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CONVERGENCE ESTIMATES OF A SEMI-LAGRANGIAN SCHEME FOR THE
ELLIPSOIDAL BGK MODEL FOR POLYATOMIC MOLECULES

SEBASTIANO BOSCARINO!®, SEUNG YEON CHO?**®, GIOVANNI RUSSO!
AND SEOK-BAE YUN?

Abstract. In this paper, we propose a new semi-Lagrangian scheme for the polyatomic ellipsoidal
BGK model. In order to avoid time step restrictions coming from convection term and small Knudsen
number, we combine a semi-Lagrangian approach for the convection term with an implicit treatment for
the relaxation term. We show how to explicitly solve the implicit step, thus obtaining an efficient and
stable scheme for any Knudsen number. We also derive an explicit error estimate on the convergence
of the proposed scheme for every fixed value of the Knudsen number.
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1. INTRODUCTION

1.1. Polyatomic ES-BGK model

The BGK model [5] has been popularly employed for various flow problems of rarefied gas dynamics in place
of the Boltzmann equation since it reproduces the dynamics of the Boltzmann equation in a reliable manner
at much lower computational cost. The importance of developing polyatomic versions of the BGK model has
been recognized soon after the inception of the model — which is very natural since most of the gas molecules
consists of several atoms — and the several attempts to derive polyatomic version of the BGK model have been
proposed in the literature. The polyatomic generalization of the BGK model can be realized in various manners
such as the introduction of new variables describing the internal energy due to the inner configuration of the
molecules [2,4], vibrational excitation [3], and reformulation into the gas mixture framework [27,36]. In this
paper, we are interested in the polyatomic BGK model obtained from the so called ellipsoidal BGK model
[2,9,24] (Polyatomic ES-BGK model):
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flx,v,0,1I) = fo(x,v,I). (1.1)

The velocity-energy distribution function f(z,v,t,I) represents the number density of particles in the phase
space. For simplicity, we assumed periodic boundary condition in d-dimensional space. Without loss of generality,
the length of the domain is assumed to be one. The parameter I € R, is related to internal energy ¢ due to
rotation and vibration e(I) = I §, where § > 0 represents the number of degrees of freedom for the internal
motion of the molecules such as the rotation and vibration. Our independent variables x and v belong to phase
space (z,v) € T? x R3, with T? = R?/Z%, and t > 0 denotes the time. The Knudsen number x > 0 is the ratio
between the mean free path of the gas molecules and the macroscopic length scale of the problem. We consider
a collision frequency A, 9 :=1/(1 —v+vf), for 0 <0 <1 and —% < v < 1. The two parameters can be chosen
to fit Prandtl number and transport coefficients computed by Chapman-Enskog expansion of the Boltzmann
equation. The polyatomic Gaussian M, g 5(f) is given by

A (v—U(z,t)) T, (v —Ulx,t)) 1%
MV,G,J(f) = Pod 5 Pl — 0 G R (12)
\V det(2777;79)(T9) 2 2 Tg
where Ag is a normalizing constant defined by
A= / e 1% dI. (1.3)
Ry

The macroscopic local density p(x,t), bulk velocity U(z,t), stress tensor O(x,t) and internal energy Es(z,t)
are defined as follows:

plat) = [ St ndodr,
R3 xR

plx, )U(z,t) := / vf(x,v,t,I)dvdl,
R3xR4

plx, t)0(x,t) = /]RB . (v—Ulx,t)) @ (v—Ulx,t)) f(x,v,t,I)dvdl,

1
Es(x,t) ::/ (|v—U(x,t)|2—l—Ig)f(x,v,t,I)dvdI.
R3 xR 2
The internal energy Ej consists of the translational energy i, and the non-translational energy Ej s:

1
Ey = / —|v = U(x,t)|?f(x,v,t,I)dvdl,
R3xRy 2

Ers ::/ I%f(x,v,t,l)dvdl.
RSXR+

The corresponding temperatures 75, Ti, and Ty s are defined by

3406 3 )
E5 = TpTg, Etr =: ngtr; E]_’(; =: ipleg.

Note that T is the convex combination of Ti, and 17 s:

3 1)
Ts = —> Ty + —— T 5.
6= g g u Tyt

We also define the relaxation temperature Ty and the temperature tensor 7, ¢ as follows:

Ty = 9T5 =+ (1 — Q)T[’(;,
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T =0Ts51d+ (1 — 0){(1 — v)T,Id + vO}.
where Id is a 3 x 3 identity matrix. The polyatomic relaxation operator has five-dimensional collision invariants:

1
/]Rg . Muos(f)— No(v,I)dvdl =0, ¢(v,I)=

v
sl +1%
so that the conservation laws hold for mass, momentum and energy:

d

- fo(v, I)dzdvdl = 0.
dt Jraxrsxr,

The celebrated H-theorem was first verified in [2] (see also [8,9,33,46])
d

dt R3 xR,

Fin fdvd] = / (Myos(f) — f)In fdvdl < 0.

R3 xRy

We note that this model reduces to the monatomic ES-BGK model [24] when 6 = 0. On the other hand, if
we take v = § = 0 and integrate both sides of (1.1) against I, the original BGK model is recovered [5]. It is also
interesting that there is a dichotomy in the time asymptotic state of f depending on @ (see [33]). For 0 < 6 < 1,
f converges to Mg 1.5(f):

s N
(21T5)2 (T5)3 2T Ts

while if # = 0, its time asymptotic limit is the isothermal equilibrium Mg 5(f):

_ S
Mora(f) = U I>7

pAs
Moos(f) = ——5——exp
(27Tw)? (Tr.6)3 2T Trs

U@t I3 )

As regards analytical results on the polyatomic ES-BGK model, we refer to papers regarding the entropy
production property [33], existence of classical solutions [32,47] and mild solutions [34]. We also refer to [9]
where authors studied how to determine the form of polyatomic Gaussian M, g 5(f). The result shows that
My0.5(f) in (1.2) is derived from an entropy minimization problem.

1.2. Implicit semi-Lagrangian scheme

Several methods have been adopted for numerical solutions of (1.1). In [28,30], the authors employed iterative
schemes to find the steady state solutions. When dealing with time-dependent problems, explicit schemes can
be adopted if the Knudsen number is not too small [1,29]. On the other hand, if one is interested in small
value of k, then an implicit treatment of collision term is necessary in order to avoid excessive restrictions on
the time step. Splitting schemes can be used in which an explicit convection step is followed by an implicit
relaxation step [11]. Because during the relaxation step mass momentum and energy are constant, the solution
of the implicit step is relatively easy to compute. However, splitting schemes have the drawback that for small
Knudsen number they are restricted to the first order accuracy in time [10, 26]. Accuracy can be improved
for small Knudsen number using implicit explicit Runge-Kutta schemes [4]. In this paper, the authors use an
Eulerian framework in which convection terms are treated explicitly and collision term is treated implicitly. The
drawback of Eulerian schemes is the CFL-type time step restriction |v%| < 1 imposed by the convection term.
To overcome these difficulties, we propose a semi-Lagrangian (SL) method with an implicit treatment of the
relaxation term of the following form:
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+1_ 7
figk = Tiin — Avg M _— _— L4
At Tk v0,6\Jijk ) T Jijk ) (1.4)

where fff,i is the discrete solution of the scheme, NZ”] & is the approximation of the discrete solution on the foot

of characteristic, and M, g 5 ( ff}l,c) denotes the numerical polyatomic ellipsoidal Gaussian (see Sect. 2 for
gk

precise definitions). However, this implicit scheme requires to solve non-linear systems.
n+1

To overcome this difficulty, we observe that the polyatomic ellipsoidal Gaussian constructed from f;

ik M

(1.4) can be replaced by the polyatomic ellipsoidal Gaussian constructed form ik up to small error, which
makes the equation solvable as

kfI +Au9AtMV96(~” )
fffl'l’rl _ 1,7,k s 0, fz,J,IC ik .
bk K+ Ay’gAt

Note that the proposed scheme for the polyatomic ES-BGK model reduces to the SL scheme for monatomic
BGK model in [22,40,43] and SL scheme for monatomic ES-BGK model [42] by taking appropriate values of v
and 0 and integrating it over I variable.

The main result of this paper is the derivation of the error estimate based on Lg°-norm (see notation in
Sect. 1.3), which is stated in Theorem 3.2 as follows:

2
[| £ *f(Tf)HL;o < C((AA? +(Ax)2+Av+AI+At),

where C is a constant depending on T/, q, 8, s, 6, v, At, but can be uniformly bounded regardless of At > 0. The
main ingredient of the convergence proof is the establishment of the following uniform stability estimate of the
discrete solution (see Sect. 4):

Ay, a - CMmAv0 pf
S G ) < fi < TR g (14 )72,

Coe~

We note that, unlike most of numerical stability estimates, the uniform lower bound is important since it is
crucially used to prove that the polyatomic temperature never vanishes (see Lem. 4.14):

_2
<T5)n - (1 CapCo e—<i+m>ﬂ> e

i §Cs\|fo||Lgo

so that the discrete polyatomic ellipsoidal Gaussian never degenerates into Dirac delta.

We close this subsection with a brief review on implicit SL schemes for BGK models. In [43], high order SL
methods were constructed using diagonally implicit Runge-Kutta schemes [31] and high order non-oscillatory
spatial reconstruction [18]. Owing to the L-stability property of time discretization, the resulting schemes enable
one to use a large time step even in the fluid regime. In [22], multi-step time discretization such as the backward
difference formula (BDF) were adopted in the semi-Lagrangian framework. The performance of such methods
was verified through boundary value problems in [21,39]. In [7], such SL schemes were employed as a predictor
scheme corrected it by a conservative procedure to obtain an exactly conservative scheme at the discrete level.
Recently, in [14] we proposed a class of high order conservative SL schemes with a high order non-oscillatory
conservative reconstruction [13], and numerically show that the proposed scheme is able to capture the exact
shock position of compressible Euler system. We also refer to [6,12,23] for SL methods applied to gas mixtures
and reactive flows.

The convergence estimate for the original monatomic BGK model was investigated in [41]. The argument
has been simplified and applied to the more complicate case of the ES-BGK model [42], which is the main
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motivation of the current work. These two results seem to be the only available convergence estimates for fully
discrete schemes for spatially inhomogeneous collisional kinetic equations.

The semi-Lagrangian methods have been widely used also for the numerical solutions of Vlasov-type equations
[16,19,37,38,44,45]. We refer to [17] for a nice survey on numerical schemes for kinetic equations.

1.3. Notation

Throughout this paper, we use the following notations:

— C denotes a constant which can be explicitly computable.

~ Cap,..., Cap,... denote constants that depend on a,b,....

— We use lower indices 14, j, k for space, velocity, internal energy variables and an upper index n for time
variable, respectively.

~ We write the velocity vector v as v = (v!,v?,v3).

— T denotes the final time of the numerical experiment.

— The relation A < B for 3 x 3 matrices A and B means that B — A is positive definite, i.e., kT (B — A)k >0
for all k = (k', k2, k%)T € R3.

— For N, q € N, the weighted L°°-Sobolev norm for continuous solution is defined by

1£(8)] e = sup

x,v,1

)

f(x,v,t,[)(l—F |v|2—|—1%>§

Z sup

I
la|+|8]+v<N TV

IFN, : d(a, B, 'y)f(:c,v,tJ)(l 4 of? + 1%)5

)

where a, 8,7 € Zy xZ3 X Z., and the differential operator (e, 3,7) stands for 020897 . Indeed, || f(t) ||L3@
IOz, -

— The weighted Lg°-Sobolev norm for discrete solution is defined by

[f"lLee := sup
1,5,k

bl

2 q
P (U o2+ 1)

where f[; ;. is a numerical solution of flas, v, t™, Ii).
— To measure the distance between discrete and continuous solutions, we use the following supremum on grid
points:
2 q
177 = FE e = sup| £ — o, 7 T (14 s+ 1)
i.J,

This paper is organized as follows: In Section 2, we derive a first order semi-Lagrangian scheme for the
polyatomic ES-BGK model. Section 3 is devoted to the statement of the main result of this paper. In the
following Section 4, we present several technical estimates on the discrete solution and its macroscopic variables.
In Section 5, we rewrite the polyatomic ES-BGK model (1.1) for the easy comparison of continuous and discrete
solution. Then, in Section 6, the difference between the continuous and discrete Gaussians is estimated. Finally,
in Section 7, we prove our main theorem.

