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Abstract: In this work, the optimal conditions for the electrodeposition of a CdSe film on n-Si were
demonstrated. The structural and optical properties of the bare films and after annealing were
studied. In particular, the crystallinity and photoluminescence of the samples were evaluated, and
after annealing at 400 ◦C under a nitrogen atmosphere, a PL increase by almost an order of magnitude
was observed. This paper opens the route towards the use of electrochemical deposition as a cost-
effective and easy fabrication approach that can be used to integrate other interesting materials in the
silicon-manufacturing processes for the realization of optoelectronic devices.
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1. Introduction

Silicon is the leading material of contemporary technology as we know it and pre-
sumably will remain a fundamental pillar in the future as well. The use of silicon in
microelectronics is currently undiscussed. However, the indirect bandgap of silicon makes
the realization of Si-based devices with integrated photoemission complex, even if this is a
fundamental step in the integration of photonics and microelectronics. Doped silicon itself
has low photoemission and various tactics have been used to improve this aspect such
as defect emission [1–3], fluorescent rare-earth doping [4–6], and quantum confinement
effect [7–9]. In recent years, the use of porous silicon and silicon nanowires (NWs) has
achieved good results in emission at room temperature [10–13]. A different approach
consists of coupling other semiconductors to silicon in order to exploit their photoemis-
sion characteristics [14]. The integration of different semiconductors on the same support
would allow for the production of extremely small and economical devices. In particular,
nanoparticles made of II–VI semiconductors are currently being extensively studied due
to their unique size-dependent properties. In this framework, CdSe nanoparticles show
enhanced luminescence, increased oscillator strength and shorter response time, fostering
the interest in energy and optoelectronics applications [15]. Cadmium selenide is a good
candidate for these purposes as it has good optical characteristics [16–18], is used in solar
cells [19], light-emitting diodes (LEDs) [20–22], laser diodes [23–25], photo- and electro-
luminescent devices [26,27], and fluorescent sensors [28–30]. Additionally, CdSe versatile
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material can also be used in its pure nanocrystalline form [31], or in core–shell combi-
nation with other metals [32,33], or even in polymer composites to further improve its
chemical-physical properties, such as CdSe/TiO2 [34] or In2Se3/CdSe nanocomposites [35]
for energy applications.

The cheapest and industrially scalable method for depositing CdSe is electrodeposition,
which can be conducted at ambient temperature and pressure, unlike steam techniques,
while still maintaining a very fine control over the quantity and characteristics of the
deposited material.

The semiconductor nature of Si makes finding the right deposition conditions a diffi-
cult task since the exchange of electrons between the electrode and the solution is severely
limited compared to metal electrodes and is influenced by the lighting conditions. While
the deposition of CdSe on metals is now a well-known practice in the scientific field [36–39],
as well as other semiconductors (CdS [40], MoSe2 [41], Bi2Se3 [42]), its deposition on Si has
been scarcely explored.

In a previous work, we evaluated the possibility of obtaining continuous films of
CdSe on commercial n-Si (100) by electroplating at room temperature [43]. In this study,
we investigated this aspect by looking for the optimal conditions for the codeposition of
Cd and Se to obtain high efficiency and maintaining a nanometric thickness. Rutherford
backscattering spectrometry (RBS) measurements were used to determine the deposited
atomic density of the components. In addition, annealing processes were carried out
to assess whether a structural rearrangement could lead to greater crystallinity, and the
resulting samples were characterized by an Atomic Force Microscopy (AFM) and analysed
in terms of absorption and photoluminescence (PL) showing an enhanced PL after the
optimized thermal treatment.

2. Materials and Methods
2.1. Electrochemical Measurements

The codeposition solutions were prepared using ultrapure MilliQ water (18 MΩ, Merk
Millipore, Burlington, MA, USA) with 0.1 mM of Na2SeO3 and 3CdSO4·8H2O and H2SO4
0.1 M (Sigma-Aldrich, St. Louis, MO, USA). The solutions were deaerated with nitrogen
and stored under nitrogen atmosphere in sealed Pyrex jars. For the deposition, we used
a PC-controlled automated deposition system [44]. The capacity of the cell was 1.88 mL.
The working electrode was an n-Si 100 (P-doped with a resistivity of 1–5 Ω·cm) with a
diameter of 1 cm. Before each deposition, the electrode was cleaned following the RCA
procedure [43,45]. The electrochemical depositions were carried out at room temperature in
the dark to exclude the influence of light that could potentially lead to the photoexcitation
of silicon. All the given potentials refer to the Ag/AgCl sat. KCl electrode.

