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Machine-learning engineering of quantum currents

Tobias Haug ,1 Rainer Dumke,1,2,3 Leong-Chuan Kwek,1,3,4,5 Christian Miniatura ,3,1,6,7,8,9 and Luigi Amico1,3,10,11,12

1Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
2Division of Physics and Applied Physics, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore

3MajuLab, CNRS-UCA-SU-NUS-NTU International Joint Research Unit, Singapore
4School of Electrical and Electronic Engineering, 50 Nanyang Avenue, Singapore 637553, Singapore

5National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
6Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore

7School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore, Singapore
8Yale-NUS College, 16 College Avenue West, Singapore 138527, Singapore

9Université Côte d’Azur, CNRS, Institut de Physique de Nice, 1361 route des Lucioles, 06560 Valbonne, France
10Dipartimento di Fisica e Astronomia, Via S. Sofia 64, 95127 Catania, Italy

11CNR-MATIS-IMM & INFN-Sezione di Catania, Via S. Sofia 64, 95127 Catania, Italy
12LANEF “Chaire d’excellence,” Universitè Grenoble–Alpes & CNRS, F-38000 Grenoble, France

(Received 9 January 2020; revised 6 July 2020; accepted 8 November 2020; published 12 January 2021)

The design, accurate preparation, and manipulation of quantum states in quantum circuits are essential opera-
tional tasks at the heart of quantum technologies. Nowadays, circuits can be designed with physical parameters
that can be controlled with unprecedented accuracy and flexibility. However, the generation of well-controlled
current states is still a nagging bottleneck, especially when different circuit elements are integrated together.
In this work, we show how machine learning can effectively address this challenge and outperform the current
existing methods. To this end, we exploit deep reinforcement learning to prepare prescribed quantum current
states in circuits composed of lumped elements. To highlight our method, we show how to engineer bosonic
persistent currents as they are relevant in different quantum technologies as cold atoms and superconducting
circuits. We demonstrate the use of deep reinforcement learning to rediscover established protocols, as well as
solving configurations that are difficult to treat with other methods. With our approach, quantum current states
characterized by a single winding number or entangled currents of multiple winding numbers can be prepared in
a robust manner, superseding the existing protocols.
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With the advent of quantum technologies, new forms of
quantum circuits have emerged. The architecture and circuit
performance depend on the specific physical implementation
and the type of “quantum fluid” operating in the quantum
network. Prominent candidates are atomtronic circuits involv-
ing neutral matter waves of cold atoms in optically generated
structures with micrometric resolution [1]. Other examples
range from electronic and superconducting circuits [2] based
on charged matter-wave on nanolithography to photonic cir-
cuits employing photons in fiberoptics [3]. These systems
allow for precise control over the circuit properties such as
interactions or particle statistics (fermions/bosons). In addi-
tion, it is possible with the latest achievements in the field,
particularly in atomtronics, to dynamically adjust the spatial
features of the circuit locally, while avoiding cross-talk effects
[4–6]. Finally, quantum circuits with increasingly complex
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architecture and hybrid systems, in which different technolo-
gies are interfaced, are at a mature stage of technological
readiness [7–11]. Although important for the very definition
of the quantum circuits, the generation and control of current
states remains a difficult task to achieve. Particularly for cold
atom quantum technology, matter-wave currents have been
imparted so far only in continuous atomic rings [12]. In fact,
currents in even a simple circuit made of a lattice ring have
never been achieved. Such a problem represents a well-known
bottleneck in the field, particularly urgent for the progress of
atomtronics in which neutral matter currents are needed to
flow in complex networks [13,14].

In the present work, we demonstrate that the problem can
be overcome by applying machine learning. In this way, we
can engineer fast and high fidelity current states in circuits
with lumped parameters.

Machine learning with deep reinforcement learning (RL)
was recently recognized as a powerful tool to engineer dy-
namics in quantum systems [15–21]. Here, we guide quantum
systems by reconfiguring deep RL protocols that have trained
artificial intelligence agents to master complex decision pro-
cesses [22]. We demonstrate this approach to prepare quantum
current states describing the flow of a coherent matter-wave
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FIG. 1. (a), (b) Deep reinforcement learning to optimize generation of quantum states of currents. The quantum system is a ring-shaped
circuit comprising L lumped parameters schematized as lattice sites. The wave function resides at site m with a local potential Pm(t ) that can
be changed in time. The full control protocol (FCP) adjusts the potential at all sites individually in discrete time steps tn to generate a current
efficiently. To optimize the protocol, the neural network takes the potentials P(t < tn) at earlier time steps and returns the potential Pm(tn)
to be applied to the quantum system in the next time step. A measure 〈�|Ô|�〉 given by observable Ô is measured and used to train the
neural network. This process is repeated until convergence. For further details, see Appendix F. (c) Example driving potential found by the
optimization algorithm.

in closed circuits: persistent currents [23]. Persistent currents
are a direct manifestation of the phenomenon of quantum
coherence and are therefore of central interest in fundamental
aspects of many-body physics such as superfluidity, supercon-
ductivity, and mesoscopic physics [24]. At the same time, such
concepts play a vital role for important emerging applications
such as rotation sensors based on guided matter-waves in
atomtronic circuits [25], which employ similar ideas to their
superconducting counterpart, namely superconducting quan-
tum interference devices (SQUIDs) [26]. Persistent currents
have been the object of intense studies in different contexts
of quantum technologies such as cold atoms [12,27], super-
conducting circuits [28], optical cavities [29], optomechanical
cavities [30], and tailored reservoirs [31].