2. DESCRIPTION OF THE NUMERICAL SCHEME

2.1. Discretization

For velocity variables, we take same mesh spacing Awv in all directions, while, for the internal energy variable,
we use a uniform mesh of size AI. For space, one-dimensional periodic unit interval is considered with a uniform
mesh Axz. We assume a fixed time step At. Then,

t"=nAt, n=0,1,..., Ny,
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2 =iAx, i=0+1,... +N,, +(N, +1),...

where N;At = T/, N,Az = 1. Note that we consider space discretization on the whole spatial domain and then

impose periodicity for technical simplicity in the convergence proof.
For velocity and internal energy variables, we use
vj = (U]l’a U?,U?) = (leU,ngU,jg,AU), (jhj?aj?)) € Z37
I, = kAT k=0,1,2,....
For later use, we denote the index sets of j and k by J := Z3 and K := {0, 1,2, }, respectively.
To be more concise, we introduce the following notations:
Definition 2.1. (1) Let x(i,7) := x; — v; At and s = (i, j) be the index such that

I(Z,]) € [x87xs+1)-

n

(2) Let ﬁnjk be the linear interpolation of f; , and f; ;. on x(i,7) at time t™:
fiie = aifes e+ —a;)fi e

where a; := (zs41 — (4, j))/Az. Note that there is only j dependence on a; due to the use of uniform grid

in space variable.

2.2. Implicit semi-Lagrangian scheme

Our Scheme reads
K an k ‘1V79AtMV7976 (J inJ IC)
2Jy W ] k (2.])

5
)

i
ok K+ Ay’gAt

K2

where A,9:=1/(1-v+vf) for0<f<1land —3 <v <1, and

figw = a8+ (U= a) fi

Note that a; and s are defined in Definition 2.1. The discrete ellipsoidal Gaussian based on fﬁj,lc =

{f.ﬁj’k}jGJ,kGK is given by
PE 0 F VE (1 e M (20 UL W |
S () ) () 2 )

(2.2)

with As defined as (1.3). The macroscopic variables computed from { ﬂ"]k} are defined as follows:

— Mass:
= S0 (Av)AL
J,k

— Momentum:
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— Stress tensor:

— Polyatomic temperature:

where

— Relaxation temperature:

— Polyatomic temperature tensor:

For notational simplicity, we also introduce

A=Ay, 0, Kk, At) :=

899

U7 = i (A0)*AL
7,k

760 =3 (v - 07) @ (- U7) (AL
7.k

~\" 3 ~ \ " - n

(Té)z T3+ (Ttr>i + 3 (Tl’é)i’
U 2

- \" 21 - ’Ua_ i

(Tu) = 5 S P (AuaL
) 3 ,O,L ik 2

- n 21 ~ 2

(TM)_ = 55 O Sl (Av)3AT
i j’k

"Td 4+ A1 — )1 — )

= 00(Ts). (Ttr)jld 4 (1 0)p0r.

(2.3)

K+ AyﬁAt

KV
At + K '

T Atttk

, v=0(y, kK, At)

Since the initial step can be taken to be arbitrarily correct, we assume for technical simplicity that the initial
step is approximated as follows to guarantee that no error arises in the initial approximation of the initial data:

— Initial distribution:

Vi = folwi v In),  JL = fo(w — vj At vy, I).
— Mass:
By =/ fo(z; —v'At,v,I) dvdl.
R3xR4
— Momentum:
puy =/ vfo(w; — v*At,0,1) dvdl.
R3 xRy

— Stress tensor:

— Polyatomic temperature:

where
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2

- \0 21 ’U—Uzo 1
r = —-— 7]00 r; — U At,U,I d’UdI,
( ' )i 30y R3 xRy 2 ( )

= \0 21 2 1
Trs = = I5f0($i—v At,’U,I)dUdI.
i 0Py Jrexm,

(Tg)j - 9(1})? +(1-0) (T,,é)j.

(Ty,g)o =\ (T})?Iw A1 —6)(1 - v) (Ttr)f1d+ (1-0)700.

— Relaxation temperature:
— Polyatomic temperature tensor:

where

K+ Ay At KV

=R At) = .
At+rx v = vy, K A1) At + K

A=A, 0, Kk, At) = (2.4)

2.3. Derivation of the first order scheme

Now we consider how the scheme (2.1) is derived. Throughout this paper, we focus on one-dimensional spatial
domain (d = 1). We start from the backward characteristic of (1.1):

df _ AV,G

Friaia (Muo,s(f) = f)s

dz

= _ vjl-, (2.5)
v _ar_

ds ds

Here, one can easily have
z(s) = a;—vj(t" —5), w(s)=v;, I(s)=Ii.

To solve (2.5), considering the stiffness coming from «, we apply the implicit Euler method:
fn+1

T T Ave M _— il 56
At - v,0,6 fi,J,IC j,ki i,k | (2.6)

where the discrete ellipsoidal Gaussian is given by

piAs exn [
det (27(Z,.0)7) ((To)7) p( 2 (To)}

MV,0,5 (ff}%c) =
gk
with the discrete normalizing factor:

2
At =3P AL
k

and the macroscopic fields defined similarly by replacing fz?,lj,k with fznjk in (2.3). However, the polyatomic
tempereature tensor (7,¢). is defined in a different way:

i

(Tv.0); = 0(T5)7 Id + (1 = 0)(1 — v)(Tw); Id + (1 - 0)vO7.
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We note that (2.6) involves high computational cost since it is implicit form. To transform this implicit scheme
into an explicitly computable scheme with beneficial stability properties preserved, we adopt the argument
developed in [7,22,35,42,43] to our polyatomic setting.

We start with conservative quantities. We multiply both sides of (2.6) by collision invariants:

1 2
in = (Log o + 18

and take a summation over j, k to derive

Z(fﬁzi fj,k>¢j,k(AU)3AI =y AV’:N< uM( 7}%) - f?j,i)@,k(Av)?’AI.

3k 3k
Since the right hand side vanishes for enough v and I nodes, we have
Pt == Sl (Bv)*AlL
j,k

urtt =gr .= 5 Z FIwvi (Av)P AT
Z ik

UTL

(Bt = () Z ‘—1

17 | (Av)PATL (2.7)

Using this, we approximate (T5)}", (Ttr);”rl and (T75)7" as follows:

o2
—_Un

K2

(T“)?H:(T‘S)i' 3+5 ”Zf”’“ ‘%2

41 |(Av)PAr

2

nt1 21 i1 |9 ul 3
(Ttl">i — 9 =n fz,],k (AU) AT
3 pr & 2
3 ]’k
_ o2
21 ., [U-U8
zgfanJk (Av) AT
pi = 2
7,k
- (Tt) (2.8)
21 2 )
(Tro)i ™ =520 D fifi I (Av)*AT
Pi Gk
21 o2
~ S > IR (Av)PAT
Pi Gk
= (T1s).

Note that the approximations for (Ttr)?+1 and (T7 )" can be justified because we are considering a first
order scheme. Now, we turn to the approximation of the stress tensor @?H. Although it is a non-conservative
quantity, we can approximate it in a legitimate way as in [42]. For this, we introduce

&= (0 = U @ (v - U

)



902 S. BOSCARINO ET AL.

and multiply this to (2.6) to derive

Z(fig*,i— Tk )5%1(&))%1 ZA”ﬁAt( ueg(;‘}I,c) —f’jj,g)g”“(m N g (2.9)

3.k j.k
Recalling the relation UZ-"H = U[‘, we obtain
&= (U @ (v - U = (”j—Uf)@)(Uj—ﬁf) =&
This implies that the second term on the left in (2.9) becomes

Z Tl (Av) AI—Z RS (A)PAT = 5oy, (2.10)

where ©7 is defined by

rén = Z (v = 07) @ (v = UF) (A0)*AlL

On the other hand, the right hand side in (2.9) can be rewritten by

Au,GAt n41 n+1 n+1 3
Z p (Muﬂ,é (fi’j’)c)j,k - fi,ng gij (Av)°AI

Jik

VBT YAN n n n
_ T(p (T, ) _pi+1@i+1>

= i 04

_ M (pv_H—l [Q(Té)?-&-lld +(1- 9){(1 _ y)(Ttr);H_lId + V@?HH — p?+1@?+1)

Apdt " g
= SO ([T 4+ (1= ) (L= O)(T) T 1d — {1 v+ vo}o o)

K
p?+1[ vo0(T5)P T + (1= Ay 0)(T);] +1]1d - —prert (2.11)
In the last line, we use
_(1=00-v) _ o  _
A%g(l 0)(1 I/)— 1—Z/+V9 =1 1—1/—&-1/971 Al,799.

Then, we insert (2.10) and (2.11) into (2.9) to compute ©7" as follows:

At[4,00(T5)"

?

+(1— Ay 00) (Tt) , }Id + KO?
At + K :

n+l
ortl =

Now, we use this and (2.8) to approximate the polyatomic stress tensor:
(Too)i ™ = 0(T5); T 1+ (1= 0){ (1 = )T 1d + vey )
~ e(Té) Id+(1-6)(1-v) (Tt) Id
7 7

At [Ay,ea(fg)j +(1— A, 08) (Tt)n} Id + kO]

1_
+( o) At + K
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(= OwAtAL0Y [ \"
B (9+ At + K (Té)ild

" ((1 o)1 -y 4 BRI A”’99)> (Tur) 1+ (= 0 o0

We write it in a more compact manner

(T0)" " ~ (i;,e)’f = A0 (Tﬁ)’fzd FA(L—6)(1—v) (Ttr)éld +(1—0)p0r, (2.12)
using
_ kT Ay g At o KV
A= Av,0,k, At) := Artn v=v(v,kK,At) := A tr
Similarly, we approximate (Tg);’+1 as follows:
(T@)?+1 ~ (T@) = 9<T§) -+ (1 — 9) (TI,(;) . (2.13)

In view of (2.7), (2.8), (2.12), (2.13), we find that M, g 5 (fln}rl,c) i is legitimately replaced by M, ¢ s (ﬁ”j K) K
g g,

) A (w0 ) (%)) (ws-02) 1
J

Muos\figi) = 5 N7
e ) 2 0)

n+1

Finally, we substitue this into (2.6), and solve for f; ;1 to get our scheme:

>

RF s+ Ano AtMu 04 f{}mc)j )

fn—l&-l _
ik K+ Ay oAt

(2.14)

2.4. Reduction to monatomic semi-Lagrangian schemes
Before closing this section, we briefly review how our scheme can be reduced into corresponding monatomic
schemes in [41,42]. For 6§ = 0, we get
(Tl,,o) =(1-p) (Ttr) Id+ 707,
After taking summation over k in (2.14), we obtain

kG + Avo AtM, (57)

n+1

nrl — 2.15

J K+ A, oAt ’ (2.15)
where g = [p fdl, § = [o fdI, and g;f;rl and g;'; are discrete approximation of g(wi,v;,t" ) and

g(z; — v' At,v;,t™), respectively. Here the ellipsoidal Gaussian M, is

p (v 0) ((Fa);) (- 07)

My (3l 7)), = N 2

wa(an(z0))
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This scheme was proposed in [42] as a first order SL scheme for the monatomic ES-BGK model:

0 A,
R ?(Mu(g) -9)

ot
. (_ (v=0)' T (v - U))

/det(27T,, ) 2

M, (g9) =

where A, = ﬁ For 8 = v = 0, we have

(), = () 10

Then, the ellipsoidal Gaussian M further reduces to the local Maxwellian M:

_ 2
R n
‘vj U;

M T .
(gi,J)J = exp

~ o3 ~ n 9
Lr(r))) \ 2,
and the resulting scheme becomes the first order SL scheme for the BGK model in [22,40,43]:

= Kgp; + At/\/l(g;jj)j (2.16)
v K+ At ’ ’

Although we do not explore the behavior of these SL schemes in the limit k — 0, it is also interesting to check
if a kinetic scheme to BGK-type model becomes a consistent discretization to Euler-type system in the limit
k — 0 at the discrete level. As related papers, we refer to [15, 20, 25].