2.2. Microscopic and Spectroscopic Characterization

The scanning electron microscopy (SEM) images were acquired using a S-2300 Hi-
tachi (Tokyo, Japan) equipped with a Thermo Fisher Scientific Noran System 7 detector
(Waltham, MA, USA) to perform the semiquantitative microanalysis (EDS) and analysed
with Pathfinder 2.1 software (Thermo Fisher Scientific, Waltham, MA, USA). The analyses
were performed with an accelerating voltage of 20 kV and the stage was tilted by 45◦ to
emphasize the 3D shapes.

The Rutherford Backscattering Spectrometry (RBS) was carried out by using a He+
beam at an energy of 2 MeV, spectra were analysed using SIMNRA 7.03 software (Max-
Planck-Institut für Plasmaphysik, Garching, Germany). After that the beam impinged onto
the sample, the backscattered He+ ions were collected at the detection angle of 165◦ with
respect to the beam direction. Finally, a multichannel analyser was used to measure the
energy loss of the backscattered ions. The crystallinity of the deposit was characterized
using a Bruker (Billerica, MA, USA) New D8 Da Vinci Diffractometer to perform X-ray
Diffraction spectroscopy (XRD) with Cu K radiation, Ni filter, fast multichannel energy-
discriminator detector, flat holder, and Bragg-Brentano configuration in the 20◦ and 60◦
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range. DIFFRACT.EVA 5.2.0.5 Bruker (Billerica, MA, USA) software was used for the
interpretation of the diffractograms. The XRD analyses were performed on the samples as
prepared and after the heat treatment of 1 h at 200 ◦C, 1 h at 400 ◦C, or 4 h at 400 ◦C. The
annealing was performed in a furnace under nitrogen flux.

The room-temperature emission of the samples was tested by photoluminescence (PL)
spectroscopy using a HR800 Spectrometer (HORIBA Ltd, Kyoto, Japan) and the 476 nm
line of an Ar+ laser as excitation focused onto the sample through a 100X (0.9 NA) objective.
The room temperature emission of the samples was then analysed by a Synapse Peltier
cooled CCD detector (HORIBA Ltd, Kyoto, Japan). This setup works in a backscattering
configuration and the same objective was used to acquire the signal.

3. Results

The cyclic voltammetry (CV) of the solution containing cadmium and selenium was
reported in Figure 1a. The deposition on the n-Si substrate slowly began at −0.5 V reaching
a first cathodic peak at −0.8 V a second peak at −0.91 V, the deposition appears irreversible
since no anodic peaks were detected. The −0.8 V peak was assigned to the codeposition of
CdSe, while the peak at −0.91 V corresponds to the deposition of Cd [43,46]. We performed
a charge-controlled deposition at eight different potentials to evaluate the changes in the
deposit at each point. The chosen potential ranged from −0.60 V to −0.95 V every −0.05 V.
The depositions were performed by depositing a charge of 30 mC independently from
the applied potential. Every 1 mC, fresh solution was injected in the cell to keep the
concentration on the surface of the electrode constant, the procedure was repeated 30 times.
Based on the total deposited charge, the density of CdSe, and the dimension of the electrode,
the deposit should roughly have had a thickness of 21.7 nm.

Figure 1. (a) CV of Cd2+ and Se (IV) solution on n-Si in sulfuric acid between −0.2 V to −0.95 V, scan
rate 10 mV/s. (b) Dependence between applied potential and time required for a 30 mC deposition.
needed for the deposition; (c) Linear stripping voltammetry of the samples obtained at various
potentials between the deposition potential and −0.3 V, scan rate 10 mv/s.

The time required for deposition followed a linear trend as shown in Figure 1b. To
evaluate the nature of the deposits, we performed a stripping between the deposition
potential and 0.5 V (Figure 1c), even an uncoated silicon substrate was measured for
comparison. At potentials greater than −0.25 V, every sample, including the bare n-Si,
showed an anodic current. In the range of potentials between −0.75 V and −0.50 V the
samples obtained with a deposition potential lower than −0.8 V exhibited an anodic peak
produced by the presence of excess Cd.