While charged or neutral matter-wave persistent currents
have been obtained in simplified situations, protocols for more
general settings are still missing. We consider quantum sys-
tems that can be mapped onto ring-shaped circuits comprising
local units that we call sites. These systems encompass most
of the general features and challenging aspects for the gener-
ation of quantum currents in closed circuits. We propose to
create current states by locally driving the circuit parameters.
If the system can be driven by changing a few control pa-
rameters, state engineering can be carried out through optimal
control theory [32]. For increasingly large numbers of pa-
rameters, however, the circuit driving cannot be handled with
standard means. In this work, we employ deep RL to imple-
ment current state engineering by driving each lattice site of
the ring circuit independently. With our approach, we demon-
strate that persistent currents with specific winding number
can be imparted, on a timescale that is much shorter than
other known protocols. Additionally, we can create entangled
current states of up to three winding numbers, for which there
is no known protocol. Our protocols can be readily trained and
applied in experiments.

In Appendix A, we introduce complementary theoretical
definitions for the quantum phase model and phase windings
that we used in the main text. In Appendix B, we compare
the fidelity with the certification measure, which can be used

to experimentally verify the quality of the prepared state. In
Appendix C, we compare our results with deep reinforcement
learning with the standard method GRAPE. In Appendix D,
we investigate the robustness of our protocols against noise in
the driving parameters. In Appendix E, we present additional
numerical results on the quantum phase model and the gen-
eration of superposition states using full control and barrier
protocols. In Appendix F, we introduce the deep reinforce-
ment learning protocol in full detail. In Appendix G, we show
how the deep learning protocol improves with training time. In
Appendix H, we show the statistical fluctuations of different
repetitions of the deep learning protocol. In Appendix I, we
show experimental considerations for how to implement our
protocols with cold atoms and superconducting circuits.

I. LOCAL DRIVE OF BOSE-HUBBARD RING CIRCUITS

As sketched in Fig. 1(b), our model system is a ring circuit
comprised of L sites, a natural architecture to consider to
generate persistent currents, described with the Bose-Hubbard
Hamiltonian. Np interacting bosonic particles are filling the
ring lattice and can hop between nearest-neighbor sites j and
j + 1 with an amplitude J , and they interact on-site with each
other with strength U . The ring lattice can be locally driven
by externally varying in time each on-site potential Pj (t ),

HBH =
L∑

j=1

[
− J (â†

j â j+1 + â†
j+1â j ) + Pj (t ) n̂ j

+ U

2
n̂ j (n̂ j − 1)

]
. (1)

Here â j , â†
j , and n̂ j = â†

j â j are the usual bosonic creation,
annihilation, and number operators on site j, satisfying the
commutation relation [âi , â†

j ] = δi j and periodic boundary

conditions â†
L+1 = â†

1.
In the limit of a large average number of particles per site

Ns = Np/L � 1, the Bose-Hubbard Hamiltonian effectively
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reduces to the so-called quantum phase model (QPM)

HQP =
L∑

j=1

[
−2JE cos(φ̂ j − φ̂ j+1) + Pj (t ) Q̂ j + U

2
Q̂2

j

]
,

(2)

where JE = JNs, Q̂ j = n̂ j − Ns is the on-site particle num-
ber fluctuations, and φ j are the phase operators [33,34]. The
operators satisfy the commutation relations [φ̂i, Q̂ j] = ih̄δi j .
Hamiltonians (1) and (2) describe a wide class of different
physical quantum systems ranging from one-dimensional ar-
rays of Josephson junctions and qubits [35] to atomtronic
circuits.

II. QUANTUM CURRENT STATES

In a coherent quantum circuit, the current states in the
ring are quantized as the phase along a closed path can
only change by integer multiples of 2π . We describe these
winding numbers k by defining the single-particle winding
state |k〉 .= b̂†

k|vac〉, where |vac〉 denotes the vacuum state
and b̂†

k = 1√
L

∑
n ei2πkn/Lâ†

n is the quasimomentum creation
operator (details are in Appendix A). In a ring system, the
quasimomentum corresponds to the winding number and
therefore the quantized current in the ring. We choose � =
{k1, k2, . . . , kNC} as a set of NC winding numbers that we want
to prepare in an entangled superposition state. The generation
of such quantum current states is one of the defining goals
of quantum technology, and these states are notoriously dif-
ficult to generate. We consider states in the form |�EC〉 =

1√
NC

∑
k∈� eiφk |k〉⊗Np consisting of NC winding numbers with

arbitrary phase φk . Important examples of entangled current
(EC) states that we will specifically consider in the present
work are the NOON-state (NC = 2) and the W-state (NC = 3).
We characterize the ability of our protocols to generate these
states with the fidelity F = |〈�(T )|�EC〉|2. We also refer
to a certification measure that is related to observables in
cold-atom settings (time-of-flight measurements) [36,37] and
reflects the behavior of the fidelity: W� ∝ ∏

k∈� 〈�|n̂k n̂k|�〉
(see Appendix B).

We introduce the full control protocol (FCP) to generate
currents efficiently. In such a protocol, the potential at each
lattice site is driven freely within a range |Pj | < Pmax. The
total driving time T is discretized into NT time steps of equal
length �t = T/NT. Within each time step, the system evolves
under constant parameters and we assume that the potential
parameters change instantaneously between two time steps.
We use deep RL with proximal policy optimization using the
actor-critic method, and implementation in TENSORFLOW to
optimize the protocols [22,38,39] (a sketch of algorithm is in
Fig. 1; details are in Appendix F). Here, we note that our
scheme relies on a model-free optimization algorithm: The
learning algorithm does not make any assumptions about the
specific system, nor does it know about quantum mechanics.
As a possible application, the algorithm could be supplied
with experimental data (in our case the potential parameters
and measurement observables) to optimize the experiment
directly.