3. MAIN RESULT

In this section, we present the explicit error estimate of our scheme measured in weighted || - || ree-norm. We
state a theorem for the existence of classical solutions in [32], which is necessary for error estimates in following
sections. In the following theorem, we take a final time 77 > 0.

Theorem 3.1 ([32]). Let —1/2 < v <1,0< 80 <1,6 >0, q>5+43. Suppose that the initial function fy
satisfies the following two conditions:

(1) llfollLg, < oo,

. (3.1)
(2) folz —vt,v,I) > C’&e*Cg(l”‘ +Ib), for all ¢t > 0,

for some constants a,b, C},CZ > 0. Then, there exists a unique solution for (1.1) that satisfies
— (A1): f is uniformly bounded:
1£@Ollzg, < Cone®> {Ifollg, +1}

for some positive constants Ca 1 and Ca 9.
~ (A2): There exist positive constants Cry ¢,, Crs g 5 and Crpy g 54 such that

p(l‘,t) > CTf,f()’
Ts5(z,t) > Crs 5, 55
p(x,t) + |U($7t)| + T5<.’E,t) S CTf7f0,5,LI'
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Now, we state our main theorem.

Theorem 3.2. Let —1/2<v<1,0<60<1,0<§<2andq>5+0. Let f be the unique smooth solution of
(1.1) corresponding to the initial data fo satisfying two initial conditions in Theorem 3.1 and ||fo||Lfi>oq+1 < 00.
For a positive ra, ar > 0 given in Theorem 4.5, assume that Av and Al satisfy

AU,AI < TAv,AI-
Then, the discrete solution fI'; , constructed from (2.1) satisfies the following explicit error estimate:

|7 = (@], < c((iﬁ)z T (A2 +Av+AI+At)

where C is a constant depending on T7,q, 0, K, 0, v, At, but can be uniformly bounded regardless of At > 0.

Remark 3.3. (1) The value of ra, as is given in Theorem 4.5. (2) The constant C' in the error bound blows
up as K — 0.

There are three important estimates using Lg°-norm, which play the key role in the proof of Theorem 3.2. (1)
The first estimate is for the remainder terms Ry, Rs defined as (5.2) (Lem. 5.6), which appears when we subtract
the continuous solutions (5.1) from the discrete ones (2.14). (2) The second estimate is for the discrepancy
between the continuous and the discrete distribution functions located on the characteristic feet (Lem. 6.1). (3)
The third one is the discrepancy between continuous and discrete ellipsoidal Gaussian in Proposition 6.4. These
results will enable us to derive a recurrence form of error estimate in the proof. We also note that stability
estimates in Theorem 4.5 are the starting point of all these results.

4. STABILITY OF THE DISCRETE DISTRIBUTION FUNCTION

The goal of this section is to show that the numerical solutions and its corresponding macroscopic quantities
are uniformly bounded. In Definition 4.1, we first define three constants which will be used throughout this
section. Then, in Definitions 4.2 and 4.4, we state main stability estimates E™ and necessary quantities for
Theorem 4.5. In order to prove Theorem 4.5, we will use an induction argument. For this, in Lemmas 4.6—4.9,
we estabilish several technical estimates which discrete macroscopic quantities satisfy. Then, from Lemmas 4.6
to 4.9, we show that the main estimate EY holds for initial data (Lem. 4.11). Finally, in Lemmas 4.12-4.15, we
show that E™~! implies E™, which proves Theorem 4.5.

We begin with the definition of three constants.

Definition 4.1. We define constants C,, 4, Cop 4.5 and Cs 4—m by
Cop ::/ e~ G (IWI*+1°) 4y d1,
R3 xRy

Capgs = supe ol +1) (1 +[of? + I%)E,
v, I

~ 1

Cs.q-m = ——dvdl, ¢—m > max(2,0)
(L 1E)

where a,b,m, q are constants and C? is defined in (3.1).

In the following, we introduce the main stability estimates of this section as E™.
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Definition 4.2. For n > 1, we say that
(1) fI; x satisfies BT, if A™ and B" hold:

il = () ot <
LOO

(47) ‘ Lok K+ A, gAt I foll o < e Amod " ||f0||L3°v
v,

n
(B™) ) (]36—03(\%\”“2) > e—ij:rfc&e—cg(wﬂulg).

f" > (5
bR =\ K+ Aot
(2) [} satisfies B3, if C™ and D™ hold:

_2v6pf ~
(Cn) pz > Ca bcoe T = Plower>

2

B 3+6
(Té)n > (L CarCh  ~(k+miihm)anot’ | T _ (T5) '
2 Csllfoll - o
~ _ MTf ~
(D") 0" lnge < 2Csqe™ 02" || follLge =1 Pupper

4@5 _ l+~40L v, Tf
Lo = ﬁqclle(m HA"’GM) "o ||L°° =: Uupper;
a,bLg

~\" 8 Cs oo (L_;'_ Cm )A o T ~
T ) = " K+AU19At . co =. (T ) .
H( 0 L +9 Ca bC ”fO”Lq 0 upper
(3) We define E™ = E] A E3.

Remark 4.3. The constants C} and C? are defined in (3.1). Also, the definition of C)r4 is given in Lemma 4.9.

o~

I N

Before stating the main result of this section, we define three technical constants.

Definition 4.4. We define a1, a2 and as by

B - 545
1 Plower (Tg) _ CmAvio py
a; = 1+§ lowere RtA, gAt )
2% m2(340) 2 ||f0||Lg°
1
~ 13—
ay = q—06—5 - Plower o ff::;ft Tt ? ,
2*T7r2(3 +0)7 = [lfollLg
1
B N 3F5Tq
1 Plower (T5> _CmAve
as = — — lowere RtA, oAt
272 7w2(340) 2 [ foll g

Now, we state the main stability estimate of this section, which will be crucially used when we estimate the
discrepancy between the continuous ellipsoidal Gaussian and discrete one in Proposition 6.4.

Theorem 4.5. Choose |l > 0 small enough so that Av, Al <1 satisfies
5Cab < Ze 6 (vs1” ‘Hk)(Av)SAI <204 p,

1 —e2(lus1aa? 9
iCa,b’q’(; < S;llf)e 6 (los1"+13) (1 + |vj] —|—I‘5> < 2Cap,q.65 (4.1)
1
057(1 m < Z a-m (Av) Al < 205q m»

2

2
o (1l 4 1)
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and
(Av)’AT < / ~ dvdl,
.A(Uj,ﬁgl,[k)gli+Av+AI A(v,07 1) <2(R+Av+AT) 1 w2
> — (AV)?AI < / —5 dvdl,
; [A(v;,0, 1) |? A(,0,1)>R+AvtAT |A(v,0,T)]

A(v;,0,I;)>R+2Av+2A

1 2 2\?2
Ala,b,c) := <M|ab|2+ 3+(506) .

where

Also, assume that Av and Al satisfies
. 1
Av 4+ Al < min| a1, a2, as,, 5= TAv, AL (4.3)
ik satisfies E™ for all n > 0.

where a1, az, a3 are defined in Definition 4.4. Then, f';
Since several technical lemmas have to be established, we postpone the proof of this theorem to the end of

this section.
In the following Lemmas 4.6-4.8, we provide series of estimates for discrete macroscopic quantities.

3+4

Lemma 4.6. Assume f}';, satisfies E" and the condition (4.3) holds. Then,
n\ T2

pr <ol (%))

134248 71_2 (3 + 6) %& .

where
Cs =22
Proof. We first divide the macroscopic density g} into two parts:
pi = > Friw(Av)* AT + NG,
A(v;, U2 I )> R+-Av+ Al A(v;, U0 I ) SR+-Av+AT
= Ill + Ilg.
The first term Z7; is bounded by
T = > FI k(A)3AT
A(v;, U2 I )>R+-Av+ AT
1 > 2 13
P A il = 2
< > filjx = 1A +AI)J; (Av)®AI
A(v;, U2 I )>R+Av+ AT v
1 ~\Nn
SN -
(R+Av+AI)2pZ i
Since Av and AT satisfy (4.2), we can bound Z;2 by
Fl e (Av)PAT

Iip = Z

2
P4 32517 <(R+Av+AID)?

1 _In
3+5|UJ U;
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< / dfudI‘
1 |2, 2 12 2
a5 [0 U7 |+ 53515 S4(R+Av+AD)

To calculate the definite integral in (4.4), we use a change of variable:
! (v—U”) ”LI% = (rsingcos@sink,rsin@sinfsin k, r cos psink, r cos k)
3490 i )\[355 = P ) P ) ¥ ) )

0<r<2(R+Av+AI), 0<ep<m, 0<6<2m 0

f~n

Ly

where

IN

o~

IN
w{ﬂ

Then, the Jacobian is given by

oo (0r) - (@) on— 02)")

a(r,p,0,k) =273 (3+ 5)3%557’6+2|Sin<pcos‘571 k sin® k|,

and we have

Pt s 345 B m 21 p2(R+Av+AI)
Tz = anHLoo27§(3+5)T/ / / / 579+2|sin g cos ! ksin® k| dr d dep dk.
a 0 0 0 0

Using
/2 5|cos‘5*1ksin2k| dk < /2 dcos® ksinkdk = 1,
0 0
™ 27
/ |sinp|dy <, / do < 2m,
0 0
AR+AVFAD) 1 trs
2dr < ——(2(R+ Av+ AT ,
/ #424r < LR+ A+ AD)
we obtain
. 22
Tip < ||/ {2_3(3—1—5)3;5ﬂ}(Q(R+Av+A1))3+5
® 3+
5 145

. {28773(3 +6)E }(R + Av + AT,
Combining the estimates for Z;; and Z;2, we derive

o< %py(ﬁ)j + {2¥W2(3+5)%}(R+Av+AI)3+a‘ B

= (R+ Av+Al)

Le
Here, we equates two terms on the upper bound so that the bound can be minimized. That is, the number R
is taken by
1
o (= \" 545
i (T5)

U >a; > Av+ Al
f'n

R+Av+ Al =

8+

2T57r2(3 + 5)#

Ly
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where a; is given in Definition 4.4 and the last inequality holds due to (4.3). With the choice of such R > 0, we

have
o))

pr < 2{28%%2(3 + 5)%‘5}

fn

This, together with Lemma A.1, gives

m

- 13+2 n
< {2 34 0) e Ty
which completes the proof. O

Lemma 4.7. Let q > 5+6. Suppose futher that f}'; . satisfies E" and Av, Al satisfy the condition (4.3). Then,
~\" ~ 12
ﬁ?((Ta) + ‘Ui"

2% 3+46)3
C&,q,lz{ q_é(_5 ) }

Proof. We start by splitting the following quantity into two parts:

q—56-3
2

) < Crgall iz,

where

~n = \" 1 T 2 1 2 2 3\ 3
pi(<T5)i *m\“’ )‘ 2 (3+6|”j| +3+5I’§>f"vjv’f(m) Al
A(v;,0,I5)>R+2A0+2AT
1 2 2
+ Z ‘ J|2 Ikis fzgk(Av) Al
340 3+9
A(v;,0,11) < RH2A0+2AT
= 121 + IQQ. (45)
The second term T35 is bounded by
Tos < 4(R+ Av + AL 5P (4.6)

For Zo1, we extract || f"||re out of the summation:

(3+5|”J|2 %Ik)% -
Ty < Z 5 7 (A)PAT

2 1 |2 2 7
515 05 124+ 525 10 > (R+2A0+2A1)2 (3+5|UJ| + 3+§Ik>

. 3 ! —(Av)AL

2 2\ 2
s¥5 v 2+ 525 I8 >(R+2A0+2A1)? (3+5|UJ| + 35 1% )

IN

As in Lemma 4.6, the condition (4.2) makes it possible to estimate the above discrete summation by a definite
integral using a change of variable:

(1/34_ 1/3_’_ > (rsinpcos@sink, rsin@sinfsin k, r cos psin k, r cos k).
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Then, we get
5 2T 3 5% 2 5+2 6— 1k k
Ty < |7 / / / / +6)2(352) {s;ngocos sin? |drd9d<pdk
L R+A1)+AI rd
. 2m2(3 4 0)F (252)
<||f mB+ 9 (5F) (R+ Av 4 AT 71
L gq—6—5
. 2%5 72(3 4 6)*% S5
= f" Av+ AT 1, 4.
f Lé_o{ - (R+ Av + A) (4.7

Combining (4.6) and (4.7), we estimate (4.5) by
2—96 349
A7 1 277 72(34+68) =z
py((n)@ta )§4ﬁ$(R+Av+AI)2+{ T (3+9) }‘

R+ Av+ AL
P _(R+Av+ATD)
To get an optimal bound, we equate two terms on the upper bound to derive

fn

g
By o
4 Pi >as > Av+ Al

2= 12(3 4 0)°F ‘ n
Lq

R+Av+ A=

where such R can be chosen due to the existence of as given in Definition 4.4. Then,

245 845 ) 7=o=3
(), ghgfirf) <o EEZG AN
Consequently,
n - 12 # 4—5_3 2_2%57# 3.6 y ~
() sy {2
:{ = (3+6)5}‘Jm .
qg—90—5 L
Combined with Lemma A.1, this gives the desired estimate. O

Lemma 4.8. Assume that f}'; . satisfies E" and Av, Al satisfy the condition (4.3). Then,

ol 34+0+q
pi|U.

