of charm quarks via coalescence in addition to fragmentation in the vacuum [33–35,38,75]. The boxes represent the total systematic uncertainties. The colour 
bands represent the theoretical uncertainty when available.

Fig. 6. Top panels: D+
s /D0 pT-differential production ratios in the 0–10% (left panel) and 30–50% (middle panel) centrality intervals in Pb–Pb collisions at √sNN = 5.02 TeV and 

in pp collisions (right panel) at the same centre-of-mass energy compared with theoretical calculations based on charm-quark transport in a hydrodynamically expanding 
QGP [33,34,38,47,75,80,81] and on statistical hadronisation [82]. Bottom panels: D+

s /D0 pT-differential ratios in Pb–Pb collisions divided by those in pp collisions, in the 
0–10% (left panel) and 30–50% (right panel) centrality intervals, compared with theoretical calculations.

scription of the ratio of the D+
s /D0 measured in Pb–Pb and pp 

collisions, as shown in the bottom panels of Fig. 6. While the 
Catania and PHSD models predict a D+

s /D0 ratio almost pT in-
dependent for pT < 3 GeV/c and then mildly decreasing towards 
the pp value at higher pT, the TAMU and LGR models predict a 
peak around pT ≈ 3–4 GeV/c. The origin of such a peak would 
be motivated by the different masses of D+

s and D0 mesons and 
by the collective radial expansion of the system with a common 
flow-velocity profile, which imposes an equal velocity boost to all 
particles in case of complete thermalisation. In addition, also the 
hadronisation via coalescence is expected to modify the pT shape 
of the D+

s /D0 ratio due to the different masses of u and s quarks. 
A similar pT shape is predicted by the GSI-Heidelberg statistical 
hadronisation model (SHMc) [82], which is reported in the top 
panels of Fig. 6 for central and semicentral Pb–Pb collisions, where 
the pT spectra of charm hadrons are modelled with a core-corona 

approach. The low-pT region is dominated by the core contribution 
described with a Blast Wave function. The corona contribution is 
instead parametrised from measurements in pp collisions and is 
relevant at high pT. The pT-spectra modification due to resonance 
decays is computed using the FastReso package [83]. Within the 
current uncertainties of the measurement, no firm conclusions can 
be drawn on the pT shape of the D+

s /D0 ratio in Pb–Pb collisions 
at low and intermediate pT. These results however provide impor-
tant indications about the role of the charm-quark hadronisation 
via coalescence in the QGP, complementary to those obtained via 
the simultaneous comparison of the measured D-meson RAA and 
vn coefficients [21,26].

The visible production yield of prompt D+
s mesons was eval-

uated by integrating the pT-differential yield over the narrower 
pT intervals of the measurement. The systematic uncertainties 
were propagated as fully correlated among the measured pT in-

8



ALICE Collaboration Physics Letters B 827 (2022) 136986

Table 3
Production yields of prompt D+

s mesons in |y| < 0.5 in Pb–Pb collisions at √sNN = 5.02 TeV compared to the 
predictions of the GSI-Heidelberg SHMc [82].

Centrality dN/dy||y|<0.5 GSI-Heidelberg SHMc

0–10% 1.89 ± 0.07(stat)+0.13
−0.16(syst)+0.36

−0.55(extr) ± 0.07(BR) 2.22 ± 0.38
30–50% 0.34 ± 0.01(stat)+0.02

−0.03(syst)+0.11
−0.09(extr) ± 0.01(BR) 0.344 ± 0.056

Fig. 7. Elliptic flow coefficient v2 of prompt D+
s mesons in the 30–50% centrality interval in Pb–Pb collisions at √sNN = 5.02 TeV compared with that of non-strange D 

mesons [26] (left panel) and with theoretical calculations based on the charm-quark transport in a hydrodynamically expanding QGP [33,38] (right panel).

tervals, except for the raw-yield extraction uncertainty, which 
was treated as uncorrelated considering the variations of the 
signal-to-background ratio and the shape of the combinatorial-
background distribution as a function of pT. In order to obtain the 
pT-integrated production yield, the dN/dpT was extrapolated in 
0 < pT < 2 GeV/c. For this purpose, the measured pT-differential 
D+

s /D0 ratio was interpolated using the shape predicted by the 
PHSD model and leaving the normalisation as a free parameter. 
The extrapolated D+

s /D0 ratio for pT < 2 GeV/c was then mul-
tiplied by the dN/dpT of D0 mesons measured in the same pT
interval [21] to obtain the extrapolated D+

s yield, which amounts 
to about 70% of the total production yield. An additional uncer-
tainty was assigned to the extrapolation procedure, by repeating 
the computation using the TAMU and Catania transport models, 
and the SHMc to extrapolate the D+

s /D0 ratio in the unmeasured 
pT interval. Finally, the pT-integrated production yield was ob-
tained as the sum of the extrapolated one for pT < 2 GeV/c and 
the measured one. The results for the 0–10% and 30–50% central-
ity intervals are reported in Table 3. As for the D0, D+ , and D∗+
mesons [21], the production yield of prompt D+

s mesons at midra-
pidity is compatible within uncertainties with the one predicted 
by the SHMc. This suggests that low-pT charm quarks, which de-
termine the total yield, are thermalised in the QGP.