We compare two fundamental approaches to generate
quantum current states. First, we investigate the established
method of stirring with a barrier, but here applied to a discrete
ring lattice. Then, we investigate the FCP protocol.

III. STIRRING A LOCALIZED BARRIER POTENTIAL

Transforming the nonrotating ground state to a specific
rotating state requires perturbing the state in a manner
that explicitly breaks time-reversal symmetry. This has been
implemented in cold-atom settings [12,40] for continuous sys-
tems, but it has not been investigated for discrete settings such
as a ring lattice. Here, we move a potential barrier initially
localized at one site of amplitude PB to the next site at a
fixed frequency v. We target generating current states with one
winding number, starting from the ground state of the system.
We find that a high fidelity is reached by driving the ring for a
time T ≈ 20/J for different particle numbers Np [rightmost
curves in Fig. 2(a)]. Matching calculations for continuous
systems, we find that the first rotational state is created best
by stirring with about a speed of half the desired atom veloc-
ity v ≈ 0.5/J [see Fig. 2(d) [41]]. In a rotationally invariant
system, the energies for consecutive winding numbers k1, k2

are degenerate when the barrier is driven at the mean speed
(v2 − v1)/2. A localized barrier splits the degeneracy and
introduces nonadiabatic transitions (Landau-Zener) between
the two states. A similar mechanism works also for a ring
condensate interrupted by three barriers [42].

The actual implementation of the barrier protocol implies a
tradeoff between achieving high fidelity F and short protocol
time T : With increasing PB the maximal achievable fidelity
decreases, however it is reached in a shorter time T [see
Fig. 2(c)]. To shorten the protocol run time without sacrificing
fidelity, more complex protocols are required.

As a benchmark, we apply the deep learning algorithm
on a setting with simple instructions (see Fig. 3). The ring
is initialized with a single barrier with strength P = J . The
neural network can at each time step choose to either move
the barrier forward by one site or keep the barrier at the
current position. In this way, we see that the deep RL is able
to find a protocol with nearly constant velocity [dashed line
Fig. 3(b)] that is very similar to the analytic solution [solid
line in Fig. 3(b)]. This demonstrates the ability of the learning
algorithm to reconstruct the known solution by starting from
a general control scheme.

IV. LOCAL CONTROL OF THE CIRCUIT

To achieve a higher control over the dynamics of the quan-
tum system, we now apply the FCP in which each lattice site
is driven individually by varying the potential in a continu-
ous fashion between −J < Pj < J . In Fig. 2(a), we compare
stirring (right-hand side) and FCP (left-hand side). The FCP
reaches a better fidelity than the barrier driving protocol,
requiring only half the time or less. An example protocol
that optimizes the state generation is shown in Fig. 1(c). It is
very remarkable that the FCP works also in the limit of many
particles by employing the QPM Eq. (2) in the regime of inter-
mediate interaction [see Figs. 2(a) and 2(b)]. In experimental
settings, the driving potential is subject to fluctuations due to
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FCP Barrier(a) (b) (c)

FIG. 2. (a) Generating currents by driving the potential of a ring circuit. We plot the time evolution of the fidelity F = |〈�(T )|�target〉|2
obtained with two different protocols, comparing different numbers of particles [Bose-Hubbard model Eq. (1) with L = 12 sites, U = J ,
target state |�target〉 = |k = 1〉⊗Np ]. The first protocol (barrier) stirs the wave function by moving a single-site barrier (PB = 2J for NP = 1, 2,
PB = 1.6J for NP = 3) at a constant speed v = 0.53J (see the curves on the right of the vertical dotted line), with the Bose-Hubbard model
(L = 12 ring sites, interaction U = J). The second protocol [full control protocol (FCP)] is fully controlling the potential at every lattice site
in time (see the curves on the left of the vertical dotted line) with NT = 6 control steps: solid blue curves, Np = 1; dashed red line, Np = 2;
dotted green curves, Np = 3. Limit of large particle number with quantum phase model (QPM) Eq. (2) with L = 7, U = 3JE, and target state
|�target〉 = |�QP(�1)〉 (see Appendix A): long-dashed black curve. (b) Minimal time Tmin required to create rotational states above a threshold
fidelity (Fmin = 0.95 for Np = 1; for more elusive higher particle number states, Fmin = 0.85) for different values of barrier amplitude PB.
(c) Maximal fidelity achieved when rotating the barrier with amplitude PB and speed v for Np = 1 particles. We find that the best rotation speed
of the barrier is at v ≈ 0.5J .

environmental noise and experimental imperfections. We find
that the FCP scheme is robust to noise in the driving potentials
to up to 20% (see Appendix D).

To go beyond quantum current states composed of a single
winding number, we employ FCP to engineer entangled su-
perposition of winding numbers. In this way, we demonstrate
the preparation of entangled superposition states of different
currents for up to three winding numbers for which we are not
aware of any protocol for their generation [see Fig. 4(a)]. The
fidelity improves over protocol time T and eventually reaches
a plateau. A minimal number of protocol time steps are re-
quired to reach sufficient fidelity. For interacting systems, we
achieve best results for NT � 4 [Fig. 4(b)]. For the QPM,
higher fidelity can be achieved with increasing interaction
U , however the initial fidelity is higher, and the momentum
distribution of the ground state becomes broader [Fig. 4(c)].
Further data and a comparison with the alternative optimiza-
tion method GRAPE can be found in Appendixes C and D

(a) (b)

FIG. 3. Current generation by moving a single δ-like potential
(with constant amplitude P = J). We compare two protocols: Mov-
ing potential at constant speed v = 0.52J (solid line) or optimize
with deep RL (dashed line). Over nt = 100 time steps, the RL
agent can either move the barrier by one site, or keep it at the
current position, trained over 50 000 epochs. (a) Fidelity of the best
found protocol to create the phase winding state �=1 for Np = 1.
(b) Barrier position in time.