%

i < Cog2llf" e,
2 ~\"\ 2
)(@),)

17+35+2q 2

unr

7

where

Csg2 = (3+6)*.

Proof. We split the macroscopic momentum into two parts:

> FE5loj(Av)’ AT + > FEjlojl(Av)’ Al

A(v;, U Ik ) <R+Av+AT A(v;, U2 I )>R+-Av+ AT

prup| <
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= 131 + I32.

We first use Hélder’s inequality to obtain

1-1 1
Ty < > J(Av)3AT | (Av)3 AT
A0y, 07 Ix) SR+ Av+AT A(v;, U0 Iy ) <R+-Av+AT
%
1-11] # 5
< )|, (Av)>AT

A(v; 07 I,) SR+ Ao AT

Then, we use the condition (4.2) to get

> (Av)>AT / .
I3 <4(R+Av+AT)?

~ 2
A(vy U7 In ) SR+ Av+AT sl Pzl

< {27 m26+ ) }22 (R + Av+ ADY,

IN

dvdl

which gives

1
Ty < (52)' 0| {22;f7r2(3+5)#}q23%5(}2+AU+A1)¥

1

q
oo

Lq

On the other hand, Z3, satisfies

N

- <3+6 -y +3+§I) 5
Ty < n oy Av)° Al
RS Ny )
A(v;, U0 I )> R+-Av+ AT
Here, we use Holder’s inequality to obtain
3
2(3+49) ~ 1 9 2 2 3
T3p < —+— Tl ——]v; —I? | (Av)° Al
P =R+ Av+ Al jkfw<3+5|vj| Fgsle J(Av)
1
2
o+ 21} ) (avpar
Z 3+5‘ SO gl (A

1
23+0) [ 1 LN [ (e \
= non n (T n (T,
R+AU+AI{3+5 “’l(‘s)i} {pl<5)i}
To sum up, we have
1 1
o] < )| _{2 e 4 0 )N (Rt Av AT

Ly

2(349) o
R+ Av+ AL

L)} )y

911
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To optimize the upper bound in (4.8), we take R > 0 such that

e {2(3+6)}3ﬁ?{( i 2+(T5)7> (ﬁ;)j}
e )]

1
3+d+q

[NIIS)

> a3 > Av+ Al

The number ag is given in Definition 4.4. Then, the upper bound of (4.8) is simplified to

2({ 234 ) }{2(3+5)}(~")2+5+Q{<Uf2+(fé):) (Té)”}+ n Lgo>3+é+q,

from which we conclude that

(

From Lemma A.1, we finally obtain the desired estimate. O

~n []‘n 3o+
Pi

K2

2 57 < 23+5+q{2(3+5)} {2 S (3+6)#}’
(1)) (5)']

=2

n
f L

ur

17+35+2q 2

(3+5)2+6‘ fn

Lo
q

Based on the estimates in Lemmas 4.6-4.8, we now show that the ellipsoidal Gaussian is bounded by the
discrete distribution in Lg®-norm.

Lemma 4.9. Let ¢ > 5+ 0. Suppose further that f'; . satisfies E" and Av, Al satisfy the condition (4.3).
Then,

()

[, < Cullf g
L

where Cpaq depending on v, 9,0 and q.

3+5

Remark 4.10. In the proof, it will be shown that Cxq blows up as 6 tends to 0 because Cpq x 1/67=

Proof. We will show that M, ¢ s (ngnjlc) " [v;]9My 9.5 (ﬂ”j,c) o and Ik%./\/ly,e,& (flnj,c> o are controlled by
s 3, j

K

[/ |Lse , respectively.

(a) The estimate for M, g 5 (ﬁ"j ,c) : we first use Lemma A.2 to get
b b j

’

2

- _oymy -1 5 3 v — [jln 2
%(”ﬂ' - Uf)T((T”ﬂ)i) (v -0) + (1{:) = %ACV{B +35(1 —0 (1) ! (1{) =0 49

Next, we recall the relation (1) in Lemma A.2, which implies that the eigenvalues of (’ZNLQ) lie between

A0 (T5> and $AC, {3+ 6(1—6)} (T(;) Then, the determinant of (’Z, 9) satisfies

(o(a))’ < an{ (7))
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To sum up, we obtain

. pi s
Myos (fﬁj,;c) < : 3
3.k 2

aaler(2))((3)))

(YL A
= )\ (27T)3/2 3448 n 3448

)

1\* 1 As (13428 1) 1o
= <>\> (27)372 g2 {2 Trl(340)7 }Hf [P (4.10)
f -4 .
(b) The estimate for M, g s (.f;n‘y ;C) k|'vj|q: for this, we consider two estimates |U*| M, g5 (fZ"J K) g
) ) j, , , j7 )

2

and ’Uj ~-or

q
Myos (ffj,,c) " separately.
Js

- g
b)) (U™ Myoesl|f : from the second inequality in (4.10), we obtain
k2 "YUy k2 .7 ’C k
k 9 j’
q 1 3 1 A q o
rrn m S |1 Pi
; 7 <= ;
UZ MV,GJS <fl"'77lc)j,k = <>\> (271_)3/2 93-55 Uz n 325
- NN A
If U < ((Tg) _ ) , we have from Lemma 4.7 that

q o" “\N
()

i

3-9 q—25-5 q
2 2 272 733 +46)2 n
< — ) 1" lpge -
q—9—5

'l
> ((T(g) _ ) z, we use Lemma 4.8 to obtain

2

On the other hand, in the case of ‘UZ’

- |9+3+0
~ |4 ﬁn :5? Uz‘n
Un 2 =
‘ v ~\n # ~ 13496 ~\N #
((#),) " Joe[ (%))
1 K
| q+3+4
346 Pi Vi

3+6

(@) + o) @)}

< 210+36+q7r2(3 + 5)2+6||fn||quo.

uy

Therefore,

Un

7

a n Cl n
Muos(Fign) < oI lg,
J.k 0=

3 q—25—5 q
1\2 272 2 1746542
c=(3) A‘S{ T }*2 ST 4 ).

for
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~ q ~
(b2) The estimate for ‘vj - U;“ Myo.s (fi'fj’,c) : from (4.9) and Lemma A.2, we have

gk

~ q ~
‘Uj - Uf’ Mu,a,é(ffj,;c)

Jik

1 1
<

P ~71
‘”J U;

2\ 3
L1 rm\™\2__ AiA = Ut 1\?
s S ) O
Xexp( 3 ‘vj_ﬁin

INC, {3 +0(1—0)} (ﬁ;)f’ )

C’ B \n 9=3
Eeép?((%)') 2

0= (i)g(Qﬁ;M aps2e-+) { DG 81 0) }
’vj — Uin‘q/\/l,,,a,a (]?anzc) < (;; Py <(T5)? +

Then, we use Lemma 4.7 to obtain
q—38—3
2 2
ik 0 >

Cy [275 7723 4+6)% |, ,n
Sesga{ R 1 g
Cs

= 9¥ an”Lf;"-

where

ur

(c¢) The estimate for Ik%My,g,a (ffj,,c) L from (4.9), we have
7y

ol =8} ((Ba)l) (o 80) e sty

and hence

, i As o« 1 7 4 Iy
P’ M, n < Ip - - "
P Myos (fz,J,IC)j’k = /@3 k 93%‘5 T;Jf exp( d+3(1-0) (Tg)

2
= 3/2 315 |V i ! Pils 358 <1> ’ eXp| — E N\
(2m)3/2 955 ((Tg)n) = \ A 20C,{3+d6(1-06)} (T5)i

_As 1 -\ 3 o I3 geX -
i <<f5>§>”*(<<fa>f> (

5 I
)
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C4 -n ~\" q7275
=t ((B),) 7
where /2
. q
Cy = As sup|z?/2e~® <5+3(19)> )
(271')3 z>0 )

Next, we use Lemma 4.7 to derive

Un

K3

g Fn “ipsir((T5)"
IZ M6 (fi,y,ic) < g Aspi (T‘;)' +
sk 07z

K2

cy 25234 6)8 | L,
< %SA(;{ 2 e

0 q—90—5
C n
= e

Combining (a), (b) and (c¢), we finally obtain

- 2 1 - ~ ~ 2 2 %
sup Mu,e,a(fffj,;c) , (1 + o] + fz?) Y| <sup Mu,e,a(fﬁj,;c) , (1 + ‘Uj U+ U + Iz?)
i,j,k J.k i,j,k J.k
q
~ ~ 2 - 2 2 2
< 25up| Mygs (7). (1 + |y - 7]+ [O7 +I,g>
.4,k Gk
< Cmllf"llege,
where Cp is a constant depending on v, §, 6 and ¢ and proportional to 1/ 0°% . O

Lemma 4.11. Assume that fo has no initial error (2.4) and satisfies 3.1. Then, fo satisfies E°.

Proof. — (A%) From Lemma A.1, we know
|7],... < Wsolsz

— (BY) Using the lower bound assumption for f in (3.1), we have

_ _~2(1. a7 _Ave s —C2(|vsaaTb
fii = folai = vjAt,vj, 1) > Cye o (gl *+1X) > = =rET Coe G (lesl"+13).