New and fresh samples were prepared for further characterizations.
An SEM analysis was performed on each sample (Figure 2a–h). The deposition was

not fully homogeneous but appeared to be quite smooth considering that to obtain an
appreciable image the stage had to be tilted of 45◦ and the contrast was set to almost
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maximum. Such difficulties could be also attributed in part to the low thickness of the
coatings (around 10 nm).

Figure 2. SEM images using the stage tilted of 45◦ of the samples of CdSe obtained ad the following
potentials: (a) −0.60 V; (b) −0.65 V; (c) −0.70 V; (d) −0.75 V; (e) −0.80 V; (f) −0.85 V; (g) −0.90 V;
(h) −0.95 V.

Samples obtained with a potential of −0.60 V (a) and −0.65 V (b) present come
holes on the surface, attributable to the non-fusion of the growth nuclei, probably caused
by the low deposition potential. Samples realized with a deposition potential between
−0.70 V and −0.90 V are quite uniform and similar one to each other. The deposition
performed at −0.95 V shows the formation of several clusters; comparing this result
with the electrochemical data, we suppose their reflects excess of Cd deposited at higher
overpotentials.

The samples were analysed with RBS (Figure 3) to obtain the amount of Cd and
Se present on the sample. RBS allows for measuring the surface atomic concentration
(atm ∗ cm−2) of cadmium and selenium on the electrode. With the surface atomic concen-
tration, it is possible to determine two very important characteristics of the samples: the
stoichiometric ratio and the thickness. Considering the stoichiometric ratio 1:1 in CdSe the
equivalent amount of cadmium selenide was deduced (Equation (1)), excluding the excess
of Se or Cd.

CdSe% =
2·min([Cd], [Se])

[Cd] + [Se]
(1)

We found that the percentage of CdSe is >99% for deposition potential was lower than
−0.70 V (Table 1). At a lower overpotential, we obtained an excess of selenium. Using only
this information, it is not possible to distinguish if CdSe is deposited or if the elements are
present in the form of Cd0 and Se0. From the electrochemical measurements, we observed
that for a potential lower than −0.80 V, an excess of Cd was deposited as observed from
the stripping voltammetry (Figure 1c).
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Figure 3. RBS analysis of the CdSe sample prepared at −0.75 V on the Si substrate.

Table 1. Atomic density and thickness obtained from RBS analysis of the films prepared at differ-
ent potentials.

V Dep
Cd Se

%CdSe
Thickness

× 1016 atm ∗ cm−2 CdSe (nm) ε%

−0.60 1.78 2.86 76.7% 9.7 44.8%
−0.65 0.70 1.92 53.4% 3.8 17.6%
−0.70 3.10 3.09 99.8% 16.9 77.7%
−0.75 2.57 2.55 99.6% 13.9 64.1%
−0.80 2.07 2.10 99.3% 11.3 52.1%
−0.85 1.73 1.75 99.4% 9.4 43.5%
−0.90 1.17 1.37 92.1% 6.4 29.4%
−0.95 1.69 1.68 99.7% 9.2 42.3%

RBS is also an established technique for the determination of the thickness [47], and
by knowing the surface atomic concentration and the density of the deposit, it is easy to
calculate the thickness of the coating (Equation (2)):

tCdSe =
M·min([Cd], [Se])

NA·ρ
(2)

where NA is the Avogadro number, ρ the density and M the molar mass.
Considering the density of the compound and the geometric area of the electrode the

equivalent thickness was calculated and the efficiency (ε%) (Equation (3)) was obtained by
comparing the experimental value of the sample (tCdSe) with the theoretical one (tt).

ε% =
tCdSe

tt
(3)

The theoretical thickness was calculated using the Faraday law (Equation (4)) consid-
ering the amount of deposited charge (Q = 30 mC), the molar mass (M = 191.37 g/mol) and
density (ρ = 5.82 g/cm3) of CdSe, the area of the electrode (A = 0.785 cm2), the number of
electrons (n = 6) and the Faraday constant (F = 96,485 C/mol).

tt =
Q·M

A·ρ·n·F = 21.7 nm (4)

The deposition potential of −0.70 and −0.75 V produced the highest deposition
thickness with the highest deposition efficiency. From these results, we decided to elect
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the −0.75 V as the best operating condition to obtain the CdSe film on n-Si. In the RBS
spectrum of the −0.75 V CdSe sample is reported showing the experimental data along
with the obtained fit.

We prepare fresh samples using this potential and we performed XRD and PL on the
samples as prepared and after annealing treatment.