[43,44]. Finally, we investigate protocols with discretized con-
trol amplitudes in Fig. 4(d). The driving amplitude at every

(a) (b)

(c) (d)

FIG. 4. (a)–(c) Full control with continuous control: Potential at
every site can take arbitrary values between −J < Pj < J . Gener-
ation of entangled superpositions of current states of type |EC〉 =

1√
NC

∑
k∈� |k〉⊗Np of a set of winding numbers � = {k1, k2, . . . kNC }

using deep RL. (a) Fidelity as a function of protocol time T for
Np = 2 particles, NT = 6 time steps, and U = J . (b) Fidelity for vary-
ing time steps NT (Np = 2, U = J , � = {0, 1}). (c) Fidelity for the
limit of large particle number (QPM) with FCP protocol for NT = 6,
L = 7, |Pm(t )| � JE and limiting number fluctuations at �Q̂m � 2
and target state |�target〉 = |�QP(�1)〉. The ground state of the QPM
has a broad winding number distribution and thus there is a finite
initial fidelity at T = 0. (d) Full control protocol with discretized
amplitudes: Local potential can take either the value Pj (t ) = 0 or
Pj (t ) = J . Fidelity to create phase winding state � = 1 for Np = 1,
for varying protocol time T and number time steps NT.
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site can take only the values Pj = 0 or Pj = J , and they have
a similar fidelity to the continuous case. They give rise to
simplistic driving protocols (see Appendix E).

V. DISCUSSION

In this work, we demonstrated how to use machine learning
for the efficient generation of currents in closed quantum
circuits. The essential features of this problem are captured by
a ring consisting of lumped elements, which we schematize
as lattice sites and can be modeled using the Bose-Hubbard
and quantum phase model, paradigmatic frameworks for the
physics of cold atoms, superconducting circuits, and photonic
waveguides.

We introduced the full control protocol (FCP), where all
sites of the lattice are driven individually. This protocol paves
the way for enhanced control over the many-body system. In-
spired by recent advances in deep RL, we use neural networks
to learn these complex driving protocols. In contrast to other
optimization methods such as GRAPE, deep RL is agnostic of
the underlying physical system as a kind of hybrid quantum-
classical optimizer [45–47]. Thus, it can directly improve
experiments, optimizing the fidelity with an experimentally
observable measure W� as input to the learning algorithm,
while achieving comparable results to those with GRAPE
(see Appendix B). We envision that first the time-consuming
training of the protocol is performed on the experiment, after
which the protocol can be readily applied whenever a specific
current state is needed.

We benchmarked our algorithm with the stirring protocol,
the standard protocol used for cold-atom technology [12]. Re-
markably, deep learning is able to rediscover the established
protocol. With the FCP, we show how to generate current
states consisting of a single winding number more than twice
as fast and with higher fidelity compared to the standard
stirring scheme used so far by the cold-atom community; see
Fig. 2(a). Furthermore, we show how to produce entangled
current states such as NOON states as well as W-type states
involving three winding numbers, for which no protocol has
been known so far (see Fig. 4). This scheme is robust to noise
in the driving parameter to up to 20% (see Appendix D).
We find that the complexity of the driving protocol (protocol
time and number of time steps) depends on the number of
particles: Noninteracting systems can generate currents much
faster and with simpler protocols compared to the interacting
many-body system. Both small and large numbers of particle
regimes (through Bose-Hubbard and quantum phase dynam-
ics, respectively) were explored.

Our deep-learning method can be also applied to problems
with discretized driving amplitudes, where gradient-based
methods like GRAPE are difficult to apply [16,19] [see
Fig. 4(d), Appendix E]. These protocols take quite a simplistic
form, which we conjecture could be related to general classes
of driving protocols for current generation. Based on the phys-
ical mechanism behind the optimal stirring protocols for a
single barrier and three barriers (see the Landau-Zener argu-
ment above), it is tempting to conclude that the FCP generates
the desired current state by looking at the self-avoiding cross-
ing in the energy landscape and by optimizing the transition
amplitudes between states with different winding numbers.

Our findings are of direct relevance in different contexts of
quantum technology. Especially for cold-atom quantum tech-
nology, our approach clearly shows a path to solve important
challenges in realizing atomtronic circuits. In particular, we
note that our approach does not rely on artificial gauge fields,
which most other methods require to generate currents. This
feature leads to a simplification of the experimental apparatus.
Similarly, the FCP could be exploited in superconducting cir-
cuits to achieve controlled electronic currents. Our approach
can be extended to other quantum many-body systems, for
current states in more complex circuit geometries and hy-
brid quantum networks, as well as for quantum-enhanced
sensing [48].
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APPENDIX A: THEORETICAL MODELS

1. Winding number states

To define our current states, we transform the ring Hamilto-
nian Eq. (1) in the main text of L sites with U = 0 and Pj = 0
by Fourier transforming the operators into the quasimomen-
tum basis

HFT =
L−1∑
k=0

−2J cos

(
2πk

L

)
n̂k , (A1)

where n̂k = b̂†
kb̂k , with b̂†

k = 1√
L

∑
n ei2πkn/Lâ†

n. As the wave
function around the ring is continuous, the wave function
must be the same after going once around the ring. Thus,
we demand exp (i 2πk

L n) = exp (i 2πk
L (n + L)), which is only

fulfilled if k is an integer number, which describes how of-
ten the phase of the wave function winds by 2π around the
ring. The state with winding number k for a single particle
is defined as b̂†

k|vac〉 = |k〉, where |vac〉 denotes the vacuum
state. Many-body states are generated as tensor products of
particles, e.g., a state with Np particles with winding number k
is given by |�k〉 = |k〉⊗Np . For this state, the expectation value
of the number of particles with winding number k is given by
〈n̂k〉 = 〈�k|n̂k|�k〉 = Np.