VR

~ (C%) We also have from (3.1) and (4.1) that
pr = / fO(-'L'i - let,v,I) dvdl

>} / =GO+ ") gy ar

R3xR4
2 1
= a,bC()
1 = v,0 mf
— T
> 5 a,bCOe ~

This together with Lemma 4.6 gives

2 B B 2
(Té)o > ﬁ? o > Ca,bcé o > 1 Ca,bcé e_(%+m+gu,9AE)Au,9Tf e
i~ \ CsllfOllpge ~ \ Gl folloge — \ 2G5l follLg ’

where Cjs is a constant given in Lemma 4.6.
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- N
— (D) Using (4.1), we obtain the upper bounds for 3¢, |U?| and (T(;)‘ as follows:
2\ 3
(14 P2+ 17)
ﬁ? = / fo (acl — vt At v, I - dvdl
R xR+ (1 +vf? +Ia>
1
<lfollzg [ - dvdr
RORs (14 o2 4 17)

= Cs.all follzze,

1 (1+\v\2+1%)§

To/ fo(xq;—let,v,I)
Pi |JR3XR,

IN

|v|dvdI

(M)

(1 +of2 + I%)

S ||foJ(|)Lgo/ L
Pi R3xXR4 (1+|U|2+I§) 2
C(z‘iqfl
< — 2 oo
—_ Ca,bc(% Hf()”Lq Y

and

SN0 2 1 1 g2

() - 525k L (S
i 3+0p; Jraxr, \2

2 i/ fo(zi —v'At,v I)(|v\2—|—1%) dvdl —

3+0\ A Jrsxr, ' o

aq
(1+|vl2+1%)2

—I—I%)fo(a:i —’UlAt,U,I) dvdrl

7

IN

2 1
< ﬁfo/ fo(z; —v'At, v, 1) < (|v|2+l%>dvdl
0P Jroxiy (1+|v|2+1‘%>2
<2”f°|L3°/ ! dvdl
340 R3 xR 2\ T
[ + (1—}—‘1}‘24-]5)
2 Céq—Z

IA
=
=

Lemma 4.12. Assume f;’j_kl satisfies E" 1. Then, [i. 5 satisfies A™:

(am) |

.,

k+ A 79AtCM KCMA"G
< (PO e < S
v,

Proof. Recall (2.14) and use Lemmas A.1 and 4.9 to obtain

AP ()

Ly

K+ AyﬁAt
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K+ Ay g AtC 1Y
/<,+A,,79At Lg
I€+Ay9AtCM "

<|—— oo .
< (IR Ml

Now, we make use of (1 + x)" < €™ to see

r+ AngACM\" _ (] 4 vz DAvoAL "o T
K+ Ay At K+ Ay At -

Note that C'aq > 1 and this estimate holds uniformly for n > 0.

Lemma 4.13. Assume f]'; ]k satisfies E" 1. Then, f' 'k satisfies B™:

n

by K |a Au, la

) Siin 2 (/MM) Chem OBl +1) » =TT GBIl +11),
v,

Proof. From the non-negativity of M, g5 and (2.14), we have

K “n—1 K

n _ n—1 n—1
Jign = K+ Ay, eAtfi’j’k K+ Ay et (aj sk L= aj)fs"’l’j’k)'

We recall (2.1), 0 < a; <1 and use the lower bound of f k in Lemma 4.11 to obtain

K ~1
Ik = kot A, oAl (%f;ljk"'( a;) sn+1,j,k)

- K K n—1 . 0
min j,
T k4 A pAt \ K+ A, pAt i bk

n
K 2 a b
> cl —Co(\vﬂ +Ik)_
= (H+Ay,9m> o€

Using (1 + )™ > e~ ™, we complete the proof.

Lemma 4.14. Assume fi'j r satisfies A™ N B™. Then, fi'j r satisfies C™:

_2
. 1 Ay p N 1 Cabc() (+(CM ) oT! 316
C") pi > 5CapCoe” = 17, (T&) > A g AT :
() =5 0 2C§Hf0||L°°

Proof. Since Lemma 4.13 holds, the discrete local density p; satisfies

_ A6 f
a’bCOe L T .

DN =

~ Au, a
P= D (AP AL > Che T e G (A AT >
. 2

This, together with Lemmas 4.6 and 4.12, gives

2

2
~n 346 — -2
(5)" = (i — (1 CasCl (i) A\ T
i\ Csllf g =\ 2G50 foll

917
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Lemma 4.15. Assume f]'; . satisfies A" AN B" NC™. Then, fI';, satisfies D":

A,
D") A" <205qe"*““’m ||foHL3°,
o 405, 1 (24+5M o)A, T
HUn < C qu ( n+AV19At) 0 ||f0||Lg°7
a,
~\ N 8 65 _9 <L+4CL) BT
T5) S _ - = >4 e\r rTA, g AT v fO Loo_
|@)],, = 550 Il

f~n

Proof. From the upper bound for ‘

in Lemma 4.12, we see that
LOO

2\ &
] ) (1+|vj|2+1,§)2 ,
=2 ik T (A0)AT
Jik (1+|u]—|2+1',§>
. 1
<| _(Av)PAI
Lgo ik 2 % 2
ik 1+ |vj|? + I
CpA

v,0 T
< 206 en+Al, g At HfO”Lng

f-n

To estimate UZ-”, we use the upper bound of ’

in Lemma 4.12 and the lower bound of g}’ in Lemma 4.14:

2\ %
2 5
e, (rmPer)
07] = 53 Fri L lvj|(Av)* AL
Lok (1+|vj\2+1,§)
’fn L 1
S ~n g—1 (AU)BAI
I 2\ 5
P (1+|vj|2+l,§) ’
-1 opa
_ 1 _ AV, M2, 0
§205,q1<20a,b036_ NBTf) et T [ follzge
_ st (t i) Aot )
CoupCl 4

Similarly, we compute
-\ 2 1
D) =

( °); +6

PR
1 _
(ﬁ . |u]| + Is)mv)BAI

f‘,j,k +13 (Av)AT

sM

I /\

ke

(1+|vj|2+l<‘>

< g5 r (Il + 17 ) (Av)arL

Jik (1+|vj|2+15)
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Then, from A™ and C™, we have

~\nNn 4
T) <=
(51' 3+6

_ 8 Cogr (R+egita)anr
3490 Ca,bC’&

-1 cpa
_ 1. Ay, CMmAve pf
Cs,q—2 <C'a,bC'o€ " T) e Ao [ follLee

2

§
[ follzee-
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O

Using the estimates that we have built up throughout this section, we now prove the Theorem 4.5 as follows:

Proof of Theorem 4.5. The proof is based on the induction argument. Lemma 4.11 implies E°. For n > 1, one
can easily confirm that Lemmas 4.12—4.15 gives E™.

5. CONSISTENT FORM

O

In this section, we rewrite (1.1) in a consistent form to make it easily comparable with (2.6). For convenience,

we introduce the following notation:

— Distribution function on z — v At:

— Mass:

— Momentum:

— Stress tensor:

— Polyatomic temperature:

where

— Relaxation temperature:

— Polyatomic temperature:

f(x,v,t,]) = f(x—letw,t,I).

ﬁ(a:,t):/ f(x,v,t,])dvd[.
RSXR+

1 ‘U—U(%t‘
plx,t) /R3 R ———f(@, vt I)dvdl,
) X +

1 / 2z
- I5 f(z,v,t,I)dvdl.
p(z,t) Jrsxr,

(Ttr>(3c,t) = g

Tj’g(lc, t) =

SR

To(x,t) = 0Ts5(z,t) + (1 — )Tr 5(x,t).

Too(x,t) == 0T5(x,t)[d + (1 — 0)(1 — v)Tir (2, 1) Id + (1 — 0)vO(x, ).
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Lemma 5.1. The equation (1.1) can be rewritten as

K ~ Al,gAt s
At ]) = ———— 1 — v ’ 7aI
fGoyo,t 0 A0 1) = e ot ) b e M (F) (0, 1)
AV9
J .1
H+AV79At<R1+R2)7 (5.1)

with
r-- | T Moo (F) @0.8.1) — Muas(Hlro.t.1)} s

N
— / (t+ At — s)vlaxj\/lu’g,a(f)(xgl,v, to,, I) — (s — )My g.5(f)(zo,,v,te,,I)ds,
t

1 t+At
Ry = —— / (S —t— At)AV79(MV,976(f) - f)(x927 v, t@zvl) dS, (52)
t

K
where xg,, i = 1,2, lies between x and x; — v At and ty, between t and t + At.

Proof. We start by integrating (2.5) from ¢ to t + At:
A o t+At
f(.f,?],t-'—At,I) = f(x_let7U7taI) + %/ (MV,G,(S(JC) - f)(a:_ (t+At—S)U1,U,S,I) ds.

t

Using Taylor’s theorem, we obtain
Myo.s(f) (:U — (t+ At — s)vt, v, s,I) =Myos(f)(z, vt I)— (t+ At — s)vlamj\/l,,,gﬁ(f)(a:gl,v7t01,l)
+ (s —t)OMyg6(f)(z0,,v,t0,,1)
= {Muos (D@0t 1) = My s (F) @vt. 1)}
+ Moo (F) (@0, 6,1) = (t+ At = 5)0' 0, Mo 5(F) (w0, v, 0, T)
+ (s = 1)0:Mu,0.5(f) (@0, v, t0,, 1), (5.3)
for some g, between x and x — (t + At — s)v! and tg, between ¢ and t + At. Similarly,
f(ac —(t+ At — s)vl,v,s,l) = f(x,v,t + At T) — (t + At — 8)v 0, fwg,, v, t,,T)

+ (8 —t— At)atf($gl7’l),t91,l)
= f(z,v,t + At, 1)+ (s — t — At){0; —i—vlam}f(xgz,utgwl)

= f(z,v,t + At I) + (s —t — At) A’:’e (Myos(f) = F)ze,, v, te,, I). (5.4)

Combining (5.3) and (5.4), we can derive the desired representation. O

In the rest of this section, we aim to estimate the remainder terms R; and Rz in (5.2) using Lg°-norm. As a
first step, we recall the following three estimates in [34].

Proposition 5.2 ([34]). Let f and g satisfy (A1) and (A2) in Theorem 3.1. Then M, g 5 satisfies the following
continuity property:

[Mo6.6(f) = Muio.5(9) Lo < Cripllf = gl

for some constant Cr;, depending on T',8,0,q and fo.
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Proposition 5.3 ([34]). Let 6 >0, —1/2 <v <1 and 0 < 6 < 1. Suppose p > 0, Ty, > 0 and Ty 5 > 0. Then,
temperature tensor T, ¢ and the relaxation temperature Ty satisfy the following equivanlenec type estimates:

1) 01510 < T < 0, B F0 gy,
(2) 0T; < Ty < MT&

where the constants C, = max, {1 —v,1+ 2v}.

Proposition 5.4 ([34]). Let 6 > 0, -1/2 <v <1,0< 0 <1, q¢>5+06. Suppose f € Qqgq, there exists a
constant C' depending on v,0,0 and q such that

IMoo5(N)l o < Cllfllge,

where C' blows up as 0 tends to 0.

Now, we estimate the time and spatial derivatives of polyatomic Gaussian in L7 -norm. This result will play
the key role in the estimate of Ry in (5.2).

Proposition 5.5. Let f be a smooth solution to (1.1) in Q4 corresponding to fo. Then, for ¢ > 5+, § >0,
we have

||atMu,9,5

e 1VeMugsll o < CLlfollizs, + 1},

where C' is a positive constant which depends on v,0,q,0, fo, TF.

Proof. We begin by estimating the time derivative of macroscopic quantities. Using the collision invariants,
1, vy, %|v|2 + I, we obtain

d 1 !
— v dvdl| = / v-Vaof v dvdrl
dt Jps g+ %|U|2 JrI% R3 xR+ %‘UF +[%

gc/ \v||fo|(1+|v|2+I%) dvdI’
R3 xR+
1
<CIF@) s, / g dodl
R®xRY (1+ |v\2+I%)
< {Ifollegs, +1, (5.5)

which gives |0¢pl, |0:{pU}| < C’{||f0||L;>oq + 1}. Using the lower bound for p and the upper bound for p+|U|+T5
in Theorem 3.1, we further obtain

o1 < - (o0 + C{lfoler, +1}) < oz, +1}- (56)

To bound |9, Ej5|, we start from

d 1
|0:Es| = —/ f f|v—U|2+I% dvdl
dt R3 xR+ 2

1
/ U-wa<|v—U|2+I§> dvd[‘—i—
R3 xR+ 2

= Ta1 + Iyo.