The degree of thermalisation of charm quarks and their hadro-
nisation in the QGP were also studied via the measurement of the 
azimuthal anisotropy in the prompt D+

s -meson production. Fig. 7
shows the elliptic flow coefficient v2 of prompt D+

s mesons for the 
30–50% centrality interval measured in the transverse-momentum 
interval 2 < pT < 24 GeV/c, compared with that of prompt non-
strange D mesons (left panel) and with theoretical calculations 
(right panel). The rapidity interval of the measurement, |y| < 0.8, 
is wider than that quoted for the RAA since no correction for the 
rapidity acceptance was applied. The measurement was carried out 
in finer pT intervals and has uncertainties reduced by a factor up 
to four with respect to the previous measurement [48], thanks to 
the more advanced D+

s -meson selection technique and the larger 
data sample. Considering as null hypothesis v2 = 0, the probability 
to observe the measured positive v2 in 2 < pT < 8 GeV/c corre-

sponds to a significance of 6.4σ , confirming the participation of 
the charm quark in the collective motion of the system, as already 
observed for non-strange D mesons [26,48]. However, within the 
current uncertainties it is not possible to draw a conclusion about 
a potential difference between the elliptic flow of strange and 
non-strange D mesons, which would be motivated by the differ-
ent mass, the charm-quark hadronisation via recombination with 
strange quarks in the medium instead of light quarks [84], and 
possible differences in the hadronic phase [43]. The measured D+

s -
meson v2 is compatible within uncertainties with the predictions 
of the TAMU and PHSD models, which include charm-quark coa-
lescence with flowing strange quarks in the medium.

6. Summary

In this Letter, a comprehensive and high-precision set of mea-
surements regarding the prompt D+

s -meson production at midra-
pidity in Pb–Pb collisions at 

√
sNN = 5.02 TeV was reported.

The pT-differential production yields were measured in a wide 
transverse-momentum interval between 2–50 (2–36) GeV/c in the 
0–10% (30–50%) centrality interval. They were used to compute 
the pT-differential RAA and the ratio of D+

s -meson production rel-
ative to D0 mesons. The measured RAA shows a strong suppres-
sion of the D+

s -meson production yield compared to the binary-
scaled pp reference, reaching a minimum of about 0.2 (0.4) around 
pT ≈ 10 GeV/c in the 0–10% (30–50%) centrality interval. For lower 
pT, the RAA increases reaching about unity for pT ≈ 2–3 GeV/c. 
The D+

s /D0 yield ratios in Pb–Pb collisions are higher than those 
measured in pp collisions for pT � 8 GeV/c with a significance 
of 2.3σ and 2.4σ in the 0–10% and 30–50% centrality intervals, 
respectively. This finding is consistent with the predictions of the-
oretical calculations implementing the charm-quark transport in 
a hydrodynamically expanding QGP, which include an enhanced 
strange-quark production in the medium and the charm-quark 
hadronisation via coalescence. The production yield of prompt D+

s
mesons, extrapolated down to pT = 0, in the 0–10% centrality in-
terval is compatible with the prediction of the SHMc, suggesting 
that the bulk of charm quarks are thermalised in the QGP.
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The elliptic flow coefficient v2 of prompt D+
s mesons was mea-

sured as a function of pT in the 30–50% centrality interval. The 
D+

s -meson v2 in 2 < pT < 8 GeV/c is positive with a signifi-
cance of 6.4σ and is compatible within uncertainties with that of 
non-strange D mesons. The measured v2 is also described by sev-
eral transport-model calculations implementing the charm-quark 
hadronisation via coalescence.

The data reported in this Letter represent the most precise 
measurements of prompt D+

s -meson production in heavy-ion colli-
sions at LHC energies to date, and provide stringent constraints to 
all models on the production of charm quarks and their hadroni-
sation in the QGP. Future data samples that will be collected with 
the upgraded ALICE detector in Run 3 will have the potential to 
further improve and extend to lower pT the measurement of D+

s
mesons in heavy-ion collisions [85].
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