2. Quantum phase model fidelity

To define the current state for the quantum phase model
(QPM), we use the QPM with an applied artificial magnetic
field �M,

HQP(�M) =
L∑

j=1

[
− 2JNs cos(φ̂ j − φ̂ j+1 − �M)

+ Pj (t ) Q̂ j + U

2
Q̂2

j

]
. (A2)
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(a1)

(c1) (c2) (d1) (d2)

(b1) (b2)(a2)

FIG. 5. Comparison of fidelity with entangled state F = |〈�|ES〉|2 (for figure index 1) and certification measure W� (for index 2) for
L = 12 sites for various parameters. Same parameters as in Fig. 4. We optimize for equal weight entangled states of NC winding number k of
type |ES〉 = 1√

NC

∑
k∈� |k〉⊗Np of a set of winding number � = {k1, k2, . . . , kNC }. (a) Varying time T to generate different entangled states for

Np = 2 particles, NT = 6 time steps, and U = J . (b) For varying time steps NT to reach state � = {0, 1} for Np = 2 particles. (c) Interaction U
dependence for different types of states for NT = 6 time steps and protocol time T = 9/J . (d) Total protocol time T for NT = 4 time steps to
generate entangled superposition state of winding number � = {0, 1}.

To define the target state that carries a current, we refer to the
ground state with a winding number distribution that is cen-
tered around a specific winding number, depending on �M.
For �k = 2πk

L , the ground state |�QP(�k )〉 winding number
distribution is centered around the winding number k. We
define the fidelity as F = |〈�|�QP(�k )〉|2.

APPENDIX B: FIDELITY AND
CERTIFICATION MEASURE

In the main text, we discuss entangled current states using
the fidelity F . However, fidelity is not an observable that can
be easily measured in experiments. We proposed a certifica-
tion measure W� that is an experimental observable [50],

W� = NNC
C

N2NC
p

∏
k∈�

〈�|n̂k n̂k|�〉. (B1)

This measure behaves similarly to the standard fidelity for
the entangled quantum current states F = |〈�|�EC〉|2. For the
target state |�EC〉 it reaches a maximal value W� = 1 and
gives similar results for the state design. In contrast to the
fidelity F , however, we note that W� is related to particle
densities and therefore it is an observable. In a cold-atom
setting, for example, W� can be accessed by measuring the
number of particles in a specific momentum mode, which
can be achieved by time-of-flight measurements [36,37] (see
below). In Fig. 5, we show results on the fidelity for the
same parameters as in the main text in Fig. 4. We find that
the fidelity behaves similar to the certification measure. The
certification measure is always zero for the initial state (e.g.,
seen for data points with T = 0), however the fidelity can be
nonzero. This is because the initial state has in some cases a
finite overlap with the target state. In contrast, the certification

measure is constructed such that this initial overlap does not
affect it.

To characterize the entangled current states in an experi-
mental setting, we defined the certification measure Eq. (B1),
which is a product of expectation values of observables. Ex-
perimentally, one is required to measure the square of the
particle-number operator 〈n̂2

k〉 of the winding number mode k.
For cold-atom condensates, this measure can be determined
from time-of-flight measurements, where the prepared state is
expanded in free space [36]. After free expansion, the density
of the atoms develops a hole in the center, which is propor-
tional to the winding number k [12]. 〈n̂2

k〉 can be calculated
by repeating the time-of-flight measurement several times and
calculating the fluctuations in the winding numbers.

For superconducting circuits, the expectation value of the
square of the particle number of a specific winding number
k can be derived from the expectation value of fourth-order
correlators between different qubits. We find

n̂2
k = 1

L2

∑
n,m,r,s

ei2πk(n+r−m−s)/Lâ†
nâmâ†

r âs ,

where the correlators can be derived by Fourier transforming
the annihilation and creation operators of the operator.

APPENDIX C: COMPARISON TO GRAPE

A standard approach to optimize quantum dynamics is
GRAPE [43,44]. It relies on calculating the gradients of the
control unitaries, then updating the driving parameters with
gradient descent. As such, it requires access to the full model
parameters as well as the underlying unitaries, in contrast to
deep RL, which suffices with observables only and is model-
free. We compare GRAPE in Fig. 6 with the data generated
with deep RL in Fig. 5. GRAPE achieves the same or a bit
higher fidelity in most cases. However, this is not surprising
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(a)

(c) (d)

(b)

FIG. 6. Generation of entangled superpositions of current states
of type |EC〉 = 1√

NC

∑
k∈� |k〉⊗Np of a set of winding numbers

� = {k1, k2, . . . , kNC } using GRAPE. (a) Fidelity as a function of
protocol time T for Np = 2 particles, NT = 6 time steps, and U = J .
(b) Fidelity for varying time steps NT (Np = 2, U = J , � = {0, 1}).
(c) Fidelity as a function of interaction U for different types of states
(Np = 2, NT = 6, T = 9/J). (d) Fidelity as a function of protocol
time T for three different particle numbers NP (NT = 4, U = J ,
� = {0, 1}). All data for L = 12 sites. The GRAPE algorithm is run
multiple times to avoid solutions that became stuck in local extrema.

since it has access to all the information about the quantum
system itself. GRAPE relies on gradients, and as such can-
not optimize problems with discretized driving parameters as
considered in Fig. 4(d).