; (5.7)

[ - U|atU>dvdf\
R3 xR+
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T41 satisfies

Iy <

1
/ v-sz<|U|2—|—I§> dud1’+
R3 xR+ 2

U 2

/ v~me(|v||U|+| | +1§) dvdI‘. (5.8)
R3 xR+ 2

In (5.8), the first term of the upper bound can be estimated by (5.5). The second term is bounded by

U2
/ v~V$f<|fu||U|+| |
R3 xR+

2

_|_I(25> dvdf‘ < HV:,:fHL?/
R

2
LR O 413

- dvdl
IXRE (1+Iv\2+1§)2
bE 4R+ 18
< va.fHLgo/ 0] 7 dvdr
RO xR* (1 + |v? +[%)
9 1
< max{L, [U[*}|Vy - fllre — dvdl
XET (1+ |v|2+l%)2 ’
< C{HfoHLf?q + 1}, (5.9)
where we use the boundedness of |U] in Theorem 3.1 and ¢ > 5 + 4.
To estimate Zyo, we use the boundedness of f and U in Theorem 3.1 and 9;U in (5.6):

o+ |U
T <[00Iz | | i+ U]

—dvdl
OB (1 o2 +13)

lv| +1

< max(1, AUz | |

7 dvdl
OXRT (1+ v|? +I%)2
< c{Ifolle, +1}-
Combining (5.7)—(5.10), we obtain

(5.10)

Now, we use the relation E5 = 3+°

0 Es| < C{lfolluge, +1}-
- 2

pTs and the lower and upper bounds for p and Ts in Theorem 3.1, which
together with |0;p|, |0¢Fs| < C{||f0\|Lfcq + 1} give

1/ 2
=2 = < oo .
outsl = 5 (7251085 +10wiTh ) < C{loler, + 1}
Similarly, we compute
d
|0:Tr 5| = —/ fI3 dvdI’
dt Jrs xr+
A,
< / vV fI3 dv dI’ 4+ el / (Myg.s — ))I? dv dI‘
R3 xR+ K R3 xR+
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Avpl|d
= / vifI% d’UdI’—I—’e *pTe—EI’(; . (5.11)
R3 xR+ k|2
In the last line, the first term can be bounded by (5.5). For the second term, we use
Ty = 0Ts + (1 — 0)T; T—iT —&-LT E —éT
g =0ls 16, 46 = gosde T ol Ls = 5pPlns,
to obtain
0 ) pl 39 po
9 _ _|¢ _ === (T, -T < = 0)Ts. 12
59T~ Bra| = 309005~ Ti)| = | 5 55 e - Tho)| < G5 40T (5,12

Combining (5.11) and (5.12), we also derive |0,17 5| < C. From T5 = BLHT“ + B%fﬂSTI’g, we further have

|0:Ttr| < C. It remains to estimate |0;O|. We recall the definition of stress tensor O(z,t):

pa)Oet) = [ (0= U(e0) @ (0= Ulat) f(a.0,t) dodl,

R3 xRy

For simplicity, we only consider two cases |0;011| and [0;012]:

1
10:011| = 3%”/ o' — U *fdodl| + 7/ 20! — UY|9,U | f dvdl
P7 JRIxR, P JR3xR
1
+ */ |vl—U1|2\3tf\dvdI
P JR3IxR,
8tp 2 2
< |—3 +-|A+[0:U]) v =U"(If[ + [0 f]) dvdl
P p R3XR
and
|01©12| = 3%’) jvt = U||v? = U?|f dvdI
P” JR3xR,
1
+ f/ (o' = UY|0:U?| + |[v* = U?||8,U]) f dvdl
P JR3IxR,
1
+ 7/ o' — U |[o? — U?|0,f dvdl
P JR3xR
o) 2
< g”+‘(1+|atU|)/ (|v—U\2+|v—U|)(\f|+|3tf|)dvdl.
p p R3xR

In both cases, the last upper bounds can be bounded using (5.5), the lower bound of p and the upper bounds
of p, U, |0¢pl, |0U|, |04 E5|. Therefore, we have |0,011], |0:©12] < C for a constant C' > 0.
Until now, we show that the following time derivatives of macroscopic quantities are bounded:

0upl, 10U, |0:Ts|, 10:T15], 10:Tiel, 10:T5], 10,045 < C.

From the definition of T}, g, we further obtain that |0;(T,9):;| < C for 1 <4,j < 3.
Now, we move on to the estimate of |0;M, g 5|. For this, we write
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M P pAs o (v—Ul(z, t))T,];Tel (v—Ulz,t) I3
v = X —_ [ —
S VT v 2 T
= (22 - Jde2n T )} 0ot 20T ) ~ § 10T | Mo
%
@U)' T, (0-U) (-U)TT oU I}
+ (— 9 - 5 + (Te)zatTa MV7975
i ( (v— U)T/Tlf,_elﬁt{zz,_el}zj,_el(” -U)

5 >Mu,075-

(5.13)
Note that each macroscopic quantity and its time derivative are bounded, and the positivity of Ty is also
guaranteed by T5 > C. Finally, we combine Propositions 5.3, 5.4, Theorem 3.1 and (5.13) to derive

aq
Mol < C(L+ o] + o) Mygs < C(1+ o +17) My < C{ Il folligs, +1}
for ¢ > 5+ ¢. The estimate for spatial derivative |V, M, g 5| can be done similarly.

Lemma 5.6. Under the assumption of Theorem 3.1, the estimations for Ry and Ry in (5.2) satisfy

O
[Rillzee + [|R2l e < C(AL)?
for a constant C > 0 depending on Tf, q,6,K,0,v,Cs1,Co 2.

Proof. We first split Ry in Lemma 5.1 into two parts:

t+At .
R = 7/ {M%(M (f) (z,v,t,1) — M%g,g(f)(:c,v,t,f)} ds
t
t+AL
- (/ (t+At7 S)UlazM%g’g(f)(ﬂCgl,U’tgl,f)
t
- (S - t)atMV,Q,é(f)(xeuva t91 ) I) dS)
= T51 + Iso.

For Z51, we use Proposition 5.2 to get

HM”’9’5 (f) -~ My os(f) H

e < CrLip
q
Next, we use the mean value theorem to obtain

f_fHLgo'
|7=1]. = lasw'ocril

< |\flpg , At < Cg1eC22T
In the last line, we use Theorem 3.1. Then,

1,q+1

1,q+1

(Ifolluss,,, +1)At.

f
Ts1] < Cone® ™" (I folluge,,, +1) (A8
To estimate Z55, we use Proposition 5.5:

010, My (N s 10Mu0s (Dl < C(1foll e+ 1),
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then
T2l <20 (1 follngs, ., +1)(AD2.
Therefore, R; is estimated by
|Ri| < (A1)
For Ry, we use Proposition 5.4 Theorem 3.1 to obtain
|(Muo5(5) = Dl < IMuos(Dllzge + 171z < C{Ifollz: +1},

from which we have

t+At
Rl < 2| [ 5=t = A4 (Myas(F) = )0t T ds
t

A 0 t+At
20 Moas$) = Dllz [ (5=t A0)ALpds
t

IN

< c{llfolleg +1}(a02
This completes the proof. (I
6. ESTIMATE OF M, 45 (f(t")) — My (f”)

The goal of this section is to establish the discrepancy estimate of the continuous ellipsoidal Gaussian
Myos (f(t”)) in (1.2) and the discrete one M, g5 (f”) in (2.2).

Lemma 6.1. Let f(t") and f™ denote the continuous and the discrete solutions at t™. Then,

n n Cy, i
S IR = £l + e T follag, + 1 (A0)2,

CORTA :

L
where Ca.1,Ca 2 are defined in Theorem 3.1.

Proof. Recalling (2.1), we compute ﬁ"] &8s

f;,lj,k = ajf:,j,k- + (1 - aj)fg-i-l,j,ka aj; = (wsy1 — (4, 5))/ Az,
Also, we use Taylor’s theorem to obtain
f((Ei,’Uj,tn,Ik> = f(wl - U}Atavj7tn7lk)

n (xl - Atvjl- — x5)2 n
=a;| f(xs,v5,t", Ii) + 5 Opa f(we,,vj,t", I}y)

(LL'Z' - Atv]l - x5+1)2
2

+(1_a/]) (f(xs_;,_l,’l]j,tn,lk)—i— 6$If(xfzavj7tnalk)>7 (61)

where ¢, lies between x, and x; — vjAt, and ¢, lies between x4 and z; — v;At. Now, we estimate the
discrepancy of f(z;,v;,t", I},) and ﬁnjk as
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‘f(t”) = I < aglf @ vt 1) = S|+ (U= ap)|F(@aen, 08" Te) = f2
Ax)? Ax)2
+aj( 2) Iaza:f(-rgl,’l}7t"71>| +<1—aj)( 2) |agng(m§27vj7tn7[k)‘- (62)

We also note that Theorem 3.1 imposes

n n 2,2 f
100ef () e < NFE ez, < Cone® ™ (Ifollig, +1).

This, combined with (6.2), gives

|7 =71 < asllf @) = £l + 0= @) = 57 e+ B o,
<IFE) = £l + 215 E) g, (A)?
<) = e + 22T e, + 1} (A2
which completes the proof. O

Lemma 6.2. Suppose that ¢ > 5+ § and Av, Al satisfies the condition (4.3). Let ®(v,I) denote one of
1, v, Jv|? I3, ymyn (1 <m,n <3) and @i, := ®(vj, I;), then we have

S @i (A0) AL _/ Flas, 0,47, D)®(v, T) dvdl

j k RSXR+

<G| fem - 7

e (||f0||L§q + 1) ((Az)? + AvAt + Av + Al)

for some positive constants Cy and Cy which depend on 6, q, Co.1,C5 9, T,
Proof. Let Aj} denotes a domain such that
(vj,Ix) € Aj = [vjl-,v} + Av) X [v?—,v? + Av) X [v;’m]?»’ + Av) X [Ty Tpt1)-

With this, we have

> FR®in(Av) AT —/ f(zi, 0,67, 1)®(v, I) dvdl

ik R3xR4

= Zﬂ7f$k¢jk(Av)3AI — Z/ flxs,0, ", D®(v, I)dvdl
Aj,k

gk Jsk

= | > 1 ®(A0)PAT — Z/ flas, 0,6 D)@ dodl
Gk gk Bk

+ Z/ f(zi,v,t”,I)CDjkdvdI—Z/ fxs, 0, 8", 1®(v, I)dvdI
gk Bk gk Bk
= Te1 + Leo-

From (6.1) and Taylor’s theorem, we have
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f(xi,v,t”,f) :f( i — vl AL v, t" I)
:f( T; —v; LAt ,05,t" Ik) ( )At(‘? f(ze,)
+ (U_UJ) Vo f(ze,) + (I — Ik)alf(zes)
= ajf(:cs,vj,t",fk) -+ (1 - aj)f(xs+1,vj,t”,fk) + R,
where R is given by

R = (vj —v")Atd, f(z0,) + (v = vj) - Vo f(20,) + (I — 1)1 f (20,)

i Atv; — s ?

(x ;]] ’ ) asz(xflvvjatn,jk)

(xl- — Atvjl- - xs+1)2
2

where x¢,, z¢, € [Ts,2541) and zg, 1= (x5 + 0 Az, vj + Oy Av, ", Ij; + 0 AT) for some 0y, 0,1 € [0,1), 04, €
[0,1)3, (¢ =1,2,3). To estimate Zg1, we first separate it into two parts:

+aj

+(1_aj) 8wzf($527vj’tn’lk)7

Te1 = Zfljkq)ﬂc A’U SAT — Z/ f $Z,’Ut ]) ]kdvdl

- Z/ ,]7 f(.l?s,’l)j,tn,lk;)) +(1_a/j)(f;L+17j,k:_f(xs+1avj7tnalk))(bjkdvdl
—Z/ R®j), dvdl
ik Bk
=Ze11 + Ze12.