Samples prepared using a potential of −0.75 V were annealed under N2 atmosphere
using the following conditions: 1 h at 200 ◦C, 1 h at 400 ◦C, or 4 h at 400 ◦C. Then, the
crystallinity of the samples was investigated with XRD (Figure 4). The as-prepared sample
shows the peaks characteristic of cubic CdSe at 25.5◦, 42.2, and 49.9◦ [48,49]. No other
signal was observed, meaning that the stoichiometric ratio between the two elements was
satisfied. After annealing at 200 ◦C, we did not observe any substantial change. In both
the two diffractograms recorded on the samples annealed at 400 ◦C, the peaks are more
intense and sharper, even if the change in intensity does not differ considerably from the
pre-annealed sample. Moreover, the number of peaks and their position remains unaltered.
The low intensity and the lower number of peaks compared to bulk CdSe can be assigned
to the very low amount of deposited substance. These results suggest that the thermal
treatment favours a rearrangement of the atoms towards a more crystalline structure, but
also the deposited films were not completely amorphous. Since the peaks do not change
their positions we can assert that we do not have a change in crystalline structure from
cubic to hexagonal, as sometimes observed by other authors [50–52]. In particular, we did
not observe any variation at 23.9◦ in correspondence of the most intense and characteristic
[100] peak of the hexagonal CdSe. No substantial differences were observed between the
two different annealing time at 400 ◦C.

Figure 4. XRD analysis of CdSe samples prepared with a potential of −0.75 V (black) and then
annealed under N2 atmosphere for 1 h at 200 ◦C (red), 1 h at 400 ◦C (blue), or 4 h at 400 ◦C (green).

An AFM analysis was performed on the sample prepared with a deposition potential
of −0.75 V, as growth was observed and after the 4 h thermal annealing performed at
400 ◦C (Figure 5). After the heat treatment, we observed a change in roughness, and after
annealing the sample was flatter with a decreasing in roughness of almost three times while
the maximum peak height dropped from 92 nm to 33.6 nm, while the RMS roughness (Sq)
decreased from 9 nm to 3.5 nm. Considering that from the XRD measurements there is only
a slight improvement of the crystallinity we can deduce that there is an arrangement of the
matter towards a flatter condition, but the size of the grains does not change much.
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Figure 5. 2D and 3D AFM analysis of the sample prepared at −0.75 V before (a) and after the 4 h
annealing performed at 400 ◦C (b).

The absorption spectra of the silicon substrate and of the CdSe were recorded before
and after the heat treatment (Figure 6). We observed that the deposit has a much higher
absorbance than the substrate. Instead, the annealing leads to a slight decrease in absorption.
The variations in absorbance seem to confirm the results obtained with the AFM and XRD
measurements, i.e., the annealing process leads only to a variation of surface morphology
and therefore of scattering.

Figure 6. Absorbance spectra of the silicon substrate (black) and the sample prepared at −0.75 V: as
growth (red) and after the 4 h annealing performed at 400 ◦C (blue).
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The photoluminescence spectrum of a sample prepared with a potential of −0.75 V
was measured before and after the annealing at 400 ◦C for 4 h. The sample was excited with
a 476 nm laser and the emission spectrum was recorded (more details in the experimental
methods). After the annealing, the characteristic line shape of the emission peak of CdSe at
725 nm [53] remained unchanged but its intensity grew considerably by almost an order of
magnitude in relation to the increase in crystallinity (Figure 7).

Figure 7. Photoluminescence spectra of the sample prepared at −0.75 V before (blue) and after (claret
violet) the annealing at 400 ◦C for 4 h, using an excitation laser with a wavelength of 476 nm.

4. Conclusions

In this work, the optimal conditions for the deposition of a CdSe film on n-Si were
achieved using a potential of −0.75 V and a solution of Na2SeO3 and 3CdSO4·8H2O in
sulfuric acid electrolyte. At an overpotential of lower than −0.70 V, an excess of Se was
detected with RBS analysis, while at an overpotential of greater than −0.80, an excess
of Cd was evaluated from electrochemical stripping voltammetry and SEM images. The
crystallinity and photoemission of the samples were evaluated and, even if the electrode-
position provides a crystalline deposit, we found that after annealing at 400 ◦C under a
nitrogen atmosphere, the PL increased by almost an order of magnitude. The electrochemi-
cal deposition is an easy and cost-effective preparation method and the results obtained in
this study suggest that it could also be applied to the silicon-manufacturing processes for
the realization of optoelectronic devices.
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