APPENDIX D: ROBUSTNESS TO NOISE IN DRIVING

Experimental realizations are afflicted by experimental
uncertainties and noise. In particular, for the full control pro-
tocol, where the potential at each site is controlled in time,
the actual potential can only be set with finite accuracy. Ex-
perimental imperfections may also lead to noise, such that
the real value used in the experiment is perturbed from the
desired value. We simulate a random fluctuation of the poten-
tial in Fig. 7. For each time step and site, a random potential
Pi,actual(tn) = Pi,desired(tn) + �P is added, which is sampled
from a uniform distribution between �P ∼ [−δP, δP]. We
observe that for small δP < 0.25J , noise has barely any in-
fluence on the resulting dynamics. We observe that increasing
time T negatively affects robustness [see Figs. 7(a), 7(b), and
7(d)], and the standard deviation of the fidelity increases. In-
creasing the number of time steps NT improves the robustness
[see Fig. 7(c)]. We verify that these results persist for both one
and two particles [for two particles, see Figs. 7(c) and 7(d)],
as well as for entangled [for entangled current, see Fig. 7(d)]
and nonentangled winding states.

APPENDIX E: SUPPORTING NUMERICAL RESULTS

Here, we present further data to support our findings. To
solve the quantum phase model numerically, we restrict the

(a)

(c) (d)

(b)

FIG. 7. Full control driving; local potential can take continuous
values between P = −J and P = J , changing in discrete time steps.
The protocol is optimized with GRAPE. Then, the local potential of
the optimal protocol is perturbed with random noise, sampled from
uniform distribution between [−δP/2, δP/2], sampled for every site
and time step. Each point is sampled from 100 noise realizations;
dots show the mean value and error bars show the standard deviation
of fidelity F . (a) Fidelity to create the phase winding state � = 1 for
Np = 1, for varying random perturbation δP and protocol time T . Ro-
bustness against noise decreases with increasing time T . (b) Varying
protocol time steps Nt increases with the number of time steps for
� = 1 and Np = 1. (c) Varying T for Np = 2, U = J , NT = 6 and
target state � = 1. (d) Same parameters for entangled superposition
state of � = {0, 1}.

fluctuations around the mean particle number to �Q̂m. Here,
we increase the number of particles allowed to fluctuate. In
Fig. 8, we show the fidelity �Q̂m = 4 and L = 5.

Next, we show the full control protocol with constrained
control amplitudes. In Fig. 9, the local potential can either
assume Pi(t ) = 0 or Pi(t ) = J . An example potential is shown

FIG. 8. Fidelity of generating the current state for the quantum
phase model. The initial state is the ground state without flux,
while the target state is the ground state of the model with one
flux quantum. The plot shows the fidelity of reaching the target
state |�QP(�1)〉 for different protocol times T . We restrict the local
Hilbert space �Q̂m = 4. We choose NT = 8, L = 5, and potential
|Pmax < JE|.
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(a) (b)

FIG. 9. (a) Full control protocol with discretized amplitudes: The
local potential can take either the value Pj (t ) = 0 or Pj (t ) = J . Fi-
delity to create the phase winding state � = 1 for Np = 1, for varying
protocol time T and number of time steps NT. (b) Resulting protocol
for discretized driving amplitudes.

in Fig. 9(b). The resulting protocol takes a very simplistic
form.

In the main text, we demonstrate the generation of a state
with winding number k = 1 using the barrier protocol. The
same protocol can also generate superposition states of k = 0
and 1. To generate the entangled state, the barrier is rotated
at the same speed as for the k = 1 case with shorter time
T . In Fig. 10, we study the dynamics of creating entangled
superposition states and compare the FCP against driving a
barrier.

(a)

(c) (d)

(b)
full control barrier

W
Ψ

FIG. 10. Generation of (entangled) superposition states of zero
and one rotational quantum � = {0, 1} in a ring lattice with L = 12
sites. Evolution of certification measure [Eq. (B1)] during driving.
We compare two different protocols: A barrier localized at a single
site moving at constant speed [right curves in (a)] or fully controlling
the potential (FCP) of every lattice individually [left curves of (a)].
(b) Minimal time Tmin required to create rotational states above a
threshold fidelity (Wmin = 0.95 for Np = 1, otherwise Wmin = 0.8) for
different values of barrier amplitude. We find the best rotation speed
of the barrier is at v ≈ 0.5J . (c) Best protocol for rotating barrier.
Curve shows the barrier position over time. (d) Best protocol for
full control over lattice potentials for a protocol of two time steps
nt. Barrier and full control protocols shown calculated for Np = 1
particles.

APPENDIX F: DEEP REINFORCEMENT LEARNING

Here, we describe our machine-learning algorithm in more
detail. A detailed figure describing the neuronal network
structure is shown in Fig. 11, and the pseudocode of the
algorithm is shown in Table I. We learn the driving protocol
via a deep Q-learning network [38], utilizing the actor-critic
method acting on a continuous action space. Our method is
using Proximal Policy optimization [22], and the implemen-
tation is based on TENSORFLOW [39]. The quantum system is
controlled by an agent, which depending on the state st of the
system acts with an action at using the probabilistic policy
π (at |st ). The idea of Q-learning is to find the Q-function
Qπ (st , at ) that estimates the future reward that is paid out at
the end of the full protocol with this policy. The goal is to
learn a policy that can realize long-term rewards over smaller
short-term gains. The optimal Q-function is determined by the
Bellman equation

Q(st , at , π ) = E[rt + γ Q(st+1, at+1, π )]