We bound Zg11 as follows:

Zea ] <> (i £ = Flevit™ )| + (10— aj)| fl g — F@agn, vp, 67 I ) [@5e] (Av) AT
7,k

<[ ey - e

(Av) AT

oo 2 2
b <1+ |v; |2 +I,§)2

< 2054 F") - 17|, (6.3)

In the last line, the inequality comes from Theorem 4.5. For Zg15, we bound R using Theorem 3.1 and the
following inequality:

1fllzge,
(1 + |Uj =+ 9@A’U|2 =+ (Ik + HUAI)%)
1fllzge,

2
(1+ |UJ|2+I]§)

|6£f(z9z)|v |61£f(z9z)|a |vvf(z9e)|7 |(9]f(2592)|

IN

[SIS)

NS

That is,
1 follLge, +1

IR| < Cp1e%22™" ((Az)? + AvAtL + Av + AT)

[SIS)

2
(1 + v +I£)
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Using this, we have

| Ze12| < Z/ |R||® k| dvdl
gk Ak

(o
< Coe92™ ((A2)? + AvAt+ Av+ AL (I follg:, +1) Z/ |2

- dvdl

(1 + |v;|? +IJ>
< 2€§,q_202,1602’2Tf ((Ag;)Q + AvAt 4+ Av + AI) (HfO”LS?q + 1),

where the last inequality holds as in (6.3). For Zge, we consider (v,I) = (v; + {Av, I, +nAI) € Ajy, for
&,m €10,1). Then, we have from Av < % that

v, — v| < V3Ao, ‘|vj|2 - |v|2‘ < VBAV(|u;| + ) < \/§Av(\/§m v 2|v|) < 6Av(1+[v]?)

and, for 1 <m,n < 3,

|v;nv? Umv"| < |U;"vr-l — v + ot — vmv"|

< o — v o + oo™ — oo
< Av|o]| + Avfo”|
< 3Av(1+ ).

Moreover, for I € [Ij, Ix+1), the mean-value theorem implies

2AT1

I - II%(IJrAI)%’1 < T(I+AI)%*1, 0<s<2.

This, together with the assumption Al < % in (4.3), gives

2 2 2AT ,_1 2AT 2 2 AT 2
R < I 5—1 2_1 <952~ 3
I - 1% (I+1)F - (2 +(21)F )_2s ; (1—1—]6)

To sum up,
AT
@5 — (v, )] < 6Av(1+[v]*) + 2%7(1 4 Ig)_
Now, Zgs is estimated by

ol <3 [ Flawv " Djog = 00, D] dval

2 23 AIL(1 4 13
TSI 9 Atk >qdvd1+/ PO
BT EE (1+|vl2+l%)2 Ajk (1+|v|2+1%)
2 AT

<15 (6Av+2a) > L _duar

1+\v|2+1 ) o

ke

where C_'[;)q,g is given in Definition 4.1. Combining Zg; and Zgz, we obtain the desired result. U
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Lemma 6.3. Suppose that ¢ > 5+ 0 and Av, Al satisfy the condition (4.3). Then,

|ﬁi - ﬁ(.’I}i,t")I, ﬁi - U(xzatn) 3

~ n ~
(7); = T )

< OIF(E") = F* e + C{HfOHLgfq + 1}{(A:v)2 +Av+ AT+ AvAt}.

where C > 0 is a constant and the (a, 3) element of 7~L,9 is denoted by f:’éﬁ forl1 <a,p <3.

Proof. Consider the case ®;; =1 in Lemma 6.2, then

|p7, _pxh |_ Z z]k:Av)BAI_Z/A f(xh?])tn?I)dedI
ik Ak

< CUFE) = F e + Co{Ifolluze, + 1}H{(A2)* + Av+ AT+ Avat).

The number C; and C, are constants in Lemma 6.2. For the second estimate, we begin with

ﬁ?f]zn_ﬁ(xw )U(xlv )+ p~($17 )U(xta ) ﬁ?ﬁ('xlvtn) .

U»"—U(a:i,t") = =
Py i

3

From C™ in Definition 4.2, we have

which together with Lemma 6.2 gives

07 = 50w t™)| < G| Fem) = 77|

Moreover, we have

70 (3,17

= / vf(mi,v,t",lk)dvdf
R3 xRy

[SS)

(1 + |vf? +I%) s

:/ (ol f (s — v' At 0, £, 1)
R3 xR

NS

(1+|u|2+1%)

1
<@l [ __dvar

R3xRy (1+|’U|2+I%) 3

~ s
= C5,4-101%22T {HfOHLSf’q + 1}-

Therefore,

I8 oy

qukvj (Av)>AT — Z/ flas,v, ", Dodvdl

_+ 02(||fOHL°° + 1) ((Az)* + AvAt + Av + AT).

929
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xzy

o AU)SAI—Z/A f(xs,v,t", I)dvdl
— Ja

<C|f") *anLgo JrC'{”fOHLgfq + 1}{(Ax)2 + Av + AT + AvAt},

for a constant C' > 0. :
For the estimate of 7, g, we recall its definition in to get

7 (Tuo) = 3Too = =005 { (1= v)(Tur) 1d+ 087} + 057 (Ty) 1

| (L= 0)wAtA, 46 /- \" (1—-0)wvAt(1— A, 60) o At~
+pi[ At + K (T5)ild+ At+x (Ttr) - 9)VAt+/£6i

—(1- 9)5{(1 - l/)TtrId + ué} - 9,3T51d

Z‘fﬂv {

+ m El;fznjk{‘vﬂ - Uin
Js

—(1-10) /RSXR+ f{(l_gy)‘v— ﬁ’QId—i-V(v— U) ® (v— ﬁ)}dvd]

( U") (v—ﬁf)}(m)%f

+2I3 }Id(Av)3AI

Vi —

0 ~ ~ |2 2
- — -U 215 yIddvdl
3+0 RSXRJrf{"U ‘ + 5} v
~n ( H)VAtAV 99 ( — Q)Z/At(l — A,, 99) _ _ At n
“’i[ At+r (T5) Id+ At+r (T“) Id=(1=06) At+/<;6

which can be rewritten as
oy (i,e) =T
1-— 0 ~

y<] flnjk U;L) ® (vj _ Ui”)(m)%]— A3XR+ f(v - U) ® (u - U) dvdI)
3+5<Z ,czé (Av)*AT — A3XR+fI§dvdI)Id

(Av)3AI — / flv—U?dv dl) Id
R3 xR+

7.k
(1= 0)vALA, 40 (1= O)AL(1 — A, ) LA o
+”i[ At+r ( 5) Id+ At+r (T“> Id= (1 =g

=Tn +Ir2 + Tz + Lra.

For 77,1, we use Lemma 6.2 to obtain
12 - 2
Zfdk’ (AU)BAF/ f\vj fU‘ dvdl
R3 xR+

SCONFE) = e + O{”fO”Lgf’q + 1}{(A;zc)2 + Av+ AT + AvAt}.

Similar estimates hold for Z7o and Z73. Together with
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At
At+ k|~

At
At + K’

)

(1—-0)vAtA, 46
At + K

’ (1—0)vAt(1 — A, 00) '

1—
At + K ’ ‘( o)

the macroscopic quantities in Z74 are also bounded by D™ in Definition 4.2. Therefore, for 1 < o, < 3, we
have

Py (Tféﬁ ) = plaan )T @) g, 0)FSP (0, t7) — TP (@i 1)
_ ~n n , ) ,
Pi Pi

‘ (Ta 5)1 — T (@i t™)| =

- n ~ %aéﬁ(x“t )‘
PE(T), e T o)+ = s t) = 1|

i i

S OIFE") = f I pee + C{HfO”Lgf’q + 1}{(A:p)2 + Av+ AT + AvAt},

1
< —
'

for a constant C' > 0. This completes the proof. O
The following is the main result of this section.

Proposition 6.4. Suppose that ¢ > 5+ 6 and Av, Al satisfy the condition (4.3). Then,

HMu,e,a (f(t")) — My (fn)

| S = e + Ol +1H{(A0)? + Av+ AT+ AvAt},
Proof. We begin by writting
M. (f) (iy vy, Ip, 1) — Moo, (ﬁiﬂc)

= My (@i t"). Ol ), T (ais ) (v 1) = Muas (52,02, (Toa) ) (0310

g,k

Then,
Myas (plais ), 0@ t), T t)) (03, 1) = Moo (57,07 (Toa) ) (03, 11)
1 1
. _ OM, 0.5 ~ ~ OM, 05
= iatn - ;n — d iatn - zn — d
(Pant™) = ) [ LS ay + (e tm) 7)) [ 2 myan
oM
(xﬂ n a,3 v,0,0
+1<QZ;<3(TV9 ot = (T);) | Sz
- OM, .5
+ (Tt - (1)) / S (n)
=J1+ Jo+ J3 + Jg,
where
OM, 0.5 (n) = OM, 9.5
X OX | x=(p,0,T10.70)= (57 (0,07 (1), (Fr0) " (), (To) ()
and
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ol o () (1)) ()" (1))

for n € [0,1]. Since each macroscopic quantity is given by the convex combination of continous and discrete
macroscopic fields, its estimate can be directly obtained by combining the estimates of continous solution in
Theorem 3.1 and those of discrete solution in Theorem 4.5 as follows:

7, 07, (T) ), (To) () < Cos
pr), (1) ), (o) (n) = Croe=Crs
K (m)j(n)}k > Crre=Crtf k2, k€ R (6.4)

On the other hand, Brum-Minkowski inequality implies that
det{ (7o) )} = det{(1 = Too(wirt™) + (7o) }

> det{’f}yg(xi, t")}l_n det{ (7},9)?}”

Z {CTfe*CTf }1_77{0Tf echf }77
> CTfe_CTf,

from which we have

P (n)As

Joe () o) () )

xexp| — — -

~ 2 2
w-0ref 1)),

Now, we return to the estimate of J; for i = 1,2, 3,4. We bound .J; with

YoM, Mu
/ 0 dﬁ‘ = 99 an < / Crs eXp( CTf(
0 dp o Ar(n)

For Jy, we recall from Lemma A.2 that

My.0.5(n)(vj, Ix) =

< Cry exp (C’Tf <

This, combined with Proposition 5.3, gives

Now, we consider the following inequality:

5] = () s ev0)

K2
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To estimate the upper bound, we introduce X = v; — TZ”
() )
(@) )

) ((Toa) )XV = XT((T) ) X =¥ T((Ta) ) Y

(n) and obtain

< sup
ly|<1

< sup
ly|<1

c X+ Y2 — | X - [Y]?
sup

SR (7))
< 3(1 s - mn)f). (6.5)
In the last line, we use Lemma A.2. Similarly, we compute
() @) x| < G (1] - T ). (6.6)
Consequently,

YoM, s ' Ops
S AR <[ =1
/0 50 (n)dn‘_/o 9 ( +

To estimate J3, for 1 < a, 6 < 3, we compute

o5 = 0| ) exp( s (

o= 07| +1f ) ) an

OM,g.5 ) = L [_ 1 9 det(T,,.0) -
o 2L aer(T) ) 0T
- T. o ’TV ~ -
+ (v - 0r) ) <8(7azi)<n>> T3 (v = Um) [ Mug sl
v,0
where
8det(TV,9) (77) — Bdet(’fyﬁ) 8(7;9) (T]) — 8(7;,9) .
0T’ 0T = mory T T 11, 0=(10)" )

Now, we prove the following estimates:

IN

(S (1 -0w]))

F): (v -0w) Tim ( s <n>> ) (v, - U)

Odet (Z,)e ):l
a1,

— (F1): we use that 7! is symmetric matrix and 7%” = 72 to obtain
v,0 v,0 v,0

0T,
XT( - (n))Y
‘ ot

= |XYP + Xy < |X||Y].
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This gives

where we use (6.5) and (6.6).

(F2): by (6.4), we have
det(T0) ) > (Co(T3) () = 6°C.

(F3): recalling the definition of ©, Ty,, T5 and ’]19, for 1 < a, <3, we have

j

’éa“@(xi,t”) < 3T (i, "),
Ts (s, t") = if (2, t") + 0 Tr.5(zi, t™) > 5 Tow (™)
o\ L, —3+5tr (2] 3+61,5 iy _3+6tr iy .
and
T (i t™)| < 0T5 (@i, 1) + (1= 0){ (1 = )i, 17) + v| 7P (21,27
< OTs(zs,t") + (1 — 0)(1 4 20) Tip (4, 1)
< OTs (i, t") + (1 — 0)(1 + 2u)3 + 513;(@,#)
< (14200327 (i 7).
That is,
’(jféﬁ)i = C(T‘s)i ’

which implies
(77) w| < o(B) o < e
v )4 i
For simplicity, we only cover the case: (a, 3) = (1,2). A direct calculation gives

Odet 77,,9 ~ ~ ~ ~
i =TT ) = T ) (),

v,0
which is a second order polynomial of (’ffé’g )n(n) for 1 < a, 8 < 3. Therefore,

| Odet ’Tu’g

(n)| <C,
0T,

for some constant C'. This completes the proof for claims.
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Using (F1), (F2) and (F3), we can bound the integral J; as

Lom, e (c EENENS
2oman| < [ |5+ (5 (14 o - 000 ) ) | Moastman

a,
0 87;’9

Then,

- 2
vi — U(n)‘ n 1,3”)) .

! anGﬁ
59 () d
/ S

For J4, we begin with

OIMyos, . (20} = 6Ty(n) 1 5
8T9 ( ) - ( 2(T9(77))2 >Ml/,9,§ < ((fa(n))2 + Tg(n)) (1 + Ik )Mu,9,6.

Since there exist a lower bound for Tp(n), we have

1 aMV 3 § ’ 5
[, Zatoman <o+ af)ew(-co (|o ol + 1))
0 0

Combining all the estimates for J;, i = 1,2, 3,4, we finally obtain

‘Mu,e,a (f) (4,05, I, ") — My s (f{fj,;c)j i

n

7= (%), + 7= (1),
7 K]

Ly

1<e,8<3
rrm 2 /

1 1 1 ~ ~
<cli+=4=+=Wp-pr+|lU-0"
_C< 6 02 03> | i ‘ !

4 2
|+

X (1—1-‘11]- —[7(77)‘24- "Uj—U(TD

Now, recall that U?(n) < Crs to derive

[N

q
2\ = - - 2 2\ 2 - 2 2
<1+|vj|2+1,§>2=<1+‘vj—Uf(n)+U{l(n)‘ +I,§> §O<1+‘vj—Ui"(n)‘ +I,j> ,

which further gives

N
(1P +f) (14

. 2 4 - 2 .
<ty = 0P P + 1) (14~ O] + [og - O

7 4 H — vi—U" 2, 72/
v; —U(n) 'U_j_U(T])‘ +[]§>e c(Jos=0rm|*+13"*)

+ If)e—c(l%—ﬁm>l2+fi”)

2
|+

’ 4

- 2 L\ 513 S N2 2/5
<c (” v = U7 )| +I,§> o), (6.8)
Note that the last upper bound can be understood as the form of C(1 + x)%”’e ©® hence it is uniformly
N
bounded for z > 0. To obtain desired estimate, we multiply (1 + |v;|? + I,j) * on both sides of (6.7) and take

supremum, then we have from (6.8) that
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HMuﬁ,é (f) (@i, vj, I, t") — My g5 (fznle) o
Js Lgc

n

+ 3 |- () | + |7 - (),
1<a,B<3 ! !

This, together with Lemma 6.3, gives the desired estimate. O

1 1 1 e
C<1+0+92 93> |p*pi|+‘U7Ui

7. PROOF OF THEOREM 3.2

Here, we prove our main theorem. We first subtract (5.1) from (2.14) and take Lg°-norm:

A, oAt ~ g
n+l _ n+1 n v,0 ny\ _ n
Hf It HL“ o /{+A (t ) Lge Ii-l—A,,’gAtHMV’Q’é(f ) M”’Q’é(o (") Lge
A AV,O
g A enill T Rl

Next, we recall Lemmas 5.6, 6.1 and Proposition 6.4:
[RillLee + | Re|lrz < C(AL)?,
|7 =72\ <05 = £l + cany?,

HMW (7)) = Moo (F7) HLW < (1) = f e + {(A2) + Av+ AT + AvAt}),

where C' is a constant which can be bounded regardless of the values of At. From these estimates, we obtain

k+ CA, gAt
k+ Ay gAt
C
+ K+ Ay gAt

It = () e < 17" = £l
(k(Az)* 4+ Ay g At((Az)® + Av+ AT + AvAt + At)). (7.1)

For the sake of simplicity, we introduce

Lnoo= /" = f(E") g

and
c
P(Ax, Av, Al At) := P Y (k(Az)? + Ay pAt((Az)? + Av + AT + AvAt + At)).

Then, using

K+ CA, AL (C— 1)14,, PYAN CA, AL

b et PR S kAt Q) [ Sl ety | At

PR P Aot S T ar A, e
we write (7.1) in a recurrence form as follows:
It < 1+ QAYNT, + P(Ax, Av, Al At)

where @ := _CAve _ Gince it is assumed that there is no error in the initial step:

H+Au,0At
Lo = ||/ = f(t")|lze =0,

we have from nAt < N;At = T/ that
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Tpg1 < (14 QAH"MTo + ) (1 + QAH*P(Az, Av, AT At)
k=0
(1+ QAN —1

P(Az, Av, AT, At)

= 1+ QA -1
< QlAt 9T P(Ax, Av, AL, At).

In the last line, we use (1+ )" < e™*. Using Av < % and

P(Az, Av, AT, At) < C(k+Aup)
At = it A, gAt

A 2
((A”“;) —|—(Ax)2—|—Av+AI+AvAt+At>,

we derive

2 sC(k+ Avyg) [ (Ax)?
Tpyt < =97 :
mH=Qf At

Az)? + Av+ AT+ At ).
0 ko Ay oAt + (Az)* 4+ Av + + t)

This completes the proof.

8. CONCLUSION

937

In this paper, we present an implicit semi-Lagrangian scheme for the ES-BGK model for polyatomic gases.
The main result is the convergence estimate of the scheme using argument previously adopted in [41] for BGK
model and [42] for ES-BGK model for monatomic gas. For the proof of convergence estimate, the lower bound
estimate for polyatomic temperature is crucially used to prevent the discrete polyatomic ellipsoidal Gaussian
from degenerating into Dirac delta. The restriction of our result is that convergence estimate holds for fixed value
of Knudsen number and relaxation parameter 6. Our proof covers the biatomic molecules with no vibrational
degree of freedom. In future work we shall try to remove some of these restrictions, in particular we plan to make
use of the asymptotic preserving property of the method to obtain a convergence estimate which is uniform in

the Knudsen number.

APPENDIX A. TECHNICAL LEMMAS

Here, we present several technical lemmas.
Lemma A.1. The discrete solution f™ and f" satisfies
- _
|7],. < Wollsz, forn=o0.
an

|

Proof. For n = 0, we recall that no initial errors are assumed. Then,

<[z forn> 1.

L‘Z

- 2\ 3
(1 02+ 1)

LE gk

= sup
.5,k

N
fO(-Ti —vjl-At,ijk) (1—|— ‘Uj‘z -|-]]§)2

[SIS)

< sup

x,v, 1

fo(z —v'At,v, 1) (1 + Jv]? +I%)

= |l follzg-

For n > 1, we use (2.1) to obtain
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fn

q 1,5,k

m 2 % %
Lo bUP Tik (1 + [v|* + Ik>

[N

2
= sup| (a; £ 4+ (1= @) fis1 14) (1105 + 1)
575

a
< sup fﬁj)k(l+lvj|2+[%>2 ’

.5,k

where the index s is determined as in (2.1) for each 4, j, and the last inequality follows from the inequalities
0 < aj <1. This completes the proof.

|
In the following lemma, we establish the equivalent relations for (Tu 9) and ( )

Lemma A.2. Let § > 0, —-1/2 <v <1 and 0 < 0 < 1. Suppose f{fj’k > 0 and p}' > 0. Then, the discrete
temperature tensor (’j:,g))n and relazation temperature (Tg)n satisfy the following estimates:
~ n 1 ~\"N
< — _
(1) /\G(Tg) 1d (T ) < 2AC{3+4(1 )}(T(;)ild,
~ ~\ " 1 ~\"n
@ o(Ts) < (Ta) < 5(6+30-0}(T)

where C,, = max{l —v,1+2v} and A\ = %ﬁ&

\ /\

Remark A.3. In the inequalities (1), the relation A < B for 3 x 3 matrices A and B means that B — A is
positive definite, i.e., kT (B — A)k > 0 for all k = (k', k2, k%) " € R®. That is,

)ﬁ(f};)j < min k7 (Tyg) k < max kT (Te)nk < %)\CZ,{S a1 - 9)}(%)?.

|k|=1
This further imposes that eigenvalues of (Ty 9) lie between \0 (T5> and )\C' {3+4(1 - 0)}(T5> hence,

(o)) < e ()" = (Srcuto o0 - e>}(f5)j)3.

Proof. (1) The estimate for (’f} P

n
S ) :fork e R3, recall the definition of (’Tl, o) (2.12) to have

2
kT{ﬁg(ﬁ,e)j}k:kT A0 BLMZJQ’}M vsz’H?) VAT 1d bk

J UTL
i\, f

(Av)3AT|Id bk

RT3 =0 > (v - OF) @ (v = OF) (Av)*AT ok
7,k
=R, + Ry + Rs. (A1)

Depending on the range of v, we respectively estimate the upper and lower bounds of k:T{ o (’f; 9) }k in
(A.1) as follows:
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(1-1) Upper bound estimate of (A.1):
(1-1-1) 0 < v < 1: we first simplify R3 by using the following identity:

67 (0 - 07) @ (v - 07 k= (k- (v, - 07))

and use the Cauchy-Schwartz inequality as follows:
Zf m(k (v 07)) (awpar < > Fsals

Then, the upper bound of (A.1) is given by j
R {07 (Tuo) b < 0057 (T5) IR+ A1 = 0)(1 = )37 (Tor) b1 + 31 = )77 (7o) k2

<A +20)7{0(Ty) + (1= 0)(Tu) Ik, (A2)

In the last line, we use 0 < v = g <vand A > 1.
(1-1-2) —1/2 < v < 0: in this case, we have 7 < 0. Then, (A.1) becomes

k{50 (Too) bo < Moar (T) 162 + (1 = ) = )7 (Tur) 6}
<A1 =) {6(Ts)" + - 0)(T) HIkP, (A.3)

Combine (A.2) and (A.3) and divide both sides of (A.1) by g > 0 to derive

2 ) N
0| (AP AT < 357 (T ) IR

KT (I,g)nk: < max{1l -1+ 21\ {(1-0) (Ttr> + e(Té) bR (A4)
Now, we recall the definition of (Tg)j in (2.3) to obtain
(), = 55 () + 5 (100), = 5 ()
which, together with (A.4), leads to
K (T0) k< émax{l v L A3 + (1 - 0)H(T5) P,

(1-2) Lower bound estimate of (A.1):
(1-2-1) 0 < v < 1: the summation Ry + R3 in (A.1) satisfies

2

Tl

Ro+Rs=k"{A1—-60)(1-v) Zf’jk (Av)3AI|Id 3k

+(1-0pY ﬁ}j,k(k : (uj - U”)) (Av)3AT
7,k
> KT {A1=0)(1 - )57 (Ttr)jld}k
>

> At’l —(1-6)(1- VT { (T}r)jfd}k.

In the last line, we use A = KJK‘{;“;“ > xipr with Ay g =1/(1 —v+v0) >0
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(1-2-2) —1/2 < v < 0: In this range of v, we have A > 0. Then,

2

’Il

Ry+Rs=k" ¢ (M1 —6)(1-v)) Zfd, ’ (Av)>AI|Id ok

+ET{ (10 Zfdk( >~<vj—UZ-")(Av)3AI k

> kT{ (Ati (1-6)(1— y))ﬁ? (Tcr)jfd}k + kT{Afj_ —(1 - ) (Ttr)jld}k

(1= )1+ 20)77 (Tur) [P

At+

Since Ry + R3 > 0 for —1/2 < v < 1, we can conclude that
K50 (o) b = 2050 (T5) K2 + Ra + Ry > 2057 (T ) Ihl*,

~ n
(2) The estimate for (Tg) _: note that (Tt,)v > 0, which gives

(1), = 525 ) g 0), = 55 )

Then,

n

(), - <o(s).
§(1—9)<3;5(T5> >+9(T5) %{5+3(1—9)}(T5)7.

3

Also, from (TI’(;) ~ > 0, we have

(B, =0 (tis) o) =o(2).

This completes the proof.
O
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