= E[rt + γ rt+1 + γ 2rt+2 + · · · ],

where E[·] indicates sampling over many instances. γ � 1 is a
discount factor that weighs future rewards against immediate
rewards. The input to the neural network is the Hamilton pa-
rameters at previous time steps, and it outputs the parameters
for the policy π (at |st , μ, σ ), where the actions are sampled
from a normal distribution with mean value μ and width σ . μ

is determined by the neural network, and σ is optimized as a
global variable and decreases during the optimization proce-
dure. We constrain the possible output values for the potential
by mapping values outside of the constraint to the maximally
allowed value. Proximal policy optimization is based on the
actor-critic method. The idea is to have two neural networks:
a policy network and a value network. The policy network
(actor) decides on the next action by determining the param-
eters of the policy. The value-based network (critic) evaluates
the action taken on how well it solves the task and estimates
the future expected reward. It is used as an input to train the
policy network. The two networks are trained at the same time
using Adam [51]. Better performance can be achieved if the
Q-function is split into two parts [52]: Q(st , at ) = A(st , at ) +
V (st ), where A(st , at ) is the advantage function and V (st )
the value function. V (st ) gives the expected future reward
averaged over the possible actions according to the policy.
This is the output of the critic network. A(st , at ) gives the im-
provement in reward for action at compared to the mean of all
choices. We estimate the Q-function from the value function
with Q(st , at ) = rt + γV (st+1), where rt is the reward given
out under action at , and V (st+1) is the value function for the
next time step. We then minimize the square of the difference
of the value function of the network and the predicted reward
in the next time step LV(θ ) = Et [[Vθ (st ) − yt ]2], where θ are
the current network parameters, and yt = rt + V (st+1) is the
calculated reward of the next time step. The advantage func-
tion A(st , at ) = Q(st , at ) − V (st ) tells us how good a certain
action at is compared to other possible actions. Using the
above estimation of the Q-function, the advantage function
can be approximated. The advantage function is the input to
train the policy network (the actor). Following the idea of
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FIG. 11. Neural network to optimize protocols to generate quantum states. Deep learning relies on representing a highly complex function
(e.g., the quality of the driving protocol) with a neural network, and optimizes it using observable data (e.g., measurement outcomes). The
quantum system is a lattice ring with L sites where particles can hop between neighboring sites with strength j. Each site m has a local potential
Pm(tn) that can be modulated in discrete time steps tn. The neural network controls the evolution of the quantum system by adjusting Pm(tn) and
optimizes the parameters over many runs. The neural network performs stepwise evolution of the quantum system in NT discrete time steps tn

over total runtime T . It uses the chosen potentials of previous time steps as an input [state s(tn)], and it returns the potentials to be chosen at
the next step [action a(tn)] by sampling them from a Gaussian distribution. The training is performed by using a measure for the quantum state
[reward r(tn)].

proximal policy optimization [22], the goal is to maximize

Lp(θ ) = Et

[
πθ (st , at )

πθold (st , at )
A(st , at )

]
, (F1)

where θ are the network parameters and θold are the network
parameters of a previous instance. Maximizing Lp(θ ) for the
network parameters θ over many sampled instances guides
the distribution πθ (st , at ) such that it returns actions at with
maximal advantage. However, the ratio

bt (θ ) = πθ (st , at )

πθold (st , at )

can acquire excessively large values, causing too large
changes in the policy in every training step and making
convergence difficult. It was proposed to use a clipped

ratio [22]

Lp(θ ) =Et [min{bt (θ )A(st , at ), clip(rt (θ ),

× 1 − ε, 1 + ε)A(st , at )}],
such that the update at each step stays in reasonable bounds.
We use ε = 0.1. We optimize the neural network over many
epochs NE. For our results, we show the best protocol that
was achieved during the optimization process. We update the
network by randomly sampling Ntrain past iterations from a
memory (replay buffer B) that stores the last Nmemory epochs.
To reduce premature convergence, we add the entropy of
the normal distributions of the policy to the loss function
LS(θ ) = Et [ 1

2σ ln(2πe)]. This contribution slows down op-
timization to avoid convergence to a local minimum. The
final loss function to optimize is L(θ ) = Lp − cvLV + csLS,
where cs and cv are hyperparameters. We find cs = 0.02 and

TABLE I. Pseudocode for our proximal policy optimization algorithm to generate quantum states.

Randomly initialize critic V (s|θ ) and actor μ(s|θ ) with weights θ

Initialize replay buffer B
for epoch=1, NE do

Input initial state s1

for t = 1, NT do
Sample action at = μ(st |θ ) from probability distribution
Execute action at , receive reward rt and next state st+1

Sample random batch of Ntrain transitions (st , at , rt , st+1) from B
Set yt = rt + γV (st+1)
Update critic by minimizing loss L = 1

M

∑
i[yi − V (si|θ )]2

Calculate advantage function A(st , at ) = Q(st , at ) − V (st ) = rt + γV (st+1) − V (st )
Calculate probability ratio rp = P(at |μ(st |θ ))/P(at |μ(st |θold )) of current policy μ(st |θ ) and previous policy μ(st |θold )
function clip(rp, c) clips rp between 1 − c < rp < 1 + c
Update actor policy with clipped loss L = min[rpA(st , at ), A(st , at )clip(rp, c)]

end for
Store (st , at , rt , st+1) ∀t in replay buffer B

end for
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FIG. 12. Optimization of the FCP protocol by the neuronal network over the number of epochs (number of protocol runs). We show
exemplary data that generated the protocol shown in Fig. 2(a). The dots indicate fidelity achieved during a particular run, while the red line is
the moving average over the results. (a) Np = 1, (b) Np = 2, (c) Np = 3, and (d) quantum phase model.

cV = 0.5 to be good choices. A sketch of our neural network
is shown in Fig. 11. The protocol solves the Schrödinger equa-
tion for a total time T with NT discrete time steps of width �t ,
with respective times tn. The network determines the Hamilton
parameters at different sites m of total L sites. For one epoch,
the system runs the network NT times. Input are the potentials
used at previous time steps tn, and the parameters are returned
to be used for the n + 1 time step. The input vector has length
(L + 1)NT ; it lists the parameters and the corresponding times
tk used up to current time step tk : t1, . . . , tn. The network
propagates through two hidden layers of fully connected neu-
rons of size NH with ReLu activation functions. The output
layer has size L + 1 and uses a linear activation function.
For the value function (critic), the output of the last hidden
layer is collected to a single node, which represents the value
function V (st ). For the policy (actor), L outputs determine
the mean values of the normal distribution that generates
the potential at the next time step tn+1 of the protocol. The
neuronal network is trained with the loss function after calcu-
lating the full time evolution to time T and measuring all the
rewards.

For the actual implementation, we choose the follow-
ing parameters: learning rate with Adam α = 0.0002, NH =
200 neurons in the hidden layer, training over NE = 120 000
epochs, training with a randomly sampled batch size 500, and
a replay buffer B of Ntrain = 500NT previous results.

APPENDIX G: OPTIMIZATION RUNTIME

The machine-learning algorithm starts with a randomly ini-
tialized neuronal network that generates the driving sequence.
By running repeatedly, the network generates better driving
sequences. Finally, we plot the best driving sequence found
during the training epochs. Here, we show results on the
training procedure. The fidelity achieved increases during the
training over many epochs. In Fig. 12, we show the fidelities
during the training procedure for the FCP protocols that were
used for Fig. 2(a) of the main text.

APPENDIX H: STATISTICS

Our goal is to optimize a high-parameter space driving
protocol. In general, the optimization landscape is complex,
with many local minima. We run the machine-learning al-
gorithm several times, and we look at the convergence of
the certification measure. As the algorithm is nondetermin-
istic and not guaranteed to converge to the global minimum,

each run can yield different end results. In Fig. 13, we show
the minimal and maximal certification measure achieved for
20 runs to create entangled states. For reaching � = {0, 1}
we see only a small variation between minimal and maxi-
mal achieved certification measure; see Fig. 13(a). Thus, in
one run of the algorithm we can be sure that a very good
solution is found. However, we see a significant spread in
certification measure results for higher particle number and
more complex entangled states, e.g., � = {−1, 1} and Np = 3
particles; see Fig. 13(b). Thus, for this parameter set to find
the best result, several runs have to performed. This implies
that the complexity and difficulty of the optimization prob-
lem to generate entangles states are highly dependent on the
parameters of the problem. We took care to check that the
variance of the solutions is within reasonable bounds for our
results.

APPENDIX I: EXPERIMENTAL CONSIDERATIONS

For a cold-atom implementation, the driving of the ring
lattice can create excitations. Within the Bose-Hubbard ap-
proximation, only the first Bloch band is considered. It is
assumed that higher Bloch bands are far-detuned in energy
and thus do not contribute. In most experiments, the energy
gap between the Bloch bands within the harmonic approx-
imation of the lattice sites is given by Elattice = 2

√
V0ER,

where V0 is the potential energy of a sinusoidal confinement
and ER is the recoil energy [53]. For typical V0 = 10ER, we
find Elattice = 6.3ER. The nearest-neighbor coupling J can be

(a) (b)

FIG. 13. Statistics (minimum, maximum, and average certifica-
tion measure W� ) over 20 repeated runs of the algorithm for different
parameter sets. (a) Different particle numbers Np for NT = 4, T =
8/J , U = J , and � = {0, 1}. (b) Different protocol steps NT for a to-
tal protocol length of T = 10/J , � = {−1, 1}, L = 12 sites for Np =
3 particles, and U = J . Driving with local potential |P| < Pmax = J .

013034-10



MACHINE-LEARNING ENGINEERING OF QUANTUM … PHYSICAL REVIEW RESEARCH 3, 013034 (2021)

approximated as J/ER = 4√
π

( V0
ER

)
3/4

exp (−2
√

V0
ER

)≈0.02 [36].

Thus, the energy separation between the first and second
Bloch band is �E = Elattice/J ≈ 315. From first-order per-
turbation theory, we know that the overlap with higher-order
states scales as P/�E , where Pmax is the strength of the per-
turbation. The perturbation of the potential that we apply is on
the order of Pmax = J , which is much smaller than the energy
gap. Thus, we can safely ignore excitations to higher Bloch
bands. For the quantum phase model, the nearest-neighbor
coupling strength scales as JE = JNp/L. To justify the one
Bloch band approximation, JE has much less than the energy
gap between the Bloch bands. Thus, JE = JNp

L � Elattice.
For cold atoms, the control parameter to change the local

potential Pj is V0. In our protocol, we change Pj (t ) and thus
V0 in time on the order of the nearest-neighbor coupling J .
However, J is actually a function of V0 and thus may change

due to the driving. However, as V0 � J , changing V0 on the
order of J has a negligible effect on J .

We assume a stepwise control of the potential, with sharp
changes in the potential. The steps that change the potential
have an amplitude on the order of J , at timescales of J . We
detail how this can be realized in experiment. In the case
of cold atoms, the potential is generated by laser pulses.
Light-shaping techniques can modify the potential with a
frequency of about 20 kHz [54]. The relevant timescale of
the experiment is on the order of J , which is far smaller.
For superconducting circuits, the potential is controlled by
microwave pulses that modify the circuit potential. The cir-
cuit potential can be modulated on the order of 35 MHz,
while the nearest-neighbor couplings are far slower with
J ≈ 4 MHz [28]. Thus, we conclude that the driving pa-
rameters can be feasibly modulated on the timescales we
consider.
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